Novell
exteNd

Director

5.2 ®
‘ USER MANAGEMENT GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd DirectorUser Management Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR

Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: " This product includes software devel oped by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License

Version1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C

W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGESARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 9
PART I DIRECTORY MANAGEMENT e e e 11
1 About Pluggable RealmS. . ..o o e e 13
ADOUL TEAIMS . . L . e 13
Types Of FEAIMS . . . oo 13

REAIM @CCESS\t 14

J2EE application Server realms o e e e 14
exteNd Application Server realm e 14

exteNd application server compatibility realm. 15

BEA WebLogiC realm oo e 15

IBM WebSphere realm 16

LDAP SEIVEr rEalMS. . . o oottt et et e e 16
Base LDAP 1AMo 16

LDAP application SErver realmso 17
PersistManager realm 17
WIting @ CUSTOM FEaIM . . . o o i e e e e e e e e e e 17
CoNfiQUIING FEalMIS. o e e 18
Configuring realms automatically e 18
Configuring realms manually. e 18
Configuring a different authentication provider e 18
Configuring the primary realm. 20
Configuring @ CUStOM FrealmM 21

2 Managing USers and GrOUPS . ..ot vttt et e ettt et e e e e e e e 23
About the Directory SUDSYStEM e e e 23
DIrEC Ny AP L. . e e e 23
AUNENTICAtING USEISo e e e e e e e e e e e e 24
About the Login portlet 24
Authenticating @ USEr e 25

AddiNG USEIS @nd grOUPS. . . o oot ettt et et e e e e e e e e e 26
AdAING @ USEI . . .t e e e 26

AdAING @ GIOUP. .« .ttt et e e 27

AddiNg @ USEI {0 @ grOUP ottt e e et e e e e e e e 27
Accessing Users, groups, and CONLAINEISttt e e e e e e e e e e e e e 27
User and groUp QUETIES. o ottt e et e e e e e e e e e e e e 27
DYNamMIC groUPS SUPPO . o o et ettt et et e e e e e 28

Getting container principals in atree realm. e e 28

3 Using the Directory Section of the DAC e 31
About the Directory section of the DAC e 31
Search facility e 31

USBlS L ittt 32

G OUP S . o e e e e 33

PART Il SECURITY MANAGEMENT e e 35

4 Using ACL-Based AUthorization e e e e e e 37
About the Security SUDSYStEM 37
ACLS N @XIENG DIFECIOT . . . o . ottt et et e e e e e e e e e e e e 37

ACCESSING PrINCIPAIS. . . o oot e e 38
HOW ACL ProCessiNg WOTKS o o e e e e e e 39
ACL subsystem adminiStrators e 40
Restricting access to administrators using the API e 41
Accessing ACLS fOr USErs and groUPSttt e e e e e e e 41
Getting Security APl delegates 42
Getting an element type and identifier e 42
Listing the permissions associated with an element. e 42
Listing the principals with permission for an element. e 42
Listing the elements with permissions fora principal e 43
Getting the content Of an ACL e 43
Assigning a prinCipal to0 an AC Lt e e e 43
ACCESSING ACLS fOr CONtAINEISt e e e e e e e 44
Assigning a container principal to an ACL e 44
Customizing ACL-based authorization e 45
Customizing the SECUNtY SEIVICE e e e e 45
Adding ACL-based security t0 @ NEW SUDSYSIEM i e e 45
CUSIOM PEIMISSIONS. & . .ttt e e e e e e e e 46

B USINg SeCUIitY ROIESo 47
About J2EE role-based authorization a7
About exteNd DireCtor SECUIILY rOlES o e e e e e a7
Creating @ SECUNTY F0lEo e e e e e e e e 48
Mapping a security role to a Workflow ProCeSSot e e 49
Mapping a security role to a portal page layout e 49
Accessing security roles programmatically e 50

6 Using the Security Section of the DACot e e 51
Modifying adminiStrative @CCESS oottt e e e e e 51

PART Il USER PROFILING e e e e e 53

7 Managing User Profiles 55
ADOUL USEr PrOfilES . . . e e 55

HOW profiles are USed e e 55
Profiles and realm configurations e 56
Checking the realm configuration. 56
Checking for awritable realm. 56
About the New User portlet.o e e e e 56
Accessing profiles UsSiNg the AP L. e 57
Creating a New Profile e e 58
LooKing Up USer Profileso 58
Getting a user Profile e 58
Rules and user profilingo e 59
About conditions @nd aCHIONSot e 59

8 AcCESSING User AttriULESo 61

ADOUL A DULES . . . o o o e e 61
BUIlt-in attribUteS 61
Attributes and NON-LDAP realms oo 61
Attributes and LDAP realms.o 62

AN DULE PO e IESo e e e e e 62
DiSplay PrOPEIIES . . .t e e 62
DA Y PES . . ot 62

6 exteNd Director User Management Guide

Accessing attributes USiNg the APl 62

Getting a list of attributes (NON-LDAP) 63

Getting a list of attributes (LD AP) e e e e 64
Creating an attribute (NON-LDAP) e e e 64

Setting an attribute Value 65

9 Using the Profiles Section of the DAC.o 67
About the Profiles section of the DAC e 67
USEr PrOfiles. . . oo e e e e 67
AU . . o o e 69
PART IV REFERENCE e e e e e e e e e e e 73
10 Framework Tag Libraryo 75
AAAUSEITOG OUD .« o o ettt e e et e e e e e e e e e 76
CrRALEGIOUP. . . . v v ettt et e e e et e e e e e e e e e e e e 76
CrATEU ST e 7
OELGIOUP LISt . . . 77
JOERESOUICE . .\ttt ettt et e e e e e 78
GELUSEIID . . . e e e 79
OEIUSEIINTO . . e e 79
QOIS EILISt. . oo 80
getUSerPrefereNCe. o 81
OGN . e 82

o T o 83
FEIMIOVE G OUD .« + v v vttt e ettt e e e e e 83
FEMOVEUSEIFTOM G OUD . o o oo ittt e e e e e e e e e e e e e e e 84
SEtUSEIPaSSWOI.o e 84
USEIINGIOUD . .« o v vt ettt et e e e e e et e e e e e e e e e e e 85
USEILOgGEdIN. . oo 85

8 exteNd Director User Management Guide

About This Book

Purpose

This book describes how to use the three Novell® exteNd Director ™ subsystems related to user
management:

Subsystem Used for

Directory Realm configuration for user authentication

Security ACL-based user authorization for portal and subsystem elements
User User profiling and provisioning
Audience

Thisbook is primarily for Java developers.
The chapters about using the Director Administration Console (DAC) are for system administrators:

+ Chapter 3, “Using the Directory Section of the DAC”
+ Chapter 6, “Using the Security Section of the DAC”
+ Chapter 9, “Using the Profiles Section of the DAC”

10 exteNd Director User Management Guide

Directory Management

Provides background information, programming concepts, and code examples for the Directory
subsystem

e Chapter 1, “About Pluggable Realms”
e Chapter 2, “Managing Users and Groups”
e Chapter 3, “Using the Directory Section of the DAC”

11

12 exteNd Director User Management Guide

About Pluggable Realms

This chapter summarizes the pluggable realm implementations of exteNd Director and provides
information about configuring realms. It has these sections:

*

*

*

*

*

*

About realms

J2EE application server reams
LDAP server realms
PersistManager realm

Writing a custom realm
Configuring realms

NOTE:
Developing exteNd Director Applications.

About realms

A realmisan exteNd Director application’s interface to a persistent repository of users, groups, and
passwords. In an exteNd Director application, arealm isaclassthat implementsthe interface EbiRealm
or EbiWritableRealm.

Types of realms

For information about configuring realms, see the section on directory configuration in

These are the types of pluggable realms:

Realm type

Description

LDAP realm

Provides an interface to the Novell eDirectory LDAP server. Typically this is a
writable realm.

Support for eDirectory actually consists of several realms: a base LDAP realm plus
LDAP realms specific to the exteNd Application Server, BEA WebLogic, and IBM
WebSphere.

NOTE: You cannot use exteNd Director to add or remove containers or custom
user attributes in an LDAP realm. Those operations require you to use the LDAP
server’s own administration interface.

J2EE
application
server realm

Provides a uniform, platform-independent interface to vendor-specific
authentication and user/group management APIs. Can be a readable or writable
realm.

The actual authentication mechanism can be internal or external to the application
server. From a programming standpoint, this is entirely transparent to your
application.

For example, if you are using the Novell exteNd Application Server, you can change
the authentication provider from Windows NT to NIS+ by making only configuration
changes; no code changes are needed.

About Pluggable Realms 13

cdConfigServicesNew.html

Realm type Description

PersistManage Uses the exteNd Director database as a user/group repository and does its own
r realm authentication using a user/password pairing accessed from the database. Typically
it is a a writable realm.

Compatibility Provides an interface to an internal authentication API used in previous versions of
realm exteNd Director. Users and groups are stored in an exteNd Director application
database. Must be a writable realm. Not recommended for new applications.

Realm access

Realms can be either readable (read-only) or writable (read-write) as described bel ow. For details about
each realm, see the section on directory configuration in Devel oping exteNd Director Applications.

Realm access usage Description

One readable In a readable realm, the Directory subsystem cannot add new users or groups
(read-only) realm or modify existing ones.

Areadable realm is useful when you want full control over the users and groups
that can access an application. For example, intranets often use a central
administration application to manage all users and groups.

One writable In a writable realm, administrators can use the Directory subsystem to add,
(read-write) realm delete, and modify users and groups.

A writable realm is useful when you want to allow anonymous users to add
themselves to the realm. For example, Internet sites often allow users to
register or create accounts for themselves.

One readable An application with two realms can use each realm for a different purpose.
realm and one

° For example, an corporate portal application might use a readable realm for
writable realm

employees and a writable realm for customers.

J2EE application server realms

This section describesthe pluggabl e realm implementations for supported J2EE application servers (non-
LDAP).

exteNd Application Server realm

14

This realm uses the exteNd Application Server Directory APls and can be configured to use LDAP,
Windows NT, SilverUsers, and NI S+ security providers. The LDAP and WindowsNT security providers
are read-only.

NOTE: If you are using eDirectory on the exteNd Application Server, it is recommended that you use the
exteNd LDAP realm.

The EbiSilver Server Realm interface provides access methods to the exteNd Application Server realm:

exteNd Director User Management Guide

cdConfigServicesNew.html

EbiSilverServerRealm SilverServer API

Readable
. -NT login()
Directory
Siioe ey oG
subsystem -NIS+ getGroups()
-SilverUsers
. addUser()
Writable :
-SilverUsers addGroup() E
Interface: EbiSilverServerRealm
Implementation: EboSilverServerRealm

Authentication provider: SilverSecurity (default)
NTSecurity
LDAPSecurity
NISPLUSSecurity

exteNd application server compatibility realm

This realm exists for compatibility with ePortal 2.x directory services or any application that requires
nested groups. It uses a set of database tables for user and group bindings. It also uses the exteNd
Application Server realm’s SilverUsers directory asits user repository:

Interface: EbiUserManagerRealm

Implementation: EboUserManagerRealm

Authentication provider: SilverUsers

BEA WebLogic realm

Thisrealmisfor BEA WebL ogic 6.x. It calls the underlying server API to provide readable access to
external realms (LDAP and Windows NT) and readabl e/writable access to the default realm stored in the
file system on the application server.

The exteNd Director EbiWebL ogicRealm interface provides access methods to the WebL ogic server

ream API:
EbiWebLogicRealm WebLogic realm API
login()
) l:') getUsers() l:'>‘ External realm
Directory — Readable and getGroups()
subsystem writable
addUser() -
File realm
:D addGroup() |::> (default)
Custom realm
(implemented by
customer)
Interface: EbiWeblogicRealm
Implementation: EboWeblogicRealm

Authentication provider: WebLogic internal store

About Pluggable Realms 15

IBM WebSphere realm

Thisrealmisfor IBM WebSphere 4.x and 5.x. exteNd Director accesses data through a custom registry
based on arelational database to provide directory services. (IBM WebSphere does not provide arealm-
access API other than authentication.) All method calls go through the exteNd Director database.

For authentication, the exteNd Director Ebi\WWebSphereRealm interface calls the WebSphere
authentication method, which in turn calls through to the database:

WebSphere AP|
login
9in() exteNd
Custom registry Director
DB
EbiWebSphereRealm
) tUser()
Directory >ge
getGroup()
subsystem addUser()
Interface: EbiWebsphereRealm
Implementation: EboWebsphereRealm

Authentication provider: AUTHUSERS (exteNd Director internal store)

LDAP server realms
For writable LDAP realms, exteNd Director provides:

+ A generic base class that implements the Java Naming Service Interface (JNDI) (JNDI isthe
standard way in Javato access an LDAP realm hierarchy)

o Aderived classfor each supported J2EE application server to authenticate users using a Novell
eDirectory LDAP realm.Base LDAP ream

Base LDAP realm

The JNDI realm base class provides an administrator connection to the LDAP server for retrieving
groups and users. This connection isinternal, and thus unauthorized external accessto datais prevented.
A user’'s INDI connection is stored as part of the user session when the user is authenticated through the

realm:
EboJndiLdapRealm
(base class)
_ Admin & user
authenticate() connections
getUsers() ::D LDAP realm
getGroups()

Directory .)
subsystem IZD‘ authenticate() ‘I:b{ login() |

App server configuration: App Server API
EboSilverServerJndiRealm
EboWeblLogicJndiRealm
EboWebSherelJindiRealm

16 exteNd Director User Management Guide

LDAP application server realms

The base class supports generic LDAP authentication only and does not provide authentication through
an application server. This latter is provided by a separate class for each application server. The
application server realm overrides the authenticate method in the INDI realm super class and uses the
Application Server API for authentication

PersistManager realm

Thisisageneric realm that can be used to access users and groups directly from the exteNd Director
database using the Directory subsystem API. It does not rely on any native application server APIs:

EbiPersistMgrRealm

authUserPassword()

Directory exteNd
A etUsers
subsystem g?etGrourps(g) Dirg;tar
Interface: EbiPersistMgrRealm
Implementation: EboPersistMgrRealm

Authentication provider: AUTHUSERS (exteNd Director internal store)

Writing a custom realm

You can implement your own realm to directly access adirectory server—or you can rely on an existing
database structure. You can create a custom security realm by implementing these interfacesin the

com.sssw.fw.directory.api package:

Directory class Description

EbiRealm Interface that custom realms need to implement if they want to provide read-
only directory services.

The directory manager loads instances of realms that implement this interface
as well as the subinterface EbiWriteableRealm.

EbiWriteableRealm Interface that custom realms need to implement if they want to provide write
access in the directory service.

The directory manager loads instances of realms that implement this interface
as well as the superinterface EbiRealm.

EbiRealmUser The wrapper principal used by custom realms. The original principal
implementation can be used internally in order to leverage existing principal
functionality and APIs.

EbiRealmGroup The wrapper group principal used by custom realms. The original principal
implementation can be used internally in order to leverage existing principal
functionality and APIs.

L For more information, see “Configuring a custom realm” on page 21.

About Pluggable Realms 17

new ../javadoc/com/sssw/fw/directory/api/EbiRealm.html
new ../javadoc/com/sssw/fw/directory/api/EbiWriteableRealm.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmUser.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmGroup.html

Configuring realms

You can configure the realm used in an exteNd Director application automatically or manually.

Configuring realms automatically
You can configure the realm used in an exteNd Director application in the exteNd Director devel opment
environment using either of the following tools, which perform exactly the same function:
+ exteNd Director Project Wizard—for new projects

L) For afull description of the wizard, see the section on creating a project in Developing
exteNd Director Applications.

+ exteNd Director Configuration Tool—for existing projects

L) For afull description of the tool, see the section on reconfiguring an exteNd Director
application in Devel oping exteNd Director Applications.

Configuring realms manually

Two descriptor files contain editable key/value pairs representing your application’srealm and Directory

subsystem configuration properties. The files are located in your project treein the DirectorySer vice-
conf folder.

Descriptor Contents For information, see

config.xml Realm configuration properties The section on changing configurations in
Developing exteNd Director Applications

services.xml Directory subsystem service
configuration

Configuring a different authentication provider
This section applies to exteNd Application Server realms only.

The default realm for the exteNd Application Server is SilverUsers. You can reconfigure your realm to

be any of the authentication providers supported by the exteNd Application Server, including Windows
NT and NIS+.

18 exteNd Director User Management Guide

cdConfigServicesNew.html#CreatinganexteNdDirectorproject
cdConfigServicesEdit.html
cdConfigServicesEdit.html
cdConfigServicesEdit.html#Changingtheconfiguration

> To configure a different authentication provider:

1

In exteNd Director, open config.xml for the Directory subsystem:

config xml I

CiDirectorProjects\PhaseOnelibraryDirectoryZervice \Directory Service-conficonfig xml (using: file:Z Program Files/Silver StreamiektendMor... %)

[Config Entries

aln

DirectoryServiceresimsivriteable com sssw . fu directory.api EbiSilver ServerRealm

com sssvy fw directory api EbiSilverServerRealm SilverStreatn

DirectoryServiceldb-load-on-startup true

DirectoryServicetest-db-on-startup ALTHGROURS

EboDirectorylLog Logginglevel 3

EboDirectoryLog LogFieldSeparstor |

EhoDirectorylog LoggingProvicer com s=sw fuv log EhoStandardOutloggingProvider

com . sssvy v directory LOGIN_MNEW_USERS_ENABLED true

com . sssyw v directory persist.api EbiguthUserinfo Typeldey com sssw . fw directory persist.api EbiduthUserinfo

com sssvy fw directory persist api EbiguthUserinfo MetaTypekey com sssw fu directory persist jobe api EhituthUserinfoleta
com . sssvy v directory persist.apl EbiguthUserinto PersistTypekey com sssw . fuy persist jdbc api EbiddbcPersistenceProvider
com.zssw fw directory persist.api EbiFwGrouplnfo Typeldey com sssw . fu directory persist.api EbiFwGroupinfo

com sssvy fw directory persist api EbiFwGrouplnfo MetaTypekey com sssw fu directory persist jdbe api EhiFwGroupinfoleta
com . sssvy v directory persist.apl EbiFwGroupinto PersistTypekey com sssw . fuy persist jdbc api EbiddbcPersistenceProvider
com.zssw . fw directory persist.api EbiF wBindinginfo. Typekey com szssw . fu directory persist.api EbiFwBindinginfo

com sssvy fw directory persist api EbiFwBindinginfo Meta Typeley com sssw fuy directory persist jdbe api EbiFwBindinginfoMets
com sssyy . fw directory persist.api EbiFwBindinginfo Persist Typekey com sssw . fw persist jdbc api EbiddbcPersistenceProvider
com ssawe fw directory api EhiPersiztMorReslm Perzisthanager
DirectoryServicetesimsipersistgrfanonymous ANONYMoLS:

gk Add | K Delete

O Graphical View

Click Add.

For each key/value pair, double-click the K ey field and the Value field and enter these values:
For Windows NT:

+ Key: DirectoryService/realms/readable/params/PROVIDER
+ Value NTSecurity

+ Key: DirectoryService/realms/readable/paramsAUTHORITY
+ Vaue: Your NT realm domain

For NIS+:

+ Key: DirectoryService/realms/readable/params/PROVIDER
o Value: NISPLUSSecurity

+ Key: DirectoryServicelrealms/readable/params/AUTHORITY
+ Value: Your NIS+ server

NOTE: If you want to reconfigure your primary realm, see “Configuring the primary realm” on
page 20.

Redeploy your project.

L) For deployment information, see the chapter on deploying an exteNd Director project in
Developing exteNd Director Applications.

About Pluggable Realms

19

locator cdLocator.html#Directorysubsystemconfigurationfile
cdDeploy.html

Configuring the primary realm

By default, the readable realm isthe primary realm. For APl method calls, the Directory subsystem
checksthe primary realm first.

> To specify your writable realm as the primary realm:

1 InexteNd Director, open config.xml for the Directory subsystem.

2 Click Add.

3 Enter thiskey/value pair:
+ Key: DirectoryService/realms/primary
+ Vaue DirectoryService/realms/writable

4 Openyour project’s Directory service descriptor:
...\library\DirectoryService\DirectoryService-conf\services.xml

services xml |

FiDirector Projectsi\TypiCorpilibraryDirectory Service\Directory Service-confizervice...)

Service Entries

com.sssw. fu directory api EbillzerManagerRealm
com.sssw. fuy directory api EbiSilverServerRealm
com.sssw . fu directory api EbiWehblogicRealm

com.sssw . fu directory api EbiehsphereRealm ;I
Interface: Icom zzgw fuy directory api EbiDirectoryManager
Implemerntstion Class: Icom.sssw.fw.diredory.core.EboDiredoryManager

Maximum Instances: m

Startup: Im

Mamespacing: m

Description: riredory Service

e add | XK Delete

| = Graphical View | = ML Source Views | &5 XML Tree View |

5 Click Add.
6 Enter the values as shown:

Form information Value

Interface com.sssw.fw.directory.api.EbiSilverServerRealm

Implementation Class com.sssw.fw.server.silverserver.realm.
EboSilverServerRealm

Maximum Instances 0

IMPORTANT: You must set Maximum Instances to O so that the
readable realm and writable realm are separate instances of the
EboSilverServerRealm implementation.

Startup manual

Description Any string

7 Redeploy your project.

L] For moreinformation, see the section on deploying an exteNd Director project in Developing
exteNd Director Applications.

20 exteNd Director User Management Guide

cdDeploy.html
locator cdLocator.html#Directorysubsystemconfigurationfile

Configuring a custom realm

Towriteacustom pluggable real m, you need to implement the interface com.sssw.fw.directory.EbiRealm
(for areadable realm) or EbiWriteableRealm (for awritable realm).

L For more information, see “Writing a custom realm” on page 17.

> To configure a custom realm:
1 InexteNd Director, open services.xml for the Directory subsystem.
2 Click Add.

3 Enter the appropriate values:

Form information Description

Interface A key for the interface or the fully qualified name. For example:
com.acme.MyCustomRealminterface.

Implementation Class The fully qualified implementation class. For example:
com.acme.MyCustomRealmimpl.

Maximum Instances Set this value to 1 if you are planning to use the class as both readable
and writable realm or if you are using only one instance of the realm.

Otherwise, set it to O (for multiple instances).

Startup If you want the class instantiated on server startup, select automatic.
Otherwise, select manual.

Description Any string.

4 InexteNd Director, open services.xml for the Directory subsystem.

5 If your realm is readable-only, enter a key/value pair that matches the value you entered in
services.xml:

+ Key: DirectoryService/realms/readable
Value: Your readable realm interface. For example: com.acme.MyCustomReal minterface
6 If the custom realm is readable/writable, add the same value with this key:
+ Key: DirectoryService/realms/writable

Value: Your readable/writable realm interface. For example:
com.acme.MyCustomReal minterface

7 Redeploy your project.

L) For moreinformation, see the section on deploying an exteNd Director project in Developing
exteNd Director Applications.

About Pluggable Realms 21

cdDeploy.html
locator cdLocator.html#Directorysubsystemservicesfile
locator cdLocator.html#Directorysubsystemservicesfile

22 exteNd Director User Management Guide

Managing Users and Groups

This chapter describes how to manage realm users, groups, and LDAP containers. It has these sections:

*

About the Directory subsystem
Authenticating users
Adding users and groups

* o

*

About the Directory subsystem

The Directory subsystem isused to manage readable and writabl e realms that you have configured using
the exteNd Director Project Wizard. To facilitate authorization and other user-based operations within a
realm, the Directory subsystem supports the concepts of usersand groups. Inthe case of an LDAPrealm,
the Directory subsystem also supports the concept of containers and subcontainers.

Directory API

Accessing users, groups, and containers

The Directory API provides complete programmatic access to users, groups, and containers. Users,
groups, and contai ners are associated with java.security.Principal. A principal isused to authorize access

to application resources.

L) For moreinformation, see Chapter 4, “Using ACL-Based Authorization”.

These are the key Directory subsystem classes:

Directory class

Package

Contents

EbiDirectoryDelegate com.sssw.fw.directory.api

Methods for adding users and groups and accessing user
and group principals

EbiRealmContainerDelegate com.sssw.fw.directory.api

Methods for accessing realm container principals

EbiRealmGroup

com.sssw.fw.directory.api

Methods for adding and accessing group members

EbiDirectoryUsersQuery com.sssw.fw.directory.api

Methods for getting filtered lists of users

EbiDirectoryGroupsQuery com.sssw.fw.directory.api

Methods for getting filtered lists of groups

EboDirectoryHelper

com.sssw.fw.directory.client

Directory helper methods for accessing users and security
principals

EboFactory

com.sssw.fw.directory.client

Methods for getting delegates and realm provider objects

Managing Users and Groups 23

new ../javadoc/com/sssw/fw/directory/api/EbiRealmGroup.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmContainerDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryUsersQuery.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryGroupsQuery.html
new ../javadoc/com/sssw/fw/directory/client/EboDirectoryHelper.html
new ../javadoc/com/sssw/fw/directory/client/EboFactory.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryDelegate.html

Authenticating users

Authentication is performed by obtaining a user name and password and checking them against alist of
registered usersin adirectory realm. Knowledge of aregistered user ID and the corresponding password
is assumed to guarantee that auser is authentic.

Each user registersinitially (or isregistered by an administrator), using an assigned or self-declared user
ID and password. On each subsequent use the user must use the previously declared user ID and
password.

When a user of an exteNd Director application successfully authenticates, exteNd Director obtainsthe
list of group and LDAP container memberships for that user and keepsthe list available for the duration
of the user’'s session. Thelist isused for the purpose of authorization when the user attempts to access a
protected resource.

About the Login portlet

The Portal subsystem provides acore portlet (Portal Login) for the purpose of user authentication. Portal
applications generated by the Project Wizard use this portlet by default

Allows registered users to authenticate. Requires users to
provide a user ID and password in order to access
protected resources.

Novelle exteNd™
Director

¥ login

sermame: Fassword:
| | R
s MNew User?

The Portal Login portlet works out of the box for many applications. Therefore, you may want to use it as
isinyour Portal application. However, you can also customize it to meet your own requirements, if you
like.

Where to find the sources The sourcesfor this portlet are located in your exteNd installation
directory at: Director/templates/ Templ ateResources/portal-core-resource.

Simultaneous logout from exteNd Director and iChain

24

You can configure iChain to act as aproxy server for exteNd Director. In this configuration, the user can
login to exteNd Director through iChain. In addition, the user can logout of both iChain and exteNd
Director simultaneously. When a user attempts to logout of both exteNd Director and iChain, exteNd
Director sends aredirect back to the iChain server. ThisinstructsiChain to end its session and display a

logout page.

exteNd Director User Management Guide

NOTE: To work with iChain, exteNd Director must be using the same eDirectory realm astheiChain
server.

To support simultaneous |ogout from exteNd Director and i Chain, you need to make some simple
configuration changesin both products.

Configuring exteNd Director to work with iChain Theconfig.xml filefor the Directory subsystem
provides two properties that let you provide support for simultaneous logout with iChain:

Property Description

com.sssw.fw.directory.ICSLogoutEnabled Enables or disables simultaneous logout with iChain.

Values are true and false.

com.sssw.fw.directory.ICSLogoutPage Specifies the URL for the iChain logout page. The URL
takes the following form:

https://myiChainServer/cmd/BM-Logout

You need to substitue the name of the actual iChain
proxy server for myichainServer.

When a user logouts, the LoginPortlet checks to see
whether it has an enabled ICSLogout page. If it does, it
checks to see if the iChain cookie is present in the
header and sends a redirect to the iChain logout page.
This causes iChain to log out of its session. If a user
bypasses iChain and authenticates to the application
server directly, the cookie will not be present and the
normal logout/login screen will appear.

Configuring iChain to work with exteNd Director TheiChain server needs to be configured so
that it enabl es authenti cation and forwards both the authentication parameters and the i Chain cookie. The
iChain cookie nameisauniquely generated character string that is 16 characterslong beginning with the
string 1PCZox0.

To configure iChain to work with exteNd Director, you need to follow these steps:

Click the Configure button in the iChain administration tool.

Select Web Server Accelerator.

Click the M odify button.

Click the Authentication Options button.

Select the Forward iChain cookie to Web server option.

Select the Forwar d authentication information to Web server option.

o 0~ WDN PR

Authenticating a user

This code shows how to authenticate a user:

// Get a directory delegate.

EbiDirectoryDelegate dirService = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Initialize principal object.

java.security.Principal prin = null;

try {
// Attempt to authenticate the user ID and password.
prin = dirService.authUserPassword (context, uid, pwd) ;
} catch (Exception ex) {}

Managing Users and Groups

25

Adding users and groups

This section describes how to use the Directory API to add users and groups to a configured realm.
Adding users and groups automatically adds the associated principal object for assigning security ACLSs.

Adding containers You cannot add L DAP containers from the Directory API. Use your native
LDAP realm tools for this purpose. However, you can access existing containers; see “ Accessing users,
groups, and containers’ on page 27.

Adding users and groups using the DAC You can aso use the Director Administration Console
(DAC) to add new users and groups. For more information, see Chapter 3, “Using the Directory Section
of the DAC".

Adding users using the New User portlet ThePortal subsystem providesacore portlet called New
User that allows anonymous users to register themselves. Portal applications generated by the Project
Wizard use this portlet by default, and the DAC and CM S Administration Console both use customized
versions of the New User portlet.

L) for more information, see “About the New User portlet” on page 56.

Adding a user

To add a user, use the addUser() method on the EbiDirectoryDelegate object. You can also use methods
on EboDirectoryHel per to get information about the user, as shown in the example that follows.

Example: checking the self-registration key This code determines whether or not users are
allowed to self-register:

m_isLoginNewUsersEnabled = EboDirectoryHelper.isLoginNewUsersEnabled() ;
The property is set in the Directory subsystem config.xml file:

<property>
<key>com.sssw.fw.directory.LOGIN NEW USERS_ ENABLED</key>
<valuestrue</value>

</property>

Example: adding the user to the realm This code shows how to register a new user:

// Get the context. Use this method or one of the others
// available on the factory object.
EbiContext.context = com.sssw.fw.factory.getDirectoryDelegate ()
// Get directory delegate.
EbiDirectoryDelegate delegate = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Add the user.
delegate.addUser (context, user, pwd);
}

Adding LDAP users For awritable LDAP realm you can specify the fully qualified name
(Distinguished Name) or the common name. The API relies on the LDAP config parameters specified in
the Project Wizard.

L) For moreinformation, see LDAP realm configuration in Devel oping exteNd Director Applications.

NOTE: Itis best to use the fully qualified name whenever possible. This avoids potential conflicts with
users having identical IDs in separate containers.

26 exteNd Director User Management Guide

cdConfigServicesNew.html#LDAPrealmconfiguration

Adding a group
To add a group to the writable realm, use the addGroup() method on the directory delegate:

EbiDirectoryDelegate delegate = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Add the user.

delegate.addGroup (context, groupName) ;
}

Adding a user to a group

To add a user to a group, use the addM ember() method on a Group object:

try {
EbiDirectoryDelegate delegate =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

Group group = delegate.getGroup () ;

Principal user = delegate.getUser (context, username) ;
group .addMember (user) ;

return true;

}

catch (Exception e) { }
return false;

Accessing users, groups, and containers

The directory delegate provides several methods for retrieving users and groups. Seethe getUser () and
get Groups() methodsin EbiDirectoryDelegate. The realm container del egate has methods for accessing
containersin tree realmslike LDAP. See EbiRealmContainerDel egate.

Most of the methods described in this section return principal s associated with the user, group, or
container. This allows you to set security ACLs using the Security API.

L) For moreinformation, see Chapter 4, “Using ACL-Based Authorization”.

User and group queries

The Directory API supports user and group queries for supported realm configurations. This feature
allowsyou to include query stringsto get filtered lists of users and groups. Using queries provides

performance benefits, especially with large directories. The Directory APl includes two classesto
support queries:

+ EbiDirectoryUsersQuery
+ EbiDirectoryGroupsQuery
Some usage examples follow:

Example: user query

// Get a directory delegate.
EbiDirectoryDelegate delegate = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

// Get the query object.
EbiDirectoryUsersQuery query =EboFactory.getDirectoryUsersQuery () ;

// Specify a query string.
query.whereUserIDStartsWith (search str);

Managing Users and Groups 27

new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmContainerDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryUsersQuery.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryGroupsQuery.html

if (!EboStringMisc.isEmpty (myRealm))query.whereRealmName (myRealm) ;
if (!EboStringMisc.isEmpty (myGroup))query.whereGroupID (myGroup) ;

// Get collection of EbiRealmUsers.
Collection users =delegate.getUsers (context, query) ;
// EbiRealmUser objects are returned.

Example: group query

// Get a directory delegate.
EbiDirectoryDelegate delegate = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

// Specify query strings.
EbiDirectoryGroupsQuery query = getDirectoryGroupsQuery () ;
query.whereGroupIDStartsWith (search str);

// To retrieve children of "root" groups only.
query.whereParentGroupID (EbiDirectoryConstants.DIRECTORY ROOT_ GROUP) ;
if (!EboStringMisc.isEmpty (myRealm))query.whereRealmName (myRealm) ;

// Get a collection of EbiRealmGroups.
Collection groups = delegate.getGroups (context, query) ;
// EbiRealmGroup objects are returned.

Dynamic groups support

The Directory subsystem supports accessing existing dynamic groups in eDirectory realms. Dynamic
groups are an LDAP realm feature that allows groups to be defined dynamically by a query.

NOTE: exteNd Director does not support the creation or modification of dynamic groups. Use your LDAP
client tool for this purpose.

You need to configure your exteNd Director project to access dynamic groups.For more information, see
the section on LDAP realm configuration in Developing exteNd Director Applications.

To access a dynamic group, use one of the getGroup() methods on EbiDirectoryDelegate. The delegate
also has this method for determining dynamic group realm status:

public boolean isDynamicGroupSupported(String realm)
L] For more information about dynamic groupsin eDirectory, go to:

http://devel oper.novell.com/research/appnotes/2002/april/05/a0204054.htm

Getting container principals in a tree realm

You can use container delegate methods to access container principalsin an LDAP or similar tree-type
realm.

NOTE: Setting ACLs on a container principal allows you to apply security inheritance to users in the
container hierarchy. For more information, see “Accessing ACLs for containers” on page 44.

This example shows how to get aroot container and its descendants:

// Intialize Java container object.

Collection availContainers = null;

// Get container delegate.

EbiRealmContainerDelegate conDelegate =
com.sssw.fw.directory.client.EboFactory.getRealmContainerDelegate () ;
// Get the root (top) container.

EbiRealmContainer root = conDelegate.getRootContainer (context) ;

// Get Collection of EbiRealmPrincipals.

EbiRealmContainer's and/or EbiRealmUser's)

if (root != null) ({

28 exteNd Director User Management Guide

cdConfigServicesNew.html#LDAPrealmconfiguration
new http://developer.novell.com/research/appnotes/2002/april/05/a0204054.htm

availContainers = conDelegate.getDescendants (context, root, true, false);
if (availContainers != null) {
availContainers.add (root) ;

else {
availContainers = new ArrayList () ;
availContainers.add (root) ;

return availContainers;

Managing Users and Groups 29

30 exteNd Director User Management Guide

Using the Directory Section of the DAC

This chapter describes how to manage the Directory subsystem using the Director Administration
Console (DAC). It contains the following sections:

+ About the Directory section of the DAC

s Users

+ Groups

L) For information about how to accessthe DA C, see the section on accessing the DAC in Developing
exteNd Director Applications.

About the Directory section of the DAC

Search facility

The Directory section of the DAC allowsyou to view information about the security realm of adeployed
exteNd Director application. In the case of awritable realm, you can a so change the information.

The Directory section has the following pages:

s Users
+ Groups

The Directory section provides a search facility for querying users and groups. Thisis helpful when
dealing with large directory structures. A Search dialog appears at appropriate placesin the User and
Group pages.

> To search for a user or group:

+ Enter one or more characters that start the user or group name, then click Go.
For example:

Users Groups

Realm MName:
Iextel\ld Server vl
Search for User
starting with:

E:| G0

M Show &l
Users

Using the Directory Section of the DAC 31

cdAppAdmin.html#AccessingtheDAC

Users

The User s page allows authorized users to add and remove users from the authentication realm.

Theleft side of the page shows alist of users. The user list from an LDAP realm looks like this:

Users Groups
Realm MName: |LDAPReaIm vl
Search for User starting with:

Ia G0

M Show All Users

ch=a,ou=Portal,o=administration
ch=Admin,o=administration
ch=as,o=administration

P E Remave

2B Flush Cache

The Realm Name dropdown list is useful only if you have configured separate readable and writable
realms.

The Flush Cache button updates the user list to match the realm. Thisisuseful if user data can be
concurrently modified by another user. This function also appliesto serversrunning in a cluster.

> To change a password:

1 Select one of the userslisted in the left panel.
2 Intheright panel, click M odify Password:

User ID: |admin

Modify Password

New Password: |

Confirm Password: |

u Save

3 Typethe new password twice.
4 Click Save.

> To add anew user:
1 Click Add.

Add New User
User ID:* |

Password: |

* Required fields
& save xcancel

2 Entertheuser ID.
3 Enter aPassword.

32 exteNd Director User Management Guide

4 Click Save.

> To remove a nonadministrative user:
1 Select the user.
2 Click Remove.

> To remove an administrative user:

1 Makesurethat at least one user will remain in each administrative group. Otherwise,
administrative security for that group will become open to everyone.

2 Goto the Groups page in the Directory section of the DAC.
Remove the user from all administrative groups.
4 If necessary, remove the user from all administrative ACLs:

4a Go to the Security section of the DAC.

4b Remove the user from all admin types and permissions.
5 Go back to the Users page in the Directory section of the DAC.
6 Select the user.
7 Click Remove.

w

Groups

The Directory section’s Groups page in the DAC alows authorized users to add and remove groups
from the authentication directory and add and remove users from these groups.

The left side of the page shows alist of groups. The user list from an LDAP ream looks like this:

Users Groups
Realm Name: [LDAPReaim +]

Search for Group starting with:
I g Go

¥ Show &ll Groups

ch=dynamicGroupl,ou=Portal,o=administration
ch=dynamicGroup2,ou=Portal,o=administration
ch=gl,0=administration
ch=g2,0=administration
ch=gagroup,o=administration

P E Remave

2B Flush Cache

The Realm Name dropdown list is useful only if you have configured separate readable and writable
realms.

The Flush Cache button updates the group list to match the realm. Thisisuseful if group data can be
concurrently modified by another user. This function also appliesto serversrunning in a cluster.

Using the Directory Section of the DAC 33

> To modify a group:
1 Select the group.

Group Name |Cn:g1,0:administrati0n
Search for User A 9
starting with
Users available (Search
lUsers selected
Results)
LDAPRealmych=as,o=Administration LDAPRealmych=a,ou=Portal,o=administration

LDAPRealmychn=linda,o=Administration <| LDAPRealmych=admin,o=administration

|
Save

2 Select the usersin theright panel:
+ Toselect multiple users: click the first user, then Ctrl-click each additional user.
+ Toselect arange of users: click and drag from the first user to the last user.

Use the </ button to add members to the group and the 2| button to remove members from the
group.
3 Click Save.

> To add agroup:
1 Click +Add.

Add New Group

Group I
Name*

* Required fields

& save xcancel

2 Enter aname for the group.
3 Click Save.

> To remove a group:

1 Select agroup.

2 Click Remove.
TIP: The users in the group are not removed; only the group itself it removed.

34 exteNd Director User Management Guide

Security Management

Provides background information, programming concepts, and code examples for the Security
subsystem

e Chapter 4, “Using ACL-Based Authorization”
e Chapter 5, “Using Security Roles”
e Chapter 6, “Using the Security Section of the DAC”

35

36 exteNd Director User Management Guide

Using ACL-Based Authorization

This chapter describes how to use ACL s (access control lists) in exteNd Director. It has these sections:

About the Security subsystem
ACLsin exteNd Director

ACL subsystem administrators
Accessing ACLsfor users and groups
+ Accessing ACLsfor containers

o Customizing ACL-based authorization

* & o

*

About the Security subsystem

The purpose of the Security subsystem is authorization, the process of restricting access to application
resources. The Security subsystem is built on top of the standard J2EE security API.

The Security subsystem depends on the Directory subsystem for authentication—in other words, the
Security subsystem assumes that requests for protected application resources can only be made by
authenticated users.

Authorization is performed by verifying that a user or group (represented by a principal) has sufficient
permission to perform the operation requested. Principals can be defined using Access Control Lists
(ACLSs) or mapped to resources using security roles.

L) For information about role-based security, see Chapter 5, “Using Security Roles’.

ACLSs in exteNd Director

ACL-based authorization protects subsystem administrative functions and application resource objects
that persist across multiple deployments, such as portlets, documents, folders, group pages, user pages,
and profiles.

The following terms define exteNd Director’s support for ACL-based authorization:

Term Definition

ACL Access control list. A list of entries that restricts access to a specific element or
element type. Each ACL entry associates a principal with a set of permissions.

If no ACL is associated with an element or with the element type to which it belongs,
access is unrestricted.

Using ACL-Based Authorization 37

Term

Definition

Element

A uniquely identified, persistent resource artifact that is managed by an exteNd
Director subsystem. For example, documents and folders in the Content
Management subsystem are elements. exteNd Director applications can set and get
permissions for securable elements.

Elements persist across the lifetime of the application server; they are not affected by
redeploying the exteNd Director project.

Element type

A string used to define a group of objects with similar functionality or behavior
(framework elements such as EbiFolder, EbiDocument, and so on). You can apply
ACLs to element types as well as to individual elements.

The Security subsystem provides a set of built-in element types for different
subsystems. Each element type has a list of permissions it supports.

Principal

An authenticated user, group, or container. In exteNd Director, a principal is
implemented as a class that extends the Java 2 standard interface
java.security.Principal.

Permission

A type of access to an element. exteNd Director includes a set of built-in permissions:
CREATE, DELETE, EXECUTE, LIST, PROTECT, PUBLISH, READ, SELECT,
UPDATE, and WRITE.

Built-in permissions are hardcoded and cannot be modified using the Security API.
NOTE: Negative permissions are not supported in exteNd Director.

Each ACL subsystem uses a subset of these built-in permissions. Each permission
can have a different meaning in each subsystem.

For information about permissions in the Portal subsystem, see in the section
on assigning pages to users and groups in the Portal Guide.

For information about permissions in the Content Management subsystem, see
in the chapter on securing content in the Content Management Guide.

Accessing principals

38

In exteNd Director, aprincipal isimplemented as a class that extends the Java 2 standard interface
java.security.Principal. A principal can be used to represent any entity, such as an individual, a
corporation, and alogin ID.

There are three types of principals defined in exteNd Director:

o user—Individual users
+ group—Groups of users

+ container—Organizational units within an LDAP-based directory service such as eDirectory. This
principal allowsyou to set ACLson user containers for security inheritance. See“Accessing ACLs
for containers’ on page 44.

Principals are represented in the Directory APl asinterfaces in the com.sssw.fw.directory.api package:

public interface EbiRealmUser extends Principal
public interface EbiRealmGroup extends Group
public interface EbiRealmContainer extends Principal

exteNd Director User Management Guide

pgAdministrator.html#Assigningpagestousersandgroups
cmgSecurity.html

You can instantiate the principal interface directly in your code, or use one of thefollowing APl methods:

Principal type How to access

user To access a single principal, use this method in the com.sssw.fw.directory.client
package:

EboDirectoryHelper.getEbiRealmUser ()
To get a Collection of principals for a group:

EbiRealmGroup.getUserMembers ()

group Use methods on EbiRealmGroup. For example:
To get the Java principal for this EbiRealmGroup:
EbiRealmGroup.getGroup ()
To get a Collection of group principals, use one of the methods on EbiRealmGroup:
EbiRealmGroup.getChildGroups ()

container Use methods on EbiRealmContainer. For example:
To get the parent container for this EbiContainer:
EbiContainer.getParentContainer ()
To get a Collection of descendants for this container:

EbiContainer.getDescendants ()

How ACL processing works

Whenever auser attempts to access an element, the Security subsystem checks whether the user has the
permission to perform the specified action. If an element has an ACL, exteNd Director checks whether
the user has been granted the specified permission.

Situations These situations can occur:

Situation Access outcome

The object doesn’t have an ACL. The action proceeds

The object has an ACL but the user is not included by name or by group. Access is denied;
EboSecurityException

The user is in the ACL for the Locksmith user or for a subsystem admin The action proceeds

group with permission for the particular type of access (permissions for
admin groups override permissions on individual elements).

For more information, see “ACL subsystem administrators” on
page 40.

The object has an ACL that includes the user (by ID or group), and the user The action proceeds
has permission for the particular type of access.

The object has an ACL that includes the user (by ID or group), and the user Access is denied;
has been denied the particular type of access. EboSecurityException

Process The Security subsystem determinesin three steps whether the user has permission to access
an element:

1 Doesthe element have an ACL?
+ No—Allow access
¢ Yes—Goto Step 2

Using ACL-Based Authorization 39

2 Doesthe user have permissionin the element’s ACL?
o Yes—Allow access
¢+ No—GotoStep3

3 Istheuser aLocksmith user or a subsystem administrator with the appropriate permission for this
subsystem element?

+ Yes—Allow access
+ No—Deny access; throw EboSecurityException

ACL subsystem administrators

exteNd Director includes a set of built-in groups that define administrative access to each subsystem
using ACLSs. You can add and remove users for each permission using the Director Administration
Console (see Chapter 6, “Using the Security Section of the DAC”).

Hereisageneral description of accessrights for each subsystem administrator group:

Admin element

type Permission Authorizes users to
ContentAdmin READ Get subsystem elements (folders, categories, and documents) in
the Content Management subsystem.
WRITE Add subsystem elements to the Content Management
subsystem.

PROTECT Set ACLs for the ContentAdmin type.

GeneralAdmin PROTECT A generic Admin type that can be applied to any exteNd Director
subsystem.

(Reserved for custom subsystem implementation)

LocksmithElement PROTECT Access all exteNd Director application and ACL subsystem
Type objects, regardless of granted authority.

After the Locksmith user is authenticated, the exteNd Director
security subsystem adds the user to the admin ACL for each ACL
subsystem. The Locksmith can then add individual users to each
subsystem ACL.

When you first configure your project, the Locksmith user is set to
Anonymous by default. This allows any user to access a secure
server to redeploy the project, which is convenient in a
development environment.

IMPORTANT: For production deployment, you should change
the Locksmith user to a user known to exist in your authentication
realm.

PortalAdmin PROTECT Access the DAC and portal-related functions.

NOTE: This permission by itself does not include access to the
User, Directory, and Security functions in the DAC.

SearchAdmin READ Get existing searchable repositories.

WRITE Add, remove, clear, reinitialize, and reset searchable
repositories.

PROTECT Set ACLs for the SearchAdmin type.

SecurityAdmin PROTECT Set ACLs for any Admin type except Locksmith.

40 exteNd Director User Management Guide

Admin element

type Permission Authorizes users to

UserAdmin CREATE Add users, groups, and group profiles.
READ View information about profile users.
DELETE Remove profile users.

UPDATE Update profile user records.

PROTECT Set ACLs for the UserAdmin type.

Restricting access to administrators using the API

You can restrict access to portal and content management elements using the

Ebi SecurityM anager.setRestrictedAccess() method. For example, if you restrict access to a document
folder for the WRITE permission, only members of the ContentAdmin group have WRITE accessto the
element.

NOTE: The restricted access right takes precedence over any other ACL associated with the restricted
element.

Here are the related methods on the Ebi SecurityManager interface:

Method Returns Description

setRestrictedAccess() boolean for Restricts specified access for an element to system
success administrators

check RestrictedAccess() boolean Checks whether an element has restricted access

Accessing ACLs for users and groups

This section shows some techniques for using exteNd Director’s Directory and Security APIs. Themain
points of access for ACL security objects are the following delegate interfaces:

Security delegate Provides access to

EbiSecurityAclDelegate Security ACLs

EbiSecurityMetaDelegate ACL-based security metadata

EbiSecurityDelegate Runtime ACL-based security or role-based security

EbiRealmContainerDelegate Container principals

EbiDirectoryDelegate User and group principals

L) For background information on delegates, see the section on accessing subsystem servicesin
Developing exteNd Director Applications.

Accessing ACLs using the DAC You can also use the Director Administration Console (DAC) to
accessACLs.

L For more information, see Chapter 6, “Using the Security Section of the DAC”.

Using ACL-Based Authorization 41

cdAccessServices.html#Accessingsubsystemservices

../javadoc/com/sssw/fw/security/api/EbiSecurityManager.html

Getting Security API delegates
This example shows how to get the del egate objects used in the other Security API examplesthat follow:

import com.sssw.fw.security.api.*;

// Getting delegate objects from a factory --
// must be done within a try block.
try {
// Get a metadata delegate.
EbiSecurityMetaDelegate smd =
com.sssw.fw.security.client.EboFactory.getSecurityMetaDelegate () ;
// Get an ACL delegate.
EbiSecurityAclDelegate ad =
com.sssw.fw.security.client.EboFactory.getSecurityAclDelegate () ;
// Use the delegate objects.
}
catch (EboFactoryException e) {

sb.append(e.getMessage ());

Getting an element type and identifier
This example shows how to get an element type and UUID. It isused in the other examples:

// Get delegates. See “Getting Security API delegates” on page 42.

// Get the element type metadata from the EbiSecurityMetaDelegate.
EbiElementTypeMeta typeMeta = smd.getElementTypeMeta (context) ;

// This example uses the PortalAdmin element.

String portalSubSystem = EbiSecurityConstants.SUBSYSTEM PORTAL SERVICE;
String adminType = typeMeta.getAdminType (portalSubSystem) ;

String adminID = typeMeta.getAdminID (portalSubSystem) ;

NOTE: Elementtype names are defined as constants in subinterfaces of EbiFrameworkElement. For
example, a document in the Content Management subsystem is defined in
com.sssw.cm.api.EbiDocument.EL_DOCUMENT.

Listing the permissions associated with an element

This example shows how to get alist of the permissions that can be granted to an element:

// Get delegates. See “Getting Security API delegates” on page 42.
// Get the element type. See “Getting an element type and identifier” on page 42.
// Get the EbiAccessRightMeta object for the element type.
EbiAccessRightMeta meta = smd.getAccessRightMeta (context,adminType) ;
// Retrieve the list of permissions.
String[] rights = meta.getPermissionNames () ;
for (int i = 0; i < rights.length; i++) {
sb.append(rights([i]);

Listing the principals with permission for an element

This example shows how to get alist of principals that have a specific permission for an el ement. It gets
alist of principals assigned to the PROTECT permission for the Portal Admin element:

import java.security.x*;

// Get delegates. See “Getting Security API delegates” on page 42.

// Get the element type. See “Getting an element type and identifier” on page 42.

// Get the principals for a specific permission type.

Principal [] prins = null;

prins = ad.getPrincipalsFromAcl (context, adminID, adminType, EbiPermission.PROTECT) ;
for (int i = 0; i < prins.length; i++) {

42 exteNd Director User Management Guide

sb.append(prins[i].toString());

Listing the elements with permissions for a principal

Use this method (available from the Ebi SecurityManager) to enumerate all the accessible resources
(elements) of a certain type that are accessible to the principal in the session context:

/**

Returns a Collection of elements accessible to the userwhose context is passed in.
@param context context

@param elType framework element type, tells the method which
element type to determine accessibility for

@param rights a list of access right permissions to be
checked, e.g. EbiPermission.READ, EbiPermission.WRITE,
EbiPermission.EXECUTE, etc.; note that if multiple

rights are specified, the method will treat the list

as a Boolean OR and will attempt to find elements that

have either READ or WRITE or EXECUTE etc. for the user
@return a Collection of accessible framework elements of the
specified type; the Collection is empty if no accessible
elements of the type are found

* ok K ok ok kK ok kK ok kK F

public Collection getAccessibleElements (EbiContext context, String elType, Stringl[] rights)
throws EboUnrecoverableSystemException

Getting the content of an ACL
This code shows how to get the string representation of an ACL :

import java.security.*;

// Get delegates. See “Getting Security API delegates” on page 42.
// Get the element type;

// see “Getting an element type and identifier” on page 42.

// Get the contents of the ACL in the form of a string.

Acl adacl = ad.getAcl (context, adminID, adminType) ;

String adaclcontent = adacl.toString() ;

sb.append(adaclcontent) ;

Assigning a principal to an ACL
This code shows how to add a principal to an ACL for an Admin element:

import com.sssw.fw.directory.api.*;
import java.security.*;

// Get delegates. See “Getting Security API delegates” on page 42.
// Get the element type. See “Getting an element type and identifier” on page 42.
// Get a Directory delegate.
EbiDirectoryDelegate dd = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate() ;
// Get a principal. Must be a valid realm user.
Principal user = dd.getUser (context, "SomeUser") ;
// Add the principal to the ACL.
Principal [] prins = new Principall[l];
prins[0] = user;
ad.addPrincipalsToAcl (context, adminID, adminType,
EbiPermission.PROTECT,
prins) ;
sb.append("Added " + user.toString() + " PROTECT") ;

Using ACL-Based Authorization

NOTE: This example requires your code to handle the following exceptions in addition to
EboFactoryException:

catch (EboSecurityException e)
sb.append(e.getMessage());
}

catch (EboException e) ({
sb.append(e.getMessage());
}

Accessing ACLs for containers

The principal type container represents an organizational unit within an LDAP tree. The container
principal alowsyouto set ACLsonan LDAPdirectory container (or similar tree directory structure) and
have the ACLs apply to all usersin the specified tree hierarchy. This capability is known as security
inheritance. In exteNd Director, security inheritanceis availablein applicationsthat are configured for a
hierarchical LDAP realm—such as Novell eDirectory.

The Directory API allows:

+ Traversal of the LDAP hierarchy from the root all the way down to leaf nodes
+ Direct navigation to a specific node within the hierarchy

Thefollowing interfaces are provided in the com. sssw. fw.directory.api package:

public interface EbiTreeRealm
public interface EbiRealmContainerDelegate

NOTE: You cannot add containers to an LDAP realm from exteNd Director. Use your native LDAP tools
for this purpose.

Assigning a container principal to an ACL

44

This codeis based on the preceding example (“Assigning a principal to an ACL” on page 43). It shows
how to add a container principal to an ACL for an Admin element:

import com.sssw.fw.directory.api.*;
import java.security.x*;

// Get delegates. See “Getting Security API delegates” on page 42.
// Get the element type;

// see “Getting an element type and identifier” on page 42.

// Get a new Container delegate.

EbiRealmContainerDelegate rcd = new EbiRealmContainerDelegate() ;

// Get Container principal. Must be a valid realm container.

Principal container =
rcd.getEbiRealmContainer (context, "cn=sample, o=users") ;

// Add the principal to the ACL.

Principal [] prins = new Principal([l];

prins[0] = container;

ad.addPrincipalsToAcl (context, adminID, adminType,

EbiPermission.PROTECT,

prins) ;

NOTE: The container principal object is accessible in the API and in the section of the Director
Administration Console (DAC) that controls shared and group pages in the Portal. However, you cannot
use the DAC to assign administrative access nor Content Management element access to a container
principal.

exteNd Director User Management Guide

Customizing ACL-based authorization

Customizing the Security service
There are three ways to customize ACL security:

+ Writeaclassthat extends the EboSecurityM anager classto override the runtime ACL validation
logic. For example, you could modify the Locksmith ACL metadata to allow additional
permissions such as PROTECT, READ, and WRITE.

+ Completely reimplement EbiSecurityM anager. Then change services.xml in:

XWB/DirectorTemplate/Director/library/SecurityService/
SecurityService-conf

The service definition looks like this:

<services>
<interfaces>com.sssw.fw.security.api.EbiSecurityManager
</interface>
<impl-class>com.sssw.fw.security.core.EboSecurityManager
</impl-class>
<description>Security manager that provides authentication

and permission validation

</description>
<max-instances>l</max-instances>
<startup>M</startup>

</services>

Replace EboSecurityManager with the name of your own class.
+ Add asubsystem to provide adifferent security API, as described next.

Adding ACL-based security to a new subsystem

Adding anew subsystem may be necessary when you aretrying to integrate exteNd Director with athird-
party security service.

NOTE: This topic goes beyond the scope of this guide. The procedure is merely outlined here. For
detailed information, contact Novell Technical Support.

+ Add metadata information for the subsystem into the existing subsystem element type metadata:
com.sssw.fw.security.api.EbiElementTypeMeta, singleton

+ Call security meta delegate to modify the metadata persistently:
com.sssw.fw.security.api.EbiSecurityMetaDelegate

+ Create anew access right metafor the administrator type and for any element type that is defined
in the subsystem element type metadata.

An access right meta object isan APl object used to define metadata for associating permissions
with a specific element type (or admin type):
com.sssw.fw.security.api.EbiAccessRightMeta
« Call security meta delegate to store the metadata object(s) persistently.

+ Writeacustom Ul to allow setting ACLs based on the newly created subsystem’s admin type and
element types by calling the security ACL delegate:

com.sssw.fw.security.api.EbiSecurityAclDelegate

+ Add runtime ACL validation logic in your new subsystem by calling the security delegate:

com.sssw.fw.security.api.EbiSecurityDelegate

+ Check administrator access:

userHasAccessRight (context, right, adminID, adminType)
(Note that Locksmith is checked internally.)

+ Check element level access (if any):
userHasAccessRight (context, right, elementUUID, elementType)

Using ACL-Based Authorization 45

Custom permissions

exteNd Director allows you to define your own custom permissions using the Security API. See
EbiPermissionMetain Javadoc.

Custom permissions provide away to use ACL -based authorization on any level of granularity in your
application. For example, you can create a set of custom permissions, each of which permits accessto a
specific method in your application code.

Custom permissions are stored as XML filesin the application database. Do not edit the XML files
directly—use the Security API.

46 exteNd Director User Management Guide

../javadoc/com/sssw/fw/security/api/EbiPermissionMeta.html

Using Security Roles

This chapter describes how to use exteNd Director security rolesin your applications. It has these
sections:

+ About J2EE role-based authorization

+ About exteNd Director security roles

+ Creating asecurity role

+ Mapping a security role to aworkflow process

+ Mapping a security role to a portal page layout

+ Accessing security roles programmatically

About J2EE role-based authorization

The exteNd Director Security subsystem supports declarative security in the form of role-based
authorization. Role-base authorization applies to portlets as defined in the Servlet and Portlet
specifications.

The steps for implementing J2EE-compliant roles for portlets are:

1 Definetherolesinyour portlet deployment descriptor (portlet.xml).
L) For details, see the portlet.xml schema descriptor, included with your installation at
Director_install_dir/Common/SchemaCatal og/portal-app_1 o.xsd

2 Definethe samerolesin your EAR or WAR application descriptor.
L) For information about defining roles for a project, see the chapter on the Deployment
Descriptor Editor in Utility Tools.

3 Maptherolesto usersin your directory realm. The role-mapping processis distinct for each
application server type.

L) For information about mapping roles for deployment to the exteNd Application Server, see
the chapter on the Deployment Plan Editor in Utility Tools.

About exteNd Director security roles

exteNd Director also provides its own role-based authorization in the form of security roles. A security
roleisan XML descriptor that defines user and/or group principals that can be mapped to access rights
for certain exteNd Director application objects. exteNd Director security roles can be used outside of the
J2EE context, for example, with a custom realm.

The Security subsystem defines declarative role mapping for workflow processes and for portal layouts.
For all other application objects, the Security subsystem uses ACL -based authorization, as described in
Chapter 4, “Using ACL-Based Authorization”.

Using Security Roles 47

utoolsDeployDescEditor.html
utoolsDeployDescEditor.html
utoolsDeployPlanEditor.html

Creating a security role

> To create a security role using the graphical view:
1 IntheexteNd Director development environment, go to File>New>Portal>Security Role.
The graphical view of anew role descriptor displays.

« If you prefer to edit the source directly choose the XM L Source View tab at the bottom of the
form.

|' a, untitled-SecurityRole.xml)]

Drisplay name: I

Description:

|' Users]| Groups |

Users

o Add K Delete

a

| Ch Graphical View Jlﬁ& AWML Source View ” i XML Tree View |

2 Usethe editor to enter the XML data:

XML attribute What you enter

display-name (Optional) The display name of the access group. This can be any string.

description (Optional) A description that matches the display name. This can be any string.

User To add each user:
+ Choose the User tab and click Add.

+ Double-click the new user field and enter name of a valid user defined in your
directory realm:

If you are accessing an LDAP realm you need to specify the distinguished
name, for example: cn=sample,o=acme.

NOTE: Roles do not support LDAP container elements.

48 exteNd Director User Management Guide

XML attribute What you enter

Group To add each group:
+ Choose the Group tab and click Add.

+ Double-click the new group field and enter name of a valid group defined in
your directory realm:

If you are accessing an LDAP realm you need to specify the distinguished
name, for example: cn=Administrators,o=acme.

NOTE: Roles do not support LDAP container elements

Hereis an example of a security rolein the source view:

<security-roles>
<display-name>System Administrator</display-names>
<description>Administers Portal Applications</descriptions>
<user-map>
<principal>jdoe</principals>
<principal>jsmith</principals>
</user-map>
<group-map>
<principal>administrators</principals>
</group-map>
</security-role>

3 Choose File>Save.

Theroleis saved in your exteNd Director project’s resource set. For information about the file
location click here: security role descriptor location.

Mapping a security role to a workflow process

The workflow process descriptor defines role mappings for user access to workflow processes. The
access-role-map element determines the user and group principals who are authorized to start new
process instances. Here is how the role map element is defined in the workflow process dtd.

<!-- Access Role-Map Definition -->
<!ELEMENT access-role-map (role-name*)>
<!ELEMENT role-name (#PCDATA) >

<!-- Description Definition -->

< !ELEMENT description (#PCDATA) >

You can use the Workflow Modeler to map rolesto the aworkflow process. For details, seeinthe section
on process propertiesin the Workflow Guide.

Mapping a security role to a portal page layout

The portal layout descriptor defines role mappingsfor list and run accessto portal layouts. Hereisan
example showing list and run access mapped to arole named myRole.xml:

<run-role-map>

<role-name> myRole </role-name>
</run-role-map>
<list-role-map>

<role-name> myRole </role-name>
</list-role-map>

L For information about mapping roles to a portal layout, see the section on creating alayout
descriptor in the Portal Guide.

Using Security Roles 49

cdLocator.html#Securityroledescriptor
wfDesigner.html#Processproperties
pgCustomLayouts.html#Creatinga layoutdescriptor
pgCustomLayouts.html#Creatinga layoutdescriptor

Accessing security roles programmatically

After you set up roles and role mappings, you can accessrole information using the Ebi SecurityDel egate
interface. This example shows how to check whether a user isincluded in a specified role.

// Variable to hold the name of the security role
// descriptor, without the “.xml” ext

String mapfile = "mysecurityXML";
// Get a security manager
try {

com.sssw.fw.security.api.EbiSecurityDelegate sd =
com.sssw.fw.security.client.EboFactory.getSecurityDelegate () ;
// Check if user is in this role
if (sd.isUserInRole (context, mapfile)) ;
// get a document, else display "no access" message

}

catch (com.sssw.fw.exception.EboFactoryException e)

{
}

// display message

50 exteNd Director User Management Guide

../javadoc/com/sssw/fw/security/api/EbiSecurityDelegate.html

Using the Security Section of the DAC

This chapter describes how to use the Director Administration Console (DAC) to control user accessto
ACL subsystem administrative functions.

L For information about how to accessthe DAC, see the section on accessing the DAC in Developing
exteNd Director Applications.

Modifying administrative access

The Security section allows you to view the members of each pairing of a subsystem administrator type
and a permission, as shown below:

Admin type; |Useradmin =
Permission: [{Masa==E_~
Search for
User starting |a B Go
with
Users selected Users available (Search Results)
LDAPRealmych=admin,o=administration <| LDAPRealmych=a,ou=Portal,o=administration

LDAPRealmych=admin,o=administration
LDAPRealmycn=as,o=administration

Search for

Group starting |a B Go

with

Groups selected Groups available (Search Results)

Mo groups selected il Mo groups found

Save

> To assign users and groups:
1 Sedect an Admin type from the dropdown list:

Useradmin ;I

Partaladmin
workflowAdmin
GroupPageadmin
LocksmithElementType
Securityadmin
Generaladmin

Searchadmin

Using the Security Section of the DAC 51

cdAppAdmin.html#AccessingtheDAC

52

L) For adescription of the Admin types, see “ ACL subsystem administrators’ on page 40.
Select a Per mission from the dropdown list.
The list of permissions depends on the Admin type you selected.

PROTECT vl

DELETE
UPDATE

CREATE
READ

L) For adescription of the permissions for each type, see “ ACL subsystem administrators’ on
page 40.

After you select a permission, lists of users and groups for the selected ACL appear in the Users
selected and Groups selected lists.

Select user s or groups from the users available and groups available lists:
+ Toselect multiple users or groups: click the first, then Ctrl-click each additional.
+ Toselect arange of usersor groups: click and drag from the first to the last.

Usethe ﬂ button to add items, and the ﬂ button to remove items.
Click Save.
NOTE: If you need to remove an administrative user from the realm:

Make sure there will be at least one user remaining in each administrative group. Otherwise,
anyone will be able to administer the subsystem.

Remove the user from all administrative groups and, if necessary, from all administrative ACLSs.

exteNd Director User Management Guide

User Profiling

Provides background information, programming concepts, and code examples for the User
subsystem
e Chapter 7, “Managing User Profiles”

e Chapter 8, “Accessing User Attributes”
* Chapter 9, “Using the Profiles Section of the DAC”

53

54 exteNd Director User Management Guide

Managing User Profiles

This chapter describes how to manage user profiles. It contains the following sections:

About user profiles

Profiles and realm configurations
About the New User portlet
Accessing profiles using the API
+ Rulesand user profiling

* & o

*

About user profiles

The purpose of the User subsystem is the profiling of Web application users. User profiles are persistent
collections of data associated with individual users of a Web application. Individual dataitemswithin a
user profile are called attributes. Your exteNd Director application can obtain attributes and store the
information in aprofile. Later it can retrieve, act upon, and analyze the information.

L For moreinformation, see Chapter 8, “ Accessing User Attributes’.

How profiles are used
Typically, profiles are used for two general purposes:

+ Allowing usersto personalize Web applications
+ Tracking user behavior

A portal application might rely on the information in the user profile to determine what content can or
should be delivered to a given user or what operations can be performed.

In aretail business, for example, a profile for a customer could contain:

+ Account information such as shipping and billing address, e-mail address, age, gender, occupation,
credit card information, and so on

+ User-specified areas of interest, such as product categories

+ Feature and page layout preferences other than those provided by the Portal subsystem

« Login history, pages viewed, links and buttons clicked, and transactions made (items bought and
processes started)

Managing User Profiles 55

Profiles and realm configurations

Profiles are stored differently depending on whether you areusing anon-LDAP or an LDAPrealm. Here
are the main differences:

Non-LDAP realms LDAP realms

Profile information is stored in the application Profile information is stored within the LDAP
database, which is also used to store ACL-based directory; the application database is used for
security information. ACL-based security information.

The profile database exists independently from Profile information and authentication information
the authentication realm. are stored in the same user record.

exteNd Director applications use the JDBC exteNd Director uses the JNDI persistence
persistence provider to access the database. provider to access the LDAP directory.

Checking the realm configuration

exteNd Director allows you to reconfigure an application to use a different authentication realm. If you
need thiskind of flexibility, you can write code that is general enough to work with both LDAP and non-
LDAPreams.

To find out whether or not your application is configured for an LDAP realm, use:
EboUserHelper.getUserDataStore ()

This method returns a string value indicating whether the User subsystem uses JINDI (LDAP directory)
or JDBC (application database).

Checking for a writable realm

To find out whether or not your application is configured for awritable realm, use:
EboUserHelper.isReadOnlyUserSchema ()

This method returns a bool ean value indicating whether or not the User service schemais modifiable. A
JDBC schema can be readable or writable, but aJNDI schemais not modifiable within exteNd Director.

About the New User portlet

The New User portlet isone of the core portlets used in a Portal application. It allows anonymous users
to add themselves to the writable realm and automatically creates a profile for each new user.

The New User portlet is provided as atemplate for your application. You can copy and customizeit or
design anew one;

56 exteNd Director User Management Guide

Novells exteNd™
Director

» New User

UserlD:
Fassword:

Confirm Password:
First Mame:

Last Name:

Email:

HE Caeat)

Cancel
Allfields are required

The New User portlet does the following:

+ Adds auser name and password to the writable realm (if enabled)

+ Createsauser profileidentified by the combination of the user’s realm name and an automatically
generated 32-bit UUID

+ Adds some default attributes to the profile

The sources for this portlet are located in your exteNd installation directory at:
Director/templ ates/ Templ ateResources/portal -core-resource.

Accessing profiles using the API

The User API provides methods to create profiles, find profiles, and store and retrieve user-specific
information. These are the key classes for user profiling:

User subsystem class Provides access to

EbiUserDelegate Methods for creating and accessing user profiles

EbiUserInfo User attributes

EbiUserQuery Methods for querying users based on attributes and other criteria
EboUserHelper Convenience methods for accessing user information
EboFactory Methods for instantiating the user delegate and related objects

Accessing profiles using the DAC You can also use the Director Administration Console (DAC)
to access user attributes. For moreinformation, see Chapter 9, “Using the Profiles Section of the DAC”.

Managing User Profiles 57

../javadoc/com/sssw/fw/usermgr/api/EbiUserDelegate.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserInfo.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html
../javadoc/com/sssw/fw/usermgr/client/EboUserHelper.html
../javadoc/com/sssw/fw/usermgr/client/EboFactory.html

Creating a new profile
This code shows how the New User portlet adds a user profile:
!/

// Get a profile delegate from the user service.

//
EbiUserDelegate userDelegate =
com.sssw.fw.usermgr.client.EboFactory.getUserDelegate () ;

/7

// Instantiate an empty profile object for this user.

/7

EbiUserInfo userInfo = (EbiUserInfo)userDelegate.createUserInfol() ;

//
// Add profile info (default attributes) for the user.

//

userInfo.setUserID(m_uid) ;

userInfo.setUserFirstName (m_firstName) ;

userInfo.setUserLastName (m_lastName) ;

userInfo.setUserEmailAddress (m_email) ;

userInfo.setUserAuthenticatedRealmName
(dirService.getPrimaryRealmName ()) ;

//
// Add the new profile.

/7

boolean status = userDelegate.createUser (context, userInfo);

Looking up user profiles

The User API includes user query and user metadata query classes that you can implement to retrieve a
list of user profilesthat meet certain criteria.

L) For more information, see EbiUserQuery and EbiJndiQuery in the API Reference.

Getting a user profile

This code shows how to obtain and display a user profile:

import com.sssw.fw.usermgr.api.*;
import com.sssw.fw.usermgr.client.*;

try {
// Get the user identifier.
String userUUID = EboUserHelper.getUserUUID (context) ;

// Get a user delegate object from the factory.
!/
EbiUserDelegate userDelegate = EboFactory.getUserDelegate() ;
!/
// Get a user info object.
//
EbiUserInfo userInfo =

(EbiUserInfo)userDelegate.

getUserInfoByUserUUID (context,userUUID) ;

//
// Get the registration info and add to output buffer.
//
sb.append ("UserID: " + userInfo.getUserID() + "
");
sb.append ("UserUUID: " + userInfo.getUserUUID() + "
");
sb.append ("UserFirstName: " +
userInfo.getUserFirstName () + "
");
sb.append ("UserLastName: " +

58 exteNd Director User Management Guide

../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html

userInfo.getUserLastName () + "
");
sb.append ("UserEmailAddress: " +
userInfo.getUserEmailAddress () + "
");

}

catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

Rules and user profiling

If you are devel oping an application that implements profiling extensively, you should consider using
exteNd Director’s Rule subsystem. The following scenario suggests how rules can be applied to user
profiling.

Suppose you have aretail Web site where you want to track the total amounts of customers' Web
purchases and specify athreshold amount that triggersaspecial discount. Hereishow you could userules
to develop this application:

1 Addauser attribute to track the amount—AlIPurchasesAmt, for example.

2 Inthe Rule Editor, create arule using the built-in CheckWhiteboard condition that allows you to
check user profiles (through the ~attributename syntax). Enter athreshold amount and give it akey
value—such as “threshold. For the action section you can return a boolean or appropriate content.

3 Inyour code:
+ Get the purchase amount for a completed transaction.
+ Get the attribute value, add the purchase amount, and update the total.

+ Set the value on the session whiteboard using the EbiContext.setValue() method. Give it the
keyname you defined in the rule.

+ Firetherule and handle the result.

About conditions and actions

Conditions and actions are available in the exteNd Director rules engine to interact with the User and
Content Management subsystems (through the Content Query Action). This means you can easily
implement personalization ruleslike this:

If "UserAge" > 35

AND "PortfolioTotal" > 30,000

Then Select Investing Documents Level 3
AND set "FinanceLevel" to "Gold"

Through exteNd Director’s easy-to-use API, custom tag library, and rules engine conditions and actions,
you can quickly deliver personalization servicesto users.

L) For more information about rules, see the chapter on how to use rules in the Rules Guide.

Managing User Profiles 59

reRulesPipeDev.html

60 exteNd Director User Management Guide

Accessing User Attributes

This chapter discusses profiling with user attributes and has these sections:

+ About attributes
+ Attribute properties
+ Accessing attributes using the API

L) For background information, see Chapter 7, “Managing User Profiles”.

About attributes

Attributes are individual dataitemswithin auser profile. Each attribute corresponds to acolumn or field
(in database terminology).

Attributes can be any data that you want to associate with a user. The User subsystem has a set of built-
in attributes and you can create and use your own user attributes for user profiling.

Built-in attributes

Thefollowing built-in string attributes are present in each user profile regardless of realm configuration:

e UserID
s User UUID
+ First name

o Last name
+ E-mail address

The values of the User ID and User UUID attributes are used by many of the exteNd Director API
packages to identify users.

New User portlet The New User portlet isa core portlet used in a Portal application in exteNd
Director projects. It allows anonymous users to add themselves to the writable realm and automatically
creates a profile for each new user. This profile includes the built-in attributes.

L For more information, see “About the New User portlet” on page 56.

Attributes and non-LDAP realms

Applications that use awritable non-L DAP realm use the application database to store profile
information. By default, the profilesin the database contain only built-in attributes. These applications
can create custom attributes as needed.

[For an example, see “ Creating an attribute (non-LDAP)” on page 64.

Accessing User Attributes 61

Attributes and LDAP realms

Applications that use an LDAP realm use the LDAP directory to store profile information. LDAP
provides arich set of attributes that are intended to be sufficient to meet the requirements of most Web
applications. Use the LDAP administration console to add new (custom) attributesto the directory.

NOTE: You cannot add custom attributes to an LDAP directory from an exteNd Director application.

The User API provides away for an application to retrieve alist of al available LDAP attributes. The
User LDAP Options panel in the EAR Wizard allows you to make specific attributes available to the
User API and to exclude others. It also allows you to exclude certain syntax definitions.

L) For more information, see the section on LDAP user options in Devel oping exteNd Director
Applications.

Attribute properties

Each attribute has a name, adescription, a display property, and a datatype.

Display properties

Data types

Each attribute has a display property that can have either of two values:

Attribute usage Description

Displayable Information you collect directly from a user, such as personal data or preferences.
The user typically specifies this information on a registration form.

Hidden Information you store that is not explicitly provided by the user—for example,
buying patterns or click stream counts.

There are two types of attribute data values:

+ String values up to 255 characters long
+ BLOB (Binary Large OBject) as defined in JDBC 2.0

BL OB attributes are used to store binary data (such as large documents and images) in the form of abyte
array. Separate APl methods are provided for using BLOB attributes.

NOTE: The User API supports multivalued attributes for applications that use an LDAP realm. The

Director Administration Console (DAC) also allows the display and modification of existing values for these
attributes.

Accessing attributes using the API

You can define whatever attributes you need and use them in your code to personalize content. This
section describes how to access attributes and how to create and set custom attributes.

L) For an overview of the User API, see “ Accessing profiles using the API” on page 57.

Accessing attributes using the DAC You can also usethe Director Administration Console (DAC)
to access user attributes.

62 exteNd Director User Management Guide

cdConfigServicesNew.html#LDAPuseroptions

L) For more information, see Chapter 9, “Using the Profiles Section of the DAC”.

Getting a list of attributes (non-LDAP)

This code shows how to obtain auser profile and display all the custom attributes. Note that the
EbiUser I nfo object has a specific method for each built-in attribute:

import com.sssw.fw.usermgr.api.*;
import com.sssw.fw.usermgr.client.*;

try {
//
// Get the user identifier.
//
String userUUID = EboUserHelper.getUserUUID (context) ;
//
// Get a user delegate object from the factory.
//
EbiUserDelegate userDelegate = EboFactory.getUserDelegate () ;
!/
// Get a user info object.
//
EbiUserInfo userInfo =
(EbiUserInfo)userDelegate.
getUserInfoByUserUUID (context,userUUID) ;

//

// Get the registration info and add to output buffer.

!/

sb.append ("UserID: " + userInfo.getUserID() + "
");

sb.append ("UserUUID: " + userInfo.getUserUUID() + "
");

sb.append ("UserFirstName: " +
userInfo.getUserFirstName () + "
");

sb.append ("UserLastName: " +
userInfo.getUserLastName () + "
");

sb.append ("UserEmailAddress: " +
userInfo.getUserEmailAddress () + "
");

!/

// Get a user metadelegate object from the factory.

//

EbiUserMetaDelegate userMetaDelegate =
EboFactory.getUserMetaDelegate () ;

//

// Get the current user's metadata.

!/

EbiUserMeta userMeta = userMetaDelegate.getUserMeta (context) ;

if (userMeta == null) {
userMeta = userMetaDelegate.createUserMeta () ;
userMetaDelegate.addUserMeta (context, userMeta) ;

}

else {

!/

// Get all custom attribute names and values.
// Add to output buffer.

//
String[] attributes = userMeta.getUserAttributes();
if (attributes == null) {
sb.append ("No attributes - string array is null");
}
else {

for (int i=0;i<attributes.length;i++) {
String attributeValue =
userInfo.getAttributeValue (context,attributes[i]) ;
sb.append (attributes[i] + ": " +
attributevValue + "
");

Accessing User Attributes

}
}

catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

NOTE: When you run this on a profile that has no custom attributes, the EbiUserMeta object is null.

Getting a list of attributes (LDAP)

To retrieve specific attribute values directly from an LDAP directory, use:
EboUserHelper.getDirectoryUserAttributes (context, userdn, String[] names)

Thismethod inputsthe context, the user DN string, and an array of strings naming the attributesfor which
to return values. Thereturn valueisaMap (object array) containing values for each requested user
attribute.

NOTE: This method returns only the first value of a multivalued attribute.

Identifying multivalued attributes

When using an LDAP directory, attributes can have multiple values. To check for thistype of attribute,
use:

EbiUserMeta.isUserAttributeSingleValued (attrname)

Thismethod returns a bool ean val ue indicating whether or not the specified attributeislimited to asingle
value.

Creating an attribute (non-LDAP)

64

This code adds a custom attribute to a user profile:

import com.sssw.fw.usermgr.api.*;

try {
!/
// Get a user metadelegate object from the factory.
!/
EbiUserMetaDelegate userMetaDelegate = com.sssw.fw.usermgr.client.
EboFactory.getUserMetaDelegate () ;
!/
// Get a writable copy of the user metadata.
//
EbiUserMeta userMeta = userMetaDelegate.getClonedUserMeta (context) ;
!/
// Add a custom attribute.
!/
String attrib name = "Employer";
userMeta.addUserAttribute (attrib_name, "Name of employer", true) ;
//
// Save the modified metadata including the new attribute.
//
userMetaDelegate.modifyUserMeta (context,userMeta) ;
//
// Return the attribute name and value.
//
sb.append ("Added attribute: " + attrib name) ;
}
catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

exteNd Director User Management Guide

Setting an attribute value

This code sets the value of a custom attribute:

import com.sssw.fw.usermgr.api.*;

try {

}

//

// Get a user delegate object from the factory.

//

EbiUserDelegate userDelegate =
com.sssw.fw.usermgr.client.EboFactory.getUserDelegate () ;

//

// Get a user info object from the factory.

//

EbiUserInfo userInfo = com.sssw.fw.usermgr.client.EboUserHelper.
getUserInfo (context) ;

//

// Set the value of the attribute to Novell.

//

String attrib name = "Employer";

userInfo.setAttributeValue (context, attrib name, "Novell");

//

// Write the new value into the user info object.

//

userDelegate.modifyUser (context,userInfo) ;

//

// Get the new attribute value and append to output buffer.

//

sb.append (attrib_name + ": " +
userInfo.getAttributeValue (context, attrib name)) ;

catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

Accessing User Attributes

65

66 exteNd Director User Management Guide

Using the Profiles Section of the DAC

This chapter describes how to use the Director Administration Console (DA C) to manage users and user
attributes in the user profile directory. It has these sections:

+ About the Profiles section of the DAC
o User profiles
+ Attributes

L) For information about how to accessthe DA C, see the section on accessing the DAC in Developing
exteNd Director Applications.

About the Profiles section of the DAC

The Profiles section of the DAC allows you to view user profilesin a deployed exteNd Director
application. In the case of awritable non-LDAP realm, you can also change the information.

The Profiles section has two pages:

o User profiles
o Attributes

User profiles

The User Profiles page allows authorized users to add and remove user profiles by selecting from alist.
Inanon-LDAP realm, profiles are stored in the application database and thus do not necessarily have a
one-to-one correspondence with users. In an LDAP realm, however, each user record is the user profile.

Theleft side of the page shows alist of profiles:

Using the Profiles Section of the DAC 67

cdAppAdmin.html#AccessingtheDAC

User Profiles | Attributes

Realm Name;
Iextel\ld Server vl

Search for User
Profile starting
with:

Ia G0

M Show &l
Users

P E Remave

> To modify a profile:

1 Select the writable ream from the Realm Name list.

2 Select auser fromthelist to view profile data.
3 Click General:

User Profiles | Attributes

Realm Name: General Defaults
Iextel\ld Server = l User ID: |admin
Search for User First Name: |
Profile starting

with: Last Name: |

[PGo Email: [

M Show &l

Users Save

Rl E Remave

4 Changethe User ID, First Name, Last Name, and Email data as needed; these fields are the same
in both non-LDAP and LDAP realms.

TIP: The other attributes vary according to realm type and are discussed in Attributes next.

68 exteNd Director User Management Guide

5 Click Defaultsto view user profile defaults:

General Defaults
WAR Context: IExpressPDrtaI vl
Default User Page: dan =
Default Theme: |Titanium =
Save

6 Change the defaults as needed.
7 Click Save.

» Toadd a profile:
1 Click +Add:
Create User Profiles
(Oractory veersy [20mn =]

User ID:* |admin

First Name: |

Last Name: |

Email: |
* Required fields
& save xcancel

2 Select auser from the Select User dropdown list, or enter the user name in the User D field.
3 Fill intheinformation.

4 Click Save.

Attributes

The DAC allows authorized users to view and modify attribute data.

NOTE: In an LDAP realm, users cannot modify their own attributes because of security restrictions in
eDirectory. By default, users have rights only to read their own attributes; they do not have modify rights.
The eDirectory administrator can grant rights to modify attributes to any user.

The User Profiles page allows you to manage the attribute values associated with a user profile:

Using the Profiles Section of the DAC 69

User Profiles | Attributes

Realm Name: General Defaults
Iextel\ld Server = l User ID: |admin
Search for User First Name: |
Profile starting

with: Last Name: |

[PGo Email: [

M Show &l

Users Save

Rl E Remave

The Attributes page also allows you to view the attributes that exist within arealm. The non-built-in
attributes vary according to realm type, asfollows.

+ Inanon-LDAP ream, authorized users can add, remove, and edit attributes:

User Profiles Attributes
User Profile attributes (shows only displayvable attributes)

Name Show Type Description
The

employeeType yes non-blob employee remove edit
type name

Mo blob user profile attributes are set

Rl

+ InanLDAPream, you cannot manage attributes using the DAC. You must use the LDAP directory

server’s administration console, such as ConsoleOne in Novell eDirectory, to add or remove
attributes.

> To modify an attribute:
1 Click edit:

Uzer Profiles | Attributes
Edit attribute (Employer)

Name* |Emp|0yer

Show v

Description |Name of employer

* Required fields

Save xcancel

2 Specify the Name (required) you will use to identify the attribute in your application code.

TIP: Changing the name of an attribute invalidates any code you have written that uses the previous
name.

70 exteNd Director User Management Guide

3 Check the Show box to make the attribute visible to users; uncheck the Show box for tracking,
usage statistics, and so on.

4 Specify the Description. Thisfield is searchable using methods on the Ebiuserinfo class (see
EbiUserQuery in the API Reference).

5 Click Save.

> To add an attribute:
1 Click add:

Add User Attribute

Name* |
Show v

% Mon-blob attribute € Blob attribute

Description |

* Required fields

& save xcancel

2 Specify the Name (required) you will use to identify the attribute in your application code.

3 Check the Show box to make the attribute visible to users; uncheck the Show box for tracking,
usage statistics, and so on.

4 Specify the attribute value type as Non-blaob or Blob (see “Attribute properties’ on page 62).

5 Specifiy the Description. Thisfield is searchable using methods on the Ebiuserinfo class (see
EbiUserQuery in the API Reference).

6 Click Saveto add the attribute to the profile directory.

> To remove an attribute:
+ Click remove next to the attribute.

Using the Profiles Section of the DAC 71

new ../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html

72 exteNd Director User Management Guide

I V Reference

Describes the JSP tag library for user management functions
e Chapter 10, “Framework Tag Library”

73

74 exteNd Director User Management Guide

Framework Tag Library

This chapter provides reference information about the user management framework tags
(FrameworkTag.jar).

[N

Developing exteNd Director Applications.

For background information, see the chapter on using the exteNd Director tag librariesin

addUserToGroup
createGroup
createUser
getGroupList
getResource
getUserID
getUserlnfo
getUserList
getUserPreference
login

logoff
removeGroup
removeUserFromGroup
setUserPassword
userinGroup
userLoggedin

Framework Tag Library

75

cdUsingTagLib.html

addUserToGroup

Description. Adds a specified user to agroup.

Wrapping. Thistag wraps the addM ember() method on the EbiRealmGroupDelegate interface.

Syntax <prefix:addUserToGroup id="ID" userid="userid" groupid="groupid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the operation is successful, this
variable holds a value of true. If the operation fails, this
variable holds a value of false.
If no value is specified, a default ID of addedusertogroup
is used.
userid Yes Yes Specifies the ID for the user to add.
groupid Yes Yes Specifies the ID for the group to which the user will be
added.
Example <% taglib uri="/fw" prefix="fw" %>

<fw:addUserToGroup id="result" userid="Userl" groupid="Groupl" />
<%$=pageContext.getAttribute ("result") %>

createGroup

Description Creates a new group.

Wrapping Thistag wraps the addGroup() method on the EboDirectoryManager interface.

Syntax <prefix:createGroup id="ID" groupid="groupid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the operation is successful,
this variable holds a value of true. If the operation fails, this
variable holds the string Group already exists.
If no value is specified, a default ID of addedgroup is
used.
groupid Yes Yes Specifies the ID for the new group.
Example <% taglib uri="/fw" prefix="fw" %>

<fw:createGroup id="result" groupid="Groupl" />
<%$=pageContext.getAttribute ("result") %>

76 exteNd Director User Management Guide

createUser

Description

Syntax

Example

Creates anew user and anew default profile for that user. Thistag creates the new user in the realm that
was specified in the configuration for the Directory subsystem.

Wrapping Thistag wrapsthe createUser() method on the EbiUserDelegate interface.

<prefix:createUser id="ID" userid="userid" password="password"
firstname="firstname" lastname="lastname" emailaddress="emailaddress"/>

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to
store the result of the operation. If the operation is
successful, this variable holds a value of true. If the
operation fails, an exception is thrown.
If no value is specified, a default ID of addeduser is
used.
userid Yes Yes Specifies the ID for the new user.
password Yes Yes Specifies the password for the new user.
firstname No No Specifies the first name for the new user.
lastname No No Specifies the last name for the new user.
emailaddress No No Specifies the e-mail address for the new user.

<% taglib uri="/fw" prefix="fw" %>

<fw:createUser id="result" userid="Userl" password="MyPassword" firstname="John"
lastname="Smith" />
<%=pageContext.getAttribute ("result") %>

getGrouplList

Description

Syntax

Returnsalist of groupsfor the framework. The objectsreturned are of typejava.security.acl.Group. They
can be cast to Group objects, or amore specific subclassif necessary.

Wrapping Thistag wraps the getGroups() method on the EbiDirectoryManager interface.

<prefix:getGroupList id="ID" iterate="iterate" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store

the list of groups.
If no value is specified, a default ID of grouplist is used.

Framework Tag Library 77

Request-time

expression
values
Attribute Required? supported? Description
iterate Yes No Specifies a boolean value (true or false) that indicates
whether this tag will operate as a body tag so that each row
can be processed separately.
If the iterate attribute is set to true, the following value can
be accessed from within the getGroupList tag:
+ groupid
This is the group name as referenced in EbiRealmGroup.
The variable groupid has a scope of NESTED.
If the iterate attribute is set to false, this tag will operate as a
nonbody tag that returns an object of type List that contains
a list of objects of type EbiGrouplinfo.
Examples This example shows how to use the getGroupL st tag with the iterate attribute set to tr ue:

<%@ taglib uri="/fw" prefix="fw" %>

<html>

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getGroupList iterate="true"s>

Group Name = <%=groupid%>

<p/>

</fw:getGroupList>

<fw:logoff />

</body>

</html>

This example shows how to use the getGroupList tag with the iterate attribute set to fal se:

<%@ taglib uri="/fw" prefix="fw" %>

<html>

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getGroupList iterate="false"/>

<%= ((java.util.List)pageContext.getAttribute ("grouplist")) .size() %> = the size
of the list...
<fw:logoff />

</body>
</html>
getResource
Description Retrieves resource set objects by string path. If theid attribute is not set, the resource will be assumed to

beastring and returnedinline. If theid attributeis set, the returned object will bereturned viathevariable
named in the id attribute.

78 exteNd Director User Management Guide

Syntax <prefix:getResource resourcePath="resourcePath" returnType="returnType"

id="ID" />
Request-time
expression
values
Attribute Required? supported? Description
resourcePath Yes Yes The path to a resource.
returnType No No Specifies the data type for the requested resource. If
the id attribute is set, the return type must be set to
one of the following values:
« document (when the return type is an
org.w3c.dom.Document)
+ string (when the return type is String)
« bytes (when the return type is byte[])
If the id attribute is not set, the resource will be
assumed to be a string and returned inline.
id No No Specifies the name of the variable that will be used to
store the object.
If no value is specified, a default id of resource is
used.
getUserID
Description Retrievesthe user ID for the current user. If the current user isnot logged in, the tag returns anonymous.

Wrapping Thistag wraps the getUserI D() method on the EboDirectoryHel per class.

Syntax <prefix:getUserID id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the user ID.
If no value is specified, a default id of userid is used.
Example <% taglib uri="/fw" prefix="fw" %>

<fw:getUserID id="user" />
<%$=pageContext.getAttribute ("user") %>

getUserinfo

Description Retrieves information about a particular user. The object returned is of type EbiUserInfo. If you don't
need the object, you can access some commonly used attributes directly from the page context.

Wrapping Thistag wraps the getUserInfoByUserI D() method on the EbiUserDelegate interface.

Framework Tag Library 79

Syntax <prefix:getUserID id="ID" userid="userid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to
store the user information object.
If no value is specified, a default ID of userinfo is used.
userid Yes No Specifies the ID of a user.
userid No Yes Gets the user ID from the context.
firsthame No Yes Gets the user firstname from the context (if not null).
lastname No Yes Gets the user lastname from the context (if not null).
emailadd No Yes Gets the user emailaddress from the context (if not null).
ress
Examples This example shows how to get an attribute from the EbiUserInfo object:

<% taglib uri="/fw" prefix="fw" %>

<fw:getUserInfo userid="Userl" />
<%$=pageContext.getAttribute ("userinfo") %>

Hello, <%=
((com.sssw.fw.usermgr.api.EbiUserInfo)pageContext.getAttribute ("userinfo")) .getUse
rFirstName () %>

This example shows how to access attributes from the context:

<% taglib uri="/fw" prefix="fw" %>

<fw:getUserInfo userid="Userl" />

<%=pageContext.getAttribute ("userid") %>
<%$=pageContext.getAttribute ("firstname") %>
<%$=pageContext.getAttribute ("lastname") %>
<%=pageContext.getAttribute ("emailaddress") %>

getUserList

Description Returnsalist of usersfor the framework. The objects returned are of type EbiUserInfo.

Wrapping Thistag wraps the getUsers() method on the EbiDirectoryDelegate interface.

Syntax <prefix:getUserList id="ID" iterate="iterate" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to

store the list of users.
If no value is specified, a default id of userlist is used.

80 exteNd Director User Management Guide

Request-time

expression

values
Attribute Required? supported?

Description

iterate Yes No

Specifies a boolean value (true or false) that indicates
whether this tag will operate as a body tag so that each
row can be processed separately.

If the iterate attribute is set to true, the following values
can be accessed from within the getUserList tag:

+ userid
+ uuid
Each of these variables has a scope of NESTED.

If the iterate attribute is set to false, this tag will operate
as a nonbody tag that returns an object of type List that
contains a list of objects of type EbiUserInfo.

realmName No No

Specifies a directory realm.

If no value is specified, the default primary realm is
used.

Examples This example shows how to use the getUserList tag with the iterate attribute set to true:
<%@ taglib uri="/fw" prefix="fw" %>
<html>
<head>
</head>
<body>
<fw:login userid="admin" password="admin"/>
<fw:getUserList iterate="true">
UserID = <%=userid%>

UUID = <%=uuid%>

<p/>
</fw:getUserList>
<fw:logoff />
</body>
</html>
This example shows how to use the getUserList tag with the iterate attribute set to false:
<%@ taglib uri="/fw" prefix="fw" %>
<html>
<head>
</head>
<body>
<fw:login userid="admin" password="admin"/>
<fw:getUserList iterate="false"/>
<%= ((java.util.List)pageContext.getAttribute ("userlist")).size() %> = the size of
the list...
<fw:logoff />
</body>
</html>
getUserPreference
Description Retrievesthe user preference object for the ID passed in or the current user if no ID is provided. Thistag

isfor getting and setting custom preferences. Preferences for portal objects should be done through the
portal manager and the tags that support those functions such as getUserComponentinfoTag.

Framework Tag Library 81

Wrapping Thistag wraps the getUserPreference() method on the EbiUserPreferenceDel egate

interface.
Syntax <prefix:getUserProfile profilename="profilename" userid="userid"
id="1D" />
Request-time
expression
values

Attribute Required? supported? Description

elementType Yes Yes Specifies an element type.

elementID Yes Yes Specifies an element ID.

id No No Specifies the name of the variable that will be used
to store the user preference object. This object is of
type EbiUserPreferencelnfo.

If no value is specified, a default id of
userPreference is used.

userllD No Yes Specifies the UUID for a particular user.

login
Description Logsauser in to exteNd Director.
Wrapping Thistag wraps the authUserPassword() method on the EbiDirectoryDelegate interface.
Syntax <prefix:login userid="userid" password="password" id="ID" />
Request-time
expression
values

Attribute Required? supported? Description

userid Yes Yes Specifies the ID for the user logging in.

password Yes Yes Specifies the password for the user logging in.

id No No Specifies the name of the variable that will be used to
store the result of the operation. If the login attempt is
successful, this variable holds a value of true. If the login
attempt fails, this variable holds a value of false. A login
may fail for the following reasons:

+ A user has already been logged in to the current
session
+ The user ID is not recognized
+ The user ID/password combination is not valid
If no value is specified, a default id of success is used.
Example <% taglib uri="/fw" prefix="fw" %>

<fw:login userid="admin" password="admin" id="result" />

o

<%$=pageContext.getAttribute ("result") %> = the result of the login...

82 exteNd Director User Management Guide

logoff
Description Logs off the current exteNd Director user.

Wrapping Thistag wraps the logoff() method on the EbiSession interface.

Syntax <prefix:logoff id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the logoff attempt is
successful, this variable holds a value of true. If the logoff
attempt fails, this variable holds a value of false.
If no value is specified, a default id of logoff is used.
Example <% taglib uri="/fw" prefix="fw" %>

<fw:logoff id="result" />
<%$=pageContext.getAttribute ("result") %> = the result of the logoff...

removeGroup

Description Deletes a group.

Wrapping Thistag wraps the removeGroup() method on the EbiDirectoryManager interface.

Syntax <prefix:removeGroup groupid="groupid" id="ID" />

Request-time

expression
values

Attribute Required? supported? Description

groupid Yes Yes Specifies the ID of the group you want to delete.

id No No Specifies the name of the variable that will be used to store
the result of the operation. If the operation is successful,
this variable holds a value of true. Otherwise, an exception
is thrown.

If no value is specified, a default id of deletedgroup is
used.
Example This example shows how to use the removeGroup tag:

<%@ taglib uri="/fw" prefix="fw" %>

<html>

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:removeGroup groupid="Groupl"/>
<fw:logoff />

</body>

</html>

Framework Tag Library 83

removeUserFromGroup
Description Removes a specified user from a group.
Wrapping Thistag wraps the removeMember() method on the EbiRealmGroupDel egate interface.

Syntax <prefix:removeUserFromGroup id="ID" userid="userid" groupid=
"groupid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the operation is successful,
this variable holds a value of true. If the operation fails, this
variable holds a value of false.
If no value is specified, a default id of
removeduserfromgroup is used.
userid Yes Yes Specifies the ID for the user to remove.
groupid Yes Yes Specifies the ID for the group from which the user will be
removed.
Exanuﬂe <% taglib uri="/fw" prefix="fw" %>

<fw:removeUserFromGroup id="result" userid="Userl" groupid="Groupl" />

o

<%=pageContext.getAttribute ("result") %>

setUserPassword

Description Changes the password for a specified user.
Wrapping Thistag wraps the modifyUser() method on the EbiUserDelegate interface.

Syntax <prefix:setUserPassword id="ID" userid="userid" passowrd="password" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the operation is successful,
this variable holds a value of true. Otherwise, an exception
is thrown.
If no value is specified, a default id of setpassword is
used.
userid Yes Yes Specifies the ID for the user whose password will be
modified.
password Yes Yes Specifies the new password.
Example <% taglib uri="/fw" prefix="fw" %>

84 exteNd Director User Management Guide

<fw:setUserPassword id="result" userid="Userl" password="MyPassword" />

o

<%$=pageContext.getAttribute ("result") $>

userinGroup

Description Determines whether a specified user isin a particular group.
Wrapping Thistag wraps the isMember() method on the EbiRea mGroupDelegate interface.

Syntax <prefix:userInGroup groupid="groupid" userid="userid" id="ID" />

Request-time

expression
values

Attribute Required? supported? Description

groupid Yes No Specifies the ID of a group.

userid Yes No Specifies the ID of a user.

id No No Specifies the name of the variable that will be used to store
the result of the operation. If the user is in the specified
group, this variable holds a value of true. If the user is not
in the group, this variable holds a value of false.

If no value is specified, a default id of useringroup is
used.
Exanuﬂe <% taglib uri="/fw" prefix="fw" %>

Is in group...
<fw:userInGroup groupid="ContentAdmins" userid="JSmith" id="result" />
<%=pageContext.getAttribute ("result") %>

userLoggedin

Description Determines whether the current user islogged in to the session.
Wrapping Thistag wraps the isAnonymous() method on the EboDirectoryHel per class.

Syntax <prefix:userLoggedIn id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that will be used to store
the result of the operation. If the current user is already
logged in, this variable holds a value of true. If the user has
not yet logged in, this variable holds a value of false.
If no value is specified, a default id of loggedin is used.
Example <% taglib uri="/fw" prefix="fw" %>

Is logged in...

Framework Tag Library 85

<fw:userLoggedIn />
<%$=pageContext.getAttribute ("loggedin") %>

86 exteNd Director User Management Guide

Index

A

access
restricting 41
ACL processing
about 39
in the Content M anagement subsystem 39
subsystem administrators and 40
ACLs
adding principalsto 43
customizing 45
listing principasfor 42
addUserToGroup tag 76
administrators
for exteNd Director subsystems 40
setting up access 41
authentication 23
authorization 37

B

BEA WebL ogic
ream 15

BEA WebL ogic server
ream 13

C

container
principa 44

containers
accessing ACLsfor 44
accessing inthe API 27
querying 28

ContentAdmin Admin type 40

createGroup tag 76

createUser tag 77

custom tags
addUserToGroup 76
createGroup 76
createUser 77
getGroupList 77
getResource 78
getUserlD 79
getUserlnfo 79
getUserList 80
getUserPreference 81
login 82

logoff 83

removeGroup 83
removeUserFromGroup 84
setUserPassword 84
userInGroup 85
userLoggedin 85

D

DAC (Director Administration Console)
managing groups 33
managing security 51
managing users 32
Directory subsystem
API 23
dynamic groups
support for in exteNd Director 28

E

EbiUserDelegate 58
EbiUserinfo 58
getting 65
exteNd Application Server
see Novell exteNd Application Server

G

Generad Admin Admin type 40
getGroupList tag 77
getlUserPreference tag 81
getResourcetag 78
getUser|D tag 79
getUserInfo tag 79
getUserList tag 80
groups
accessing inthe API 27
adding using the API 27
dynamic groups 28
managing inthe DAC 33
querying 27

|

IBM WebSphere server
about 13
realm 16

87

J

J2EE
security APl 37
JSP pages
custom tag librariesfor 75

L

LDAPreams

about 13, 44

and user attributes 62
LocksmithElementType Admin type 40
logintag 82
logoff tag 83

N

New User portlet
about 26, 56

Novell exteNd Application Server
compatibility realm 15
custom realm configurations 18
pluggable realm 14

P

page layout
mapping a security roleto 49

PersistManager realm 17
personalization

profiling 55
pluggable realms

seerealms
Portal Admin Admin type 40
principal

container 44
profiles

source code for creating 57

R

realms
BEA WebLogic 15
custom 17, 21
IBM WebSphere 16
Novell exteNd Application Server 14
PersistManager 17
pluggable 13
readable 14
types 14
types of configurations
writable 14
removeGroup tag 83
removeUserFromGroup tag 84
restricted access

in Content Management subsystem 41

subsystem administrators and 41

88

roles
accessing programmatically 50
J2EE security and 47
security rolesin exteNd Director 47
rules
and user profiling 59

S

SearchAdmin Admin type 40
security

about 37

managing using the DAC 51
security roles

creating 48

in exteNd Director 47

mapping to a page layout 49

mapping to workflow process 49
Security subsystem

using APIs 42
SecurityAdmin Admin type 40
setUserPassword tag 84
subsystems

User 55

T
tag libraries

Framework tag library 75
tracking

profiling 55

U

user attributes
about 61
and LDAP realms 62
managing 62
properties 62
user profiles
adding and removing 67
managing using the DAC 67
User subsystem
about 55
UserAdmin Admin type 41
userlnGroup tag 85
userLoggedin tag 85
users
accesssing inthe APl 27
adding to agroup (API) 27
adding using the API 26
managing using the DAC 32
querying 27

W
WebL ogic

see BEA WebL ogic server
WebSphere

see IBM WebSphere server
workflow process

mapping a security roleto 49

89

90

	About This Book
	I Directory Management
	1 About Pluggable Realms
	About realms
	Types of realms
	Realm access

	J2EE application server realms
	exteNd Application Server realm
	exteNd application server compatibility realm
	BEA WebLogic realm
	IBM WebSphere realm

	LDAP server realms
	Base LDAP realm
	LDAP application server realms

	PersistManager realm
	Writing a custom realm
	Configuring realms
	Configuring realms automatically
	Configuring realms manually
	Configuring a different authentication provider
	Configuring the primary realm
	Configuring a custom realm

	2 Managing Users and Groups
	About the Directory subsystem
	Directory API

	Authenticating users
	About the Login portlet
	Authenticating a user

	Adding users and groups
	Adding a user
	Adding a group
	Adding a user to a group

	Accessing users, groups, and containers
	User and group queries
	Dynamic groups support
	Getting container principals in a tree realm

	3 Using the Directory Section of the DAC
	About the Directory section of the DAC
	Search facility

	Users
	Groups

	II Security Management
	4 Using ACL-Based Authorization
	About the Security subsystem
	ACLs in exteNd Director
	Accessing principals
	How ACL processing works

	ACL subsystem administrators
	Restricting access to administrators using the API

	Accessing ACLs for users and groups
	Getting Security API delegates
	Getting an element type and identifier
	Listing the permissions associated with an element
	Listing the principals with permission for an element
	Listing the elements with permissions for a principal
	Getting the content of an ACL
	Assigning a principal to an ACL

	Accessing ACLs for containers
	Assigning a container principal to an ACL

	Customizing ACL-based authorization
	Customizing the Security service
	Adding ACL-based security to a new subsystem
	Custom permissions

	5 Using Security Roles
	About J2EE role-based authorization
	About exteNd Director security roles
	Creating a security role
	Mapping a security role to a workflow process
	Mapping a security role to a portal page layout
	Accessing security roles programmatically

	6 Using the Security Section of the DAC
	Modifying administrative access

	III User Profiling
	7 Managing User Profiles
	About user profiles
	How profiles are used

	Profiles and realm configurations
	Checking the realm configuration
	Checking for a writable realm

	About the New User portlet
	Accessing profiles using the API
	Creating a new profile
	Looking up user profiles
	Getting a user profile

	Rules and user profiling
	About conditions and actions

	8 Accessing User Attributes
	About attributes
	Built-in attributes
	Attributes and non-LDAP realms
	Attributes and LDAP realms

	Attribute properties
	Display properties
	Data types

	Accessing attributes using the API
	Getting a list of attributes (non-LDAP)
	Getting a list of attributes (LDAP)
	Creating an attribute (non-LDAP)
	Setting an attribute value

	9 Using the Profiles Section of the DAC
	About the Profiles section of the DAC
	User profiles
	Attributes

	IV Reference
	10 Framework Tag Library
	addUserToGroup
	createGroup
	createUser
	getGroupList
	getResource
	getUserID
	getUserInfo
	getUserList
	getUserPreference
	login
	logoff
	removeGroup
	removeUserFromGroup
	setUserPassword
	userInGroup
	userLoggedIn

	Index

