
Novell

m
w w w . n o v e l l . c o

Integration Manager™
6 . 0
J u n e 2 8 , 2 0 0 6

C O N N E C T F O R S I E B E L * U S E R ’ S G U I D E

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.
2 Novell Integration Manager 6 Connect for Siebel User’s Guide

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Book. 9

1 Welcome to the Novell Integration Manager Connect for Siebel . 11
About Novell Integration Manager™ . 11
About the Integration Manager Connect for Siebel . 12
About J2EE Connector Architecture . 13
About iWay Technology. 14
What Kinds of Applications Can You Build Using the Integration Manager Connect for Siebel? 14

2 Getting Started With the Integration Manager Connect for Siebel . 15
Setup and Configuration . 15

Siebel Thin-Client JAR Files . 15
Updating the Design-time Software License . 17
Updating the Runtime License. 18

3 Creating Siebel Components and Services. 21
Creating Connection Resources . 21

Types of Connection Resources . 21
About Constant-Driven and Expression-Driven Connection Parameters . 21
Creating a Siebel Connection Resource . 22
Creating a File Service Connection Resource . 23
Creating an HTTP Service Connection Resource. 24
Creating an MQSeries Service Connection Resource . 25

XML Templates for Siebel Components and Services . 27
Creating Siebel Components. 27

About the Siebel Component Editor Window . 29
Creating Actions in the Component Editor . 30
Returning to Schema-Edit Mode . 35
Request and Response Documents . 36
“Before Execute” and “After Execute” Actions. 38

Creating Siebel Services . 38
Creating Siebel Service Actions . 41
Managing Deployed Siebel Services. 45

ECMAScript Extensions. 47

A ECMAScript Methods . 49
Adapter Interface Methods . 49

getAdapterType . 49
Connection Interface Methods. 49

getAdapterMetaData . 50
getConnectionMetaData . 50

Additional Methods . 51
getWarnings() . 51
clearWarnings(). 51
getLastError() . 51
7

8 Novell Integration Manager 6 Connect for Siebel User’s Guide

About This Book

Purpose

This guide describes how to use the Novell Integration Manager™ Connect for Siebel. This product has
design-time as well as runtime executables and uses J2EE Connector Architecture technology to provide
integration capability.

Audience

This book is for developers and systems integrators who are planning to use Novell Integration Manager
to develop services and components for Siebel.

Prerequisites

You should be familiar with the Integration Manager work environment and deployment options. You
also should be familiar with Siebel. Familiarity with Java Connector Architecture is helpful but not
required.

Software Versions

This guide assumes that you are using Novell Integration Manager (Enterprise or Professional) version
5.2 (or higher) and that you are deploying your applications to a Java 2 Platform, Enterprise Edition
(J2EE) Version 1.3 or equivalent application server.

The Connect for Siebel is designed to work with Siebel eBusiness Applications, Release 6.3 or higher.

Additional Documentation

For the complete set of Novell exteNd documentation, see the Novell Documentation Web site
(http://www.novell.com/documentation-index/index.jsp).

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".
9

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

10 Novell Integration Manager 6 Connect for Siebel User’s Guide

1 Welcome to the Novell Integration Manager
Connect for Siebel

Welcome to the Novell Integration Manager Connect for Siebel User’s Guide. This Guide is a companion
to the Novell Integration Manager User’s Guide, which details how to use all the features of Integration
Manager except for the Connect Component Editors. You should be familiar with the Novell Integration
Manager User’s Guide before using this Guide.

Novell Integration Manager™ provides separate Component Editors for each Connect, including the
Connect for Siebel. The special features of each component editor are described in separate Guides, like
this one.

If you have been using Integration Manager and are familiar with the core component editor (the XML
Map Component Editor), then this Guide should be enough to get you started with the Siebel Component
Editor.

NOTE: To be successful with this Component Editor, you must be familiar with Siebel and basic XML
integration concepts.

About Novell Integration Manager™
Novell Integration Manager is an XML integration-broker. It encompasses a set of design tools for
building XML integration applications and Web services, plus a runtime engine that enables execution
and administration of the services that you build. The applications and services that you build with
Integration Manager can be deployed to any popular J2EE application server or servlet container.
Supported application servers include JBoss, IBM WebSphere and BEA WebLogic in addition to the
Novell exteNd application server. Apache Jakarta Tomcat is also supported. Check the Novell web site
for latest platform-support information.

At the core of Integration Manager is a robust XML transformation engine capable of performing a wide
range of data transformations, including joining of multiple documents, decomposition of documents,
and creation of entirely new documents. The underlying enabling technologies include XSLT, XPath,
ECMAScript, and Java. The Integration Manager design environment offers a rich, intuitive graphical
user interface, making it possible for you to specify XML transformations and mappings visually, using
wizards, dialogs, and drag-and-drop gestures. You never have to write raw XSL or Java code.

Integration Manager supports numerous kinds of data-source connectivity, through individual adapters
called Connects. Using the functionality exposed in the various Connects, you can design EAI
applications and Web services that pull data in from or push data out to different kinds of back-end
systems, using a variety of transport protocols and technologies, ranging from 3270 and 5250 terminal
data streams to Telnet, HP3000, Unisys T27 (and UTS), Tandem, and Data General, in addition to HTML
screen-scraping, JMS messaging, and CICS RPC transactions. You can also take advantage of JDBC,
LDAP, and other mechanisms to reach back-end data repositories and systems that might or might not
natively understand XML. Integration Manager Connects allow you to connect to these systems
inobtrusively, so as to marshall non-XML data into XML form or vice versa without any need to modify
host-system setups or code.
Welcome to the Novell Integration Manager Connect for Siebel 11

In addition to legacy data-stream and protocol-specific Connects, Integration Manager has Connects for
ERP and CRM systems, including Baan, PeopleSoft, SAP, Lawson, JD Edwards, and Oracle Financials.
As with other Connect solutions, the ERP and CRM Connects are fully integrated into Integration
Manager’s design-time environment so that you can use intuitive visual tools to create powerful custom
integration solutions, eliminating the need to write Java code or edit raw XML or schemas by hand. You
can also test the components that you build against live Siebel connections, using the animation facility
(step-through debugger) of the design environment. As part of the design and debug process, your Siebel-
aware components can call other Integration Manager Components (such as XML Map Components,
JDBC Components, etc.) and make use of any of the core actions that Integration Manager defines (such
as Map, Function, Log, and other actions).

About the Integration Manager Connect for Siebel

The Novell Integration Manager Connect for Siebel allows you to build powerful XML-based integration
solutions and enables you to reuse your existing Siebel business functions with other applications—the
key to building a successful e-business or integrated enterprise. The Integration Manager Connect
enables you to incorporate Siebel business objects and services into new application initiatives.

You do not need to manually generate or install Siebel XML schemas in order to use the Integration
Manager Connect for Siebel. The Connect will generate schemas for you, as needed, automatically.

You also don’t have to take any steps to preinstall RARs (resource adapter archives, defined by the Java
Connector Architecture) on the target application server ahead of time. Integration Manager handles
RAR deployment for you automatically when you deploy any Integration Manager-built service that
utilizes the Integration Manager Connect for Siebel.

NOTE: Some one-time setup and configuration steps are required in order to use the Integration
Manager Connect for Siebel. These steps are described in Chapter 2, “Getting Started With the Integration
Manager Connect for Siebel”.
12 Novell Integration Manager 6 Connect for Siebel User’s Guide

About J2EE Connector Architecture
The J2EE Connector Architecture (JCA) defines a standard architecture for connecting elements of the
J2EE platform to a heterogeneous Enterprise Information System (EIS). Examples of EIS components
include Enterprise Resource Planning (ERP) systems, Customer Relationship Management (CRM),
Supply Chain Management (SCM), mainframe transaction processing, database systems, and legacy
applications that are not written in the Java programming language. By defining a common set of
scalable, secure, transactional mechanisms reachable via a standard set of APIs, J2EE Connector
Architecture enables the integration of an EIS with an application server and enterprise applications.

The J2EE Connector Architecture permits an EIS vendor to provide a standard resource adapter for its
EIS. The resource adapter plugs into an application server, providing connectivity to an EIS, and
integrating it with the rest of the enterprise. If an application server vendor has extended its system to
support J2EE Connector Architecture, it is assured of seamless connectivity to multiple Enterprise
Information Systems.

Before J2EE Connector Architecture, most EIS vendors offered vendor-specific architectures to provide
connectivity between applications and their software. Each program interacting with an EIS needed to be
hand-tooled by someone with a detailed knowledge of the target EIS. Custom software to provide
connectivity across multiple systems was time consuming to develop, debug, and maintain.

By providing a standard set of APIs and contracts for managing connectivity, exposing EIS APIs, and
using application-server services (like transaction control and connection pooling), J2EE Connector
Architecture greatly reduces the need for custom programming. Developers can focus on business logic
rather than connectivity and transaction-related logic and a variety of “plumbing issues.”

How J2EE Connector Architecture Works

The “major participants” in J2EE Connector Architecture include these components:

Application server
Resource adapter (RAR)
Application

The application server is not strictly required. Certain services like connection pooling and transaction
control will not be available in a “server” that is just a servlet container. But J2EE Connector Architecture
resource adapters can still operate.

The RAR represents the interests of the underlying EIS.

The application interacts with the resource adapter using what J2EE Connector Architecture calls
standard contracts. Standard contracts define what interactions are to take place and how they are
exposed. The contract between the application and the resource adapter is called the Common Client
Interface (CCI). The resource adapter, in turn, interacts with the application server under the Service
Provider Interface (SPI), which defines how the management of resource adapter interactions occurs.
The aspects of this include:

Connectivity management
Transaction demarcation
Event listening (listeners can receive notification of significant events; for example, a connection
failure)
Pooling of connections and other resources

In the normal course of events, the application uses a naming service to locate the appropriate resource
adapter. The application server supplies the naming service, and so it recognizes that a request is being
made to locate a resource adapter. In such a case, the application server interposes a resource-adapter-
supplied intermediate object that interacts between the resource adapter and the application server.
Through this intermediating object, the application server manages the items within the SPI contract
below the awareness of the application.
Welcome to the Novell Integration Manager Connect for Siebel 13

For more information about J2EE Connector Architecture, visit http://java.sun.com/j2ee/connector/.

About iWay Technology
Novell Integration Manager uses licensed J2EE Connector Architecture adapter technology from iWay
Software* (a division of Information Builders, Inc.) to mediate EIS interactions in the Integration
Manager Connect for Siebel. A leader in the J2EE Connector Architecture technology space, iWay
Software provides resource adapters and connectivity solutions across a wide array of EIS and other
systems.

For more information about iWay, see http://www.iwaysoftware.com.

What Kinds of Applications Can You Build Using the Integration
Manager Connect for Siebel?

With Integration Manager Connect for Siebel, you can build any kind of Web service or integration
application that needs to push data into or pull data from a Siebel-based data store using XML as the
interchange format. Your integration application can be deployed to a J2EE application server and run as
a public web service, or it can be used in “behind the firewall” scenarios. It can be triggered by a servlet,
JSP, EJB, e-mail, timer, file arrival, JMS message arrival, or any of the supported Integration Manager
trigger types. It can also run standalone or as part of a workflow built using Integration Manager
Enterprise Edition’s Process Manager. (For more information about deployment options, see “Deploying
Your Project,” in the Novell Integration Manager User’s Guide.)
14 Novell Integration Manager 6 Connect for Siebel User’s Guide

http://www.iwaysoftware.com
http://java.sun.com/j2ee/connector/

2 Getting Started With the Integration Manager
Connect for Siebel

This chapter describes how to set up and configure the Integration Manager™ Connect for Siebel.

Setup and Configuration
The following requirements must be completed before you can use the Integration Manager Connect for
Siebel:

1 Determine the release number of your Siebel system. You must have Release 6 or 7 to use the
Integration Manager Connect for Siebel.

2 The Integration Manager Connect for Siebel requires JAR files from Siebel. You must make these
JAR files available on both the design-time and runtime (application server) computers. The JAR
files that you need depend on the version of Siebel that you are running. See “Siebel Thin-Client
JAR Files” on page 15.

3 Update the classpath in xconfig.xml, in both the design environment and on the server, to reflect
the addition of the JARs. See “Adding the Siebel JAR Files to the Design-Time Environment” on
page 16 and “Adding the Siebel Jar Files to the Novell Application Server Environment” on
page 16.

4 Update the license for your Integration Manager Connect for Siebel installation. See “Updating the
Design-time Software License” on page 17 and “Updating the Runtime License” on page 18.

The steps necessary to accomplish these requirements are discussed in detail in the following sections.

Siebel Thin-Client JAR Files
Before attempting to use the Integration Manager Connect for Siebel (which is installed automatically as
part of the Integration Manager installation process), you must complete the installation by obtaining and
installing several Siebel libraries that are distributed as JAR files with the Siebel Thin Client. These
libraries are proprietary to Siebel and are not shipped by Novell nor installed as part of the Integration
Manager.

These libraries vary by Siebel release in both content and name. Therefore, you must always use the
Siebel Thin Client provided with the target Siebel system.The following table provides some examples
of the libraries required for using the Integration Manager Connect for Siebel with various Siebel
versions:

Siebel Version JARs Required

6.3.x SiebelTcOM.jar

SiebelTcCommon.jar

SiebelTC_enu.jar*

SiebelDataBean.jar
Getting Started With the Integration Manager Connect for Siebel 15

* These are English language versions of the files. For other languages the last 3 characters (e.g., “_enu”)
will vary.

The Siebel Thin Client should be included in your Siebel installation. If not, contact your Siebel
representative to obtain a copy of the JAR files. When you have located the JAR files, you must add them
to the classpath in both your design-time and runtime environments, as described in the following
sections.

Adding the Siebel JAR Files to the Design-Time Environment

To add the Siebel JAR files to your design-time configuration

1 If Integration Manager is running, shut it down before proceeding.
2 Obtain the JAR files that are required for the version of Siebel that you are using (see “Siebel Thin-

Client JAR Files” on page 15), if they are not included in your Siebel installation.
3 Copy the JAR files to the /Common/lib folder of the Integration Manager installation directory on

your design-time computer.

To add the Siebel JAR files to the design-time classpath

1 Locate your xconfig.xml file under /Composer/Designer/bin and open the file in a text editor.
2 Scroll to the bottom. Within the <RUNTIME> element, you should see many <JAR> entries.
3 Add an additional <JAR> element that specifies the path to the Siebel JAR files for the version of

Siebel that you are running, as follows:
Siebel 6.3.x

<JAR>..\..\..\Common\lib\SiebelTcOM.jar;..\..\..\Common\lib\SiebelTcCommon.jar
;..\..\..\Common\lib\SiebelTC_enu.jar;..\..\..\Common\lib\SiebelDataBean.jar</
JAR>

Siebel 7.0.3
<JAR>..\..\..\Common\lib\SiebelJI_Common.jar;..\..\..\Common\lib\SiebelJI_enu.
jar</JAR>

Siebel 7.5.2
<JAR>..\..\..\Common\lib\SiebelJI.jar;..\..\..\Common\lib\SiebelJI_Common.jar;
..\..\..\Common\lib\SiebelJI_enu.jar</JAR>

This entry tells the class loader where it can find the JAR files.
4 Save and close xconfig.xml.

Adding the Siebel Jar Files to the Novell Application Server Environment
1 If the application server is running, shut it down before proceeding.
2 Obtain the JAR files required for the version of Siebel that you are using (see “Siebel Thin-Client

JAR Files” on page 15), if they are not included in your Siebel installation.
3 Copy the JAR files to a suitable location on your application server. The exact location doesn’t

matter, as long as you create a classpath entry pointing to the JAR file location, as described in the
following step.

7.0.3 SiebelJI_Common.jar

SiebelJI_enu.jar*

7.5.2 SiebelJI_Common.jar

SiebelJI_enu.jar*

SiebelJI.jar

Siebel Version JARs Required
16 Novell Integration Manager 6 Connect for Siebel User’s Guide

4 Update the application server classpath. For the Novell exteNd application server, locate the
AgJars.conf file in the AppServer/bin directory and open the file in a text editor.

5 Create new entries to the “MODULE COMMON” section, as follows:
Siebel 6.3.x

$SS_LIB ../../Common/lib/SiebelTcOM.jar
$SS_LIB ../../Common/lib/SiebelTcCommon.jar
$SS_LIB ../../Common/lib/SiebelTC_enu.jar
$SS_LIB ../../Common/lib/SiebelDataBean.jar

Siebel 7.0.3
$SS_LIB ../../Common/lib/SiebelJI_Common.jar
$SS_LIB ../../Common/lib/SiebelJI_enu.jar

Siebel 7.5.2
$SS_LIB ../../Common/lib/SiebelJI_Common.jar
$SS_LIB ../../Common/lib/SiebelJI_enu.jar
$SS_LIB ../../Common/lib/SiebelJI.jar

This example assumes that you have placed the JAR files in the application server /Common/lib
directory. Edit this path as required to reflect the actual target directory.
NOTE: For application servers other than Novell exteNd, follow the application server vendor’s
instructions for updating the classpath.

Updating the Design-time Software License
1 Obtain a valid license string from your Novell representative.

NOTE: You use the same license string to activate the design-time and runtime versions of
Integration Manager Connect for Siebel.

2 Start Integration Manager.
3 Select About Integration Manager from the Help menu. The About Integration Manager dialog

box is displayed.
4 Select System. The System Information dialog box is displayed.
5 Click on the Licenses tab, located in the upper left corner of the System Information dialog box.

The license information for your Integration Manager installation is displayed.
Getting Started With the Integration Manager Connect for Siebel 17

6 Scroll down until you see the row for Siebel.
NOTE: The Connect ships with an Evaluation license string which may be used for 90 days.

7 To use the evaluation license string, select the check box in the Enabled column and skip to Step
10. To enter a different license string, select the check box in the Enabled column. The Edit button
in the Siebel row is enabled.

8 Select Edit in the Siebel row. The Edit License dialog box is displayed.

9 Type the license string for the Integration Manager Connect for Siebel in the New License field.
10 Scroll down until you see the row for Siebel Service.
11 Repeat Step 7 through Step 9 for the Siebel Service row.
12 Exit out of all dialogs by selecting OK.

Updating the Runtime License
NOTE: If you are using the Tomcat application server, copy the jca10apis.jar from the \NIM6\Server
Resources\Tomcat directory (Windows) or nim/Server Resources/Tomcat directory (Linux) to the
Tomcat Composer\lib and shared\lib directories before attempting to update the runtime license.

1 Make sure that the Novell Integration Manager Enterprise Server is installed.
2 Start the application server. The Novell Integration Manager Enterprise Server starts automatically

when you start the application server.
3 Open a browser window and navigate to the Novell Integration Manager main administrative

console. Typically, this is at:
http://localhost/exteNdComposer

4 In the upper left corner of the console window, click the exteNd Composer logo immediately
above the words “Server Console,” as shown in the following illustration.

5 In the content area of the main frame, near the bottom, click Licenses. The Manage Licenses
window is displayed. This window shows the license status of every Integration Manager Connect.
See the following illustration.
18 Novell Integration Manager 6 Connect for Siebel User’s Guide

6 Scroll down to the entry labeled “sbl”.
NOTE: The Connect ships with Evaluation license strings which may be used for 90 days.

7 Type a license string in the text field in the “sbl” row; then select Enabled in the “sbl” row. To use
the evaluation license string, just select Enabled.

8 Select Update in the “sbl” row.
9 Scroll down to the entry labeled “sblservice”.
10 Type a license string in the text field in the “sblservice” row; then select Enabled in the

“sblservice” row. To use the evaluation license string, just select Enabled.
11 Select Update in the “sblservice” row.
Getting Started With the Integration Manager Connect for Siebel 19

20 Novell Integration Manager 6 Connect for Siebel User’s Guide

3 Creating Siebel Components and Services

To create a Component or Service that utilizes the Integration Manager™ Connect for Siebel, you need to
do three things:

Create a Connection Resource (to allow your component to connect to a Siebel system)
Create any necessary XML Templates
Create the Component or Service itself (containing your business logic)

Each of these processes is discussed in detail in this chapter.

Creating Connection Resources
Before creating a component that interacts with a Siebel system, you need to create a Connection
Resource, which is a lightweight Integration Manager object (xObject) that encapsulates basic
connection information (parameter values) associated with a connection to a back-end system.

In addition to a connection resource, a Siebel Component requires that you have already created XML
templates so that you have sample input and output documents for use in designing your component. For
more information, see “Creating an XML Template” in the Novell Integration Manager User’s Guide.

If your component design calls for any other resources (e.g., custom scripts, XSL, XSD, XDR) you
should create these before creating the Siebel Component or Service. For more information, see
“Creating Custom Scripts” in the Novell Integration Manager User’s Guide.

Types of Connection Resources
You create different types of connection resource depending on the type of interaction with the Siebel
system that is desired. If your application needs to initiate Siebel business events using Siebel Business
Objects and Business Services, you need to create a Siebel Connection resource. If your application
needs to process data when a business event occurs within a Siebel Integration Object, you need to create
an inbound connection resource. Inbound connection resources include file, HTTP, and MQ Series
connection types.

About Constant-Driven and Expression-Driven Connection Parameters
You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant-driven parameter uses the value you type in the Connection dialog every time the Connection is
used. An expression-driven parameter allows you to set the value using a programmatic expression,
which can result in a different value each time the connection is used at runtime. This allows the
Connection’s behavior to be flexible and vary based on runtime conditions each time it is used.
Creating Siebel Components and Services 21

For instance, one very simple use of an expression-driven parameter in a Connection would be to define
the User ID and Password as PROJECT Variables (e.g.
PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you deploy the project, you can
update the PROJECT Variables in the Deployment Wizard to values appropriate for the final deployment
environment. At the other extreme, you could have a custom script that queries a Java business object in
the Application Server to determine what User ID and Password to use.

To switch a parameter from Constant-driven to Expression driven:

1 Click the right mouse button in the parameter field you are interested in changing.
2 Select Expression from the context menu and the editor button will appear or become enabled.

3 Click on the button and then create an expression that evaluates to a valid parameter value at
runtime. (Strings should be wrapped in double-quotes.)

Creating a Siebel Connection Resource

To Create a Siebel Connection Resource:

1 Select File > New > xObject. The New xObject dialog box is displayed.
2 Select the Resource tab.
3 Double-click on Connection. The “Create a New Connection Resource” wizard is displayed.
4 Type a name for the connection object in the Name field.
5 Optionally, type a description of the connection object in the Description field.
6 Select Next. A connection parameters panel is displayed.

7 Select Siebel Connection from the Connection Type list.
8 Type the host name or IP address of the Siebel gateway server in the Gateway Server field. The

Siebel Gateway Server is a single entry point for accessing Siebel servers. It consists of the Name
Server and an optional Connection Brokering component.The Name Server keeps track of all
Siebel Server parameters. Enterprise components query the Name Server for connectivity
information.

9 Type the Enterprise Server name in the Enterprise Name field.
10 Type the Siebel Server name in the Siebel Server field.
22 Novell Integration Manager 6 Connect for Siebel User’s Guide

11 Type a User ID for the selected Siebel server in the User field.
12 In the Password field, type the password for the user that you specified in previous step.
13 Select the three-letter NLS character set code for the default language from the Language list. The

default is “enu” (US English).
14 Type the name of the Siebel Object Manager in the Object Manager field.

NOTE: In some Siebel configurations, it may be necessary to append the three-letter NLS
character set code (e.g., “_enu” for English) to the Object Manager name (e.g.,
“MyObjectManager_enu”). This code should be the same as the code selected in the Language list.

15 Type the name of the Siebel Repository in the Repository Name field.
16 Type the desired maximum pool size in the Maximum Pool Size field. This is a JCA setting that

specifies the maximum number of connections to be allowed in the connection pool (not applicable
for non-managed environments).

17 If desired, select Test to see if your connection parameters and network environment allow you to
create a live connection. Integration Manager displays a message indicating the success or failure
of the test. The test connection is discarded immediately after the test. You can continue working
with the connection resource, even if the connection fails.
NOTE: This test does not test the connection pool.

18 Select OK. The newly-created resource connection object appears in the Integration Manager
Connection Resource detail pane.

Creating a File Service Connection Resource

To Create a Siebel File Service Connection Resource:

1 Select File > New > xObject. The New xObject dialog box is displayed.
2 Select the Resource tab.
3 Double-click on Connection. The “Create a New Connection Resource” wizard is displayed.
4 Type a name for the connection object in the Name field.
5 Optionally, type a description of the connection object in the Description field.
6 Select Next. A connection parameters panel is displayed.
Creating Siebel Components and Services 23

7 Select Siebel File Service Connection from the Connection Type list.
8 Use the Browse button next to the Polling Location field to select the target file system location

for the Siebel XML file.
9 In the File Mask field, type the file name to be used for the output file generated as a result of this

operation. The default is “.*”.
10 Select REQUEST, REQUEST_RESPONSE, or REQUEST_ACK from the Synchronization Type

list. Select the option that is correct for the Workflow with which you are integrating (e.g., if your
Workflow is set up to process a response, select REQUEST_RESPONSE). The Synchronization
Type selected also determines the tabs that are displayed in the Service Request Native
Environment pane (e.g., if REQUEST_RESPONSE is selected, both Request and Response tabs
are displayed).

11 Use the Browse button next to the Response/Ack Directory field to select the directory to which
responses or acknowledgements from your application will be written.

12 Use the Browse button next to the Error Directory field to select the directory to which error
information will be written.

13 In the Poll Interval field, type the interval (in milliseconds) in which the Polling Location is
checked for input. The default is 3000 (3 seconds).

14 Select Threaded or Sequential from the Processing Mode list. Threaded indicates processing of
multiple requests simultaneously. Sequential indicates serial processing of requests.

15 If Threaded processing mode is selected in the Processing Mode list, use the Thread Limit field to
specify the maximum number of requests that can be processed simultaneously.

16 From the Metadata Connection list, select a Siebel connection resource from the list of defined
connection resources. This connection is used for acquiring metadata from the Siebel system.

17 Type the desired maximum pool size in the Maximum Pool Size field. This is a JCA setting that
specifies the maximum number of connections to be allowed in the connection pool (not applicable
for non-managed environments).

Creating an HTTP Service Connection Resource

To Create a Siebel HTTP Service Connection Resource:

1 Select File > New > xObject. The New xObject dialog box is displayed.
2 Select the Resource tab.
3 Double-click on Connection. The “Create a New Connection Resource” wizard is displayed.
4 Type a name for the connection object in the Name field.
24 Novell Integration Manager 6 Connect for Siebel User’s Guide

5 Optionally, type a description of the connection object in the Description field.
6 Select Next. A connection parameters panel is displayed.

7 Select Siebel HTTP Service Connection from the Connection Type list.
8 In the Listener Port field, type the number of the port on which the application will listen for

Siebel event data. The default port is 8080.
9 To use HTTPS for this connection, select HTTPS.
10 Select REQUEST, REQUEST_RESPONSE, or REQUEST_ACK from the Synchronization Type

list. Select the option that is correct for the Workflow with which you are integrating (e.g., if your
Workflow is set up to process a response, select REQUEST_RESPONSE). The Synchronization
Type selected also determines the tabs that are displayed in the Service Request Native
Environment pane (e.g., if REQUEST_RESPONSE is selected, both Request and Response tabs
are displayed).

11 From the Metadata Connection list, select an outbound Siebel Connection resource from the list
of defined connection resources. This connection is used for acquiring metadata from the Siebel
system.

12 Type the desired maximum pool size in the Maximum Pool Size field. This is a JCA setting that
specifies the maximum number of connections to be allowed in the connection pool (not applicable
for non-managed environments).

Creating an MQSeries Service Connection Resource

To Create a Siebel MQSeries Service Connection Resource:

1 Select File > New > xObject. The New xObject dialog box is displayed.
2 Select the Resource tab.
3 Double-click on Connection. The “Create a New Connection Resource” wizard is displayed.
4 Type a name for the connection object in the Name field.
5 Optionally, type a description of the connection object in the Description field.
6 Select Next. A connection parameters panel is displayed.
Creating Siebel Components and Services 25

7 Select Siebel MQSeries Service Connection from the Connection Type list.
8 In the Queue Manager field, specify the name of the queue manager to which the application will

connect.
9 In the MQ Server Host field, type the name of the host on which the MQ Server is located.
10 In the MQ Server Port field, type the name of the port to use to connect to an MQ Server queue

manager.
11 In the MQ Server Channel field, specify the name of the channel to use to connect to the remote

MQ Server queue manager. The name is case-sensitive.
12 Select the XML Document checkbox.
13 In the Queue Name field, type the name of the queue in which the message will be routed and

where request documents are received. The name of the queue is case-sensitive.
14 Select REQUEST, REQUEST_RESPONSE, or REQUEST_ACK from the Synchronization Type

list. Select the option that is correct for the Workflow with which you are integrating (e.g., if your
Workflow is set up to process a response, select REQUEST_RESPONSE). The Synchronization
Type selected also determines the tabs that are displayed in the Service Request Native
Environment pane (e.g., if REQUEST_RESPONSE is selected, both Request and Response tabs
are displayed).

15 In the Message Wait Interval field, specify the interval (in milliseconds) in which the queue is
checked for new input. The default is 3000 (3 seconds).

16 Select Threaded or Sequential from the Processing Mode list. Threaded indicates processing of
multiple requests simultaneously. Sequential indicates serial processing of requests.

17 If Threaded processing mode is selected in the Processing Mode list, use the Thread Limit field to
specify the maximum number of requests that can be processed simultaneously.

18 From the Metadata Connection list, select an outbound Siebel Connection resource from the list
of defined connection resources. This connection is used for acquiring metadata from the Siebel
system.

19 Type the desired maximum pool size in the Maximum Pool Size field. This is a JCA setting that
specifies the maximum number of connections to be allowed in the connection pool (not applicable
for non-managed environments).
26 Novell Integration Manager 6 Connect for Siebel User’s Guide

XML Templates for Siebel Components and Services
Before creating a Siebel Component or Service, you should create any XML templates that might be
needed. XML templates are used to tell Integration Manager which XML sample documents (e.g., input,
output, scratch pad, fault, XSD, or DTD) to use. Once you’ve specified the XML templates, you can
create a component or service that uses the sample documents to represent the inputs and outputs
processed by your component. For more information about XML templates, see “Creating a New XML
Template” in the Novell Integration Manager User’s Guide.

Creating Siebel Components
As part of the process of creating a Siebel Component, you can select an existing Siebel connection
resource, or you can create a new one. If you create the connection beforehand, it is available for use by
any Siebel Components in the current project. If you have not already created at least one Siebel
connection resource in the current project, you will be prompted to do so when you try to create a Siebel
Component.

NOTE: You can still create a Component without first creating a connection resource, but you won’t be
able to use any debug features that depend on a live connection.

To Create a New Siebel Component:

1 Select File > New > xObject. The New xObject dialog box is displayed.
NOTE: Alternatively, under Component in the Integration Manager Navigator pane (Explorer
view), you can highlight Siebel, click the right mouse button, then select New.

2 Select the Component tab.
3 Double-click on “Siebel.”

If you have not previously defined a connection resource, you are prompted to do so now (see
“Creating Connection Resources” on page 21).
If you have already defined a connection resource, the “Create a New Siebel Component” Wizard
is displayed.

4 Type a Name for the new Siebel Component.
5 Optionally, type Description text.
6 Select Next. The XML Input/Output Message Property Info panel of the New Siebel Component

Wizard is displayed.
Creating Siebel Components and Services 27

7 Specify the Input and Output templates as follows:
Type a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”
Select a Template Category if it is different than the default category.
Select a Template Name from the list of XML templates in the selected Template Category.
To add additional input XML templates, click Add, then choose a Template Category and
Template Name for each.
To remove an input XML template, select an entry and click Delete.

8 Select an XML template for use as an Output DOM using the procedure described in the previous
step.
NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
Document without Using a Template” in the Novell Integration Manager User’s Guide.

9 Select Next. The Temp and Fault XML Template panel is displayed.

10 If desired, specify a template to be used as a scratch pad under the “Temp Message” pane of the
dialog box. This can be useful if you need a place to hold values that will be used temporarily
during the execution of your component. Select a Template Category if it is different than the
default category. Then select a Template Name from the list of XML templates in the selected
Template Category.
28 Novell Integration Manager 6 Connect for Siebel User’s Guide

11 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

12 To add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

13 Select Next. The Connection Info panel of the Create a New Siebel Component wizard is
displayed.

14 Select a Siebel connection from the Connection list. The Connection list displays the names of the
Siebel connection resources that have been defined in this project.

15 Select Finish. The component is created and the Siebel Component Editor is displayed.

About the Siebel Component Editor Window
The Siebel Component Editor includes all of the functionality of the XML Map Component Editor. It
contains mapping panes for Input and Output XML documents, as well as an Action Model.

The Siebel Component Editor also includes a Native Environment pane, which appears as a grey pane
until you create a Siebel Request action, at which time it will show a tabs for Request and Response panes
with corresponding XML trees.
Creating Siebel Components and Services 29

The Native Environment pane shown in the illustration is blank, because no Siebel Request action has
been created.

Creating Actions in the Component Editor
You can create all the normal Integration Manager actions in the Action Model of your Siebel component
(e.g., XML Map, Function, Log, Send Mail). In addition, you can create a Siebel Request action.

The Siebel Request action communicates requests (XML request documents) from your Siebel system
and fetches responses back from the same system.

The Integration Manager GUI for creating a Siebel Request action allows you to

Specify the type of Siebel business function that you want to invoke
Automatically generate XML schemas (request and response) for the particular business function
that you want to use
Use the generated schemas to fine-tune the structure of the actual request document that you want
to use (a request document that conforms to the schema but reflects your own “setup” choices and
initialization parameters, etc.)
Automatically generate XML request and response documents that conform to the schemas and
choices that you’ve made

You will see how this works in the following procedure.
30 Novell Integration Manager 6 Connect for Siebel User’s Guide

To Create a Siebel Request Action

1 Right-click in the Action Model at the location in which you want the new action to appear, then
select New Action > Request.

The Function pane of the Request dialog box is displayed. You use this pane to browse the
available Siebel Business Objects and Business Services.

2 Click on the plus (+) sign to the left of a node in the tree view to expand the tree view for that node.
NOTE: If no nodes are displayed on the Function page, there may be an incorrect parameter in
your connection resource. Check the parameters needed for connecting to your Siebel server, then
update your connection resource if necessary (see “Creating Connection Resources” on page 21).
Creating Siebel Components and Services 31

Position the mouse pointer over a node in the tree view to get ToolTip information about the node.
ToolTips display the following information, depending on the node type:

Folder: “type - Folder”
Searchable Folder nodes: “type - Service”
Function nodes: “type - Operation”

3 Click on the plus sign to the left of a node to see the contents of the node.
4 Right-click on the desired operation, then select Get Schemas from the context menu.

After a few seconds, the Request and Response tabs of the Request dialog box are enabled.
5 Select the Request tab. The Request pane is displayed.
32 Novell Integration Manager 6 Connect for Siebel User’s Guide

6 Type a name for the request message in the Request Message field, or accept the default name as
shown in the preceding illustration.

7 Expand the nodes of the Request Tree by clicking on the plus signs to the left of the nodes.
8 Select the elements that you want to include in the Request document by selecting or deselecting

the check boxes in the node tree. Some nodes are greyed out (disabled). This is because the
document schema determines the nodes that you can edit.
Integration Manager strictly enforces schema rules. In other words, Integration Manager will not let
you specify an invalid request document. Items that you should not edit are disabled, and items that
you can edit have context-menus that non-customizable nodes do not have. For example:

Mandatory elements and attributes are marked selected and disabled.
All child nodes are left unselected and disabled if the parent node is not selected.
A parent element, once selected, will autoselect mandatory elements and attributes of its
children.
When a parent node is selected, you will need to select optional elements manually.

ToolTips are an important aid in using the Request and Response panes, because they display
document-structure rules from the request and response document schema. Familiarize yourself
with the ToolTip feature by letting the mouse hover over various nodes, as shown in the following
illustration.

NOTE: The ToolTips that appear in this tree are also available in the Native Environment pane.

9 If a node has a Maximum Occurrence property of greater than one, a command called “Create
new...” is available by right-clicking on the node. Selecting that command brings up the following
dialog box:
Creating Siebel Components and Services 33

Enter the number of additional instances of this node-type that you want to insert in the document,
then click OK. New nodes are added to the document structure.

CAUTION: There is no Undo for this operation.

10 If an enumeration button () is displayed to the right of a given node, you can click the button to
choose from the list of appropriate (schema-allowed) values for that enumeration.

For example, the Siebel QueryWithView method allows different presentations of data depending
on how the Siebel environment is configured. You can specify a View mode by selecting a
parameter from an enumeration, as shown in the following illustration.

11 Visit all of the nodes in the request tree that are of interest to you, and use the Integration Manager
user interface features described in the preceding steps to customize the request document
structure.

12 Click the Response tab at the top of the dialog box to bring the Response document pane forward.
This pane shows a tree view of the Response document, similar to the one shown for the Request
document. The same user interface features that applied to the Request document pane apply to the
Response document pane.
34 Novell Integration Manager 6 Connect for Siebel User’s Guide

13 Type a name for the response message in the Response Message field, or accept the default
response message name.

14 Select or deselect Filter Response, as desired. Filter Response is selected by default. If deselected,
the tree will be disabled and greyed (no longer editable), indicating that a default schema
configuration will be used. If selected, you can customize the structure of the request document by
selecting the nodes to be included in the response document.

15 Visit all of the nodes in the Response document tree and customize the settings as desired.
16 Select OK. The dialog closes and a new action appears in the Action Model of your component.

The Native Environment Pane changes to show the Request and Response tabs along with tree
views of the request and response documents.

17 To map a node of the Input document to a node in the Request document, drag a node from the
Input pane and drop it on a node in the Request tab of the Native Environment pane. This
automatically creates a new XML Map Action in the Action Model.

18 To map a node of the Response document to a node in the Output document, drag a node from the
Response tab of the Native Environment pane and drop it on a node in the Output pane. This
automatically creates a new XML Map Action in the Action Model. You can cut, copy, or delete the
actions once they appear in the Action Model pane.

19 Add or remove actions from the Action Model to create the desired business logic.

Returning to Schema-Edit Mode
Once you have created a Request Action in your Action Model (see “Creating Actions in the Component
Editor” on page 30), you can go back and edit the Request and Response schema trees by double-clicking
the Request Action in the Action Model. Double-clicking causes the Request dialog box to be displayed.
You can use the Request and Response tabs to navigate the request- and response-document schemas and
change your customizations as desired. When you exit from of the dialog box, your changes are reflected
in the Native Environment Pane.
Creating Siebel Components and Services 35

NOTE: If you manually edit the Request or Response documents in the Native Environment Pane (see
“Manually Editing the Request and Response Documents” on page 36), you will not be able to reopen the
Request Action dialog. Avoid manually editing request/response documents. Instead, make modifications
through careful use of the XML Map Action or by using Request.createXPath() and DOM methods in a
Function Action.

Request and Response Documents
After you have created a Request Action (see “Creating Actions in the Component Editor” on page 30),
the Native Environment Pane portion of the Integration Manager editor view displays Request and
Response documents in tree-view form, as shown in the following illustration.

You can drag and drop data from the Input document to the Request document to create XML Map
actions. You also can use drag-and-drop mapping to map from Response to Output. In the preceding
illustration, a node is displayed in red. The red color indicates that data has been mapped to the node.

Manually Editing the Request and Response Documents

If you right-click anywhere inside the Request or Response tree views in the Native Environment Pane,
a menu is displayed.

The Edit Document command in this menu opens the document in a text-editor, as shown in the
following illustration.
36 Novell Integration Manager 6 Connect for Siebel User’s Guide

In this window, you can manually edit the Request or Response document.

CAUTION: If you manually edit the document, it may no longer conform to the original schema. As a
result, you will no longer be able to open the document in the Request Action dialog box.

If you have manually edited a Request or Response document, double-clicking on the corresponding
Request Action in the Action Model will cause the following message to be displayed:

If this message appears, and you want to work with the document using the Request Action dialog box,
you must recreate the action in order to see the original Request or Response document. Manual edits will
be lost.

To prevent this situation from occurring, avoid making manual edits to Request or Response documents.
Instead use XML Map Actions and Function actions to modify documents or node contents. Be aware
that doing so may violate schema constraints. This will not necessarily cause runtime problems for your
component when executing in the Integration Manager Enterprise Server environment, because
Integration Manager does not validate the request document against the schema at runtime. However,
your Siebel system may validate incoming requests, in which case a manually-edited Request document
can cause errors that are difficult to troubleshoot.
Creating Siebel Components and Services 37

“Before Execute” and “After Execute” Actions
Whenever a Siebel Request action is created in the Action Model, Integration Manager adds two
additional lines to the action list: Before Execute Actions and After Execute Actions. These are header
labels (grouping labels) for blocks of actions that occur before the request is sent to the Siebel system, or
after a response document has come back, respectively. Typically you will want to map data fields from
Input to Request and have those actions be grouped under the “Before Execute Actions” header.
Likewise, any map actions or other action logic that you need to perform on the Response document after
the Siebel system executes your request should be grouped under the “After Execute Actions” heading.

Creating Siebel Services
The Integration Manager™ Connect for Siebel supports access to Siebel Integration Objects by using
Siebel XML. Before you create a Siebel Service you must use the Siebel Tools Schema Wizard to
generate an XDR schema with a Siebel Message envelope. The XDR schema is used as input to
Integration Manager when generating schemas for Integration Objects. After you generate the XDR
schema, Integration Manager uses the XDR file to generate the XML schema.The XDR file must be
located in a directory that can be accessed by Integration Manager. Refer to your Siebel documentation
for information about generating XDR files for Integration Objects.

As part of the process of creating a Siebel Service, you can select an existing Siebel connection resource,
or you can create a new one. If you create the connection beforehand, it is available for use by any Siebel
Services in the current project. If you have not already created at least one Siebel connection resource in
the current project, you will be prompted to do so when you try to create a Siebel Service.

NOTE: You can still create a Siebel Service without first creating a connection resource, but you won’t
be able to use any debug features that depend on a live connection.

To Create a New Siebel Service:

1 Select File > New > xObject. The New xObject dialog box is displayed.
NOTE: Alternatively, under Service in the Integration Manager Navigator pane (Explorer view),
you can highlight Siebel Service, click the right mouse button, then select New.

2 Select the Process/Service tab.
3 Double-click on “Siebel Service.”

If you have not previously defined a connection resource, you are prompted to do so now (see
“Creating Connection Resources” on page 21).
If you have already defined a connection resource, the “Create a New Siebel Service” Wizard is
displayed.
38 Novell Integration Manager 6 Connect for Siebel User’s Guide

4 Type a Name for the new Siebel Service.
5 Optionally, type Description text.
6 Select Next. The XML Input/Output Message Property Info panel of the New Siebel Service

Wizard is displayed.

7 Specify the Input and Output templates as follows:
Type a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”
Select a Template Category if it is different than the default category.
Select a Template Name from the list of XML templates in the selected Template Category.
To add additional input XML templates, click Add, then choose a Template Category and
Template Name for each.
To remove an input XML template, select an entry and click Delete.

8 Select an XML template for use as an Output DOM using the procedure described in the previous
step.
NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
Document without Using a Template” in the Novell Integration Manager User’s Guide.

9 Select Next. The Temp and Fault XML Template panel is displayed.
Creating Siebel Components and Services 39

10 If desired, specify a template to be used as a scratch pad under the “Temp Message” pane of the
dialog box. This can be useful if you need a place to hold values that will be used temporarily
during the execution of your component. Select a Template Category if it is different than the
default category. Then select a Template Name from the list of XML templates in the selected
Template Category.

11 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

12 To add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

13 Select Next. The Connection Info panel of the Create a New Siebel Service wizard is displayed.

14 Select a Siebel File, HTTP, or MQSeries Service connection from the Connection list. The
Connection list displays the names of the Siebel connection resources that have been defined in this
project.

15 Select Finish. The component is created and the Siebel Service Editor is displayed. The features of
this window are identical to the features described in “About the Siebel Component Editor
Window” on page 29. The following sections describe the steps required to create a Siebel Service
Action.
40 Novell Integration Manager 6 Connect for Siebel User’s Guide

Creating Siebel Service Actions
You can create all the normal Integration Manager actions in the Action Model of your Siebel Service
(e.g., XML Map, Function, Log, Send Mail). In addition, you can create a Siebel Service Request action.

The Siebel Service Request action is similar to a Switch action (see “The Switch Action” in the in the
Novell Integration Manager User’s Guide). A Switch action allows program control to branch to a block
of actions based on a match between an input value and a Case value. In a Siebel Service Request,
Integration Manager receives a DOM, and compares a series of cases against the DOM. If an exact match
occurs between the DOM and a case, execution branches to the actions listed underneath the case in the
Action model. Cases are tested in the order listed; and once a match is found, execution of the match logic
precludes execution of any other logic in the Siebel Service Request.

To Create a Siebel Service Request Action

1 In the Action Model, right-click on Siebel Service Request:

2 Select Edit Action. The Service Request dialog box is displayed.

3 In the Function tree, click on the plus (+) sign to the left of the Integration Object node to expand
the tree view for that node.
Creating Siebel Components and Services 41

4 Left click on the name of the Integration Object for which you have created an XDR file (this
highlights the name), then right-click on the name to display a context-sensitive menu.

5 Select Add Event. The Add Schema dialog box is displayed.

6 Type a name for the event node in the Node Name field.
7 Use the Browse button next to the XDR File Location field to locate the XDR file that was created

for the Integration Object.
8 Select OK. A function node is added to the Function tree.
9 Right-click on the function name and select Add Case, or double-click on the function name.

The Adapter Service Request dialog box is displayed. This dialog box is similar to the Siebel
Request dialog box (see “Creating Actions in the Component Editor” on page 30).
42 Novell Integration Manager 6 Connect for Siebel User’s Guide

10 Select or deselect Filter Request, as desired. Filter Request is selected by default. If deselected, the
tree will be disabled and greyed (no longer editable), indicating that a default schema configuration
will be used. If selected, you can customize the structure of the request document by selecting the
nodes to be included in the request document.

11 Expand the nodes of the Service Request Tree by clicking on the plus signs to the left of the nodes.
12 Select the elements that you want to include in the Service Request document by selecting or

deselecting the check boxes in the node tree. Some nodes are greyed out (disabled). This is because
the document schema determines the nodes that you can edit.

13 If the Service Response tab is enabled (this depends on the Synchronization Type setting in the
Connection resource), click the Service Response tab at the top of the dialog box to bring the
Service Response document pane forward. This pane shows a tree view of the Response document,
similar to the one shown for the Request document. The same user interface features that applied to
the Request document pane apply to the Response document pane.

14 Visit all of the nodes in the Response document tree and customize the settings as desired.
15 Click the Case Expression tab at the top of the dialog box to bring the Case Expression pane

forward. This pane provides an Expression Builder that you use to build a case expression.

16 Type the static string values or the ECMAScript expressions that will be checked against the input
DOM.

17 Select the OK button. The Service Request dialog box is displayed.
Creating Siebel Components and Services 43

18 To add another case, repeat Step 4 through Step 17. The cases are listed from top to bottom in the
order in which they are evaluated. Each Case value will be checked in turn, in the order you list
them.

For optimal performance, list the most likely matches first.
You can change the order in which the cases are listed by clicking on the name of a case, then
clicking the up or down triangle icons.
To edit a case, select the name of the case, then press the Mapping button. You can also select
the name of the case, then select the Expression Builder button.

19 When you have finished adding cases, select OK. The Service Request dialog box closes and a new
action appears in the Action Model of your component. The Native Environment Pane changes to
show the Request and Response (if the Synchronization Type is set to REQUEST_RESPONSE in
the Connection resource) tabs along with tree views of the request and response documents.

20 In the Action Model, add actions to be performed to each case to create the desired business logic.
44 Novell Integration Manager 6 Connect for Siebel User’s Guide

To map a node of the Input document to a node in the Request document, drag a node from the
Input pane and drop it on a node in the Request tab of the Native Environment pane. This
automatically creates a new XML Map Action in the Action Model.
To map a node of the Response document to a node in the Output document, drag a node from
the Response tab of the Native Environment pane and drop it on a node in the Output pane. This
automatically creates a new XML Map Action in the Action Model. You can cut, copy, or delete
the actions once they appear in the Action Model pane.
When all of the Actions for a case have been evaluated, Integration Manager sets the Service
Response DOM.
The final case in the Action model is always labeled Default. This case is generated
automatically and cannot be removed. Actions placed under Default are executed if and only if
the none of the other cases are matched. While you are not required to place actions under
Default, it is good programming practice to have at least some kind of fallback logic for the
Default case, even if it’s only a Log action or a Raise Error action.
The Request and Response document displays for Service Requests work similarly to the
displays for Requests (see “Request and Response Documents” on page 36).

Managing Deployed Siebel Services
Once a project containing Siebel Services has been deployed (see “Deploying Your Project” in the Novell
Integration Manager User’s Guide), the Listener objects actively listen for messages each time you start
your server. To manually start and stop these services you need to use the Siebel Services Console. This
browser-based console allows you to see the list of Siebel Services, the status of each service (running or
not running), the running tally (Count) of messages received, other administrative information, and a
Start/Stop button.

To display the Siebel Services Console:

1 Make sure that you have installed the Integration Manager Enterprise Server to your application
server (see the Novell Integration Manager Installation Guide) and that your application server is
running.

2 Start the Integration Manager Enterprise Server (for example, if you are using the JBoss application
server, you would use a Web browser to access http://localhost:8080/exteNdComposer). A dialog
box for entering the application server administrator ID and password is displayed.

3 Type your administrator ID and password, then select OK. The Integration Manager Server
Console page is displayed.

4 Scroll down the About Products list on the left side of the page until you see the link titled
“sblservice”.
Creating Siebel Components and Services 45

5 Select the “sblservice” link. A page is displayed that provides information (e.g., version, license
number, copyright) about the Connect. It also displays a Console button.

6 Select the Console button. The Siebel Service console page is displayed. This page lists any Siebel
Services that have been deployed.

7 To stop a Siebel Service, select the appropriate Stop button (the button will then change to Start).
NOTE: If messages are being handled by a service at the time of the Stop command, there may
be some delay before the service actually exits. Select the Refresh button periodically until the
“Running” column of the console says No for the service.

To undeploy a Siebel Service:

1 Make sure that you have installed the Integration Manager Enterprise Server to your application
server (see the Novell Integration Manager Installation Guide) and that your application server is
running.

2 Start the Integration Manager Enterprise Server (for example, if you are using the JBoss application
server, you would use a Web browser to access http://localhost:8080/exteNdComposer). A dialog
box for entering the application server administrator ID and password is displayed.

3 Login as an administrator (File > Login).

4 Select the Deployment icon ()from the toolbar.
46 Novell Integration Manager 6 Connect for Siebel User’s Guide

5 Select Deployed Objects:

6 Expand the database containing the deployed objects that you want to manage:

7 Select the object that you want to undeploy.
8 Select the Undeploy button.

ECMAScript Extensions
See Appendix A to this guide for a list of ECMAScript extension methods that can be used with the
PeopleSoft Connect.
Creating Siebel Components and Services 47

48 Novell Integration Manager 6 Connect for Siebel User’s Guide

A ECMAScript Methods

The J2EE Connector framework of the Integration Manager Connect for Siebel implements a number of
ECMAScript extension methods that are available for use through the Expression Builder (which is
available in Function Actions and elsewhere). You will find the methods listed in the Functions/Methods
pane of the Expression Builder:

ToolTip help is available for each method.

For more information on working with the Expression Builder, see “Custom Scripting and XPath Logic
in Integration Manager” in the Novell Integration Manager User’s Guide.

Adapter Interface Methods

getAdapterType
This method calls the IGNVAdapterInterface.getAdapterType(), and returns the adapter type name (e.g.,
“sbl”).

Syntax:
getAdapterType()

Connection Interface Methods
The following CCI API metadata-wrapped methods are published through the Expression Builder.
ECMAScript Methods 49

getAdapterMetaData
This method wraps calls on the javax.resource.cci.ResourceAdapterMetaData class.

Syntax:
getAdapterMetaData(parameter)

getConnectionMetaData
This method wraps calls on the javax.resource.cci.ConnectionMetaData class.

Syntax:
getConnectionMetaData(parameter)

Parameter Description

NAME Returns the name of the adapter (e.g., “iWay JCA
adapter”).

EXECUTEWITHI Returns true if the implementation class for the
Interaction interface implements public Record
execute method; otherwise the method returns
false.

EXECUTEWITHIO Returns true if the implementation class for the
Interaction interface implements public boolean
execute method; otherwise the method returns
false.

VENDOR Returns the name of the vendor that has provided
the resource adapter (e.g., “iWay Software, Inc.”).

VERSION Returns the version of the resource adapter (e.g.,
“5.5”).

INTERACTIONSPECS Returns the fully-qualified name of the
InteractionSpec type supported by this resource
adapter (e.g., “com.ibi.afjca.IWAFInteractionSpec”).

SPECVERSION Returns a string representation of the version of the
connector architecture specification that is
supported by the resource adapter (e.g., “1.0”).

LOCALTX Returns true if the resource adapter implements the
LocalTransaction interface and supports local
transaction demarcation on the underlying EIS
(Enterprise Information System) instance through
the LocalTransaction interface.

Parameter Description

EISPRODUCTNAME Returns the product name of the underlying EIS
instance (e.g., “Siebel”).

EISPRODUCTVERSION Returns product version of the underlying EIS
instance (e.g., “Supports Siebel 6.0.1 (COM
based on Windows NT only) and Siebel 6.3 and
above (Java Data Bean Implementation).
Adapter Framework version 1.0.”).

USER Returns the user name for an active connection
as known to the underlying EIS instance.
50 Novell Integration Manager 6 Connect for Siebel User’s Guide

Additional Methods
The following ECMA-wrapped methods are not displayed by the Expression Builder user interface, but
you can use them in the Expression Builder by typing them directly into expressions.

getWarnings()
Returns line separated list of javax.resource.cci.ResourceWarning for the javax.resource.cci.Interaction.

clearWarnings()
Calls javax.resource.cci.Interaction.clearWarnings().

getLastError()
Returns last error, such as a javax.resource.ResourceException.
ECMAScript Methods 51

52 Novell Integration Manager 6 Connect for Siebel User’s Guide

Index
A
actions

After Execute 38
Before Execute 38
creating 30
Request 30
Siebel Request, creating 31
Siebel Service Request, creating 41
XML Map 35, 36, 45

Adapter Service Request 42
Add Case 42
Add Event 42
Add Schema 42
administrative console, Integration Manager 18
After Execute actions 38
application servers

Novell 16
supported 11

B
BEA WebLogic 11
Before Execute actions 38

C
Case Expression 43
CCI 13
classpath

application server 17
design-time 16

clearWarnings 51
code, NLS character set 23
Common Client Interface 13
component, Siebel

creating 27
Editor window 29

connection parameter
Connection Type 22, 24, 25, 26
constant 21
Enterprise Name 22
Error Directory 24
expression-driven 21
File Mask 24
Gateway Server 22
invalid 31
Language 23

Listener Port 25
Maximum Pool Size 23, 24, 25, 26
Message Wait Interval 26
Metadata Connection 24, 25, 26
MQ Server Channel 26
MQ Server Host 26
MQ Server Port 26
Object Manager 23
Password 23
Poll Interval 24
Polling Location 24
Processing Mode 24, 26
Queue Manager 26
Queue Name 26
Repository Name 23
Response/Ack Directory 24
Siebel Server 22
switching from constant to expression-driven 22
Synchronization Type 24, 25, 26
Thread Limit 24, 26
User 23
XML Document 26

connection resource
File service 23
HTTP Service 24
MQSeries Service 25
Siebel connection 22
types of 21

Connection Type 22, 24, 25, 26
Connects

description 11
Siebel, about 12

D
Default case 45
Deployed Objects 46
DOM, output, selecting XML template for 28, 39

E
ECMAScript

Integration Manager 11
methods 47, 49

Edit Document 36
Edit License 18
EIS 13
EISPRODUCTNAME 50
53

EISPRODUCTVERSION 50
Enterprise Name 22
Error Directory 24
EXECUTEWITHI 50
EXECUTEWITHIO 50
expression-driven 22

F
Fault Message 29, 40
File Mask 24
Filter Request 43
Filter Response 35

G
Gateway Server 22
Get Schemas 32
getAdapterMetaData 50
getAdapterType 49
getConnectionMetaData 50
getLastError 51
getWarnings 51

H
HTTPS 25

I
IBM WebSphere 11
Integration Manager

about 11
console, administrative 18

INTERACTIONSPECS 50
iWay 14

J
J2EE Connector Architecture 13
JAR files, required 15
JARs, Siebel

classpath, design-time, adding to 16
environment, design-time, adding to 16
environment, run-time, adding to 16

JBoss 11

L
Language 23
license, update

design-time 17
Edit License 18
obtaining 17
runtime 18

Licenses tab 17

Listener 45
Listener Port 25
LOCALTX 50

M
Mapping 44
maximum occurrence 33
Maximum Pool Size 23, 24, 25, 26
Message Wait Interval 26
Metadata Connection 24, 25, 26
methods

adapter interface 49
connector interface 49

MQ Server Channel 26
MQ Server Host 26
MQ Server Port 26

N
Native Environment pane 29, 30
NLS character set code 23
Node Name 42

O
Object Manager 23

P
Password 23
Poll Interval 24
Polling Location 24
Processing Mode 24, 26

Q
QueryWithView 34
Queue Manager 26
Queue Name 26

R
RAR

deployment 12
description 13

Repository Name 23
Request action

creating 31
description 30
modifying, manually 36

Request Message 33
Request Tree 33
Request.createXPath() 36
resource adaptor archives

deployment 12
54

description 13
Response Message 35
Response/Ack Directory 24

S
schemas, get 32
Sequential 24
Service Provider Interface 13
Service Request dialog box 41
Service Request Tree 43
Service Response 43
service, Siebel

creating 38
managing 45

Siebel component
creating 27
Editor window 29

Siebel File Service Connection 24, 25, 26
Siebel HTTP Service Connection 25
Siebel JARs, thin client 15
Siebel MQSeries Service Connection 26
Siebel Server 22
Siebel Service

Console, displaying 45
creating 38
deploying 45
managing 45
starting and stopping 45
undeploying 46

Siebel Service Request action 41
SiebelDataBean.jar 15, 16, 17
SiebelJI.jar 16, 17
SiebelJI_Common.jar 16, 17
SiebelJI_enu.jar 16, 17
SiebelTC_enu.jar 15, 16, 17
SiebelTcCommon.jar 15, 16, 17
SiebelTcOM.jar 15, 16, 17
SPECVERSION 50

SPI 13
Synchronization Type 24, 25, 26, 43, 44

T
Temp Message 28, 40
Template Category 28, 39, 40
Template Name 28, 39, 40
Thread Limit 24, 26
Threaded 24
Tomcat, Apache Jakarta 11
ToolTips 32, 33

U
Undeploy 47
User 23

V
variables, project 22

X
xconfig.xml 15, 16
XDR 38, 42
XDR File Location 42
XML Document 26
XML Map Action 36, 37
XML Map Component Editor 11, 29
XML templates 21, 27
xObject

description 21
New 22, 23, 24, 25, 27, 38

XPath 11
XSLT 11
55

56 Novell Integration Manager 6 Connect for Siebel User’s Guide

	Contents
	About This Book
	1 Welcome to the Novell Integration Manager Connect for Siebel
	About Novell Integration Manager™
	About the Integration Manager Connect for Siebel
	About J2EE Connector Architecture
	About iWay Technology
	What Kinds of Applications Can You Build Using the Integration Manager Connect for Siebel?

	2 Getting Started With the Integration Manager Connect for Siebel
	Setup and Configuration
	Siebel Thin-Client JAR Files

	Updating the Design-time Software License
	Updating the Runtime License

	3 Creating Siebel Components and Services
	Creating Connection Resources
	Types of Connection Resources
	About Constant-Driven and Expression-Driven Connection Parameters
	Creating a Siebel Connection Resource
	Creating a File Service Connection Resource
	Creating an HTTP Service Connection Resource
	Creating an MQSeries Service Connection Resource

	XML Templates for Siebel Components and Services
	Creating Siebel Components
	About the Siebel Component Editor Window
	Creating Actions in the Component Editor
	Returning to Schema-Edit Mode
	Request and Response Documents
	“Before Execute” and “After Execute” Actions

	Creating Siebel Services
	Creating Siebel Service Actions
	Managing Deployed Siebel Services

	ECMAScript Extensions

	A ECMAScript Methods
	Adapter Interface Methods
	getAdapterType

	Connection Interface Methods
	getAdapterMetaData
	getConnectionMetaData

	Additional Methods
	getWarnings()
	clearWarnings()
	getLastError()

	Index

