
Novell®

AUTHORIZED DOCUMENTATION
www.novell.com

PlateSpin® Orchestrate

2.6
February 10, 2011
Administrator Reference

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2011 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/documentation
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents
About This Guide 5

1 Basic PlateSpin Orchestrate Concepts 7
1.1 Understanding PlateSpin Orchestrate Architecture . 7

1.1.1 The PlateSpin Orchestrate Agent . 8
1.1.2 The Resource Monitor . 9
1.1.3 Entity Types and Managers . 9
1.1.4 Jobs . 12
1.1.5 Constraint-Based Job Scheduling . 16
1.1.6 Understanding PlateSpin Orchestrate API Interfaces . 16

1.2 Understanding PlateSpin Orchestrate Functionality . 18
1.2.1 Resource Virtualization . 18
1.2.2 Policy-Based Management . 19
1.2.3 Grid Object Visualization . 20
1.2.4 Understanding Job Semantics. 20
1.2.5 Distributed Messaging and Failover . 21
1.2.6 Web-Based User Interaction . 22

2 Server Discovery and Multicasting 25
2.1 Multicast Troubleshooting . 25
2.2 Multicast Routes. 25
2.3 Multi-homed Hosts . 26
2.4 Multiple Subnets. 26
2.5 Datagrid and Multicasting. 26
2.6 Datagrid Multicast Interface Selection . 26

3 PlateSpin Orchestrate and LDAP Authentication 27
3.1 What is LDAP?. 27
3.2 Understanding LDAP Structure . 27

3.2.1 The Distinguished Name . 28
3.2.2 The Relative Distinguished Name . 28

3.3 How PlateSpin Orchestrate Uses an LDAP Entry to Authenticate. 29

4 Increasing the Kernel ARP Threshold Value on the Orchestrate Server 31
4.1 Threshold Definitions . 31
4.2 Determining the Current Kernel Threshold Value . 31
4.3 Changing the Current Kernel Threshold Value . 32

4.3.1 Editing the /etc/sysctl.conf File . 32
4.3.2 Making Live Changes to the Threshold Values . 32

A PlateSpin Orchestrate Security 33
A.1 User and Administrator Password Hashing Methods. 33
A.2 User and Agent Password Authentication . 33
A.3 Password Protection . 34
A.4 TLS Encryption. 34
Contents 3

4 PlateS
A.4.1 Setting TLS Options. 35
A.4.2 Updating tje TLS Server Certificate . 36

A.5 Security for Administrative Services. 36
A.6 Plain Text Visibility of Sensitive Information. 36

B Adjusting the Orchestrate Server to Accommodate Loads 39
B.1 Orchestrate Server Might Shut Down When Managing Large Numbers of VMs and Resources

39
B.2 Changing Orchestrate Server Default Parameters and Values . 40

C Understanding Grid ID Usage in the Audit Database 43

D Documentation Updates 45
D.1 February 10, 2011 . 45
pin Orchestrate 2.6 Administrator Reference

About This Guide

This Administration Guide introduces the processes you can use with PlateSpin Orchestrate 2.6,
including the applied use of the PlateSpin Orchestrate Development Client and various command
line tools. The guide provides an introductory overview of PlateSpin Orchestrate and explains how it
administers and manages work on the resources of the data center. The guide is organized as
follows:

Chapter 1, “Basic PlateSpin Orchestrate Concepts,” on page 7
Chapter 2, “Server Discovery and Multicasting,” on page 25
Chapter 3, “PlateSpin Orchestrate and LDAP Authentication,” on page 27
Chapter 4, “Increasing the Kernel ARP Threshold Value on the Orchestrate Server,” on page 31
Appendix A, “PlateSpin Orchestrate Security,” on page 33
Appendix B, “Adjusting the Orchestrate Server to Accommodate Loads,” on page 39
Appendix C, “Understanding Grid ID Usage in the Audit Database,” on page 43
Appendix D, “Documentation Updates,” on page 45

For reference information about the Orchestrate Server or the Orchestrate Development Client, see
the PlateSpin Orchestrate 2.6 Development Client Reference. For information about the Orchestrate
Command Line Tools, see PlateSpin Orchestrate 2.6 Command Line Reference.

Audience

This book is intended for data center managers and IT or Operations administrators. It assumes that
users of the product have the following background:

General understanding of network operating environments and systems architecture.
Knowledge of basic UNIX shell commands and text editors.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.

Additional Documentation

In addition to this Administrator Reference, PlateSpin Orchestrate 2.6 includes the following
additional guides that contain valuable information about the product:

PlateSpin Orchestrate 2.6 Getting Started Reference
PlateSpin Orchestrate 2.6 Installation and Configuration Guide
PlateSpin Orchestrate 2.6 Upgrade Guide
PlateSpin Orchestrate 2.6 VM Client Guide and Reference
PlateSpin Orchestrate 2.6 Development Client Reference
About This Guide 5

http://www.novell.com/documentation/feedback.html

6 PlateS
PlateSpin Orchestrate 2.6 High Availability Configuration Guide
PlateSpin Orchestrate 2.6 Virtual Machine Management Guide
PlateSpin Orchestrate 2.6 Server Portal Reference
PlateSpin Orchestrate 2.6 Troubleshooting Reference
PlateSpin Orchestrate 2.6 Developer Guide and Reference
pin Orchestrate 2.6 Administrator Reference

1
1Basic PlateSpin Orchestrate
Concepts

This section contains the followings information:

Section 1.1, “Understanding PlateSpin Orchestrate Architecture,” on page 7
Section 1.2, “Understanding PlateSpin Orchestrate Functionality,” on page 18

1.1 Understanding PlateSpin Orchestrate
Architecture
PlateSpin Orchestrate from Novell is an advanced datacenter management solution designed to
manage all network resources. It provides the infrastructure that manages group of ten, one hundred,
or thousands of physical or virtual resources.

PlateSpin Orchestrate is equally apt at performing a number of distributed processing problems.
From high performance computing, the breaking down of work into lots of small chunks that can be
processed in parallel through distributed job scheduling. The following figure shows the product’s
high-level architecture:

Figure 1-1 PlateSpin Orchestrate Architecture
Basic PlateSpin Orchestrate Concepts 7

8 PlateS
This section contains information about the following topics:

Section 1.1.1, “The PlateSpin Orchestrate Agent,” on page 8
Section 1.1.2, “The Resource Monitor,” on page 9
Section 1.1.3, “Entity Types and Managers,” on page 9
Section 1.1.4, “Jobs,” on page 12
Section 1.1.5, “Constraint-Based Job Scheduling,” on page 16
Section 1.1.6, “Understanding PlateSpin Orchestrate API Interfaces,” on page 16

1.1.1 The PlateSpin Orchestrate Agent
Agents are installed on all managed resources as part of the product deployment. The agent connects
every managed resource to its configured server and advertises to the PlateSpin Orchestrate Server
that the resource is available for tasks. This persistent and auto-reestablishing connection is
important because it provides a message bus for the distribution of work, collection of information
about the resource, per-job messaging, health checks, and resource failover control.

After resources are enabled, PlateSpin Orchestrate can discover, access, and store detailed
abstracted information—called “facts”—about every resource. Managed resources, referred to as
“nodes,” are addressable members of the Orchestrate Server “grid” (also sometimes called the
“matrix”). When integrated into the grid, nodes can be deployed, monitored, and managed by the
Orchestrate Server, as discussed in Section 1.2, “Understanding PlateSpin Orchestrate
Functionality,” on page 18.

An overview of the PlateSpin Orchestrate grid architecture is illustrated in the figure below, much of
which is explained in this guide:
pin Orchestrate 2.6 Administrator Reference

Figure 1-2 PlateSpin Orchestrate Server Architecture

For additional information about job architecture, see “Job Architecture” in the PlateSpin
Orchestrate 2.6 Developer Guide and Reference.

1.1.2 The Resource Monitor
PlateSpin Orchestrate enables you to monitor your system computing resources using the built-in
Resource Monitor. To open the Resource Monitor in the Development Client, see “Monitoring
Server Resources” in the PlateSpin Orchestrate Administration Guide.

1.1.3 Entity Types and Managers
The following entities are some of key components involved in the Orchestrate Server:

“Resources” on page 10
“Users” on page 10
Basic PlateSpin Orchestrate Concepts 9

10 PlateS
“Job Definitions” on page 10
“Job Instances” on page 10
“Policies” on page 11
“Facts” on page 11
“Constraints” on page 11
“Groups” on page 12
“VM: Hosts, Images, and Instances” on page 12
“Templates” on page 12

Resources

All managed resources, which are called nodes, have an agent with a socket connection to the
Orchestrate Server. All resource use is metered, controlled, and audited by the Orchestrate Server.
Policies govern the use of resources.

PlateSpin Orchestrate allocates resources by reacting as load is increased on a resource. As soon as
we go above a threshold that was set in a policy, a new resource is allocated and consequently the
load on that resource drops to an acceptable rate.

You can also write and jobs that perform cost accounting to account for the cost of a resource up
through the job hierarchy, periodically, about every 20 seconds. For more information, see
“Auditing and Accounting Jobs” on page 15.

A collection of jobs, all under the same hierarchy, can cooperate with each other so that when one
job offers to give up a resource it is reallocated to another similar priority job. Similarly, when a
higher priority job becomes overloaded and is waiting on a resource, the system “steals” a resource
from a lower priority job, thus increasing load on the low priority job and allocating it to the higher
priority job. This process satisfies the policy, which specifies that a higher priority job must
complete at the expense of a low priority job.

Users

PlateSpin Orchestrate users must authenticate to access the system. Access and use of system
resources are governed by policies. For more information, see “The User Object” in the PlateSpin
Orchestrate 2.6 Development Client Reference.

Job Definitions

A job definition is described in the embedded enhanced Python script that you create as a job
developer. Each job instance runs a job that is defined by the Job Definition Language (JDL). Job
definitions might also contain usage policies. For more information, see “Job Class” in the PlateSpin
Orchestrate 2.6 Developer Guide and Reference.

Job Instances

Jobs are instantiated at runtime from job definitions that inherit policies from the entire context of
the job (such as users, job definitions, resources, or groups). For more information, see “JobInfo” in
the PlateSpin Orchestrate 2.6 Developer Guide and Reference.
pin Orchestrate 2.6 Administrator Reference

Policies

Policies are XML documents that contain various constraints and static fact assignments that govern
how jobs run in the PlateSpin Orchestrate environment.

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, and other job
parameters. Policies can be associated with any PlateSpin Orchestrate object. For more information,
see Section 1.2.2, “Policy-Based Management,” on page 19 and “Policies” in the PlateSpin
Orchestrate 2.6 Developer Guide and Reference.

Facts

Facts represent the state of any object in the PlateSpin Orchestrate grid. They can be discovered
through a job or they can be explicitly set.

Facts control the behavior a job (or joblet) when it’s executing. Facts also detect and return
information about that job in various UIs and server functions. For example, a job description that is
set through its policy and has a specified value might do absolutely nothing except return
immediately after network latency.

The XML fact element defines a fact to be stored in the Grid object’s fact namespace. The name,
type and value of the fact are specified as attributes. For list or array fact types, the element tag
defines list or array members. For dictionary fact types, the dict tag defines dictionary members.

Facts can also be created and modified in JDL and in the Java Client SDK. For more information,
see “Using Facts in Job Scripts” in the “Job Development Concepts” section of the PlateSpin
Orchestrate 2.6 Developer Guide and Reference.

There are three basic types of facts:

Static: Facts that require you to set a value. For example, in a policy, you might set a value to
be False. Static facts can be modified through policies.
Dynamic: Facts produced by the PlateSpin Orchestrate system itself. Policies cannot override
dynamic facts. They are read only and their value is determined by the PlateSpin Orchestrate
Server itself.
Computed: Facts derived from a value, like that generated from the cell of a spreadsheet.
Computed facts have some kind of logic behind them which derive their values. For more
information, see “Computed Facts” in the PlateSpin Orchestrate 2.6 Developer Guide and
Reference.

See the example, /opt/novell/zenworks/zos/server/examples/allTypes.policy. This
example policy has an XML representation for all the fact types. For a comprehsive list of facts and
fact junctions used in PlateSpin Orchestrate.s, see “Grid Object Facts and Fact Junctions” in the
PlateSpin Orchestrate 2.6 Developer Guide and Reference.

Constraints

The constraint element of a policy can define the selection and allocation of Grid objects (such as
resources) in a job. The required type attribute of a constraint defines the selection of the resource
type.
Basic PlateSpin Orchestrate Concepts 11

12 PlateS
For example, in order for the PlateSpin Orchestrate to choose resources for a job, it uses a
“resource” constraint type. A resource constraint consists of Boolean logic that executes against
facts in the system. Based upon this evaluation, Orchestrate considers only resources that match the
criteria that have been defined in constraints.

For more information about the types of constraints and how they are applied in jobs, see “The Role
of Policy Constraints in Job Operation” in the “Job Development Concepts” section of the PlateSpin
Orchestrate 2.6 Developer Guide and Reference.

Groups

Resources, users, job definitions and virtual machines (VM) are managed in groups with group
policies that are inherited by members of the group.

VM: Hosts, Images, and Instances

A virtual machine host is a resource that is able to run guest operating systems. Attributes (facts)
associated with the VM host control its limitations and functionality within the Orchestrate Server.
A VM image is a resource image that can be cloned and/or provisioned. A VM instance represents a
running copy of a VM image.

Templates

Templates are images that are meant to be cloned (copied) prior to provisioning the new copy. For
more information, see “Creating a Template from a VM” in the PlateSpin Orchestrate 2.6 VM Client
Guide and Reference.

1.1.4 Jobs
The Orchestrate Server manages all nodes by administering jobs (and the functional control of jobs
at the resource level by using joblets), which control the properties (facts) associated with every
resource. In other words, jobs are units of functionality that dispatch data center tasks to resources
on the network such as management, migration, monitoring, load balancing, etc.

PlateSpin Orchestrate provides a unique job development, debugging, and deployment environment
that expands with the demands of growing data centers.

As a job developer, your task is to develop jobs to perform a wide array of work that can be
deployed and managed by PlateSpin Orchestrate.

Jobs, which run on the Orchestrate Server, can provide functions within the PlateSpin Orchestrate
environment that might last from seconds to months. Job and joblet code exist in the same script file
and are identified by the .jdl extension. The .jdl script contains only one job definition and zero
or more joblet definitions. A .jdl script can have only one Job subclass. As for naming
conventions, the Job subclass name does not have to match the .jdl filename; however, the .jdl
filename is the defined job name, so the .jdl filename must match the .job filename that contains
the .jdl script. For example, the job files (demoIterator.jdl and demoIterator.policy)
included in the demoIterator example job are packaged into the archive file named
demoIterator.job, so in this case, the name of the job is demoIterator.
pin Orchestrate 2.6 Administrator Reference

A job file also might have policies associated with it to define and control the job’s behavior and to
define certain constraints to restrict its execution. A .jdl script that is accompanied by a policy file
is typically packaged in a job archive file (.job). Because a .job file is physically equivalent to a
Java archive file (.jar), you can use the JDK JAR tool to create the job archive.

Multiple job archives can be delivered as a management pack in a service archive file (SAR)
identified with the .sar extension. Typically, a group of related files are delivered this way. For
example, the Xen30 management pack is a SAR.

As shown in the following illustration, jobs include all of the code, policy, and data elements
necessary to execute specific, predetermined tasks administered either through the PlateSpin
Orchestrate Development Client, or from the zos command line tool.

Figure 1-3 Components of a Job (my.job,)

Because each job has specific, predefined elements, jobs can be scripted and delivered to any agent,
which ultimately can lead to automating almost any datacenter task. Jobs provide the following
functionality:

“Controlling Process Flow” on page 14
“Parallel Processing” on page 14
“Managing the Cluster Life Cycle” on page 14
“Discovery Jobs” on page 14
“System Jobs” on page 15
“Provisioning Jobs” on page 15
“Auditing and Accounting Jobs” on page 15
Basic PlateSpin Orchestrate Concepts 13

14 PlateS
For more information, see “Job Development Concepts” in the PlateSpin Orchestrate 2.6 Developer
Guide and Reference and the following JDL job class definitions in the same guide:

“Job”
“JobInfo”

Controlling Process Flow

Jobs can written to control all operations and processes of managed resources. Through jobs, the
Orchestrate Server manages resources to perform work. Automated jobs (written in JDL), are
broken down into joblets, which are distributed among multiple resources.

Parallel Processing

By managing many small joblets, the Orchestrate Server can enhance system performance and
maximize resource use.

Managing the Cluster Life Cycle

Jobs can detect demand and monitor health of system resources, then modify clusters automatically
to maximize system performance and provide failover services.

Discovery Jobs

Some jobs provide inspection of resources to more effectively management assets. These jobs
enable all agents to periodically report basic resource facts and performance metrics. In essence,
these metrics are stored as facts consisting of a key word and typed-value pairs like the following
example:

resource.loadaverage=4.563, type=float

Jobs can poll resources and automatically trigger other jobs if resource performance values reach
certain levels.

The system job scheduler is used to run resource discovery jobs to augment resource facts as
demands change on resources. This can be done on a routine, scheduled basis or whenever new
resources are provisioned, new software is installed, bandwidth changes occur, OS patches are
deployed, or other events occur that might impact the system.

Consequently, resource facts form a capabilities database for the entire system. Jobs can be written
that apply constraints to facts in policies, thus providing very granular control of all resources as
required. All active resources are searchable and records are retained for all off-line resources.

The following osInfo.job example shows how a job sets operating system facts for specific
resources:

resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpy.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

osInfo.job is packaged as a single cross-platform job and includes the Python-based JDL and a
policy to set the timeout. It is run each time a new resource appears and once every 24 hours to
ensure validity of the resources. For a more detailed review of this example, see “osInfo.job” in “Job
Development Concepts” in the PlateSpin Orchestrate 2.6 Developer Guide and Reference.
pin Orchestrate 2.6 Administrator Reference

System Jobs

Jobs can be scheduled to to periodically trigger specific system resources based on specific time
constraints or events. As shown in the following figure, PlateSpin Orchestrate provides a built-in job
scheduler that enables you or system administrators to flexibly deploy and run jobs.

Figure 1-4 The Job Scheduler

For more information, see “How Constraints Are Used” in “Job Development Concepts” in the
PlateSpin Orchestrate 2.6 Developer Guide and Reference and “The PlateSpin Orchestrate Job
Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference . See also “Job
Scheduling” and “Job” in the PlateSpin Orchestrate 2.6 Developer Guide and Reference.

Provisioning Jobs

Jobs also drive provisioning for virtual machines (VMs) and physical machines, such as blade
servers. Provisioning adapter jobs for various VM hypervisors are deployed and organized into
appropriate job groups for management convenience.

The provisioning jobs included in PlateSpin Orchestrate are used for interacting with VM hosts and
repositories for VM life cycle management and for cloning, moving VMs, and other management
tasks. These jobs are called “provisioning adapters” and are members of the job group called
“provisionAdapters.”

For more information, see the PlateSpin Orchestrate 2.6 Virtual Machine Management Guide and
Section 1.2.1, “Resource Virtualization,” on page 18 of this guide.

Auditing and Accounting Jobs

You can create PlateSpin Orchestrate jobs that perform reporting, auditing, and costing functions
inside your data center. Your jobs can aggregate cost accounting for assigned resources and perform
resource audit trails.
Basic PlateSpin Orchestrate Concepts 15

16 PlateS
1.1.5 Constraint-Based Job Scheduling
The Orchestrate Server is a “broker” that can distribute jobs to every “partner” agent on the grid.
Based on assigned policies, jobs have priorities and are executed based on the following contexts:

User Constraints
User Facts
Job Constraints
Job Facts
Job Instance
Resource User Constraints
Resource Facts
Groups

Each object in a job context contains the following elements:

Figure 1-5 Constraint-Based Resource Brokering

For more information, see “Scheduling with Constraints”in the PlateSpin Orchestrate 2.6 Developer
Guide and Reference.

1.1.6 Understanding PlateSpin Orchestrate API Interfaces
There are three API interfaces available to the Orchestrate Server:

Orchestrate Server Management Interface: The PlateSpin Orchestrate Server, written
entirely in Java using the JMX (Java MBean) interface for management, leverages this API for
the PlateSpin Orchestrate Development Client. The Development Client is a robust desktop
pin Orchestrate 2.6 Administrator Reference

GUI designed for administrators to apply, manage, and monitor usage-based policies on all
infrastructure resources. The Development Client also provides at-a-glance grid health and
capacity checks.

For more information, see the PlateSpin Orchestrate 2.6 Development Client Reference.

Figure 1-6 PlateSpin Orchestrate Development Client

Job Interface: Includes a customizable/replaceable Web application and the zosadmin
command line tool. The Web-based Server Portal built with this API provides a universal job
viewer from which job logs and progress can be monitored. The job interface is accessible via a
Java API or CLI. A subset is also available as a Web Service. The default PlateSpin Orchestrate
Server Portal leverages this API. It can be customized or alternative J2EE* application can be
written.
PlateSpin Orchestrate Monitoring System: Monitors all aspects of the data center through
an open source, Eclipse-based interrface referred to as the PlateSpin Orchestrate VM
Client.This interface operates in conjunction with the Orchestrate Server and monitors the
following objects:

Deployed jobs that teach PlateSpin Orchestrate and provide the control logic that
PlateSpin Orchestrate runs when performing its management tasks.
Basic PlateSpin Orchestrate Concepts 17

18 PlateS
Users and Groups
Virtual Machines

For more information, see the PlateSpin Orchestrate 2.6 VM Client Guide and Reference.

Figure 1-7 The PlateSpin Orchestrate VM Client Interface

1.2 Understanding PlateSpin Orchestrate
Functionality

Section 1.2.1, “Resource Virtualization,” on page 18
Section 1.2.2, “Policy-Based Management,” on page 19
Section 1.2.3, “Grid Object Visualization,” on page 20
Section 1.2.4, “Understanding Job Semantics,” on page 20
Section 1.2.5, “Distributed Messaging and Failover,” on page 21
Section 1.2.6, “Web-Based User Interaction,” on page 22

1.2.1 Resource Virtualization
Host machines or test targets managed by the Orchestrate Server form nodes on the grid (sometimes
referred to as the matrix). All resources are virtualized for access by maintaining a capabilities
database containing extensive information (facts) for each managed resource.

This information is automatically polled and obtained from each resource periodically or when it
first comes online. The extent of the resource information the system can gather is customizable and
highly extensible, controlled by the jobs you create and deploy.

Past releases of PlateSpin Orchestrate used some SBLIM CIM providers to build Xen VMs. The xen
provisioning adapter in this release has been re-implemented to use the vm-install binary directly.
This deprecates the VM Builder CIM providers and pattern.
pin Orchestrate 2.6 Administrator Reference

With this new functionality, any Xen host with access to the vm-install binary (/usr/sbin/vm-
install) can build VMs.The binary is packaged in the vm-install RPM on SLES 11. This binary
was packaged in the xen-tools RPM on SLES10. Both RPMs are contained on the SLES media,
and unless you explicitly omit them during the installation, they are available as part of a default
XEN installation.

For more information, see “Creating a Xen VM” in the PlateSpin Orchestrate 2.6 VM Client Guide
and Reference.

1.2.2 Policy-Based Management
Policies are aggregations of facts and constraints that are used to enforce quotas, job queuing,
resource restrictions, permissions, and other user and resource functions. Policies can be set on all
objects and are inherited, which facilitates implementation within related resources.

Facts, which might be static, dynamic or computed for complex logic, are used when jobs or test
scenarios require resources in order to select a resource that exactly matches the requirements of the
test, and to control the access and assignment of resources to particular jobs, users, projects, etc.
through policies.This abstraction keeps the infrastructure fluid and allows for easy resource
substitution.

Of course, direct named access is also possible. An example of a policy that constrains the selection
of a resource for a particular job or test is shown in the sample below. Although resource constraints
can be applied at the policy level, they can also be described by the job itself or even dynamically
composed at runtime.

<policy>
 <constraint type="resource">
 <and>
 <eq fact="resource.os.family" value="Linux"/>
 <gt fact="resource.os.version" value="2.2" />
 <and>
 </constraint>
</policy>

An example of a policy that constrains the start of a job or test because too many tests are already in
progress is shown in the following sample:

<policy>
 <!-- Constrains the job to limit the number of running jobs to a
defined value but exempt certain users from this limit. All jobs
that attempt to exceed the limit are qued until the running jobs
count decreases and the constraint passes. -->

<constraint type="start" reason="Too busy">
 <or>
 <lt fact="job.instances.active" value="5"/>
 <eq fact="user.name" value="canary" />
 </or>
 </constraint>
</policy>

For more information about policies and constraints, see “Policies” in the “Job Development
Concepts” section of the PlateSpin Orchestrate 2.6 Developer Guide and Reference.
Basic PlateSpin Orchestrate Concepts 19

20 PlateS
1.2.3 Grid Object Visualization
One of the greatest strengths of the PlateSpin Orchestrate solution is the ability to manage and
visualize the entire grid. This is performed through the PlateSpin Orchestrate Development
Clientand the PlateSpin Orchestrate VM Monitoring System.

The desktop Development Client is a Java application that has broad platform support and provides
job, resource, and user views of activity as well as access to the historical audit database system,
cost accounting, and other graphing features.

The Development Client also applies policies that govern the use of shared infrastructure or simply
create logical grouping of nodes on the grid. For more information about the PlateSpin Orchestrate
Development Client, see the PlateSpin Orchestrate 2.6 Development Client Reference.

The PlateSpine Orchestrate VM Monitoring System provides robust graphical monitoring of all
managed virtual resources managed on the grid.

Figure 1-8 PlateSpin Orchestrate Monitoring in the VM Client

For more information, see the PlateSpin Orchestrate 2.6 VM Client Guide and Reference.

1.2.4 Understanding Job Semantics
As mentioned earlier, PlateSpin Orchestrate runs jobs. A job is a container that can encapsulate
several components including the Python-based logic for controlling the job life cycle (such as a
test) through logic that accompanies any remote activity, task-related resources such as
configuration files, binaries and any policies that should be associated with the job, as illustrated
below.
pin Orchestrate 2.6 Administrator Reference

Figure 1-9 Components of a Job

Workflows

Jobs can also invoke other jobs, creating hierarchies. Because of the communication between the job
client (either a user/user client application or another job) it is easy to create complex workflows
composed of discrete and separately versioned components.

When a job is executed and an instance is created, the class that extends job is run on the server and
as that logic requests resources, the class(es) that extend the joblet are automatically shipped to the
requested resource to manage the remote task. The communication mechanism between these
distributed components manifests itself as event method calls on the corresponding piece.

For more information, see “Workflow Job Example” in “Job Development Concepts”, and “Job
State Transition Events”, or “Communicating Through Job Events” in “Job Architecture” in the
PlateSpin Orchestrate 2.6 Developer Guide and Reference.

1.2.5 Distributed Messaging and Failover
A job has control over all aspects of its failover semantics, which can be specified separately for
conditions such as the loss of a resource, failure of an individual joblet, or joblet timeout.

The failover/health check mechanisms leverage the same communications mechanism that is
available to job and joblet logic. Specifically, when a job is started and resources are employed, a
message interface is established among all the components as shown in Figure 1-10 on page 22.

Optionally, a communication channel can also be kept open to the initiating client. This client
communication channel can be closed and reopened later based on jobid. Messages can be sent with
the command

sendEvent(foo_event, params, ...)

and received at the other end as a method invocation
Basic PlateSpin Orchestrate Concepts 21

22 PlateS
def foo_event(self, params)

If a job allows it, a failure in any joblet causes the Orchestrate Server to automatically find an
alternative resource, copy over the joblet JDL code, and reestablish the communication connection.
A job also can listen for such conditions simply by defining a method for one of the internally
generated events, such as def joblet_failure_event(...).

Such failover allows, for example, for a large set of regression tests to be run (perhaps in parallel)
and for a resource to die in the middle of the tests without the test run being rendered invalid. The
figure below shows how job logic is distributed and failover achieved:

Figure 1-10 A Job in Action

1.2.6 Web-Based User Interaction
PlateSpin Orchestrate ships a universal job monitoring and submission interface as a Web
application that natively runs on the Orchestrate Server. This application is written to the PlateSpin
Orchestrate job management API and can be customized or replaced with alternative rendering as
required.The figure belows shows an example of this interface, called the Server Portal.
pin Orchestrate 2.6 Administrator Reference

Figure 1-11 PlateSpin Orchestrate Server Portal

For more information, see the PlateSpin Orchestrate 2.6 Server Portal Reference.
Basic PlateSpin Orchestrate Concepts 23

24 PlateS
pin Orchestrate 2.6 Administrator Reference

2
2Server Discovery and Multicasting

The PlateSpin Orchestrate Server, Orchestrate Agent, and other Orchestrate tools use IP multicast
messages to locate servers and to announce when servers are started or shut down. If multicasting is
not supported in your existing network environment, all PlateSpin Orchestrate components allow a
specific machine to be specified instead of using multicast discovery. Multicast support is not
required to run the PlateSpin Orchestrate Server, the Orchestrate Agent, or any Orchestrate tools.

This section includes the following multicast information:

Section 2.1, “Multicast Troubleshooting,” on page 25
Section 2.2, “Multicast Routes,” on page 25
Section 2.3, “Multi-homed Hosts,” on page 26
Section 2.4, “Multiple Subnets,” on page 26
Section 2.5, “Datagrid and Multicasting,” on page 26
Section 2.6, “Datagrid Multicast Interface Selection,” on page 26

2.1 Multicast Troubleshooting
An exhaustive tutorial of IP multicasting and troubleshooting is beyond the scope of this document.
If you are having problems with multicast discovery, ensure that your operating system is configured
to provide IP multicasting support. Most modern versions of Linux* and Windows* provide this
support, however it might be disabled. Multicast discovery does not work unless IP multicasting is
enabled by the operating system. Routing misconfiguration on the system can also lead to problems
with multicast discovery.

2.2 Multicast Routes
A common problem with multicasting, particularly on Linux, is the lack of a default route or
multicast network route. Most systems are configured to have at least a “default” route, and on such
systems, multicast messages use the default route like any other network traffic. Systems do not
necessarily require a default route. Multicasting might not function correctly on systems that lack a
default route. Attempts to send messages on such systems fail with a Network Unreachable
message because the operating system is unable to determine the correct network interface on which
to send the message.

The quick solution is to add a default route on such systems. In some environments, however, it
might not make sense to add a default route. In such cases, another solution is to add a network route
for the 224.0.0.0/4 block representing the multicast IP address space. On Linux, for example, issue
the following command as the root user:

 route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

This command tells the system to send all multicast datagrams to the eth0 network card by default.
Substitute eth0 with a different interface name if applicable.
Server Discovery and Multicasting 25

26 PlateS
2.3 Multi-homed Hosts
A multi-homed host is a machine with more than one network interface configured. This can be
anything from a Linux system being used as a network router to a laptop computer with both an
active Ethernet connection and an active wireless connection. If there are two or more network
interfaces active at the same time (even if only one is actually being used) the system is “multi-
homed.”

Some operating systems like Linux provide only very rudimentary routing as a default part of the
operating system. They rely on external routing software like “mrouted” to support full multicast
routing. As a result, problems might arise in multi-homed machines because outgoing multicast
messages are sent on only one interface in the absence of more sophisticated routing software. It is
possible that the interface chosen by the operating system is incorrect. The Orchestrate Server and
its associated tools make a best effort to ensure that discovery queries and announcements are sent
on all available interfaces. It should not be necessary to run an external routing program with the
current Orchestrate Server.

2.4 Multiple Subnets
By default, Orchestrate Server and its associated tools are configured to allow multicast messages to
pass through up to two gateways. This allows discovery to work in multi-subnet environments,
provided that the network routers on your network are properly configured to perform multicast
routing. Consult the vendor’s documentation for information on configuring multicast routing on
your network routers.

2.5 Datagrid and Multicasting
The PlateSpin Orchestrate datagrid facility provides a multicast-based file distribution service that
allows large multi-gigabyte files to be simultaneously delivered to a large number of recipient
machines while using far less network bandwidth than would be used by copying the file
individually to each node. This service is available only in network environments that support IP
multicasting. Aside from the file multicast service, all other features of the datagrid use normal
unicast network operations and do not require multicast support. The routing and troubleshooting
pointers provided above for network discovery also apply to datagrid multicasting. In addition, due
to the potentially large bandwidth used by file transfers, you might want to limit the set of interfaces
on which files are multicasted.

2.6 Datagrid Multicast Interface Selection
On multi-homed servers, the datagrid multicast service sends outbound control and data packets on
all available interfaces on the system. This allows datagrid multicasting to work “out of the box”
with multi-homed servers. This behavior might not be optimal if you require multicasting of files
only to a subset of the available interfaces. You can instruct the datagrid to multicast only to the
desired interfaces by selecting the correct interfaces from the Orchestrate Development Client on the
Info/Configuration tab under Data Grid Configuration. Restricting the set of datagrid multicast
interfaces prevents large amounts of file data from being sent to uninterested subnets.
pin Orchestrate 2.6 Administrator Reference

3
3PlateSpin Orchestrate and LDAP
Authentication

Although PlateSpin Orchestrate has its own user database and authentication mechanism, it also
allows integration with an existing Lightweight Directory Access Protocol (LDAP) system for
authenticating user credentials.

This section includes the following information:

Section 3.1, “What is LDAP?,” on page 27
Section 3.2, “Understanding LDAP Structure,” on page 27
Section 3.3, “How PlateSpin Orchestrate Uses an LDAP Entry to Authenticate,” on page 29

3.1 What is LDAP?
At a high level, LDAP is a protocol designed to allow quick, efficient searches of directory services.
Built around Internet technologies, LDAP makes it possible to easily update and query directory
services over standard TCP/IP connections, and it includes many powerful features, including
security, access control, data replication and support for Unicode.

LDAP is based on the Directory Access Protocol (DAP), which was designed for communication
between directory servers and clients compliant to the X.500 standard. However, DAP can be
difficult to implement and use, and is not suitable for use with Web applications. LDAP is a simpler,
faster alternative, offering much of the same basic functionality without the performance overhead
and deployment difficulties of DAP.

Because LDAP is built for a networked world, it is based on a client-server model.The system
consists of one (or more) LDAP servers, which host the public directory service, and multiple
clients, which connect to the server to perform queries and retrieve results. LDAP clients are built
into most common address book applications, including e-mail clients like Microsoft Outlook and
Qualcomm Eudora; however, since LDAP-compliant directories can store a diverse range of data
(not just names and phone numbers), LDAP clients are also increasingly making an appearance in
other applications. LDAP support is included in PlateSpin Orchestrate to allow it to integrate with
existing user authentication mechanisms that are being used in many data centers.

There are many similarities between the Internet Domain Name System (DNS) model and LDAP:
both are global directories that can be split across multiple hosts, both have built-in redundancy and
replication features, and both include referral capabilities that make it possible to retrieve data that is
not available locally from other hosts in the system.

3.2 Understanding LDAP Structure
An LDAP directory is usually structured hierarchically as a tree of nodes (the LDAP directory tree is
sometimes referred to as the Directory Information Tree, or DIT). Each node represents a record, or
“entry” in the LDAP database.
PlateSpin Orchestrate and LDAP Authentication 27

28 PlateS
This section includes the following information:

Section 3.2.1, “The Distinguished Name,” on page 28
Section 3.2.2, “The Relative Distinguished Name,” on page 28

3.2.1 The Distinguished Name
An LDAP entry consists of numerous attribute-value pairs. It is uniquely identified by what is
known as a “distinguished name” (DN).

To draw a parallel with a relational database management system (RDBMS), an LDAP entry is
analogous to a record, its attributes are the fields of that record, and a DN is a primary key that
uniquely identifies each record.

Consider the following example of an LDAP entry:

dn: mail=joe@novell.com, dc=novell, dc=com
objectclass: inetOrgPerson
cn: Joe
sn: Somebody
mail: joe@novell.com
telephoneNumber: 1 234 567 8912

This is an entry for a single person, Joe Somebody, who works at Novell. The components of the
entry – name, email address, telephone number – are split into attribute-value pairs, with the entire
record identified by a unique DN (the first line of the entry). Some of these attributes are required
and some are optional, depending on the object class being used for the entry; however, the entire set
of data constitutes a single entry, or node, on the LDAP directory tree.

3.2.2 The Relative Distinguished Name
Every entry in the directory tree has a “relative distinguished name” (RDN) consisting of one or
more attribute-value pairs. An RDN must be unique at that level in the directory hierarchy. In the
example above, for instance, the following are all valid RDNs for the entry:

cn=Joe

or

cn=Joe+sn=Somebody

or

cn=Joe+sn=Somebody+telephoneNumber=12345678912

or

mail=joe@novell.com

There are no set rules regarding which attributes of a particular entry should be used for the RDN;
the LDAP model leaves this decision to the directory designer, specifying only that the RDN of an
entry must be such that it can uniquely identify that entry at that level in the DIT.
pin Orchestrate 2.6 Administrator Reference

Because RDNs exist for every entry in the tree, the DN for any entry is formed by sequentially
appending the RDNs of all the nodes between that entry and the root entry. In this way, you can use
the DN to easily locate any node in the directory tree, regardless of its location or depth in the
hierarchy.

For example, consider the following LDAP directory:

Figure 3-1 Sample LDAP Directory

To identify the node belonging to Joe Somebody (the DN for Joe Somebody’s entry) you would add
all the RDNs between that entry and the root of the tree:

uid=joe,ou=Worker Bees,o=Novell,c=IN

In a similar manner, the DN for the node belonging to Sarah would be

uid=sarah,ou=Executives,o=Novell,c=IN

while the DN for the Novell node would be

o=Novell,c=IN

Because LDAP entries are arranged in a hierarchical tree, and because each node on the tree can be
uniquely identified by a DN, the LDAP model lends itself to sophisticated queries and powerful
search filters.

3.3 How PlateSpin Orchestrate Uses an LDAP
Entry to Authenticate
PlateSpin Orchestrate uses only one attribute of a given LDAP user: its group membership. For
example, if the following settings were already configured in PlateSpin Orchestrate,

BaseDN 'dc=domain,dc=novell,dc=com'
UserAttribute 'uid'
UserPrefix 'ou=Users'

you could further configure PlateSpin Orchestrate to identify users belonging to an LDAP group
using the setting LDAP:groupnocase:administrators.

You would do this by specifying a filter in PlateSpin Orchestrate using these settings:
PlateSpin Orchestrate and LDAP Authentication 29

30 PlateS
GroupFilter 'memberUid=${USER_NAME}'
GroupPrefix 'ou=Groups'
GroupAttribute 'cn'

Applying these settings would let authenticated users belonging to the “administrators” LDAP
group be added to the “administrators” user group in PlateSpin Orchestrate (and so allow them to
log in to the Development Client, for example).

For information on configuring these settings in PlateSpin Orchestrate, see “The Orchestrate Server
Authentication Page” in the PlateSpin Orchestrate 2.6 Development Client Reference.

NOTE: Depending upon your selection at the Server Type drop down list on the Enable LDAP
subpanel of the Authentication page of the Orchestrate Development Client, the configuration fields
change to reflect the relevant settings. (One server type is Active Directory Service, the other is
Generic LDAP Directory Service.)

The general concepts for LDAP authentication discussed above also apply to Active Directory
authentication.
pin Orchestrate 2.6 Administrator Reference

4
4Increasing the Kernel ARP
Threshold Value on the
Orchestrate Server

Testing has shown that PlateSpin Orchestrate grids that have more than 1210 VMs (each with an
installed Orchestrate Agent) and 124 Resource objects, the Orchestrate Server (installed on SLES 10
SP3) in the grid loses connection to the Audit Database Server or other devices installed on other
machines. The failure is manifest following the ping command when the following error is
displayed:

connect : No buffer space is available

To correct this problem, it is necessary to increase the kernel ARP threshold on the Orchestrate
Server (SLES 10 SP3). This section contains the following information to help you perform this
increase:

Section 4.1, “Threshold Definitions,” on page 31
Section 4.2, “Determining the Current Kernel Threshold Value,” on page 31
Section 4.3, “Changing the Current Kernel Threshold Value,” on page 32

4.1 Threshold Definitions
The following definitions for kernel ARP levels is referenced from the Linux ARP man page (http://
linux.die.net/man/7/arp):

gc_thresh1: The minimum number of entries to keep in the ARP cache. The garbage collector
will not run if there are fewer than this number of entries in the cache. Defaults to 128.
gc_thresh2: The soft maximum number of entries to keep in the ARP cache. The garbage
collector will allow the number of entries to exceed this for 5 seconds before collection will be
performed. Defaults to 512.
gc_thresh3: The hard maximum number of entries to keep in the ARP cache. The garbage
collector will always run if there are more than this number of entries in the cache. Defaults to
1024.

4.2 Determining the Current Kernel Threshold
Value
To determine the current kernel threshold value on the Orchestrate Server, use the following
commands to determine the values for each threshold:

cat /proc/sys/net/ipv4/neigh/default/gc_thresh1

The command might result in a displayed value like this:

cat /proc/sys/net/ipv4/neigh/default/gc_thresh1
128
Increasing the Kernel ARP Threshold Value on the Orchestrate Server 31

http://linux.die.net/man/7/arp

32 PlateS
cat /proc/sys/net/ipv4/neigh/default/gc_thresh2 512

The command might result in a displayed value like this:
cat /proc/sys/net/ipv4/neigh/default/gc_thresh2
512

cat /proc/sys/net/ipv4/neigh/default/gc_thresh3

The command might result in a displayed value like this:
cat /proc/sys/net/ipv4/neigh/default/gc_thresh3
1024

You can also use this command:

#sysctl -A|grep ipv4|grep default |grep gc_thresh

The result is a listing similar to the following:

net.ipv4.neigh.default.gc_thresh3 = 1024
net.ipv4.neigh.default.gc_thresh2 = 512
net.ipv4.neigh.default.gc_thresh1 = 128

4.3 Changing the Current Kernel Threshold
Value
When you know the current threshold values, you can change them using one of two methods:

Section 4.3.1, “Editing the /etc/sysctl.conf File,” on page 32
Section 4.3.2, “Making Live Changes to the Threshold Values,” on page 32

4.3.1 Editing the /etc/sysctl.conf File
1 Open /etc/sysctl.conf in a text editor.
2 Add the following lines to the .conf file:

net.ipv4.neigh.default.gc_thresh1 = 256

net.ipv4.neigh.default.gc_thresh2 = 1024

net.ipv4.neigh.default.gc_thresh3 = 2048

3 Reboot the server.

4.3.2 Making Live Changes to the Threshold Values
To make changes to a given threshold on the Orchestrate Server you can run a command for each
threshold that you want to change, for example:

echo '256' > /proc/sys/net/ipv4/neigh/default/gc_thresh1

After you run the command, perform a /etc/init.d/network restart command to restart the
Orchestrate Server and put the changes in place.

NOTE: This method of changing the threshold values is volatile: if you reboot the SLES server, the
changes are lost.
pin Orchestrate 2.6 Administrator Reference

A
APlateSpin Orchestrate Security

This section explains various security issues related to PlateSpin Orchestrate:

Section A.1, “User and Administrator Password Hashing Methods,” on page 33
Section A.2, “User and Agent Password Authentication,” on page 33
Section A.3, “Password Protection,” on page 34
Section A.4, “TLS Encryption,” on page 34
Section A.5, “Security for Administrative Services,” on page 36
Section A.6, “Plain Text Visibility of Sensitive Information,” on page 36

A.1 User and Administrator Password Hashing
Methods
All passwords stored in PlateSpin Orchestrate are hashed using Secure Hash Algorithm-1 (SHA-1).
However, user passwords are no longer hashed when sent from the client to the server. Instead, the
plain text password entered by the user is sent over an encrypted authentication connection to the
server to obtain a unique per-session credential issued by the server. This allows the server to “plug
in” to alternative user directories such as Active Directory or OpenLDAP. Agent credentials are still
stored, singly hashed, on the disk on the agent machine. The first pass hashing prevents “user
friendly” passwords entered by administrators from being compromised by storing them on the
agent machines. The server’s password database (for agents and for users not using an alternative
user directory) stores all passwords in a double-hashed form to prevent a stolen password database
from being used to obtain passwords.

WARNING: The zosadmin command line and the PlateSpin Orchestrate Development Client do
not use SSL encryption, nor do they support TLS/SSL, so they should only be used over a secure
network.

All agent and client connections support TLS encryption. This includes the zos command line and
the PlateSpin Orchestrate Agent.

A.2 User and Agent Password Authentication
The PlateSpin Orchestrate Server stores all user and agent passwords in its data store as double-
hashed strings. User clients such as the zos command send the plain text password over a TLS
encrypted authentication connection to obtain a randomly generated per-session credential issued by
the server. This session credential is retained by the client, either in memory or in a temporary disk
file for the duration of the session.

It is not possible to obtain the user’s password from the session credential, however. It should be
protected to prevent unauthorized users from taking over the session. Agents send a singly hashed
password as their login credential, which is in turn hashed once more on the server to authenticate
new agent connections. Upon authentication, agents receive the same type of session credential as
user clients.
PlateSpin Orchestrate Security 33

34 PlateS
Singly-hashed password strings are used as a special case for agents, because agents typically must
store their plain text credentials to disk to allow the agents to start up on host or VM reboot. The use
of a once hashed version of the password on the agent prevents administrators from compromising
“user friendly” text passwords by storing them unhashed on agents. The use of single hashing on the
agents and double hashing on the server database prevents stolen credential data from being used to
obtain actual user or administrator-entered passwords

A.3 Password Protection
You should take measures to protect the passwords and credentials on both the PlateSpin Orchestrate
Server and PlateSpin Orchestrate Agents by ensuring that only the user account of the PlateSpin
Orchestrate Server (currently root or Administrator, by default) has access to the /store and /
tls directories on the server, so that general users are prevented from obtaining the password. On
agents, allow only the agent users (normally root or Administrator) to have access to the
agent.properties file, which contains the agent’s authentication credential.

Currently, PlateSpin Orchestrate restricts file access on the server, but we recommend that you
disallow shell accounts on server machines for general users as a precaution.

For users, none of the Novell-provided client utilities stores the user-entered password to disk in
either plain text or hashed form. However, temporary once-per-session credentials are stored to the
disk in the users $HOME/.novell/zos/client directory. Theft of this session credential could
allow someone else to take over that user session, but not to steal the user’s password. Users can
protect their logged-in session by making sure the permissions either on their home directory or on
the ~/.novell/zos/client directory are set to forbid both read and write access by other users.

PlateSpin Orchestrate Agents use the same authentication protocol and password hashing as users
(agent passwords are stored to disk in hashed form, not plain text) with the exception that agent
passwords are not salted, allowing agents to be renamed by the server. Because agent passwords are
not salted, we recommend that you generate and use random non-mnemonic strings for agent
passwords.

For PlateSpin Orchestrate 2.0 and later, administrators can enhance security when configuring new
agents by setting the zos.agent.password property to the asterisk character (*). This causes the
agent to automatically generate a new random credential not based on any easily guessable plain text
word. When the new agent is “accepted” by the administrator, the newly generated credential is
stored by the server. This is the default behavior when the PlateSpin Orchestrate Agent is first
installed.

n addition, the zos.agent.password property can be set to a plain text password in
agent.properties. If this is done, the agent automatically replaces the plain text password with
the hashed version when it next starts. This allows administrators to more easily set up an initial
password for agents.

A.4 TLS Encryption
Section A.4.1, “Setting TLS Options,” on page 35
Section A.4.2, “Updating tje TLS Server Certificate,” on page 36
pin Orchestrate 2.6 Administrator Reference

A.4.1 Setting TLS Options
PlateSpin Orchestrate uses Transport Layer Security (TLS) to provide encryption for both user and
agent connections. Both the PlateSpin Orchestrate Agent and the PlateSpin Orchestrate Clients use
TLS to initiate their connections to the Orchestrate Server, and then the server specifies whether to
“fall back” to plain text or continue the session fully encrypted.Although you can manually
configure the agent and clients to either always require TLS encryption or to fully disable TLS
encryption, we recommended that you leave the agents and clients in their default configuration, and
then use the PlateSpin Orchestrate Development Client on the server to specify the default behavior.
This is the purpose of the TLS Options section on the main server tab of the Orchestrate
Development Client.

Figure A-1 TLS Options in the PlateSpin Orchestrate Development Client

Here, there are 4 levels that you can set separately for both agent connections and user/client
connections:

Forbid TLS for (agents/clients): This option is to fully disable and prohibit TLS encryption
altogether. This is the least secure option and is therefore usually not the desirable choice, but it
could be required in countries that restrict encryption or in low security environments where
performance is more critical than security.
Allow TLS on the (agents/clients); default to falling back to unencrypted: This option (the
factory default for both agents and clients) is to allow TLS encryption if the agent or client
explicitly requests it, but to default to falling back to plain text after authentication.

NOTE: Authentication always occurs over SSL, regardless of settings.

Allow TLS on the (agents/clients); default to TLS encrypted if not configured encrypted:
This option is similar to the second option. Agents/clients may specify whether or not to use
TLS, but if they use the default of “server specified,” the server defaults to using TLS.
Make TLS mandatory on the (agents/clients): This option is the most secure, locked down
option. It requires TLS at all times, and fails connections if the agent or the client tries to
specify plain text.

In addition to these settings for TLS configuration, there are files that need to be protected on both
the server and on the client/agent. For more information, search for the TLS Certificate Installation
On PlateSpin Orchestrate article at the Novell Cool Solutions Community (http://www.novell.com/
communities/coolsolutions/).
PlateSpin Orchestrate Security 35

http://www.novell.com/communities/coolsolutions/

36 PlateS
A.4.2 Updating tje TLS Server Certificate
Understanding Transport Layer Security (TLS) encryption is particularly important if you reinstall
the server and have an old server certificate in either your agent or client user profile similar to ssh
shared keys. If you have an old certificate, you need to either manually replace it or delete it and
allow the client or agent to download the new one from the server using one of the following
procedures:

For the Agent: The TLS certificate is in <agentdir>/tls/server.pem. Deleting this
certificate will cause the agent, by default, to log a minor warning message and download a
new one the next time it tries to connect to the server. This is technically not secure, since the
server could be an impersonator. If security is required for this small window of time, then the
real server’s <serverdir>/<instancedir>/tls/cert.pem can be copied to the above
server.pem file.
For the Client: The easiest way to update the certificate from the command line tools is to
simply answer “yes” both times when prompted about the out-of date certificate. This is, again,
not 100% secure, but is suitable for most situations. For absolute security, hand copy the
server’s cert.pem (see above) to ~/.novell/zos/client/tls/<serverIPAddr:Port>.pem.
For Java SDK clients: Follow the manual copy technique above to replace the certificate. If
the local network is fairly trustworthy, you can also delete the above ~/.novell/.../*.pem
files, which will cause the client to auto-download a new certificate.

A.5 Security for Administrative Services
The PlateSpin Orchestrate Development Client and the zosadmin command line tool are clients to
the MBean and RMI servers. PlateSpin Orchestrate does not provide encryption for these
administrative services, so you should be careful to use them only in a secure environment.

When the user logs in using either zosadmin login or the Orchestrate Development Client, the
user’s password is sent to the server, and then the server issues a per-session credential to be used for
further operations. The user’s cleartext password is never stored to disk; however, it is currently sent
“over the wire” in plain text form. For this reason, the administrative clients should only be used in a
secure, trusted environment.

The zosadmin client stores the session credential obtained from a zosadmin login request in a
temporary file for use by subsequent operations. This credential cannot be used to obtain the user’s
password, but it could be used to take over the user’s current session until it times out or expires. For
this reason, the files in the user’s .novell/zoc/ directory should be configured to disallow access
by other users.

A.6 Plain Text Visibility of Sensitive Information
The following table outlines where sensitive information might be visible as plain text:
pin Orchestrate 2.6 Administrator Reference

Table A-1 Locations Where Sensitive Information Might Be Stored As Plain Text

Information Storage Location Visibility Issue

Audit Database
configuration

ZOS properties store Contains plain text information including user/
password for allowing PlateSpin Orchestrate to log
into the Audit Database for logging.

You should use a non-privileged database account for
logging.
PlateSpin Orchestrate Security 37

38 PlateS
pin Orchestrate 2.6 Administrator Reference

B
BAdjusting the Orchestrate Server
to Accommodate Loads

This section includes the following information:

Section B.1, “Orchestrate Server Might Shut Down When Managing Large Numbers of VMs
and Resources,” on page 39
Section B.2, “Changing Orchestrate Server Default Parameters and Values,” on page 40

B.1 Orchestrate Server Might Shut Down When
Managing Large Numbers of VMs and Resources

The PlateSpin Orchestrate system has been tested to a support level of 1400 VMs and 124 separate
VM hosts being managed.

If these support levels are exceeded, the Orchestrate service (novell-zosserver) might shut down
with the following log entry recorded in /var/opt/novell/zenworks/zos/server/logs/
server.log:

ERROR: Out of Memory
ERROR : You might want to try the -mx flag to increase heap size.

To change the heap size:

1 From a text editor, open /etc/init.d/novell-zosserver.
2 Edit the start parameters in the file to increase heap size:

2a Change the following entry:
$ZOS_BIN start -d $ZOS_CONFIG > /dev/null

to
ZOS_BIN start --jvmargs=-Xmx4g -d $ZOS_CONFIG > /dev/null

2b Save the file, then restart the server.
Adjusting the Orchestrate Server to Accommodate Loads 39

40 PlateS
B.2 Changing Orchestrate Server Default
Parameters and Values
The following table provides the current default values for some key performance parameters of the
PlateSpin Orchestrate Server. Although the server is fine-tuned by default for optimal performance
at normal loads, if you want to perform hundreds of provisioning actions simultaneously you can
change some of the default settings for increased server performance in such a scenario.

Table B-1 Default Parameters of the PlateSpin Orchestrate Server

Parameter Name Shipping Default Value Changing or Displaying the Parameter
Configuration

File Descriptors Limit 2048 (Optional) You can change the value as
shown below:

/etc/init.d/novell-zos-server:
ulimit -n <new_limit>

Java Heap Space 2048 MB Change the Java heap space from the
default by changing the start parameters in
/etc/init.d/novell-zosserver by
editing the line

$ZOS_BIN start -d
$ZOS_CONFIG > /dev/null

Change the line as follows:

$ZOS_BIN start --jvmargs=-
Xmx4096m -d $ZOS_CONFIG > /dev/
null

PermGen Space 512 MB Increase the PermGen space size from the
default by changing the start parameters in
/etc/init.d/novell-zosserver by
editing the line

$ZOS_BIN
start -d $ZOS_CONFIG > /dev/null

Change the line as follows:

$ZOS_BIN start --jvmargs=-
Xmx4096m --jvmargs=-
XX:MaxPermSize=<new_value_in MB>
-d $ZOS_CONFIG > /dev/null

Audit Queue Size Max 200 Increase the value of this parameter by
using the following command:

zosadmin set --
mbean="local:facility=audit" --
attr=QueueSizeMax --type=Integer
--value=1000
pin Orchestrate 2.6 Administrator Reference

MaxRunJobWaitTimeout 120000 You can change the value of this parameter
as shown below:

zosadmin set --
mbean="local:facility=broker" --
attr=MaxRunJobWaitTimeout --
type=Integer --
value=<time_in_milliseconds>

MatchingResourcesCheckinterval 30000 Increase the value of this parameter by
using the following command:

zosadmin set --
mbean="local:facility=broker" --
attr=MatchingResourcesCheckInter
val --type=Integer --
value=600000

Kernel ARP Threshold Values thresh1 = 128

thresh2 = 512

thresh3 = 1024

Set these values higher than the default.
For example:

cat /proc/sys/net/ipv4/neigh/
default/gc_thresh1 = 256

cat /proc/sys/net/ipv4/neigh/
default/gc_thresh2 = 1024

cat /proc/sys/net/ipv4/neigh/
default/gc_thresh3 = 2048

Job Limits:

Soft Top Level Job Limit

Max Queued Jobs

Absolut Max Active Jobs

matrix.maxtopjobs
= 200

matrix.maxqueued
= 300

matrix.maxactive
= 400

Change the Grid Object default values in
the Development Client as follows:

matrix.maxtopjobs = 600

matrix.maxqueued = 700

matrix.maxactive = 1000

Parameter Name Shipping Default Value Changing or Displaying the Parameter
Configuration
Adjusting the Orchestrate Server to Accommodate Loads 41

42 PlateS
pin Orchestrate 2.6 Administrator Reference

C
CUnderstanding Grid ID Usage in
the Audit Database

The Orchestrate Grid ID is created using either the config or guiconfig configuration wizard
operations or the zosadmin create -g command. The grid name you specify is displayed as the
name for the container placed at the root of the tree in the Explorer panel of the Orchestrate
Development Client.The value for the Grid ID is saved in the /var/opt/novell/zenworks/zos/
server/zos.conf file by the property system.property.com.novell.zos.server.gridId.
Historical records of job instances (also known as “workflows”) run on the Orchestrate grid are
stored in the audit database (if included in the Orchestrate installation) and are indexed by Grid ID.
If you change the value of the Grid ID, the Development Client loses access to these records.

For instance, testing has shown that if you choose to upgrade Orchestrate using the zosadmin
create --upgrade -g option (that is selecting a Grid ID) instead of the config or guiconfig
operations, it is possible that you might not use the existing Grid ID value or that you might neglect
to use a value with the command. In this case, the default (the fully-qualified domain name of the
current host) is used, which could differ from the original value for the Grid ID.

If this happens, any workflows recorded in the audit database prior to the upgrade are not displayed
in the Orchestrate Development Client, but they are still recorded in the gridid column of the
workflows table in the database.

NOTE: You can use an SQL query if you want to retrieve the workflows. The first part of such a
query might look like this:

SELECT * FROM workflow WHERE gridId = 'labzos.pso.lab.novell.com_Grid' AND ...

Keep in mind that the original Grid ID is not lost. If you want a report on that ID, you can use the
zosadmin audit* commands with a -g option to yield a report showing the old Grid ID.

If you want to change the Grid ID, you have several options:

Edit /var/opt/novell/zenworks/zos/server/zos.conf and change the value of the Grid
ID.
Change the ID during an upgrade using zosadmin create --upgrade -g and with a new
value for the Grid ID.
Use SQL commands to change the Grid ID of existing records in the audit database. For
example,
UPDATE actions SET gridid = 'newgridname' WHERE gridid = 'oldname';
UPDATE workflow SET gridid = 'newgridname' WHERE gridid = 'oldname';
UPDATE sessions SET gridid = 'newgridname' WHERE gridid = 'oldname';
Understanding Grid ID Usage in the Audit Database 43

44 PlateS
pin Orchestrate 2.6 Administrator Reference

D
DDocumentation Updates

This section contains information about documentation content changes that were made in this
PlateSpin Orchestrate Administrator Guide after the initial release of PlateSpin Orchestrate 2.6. The
changes are listed according to the date they were published.

The documentation for this product is provided on the Web in two formats: HTML and PDF. The
HTML and PDF documentation are both kept up-to-date with the changes listed in this section.

If you need to know whether a copy of the PDF documentation that you are using is the most recent,
the PDF document includes a publication date on the title page.

The documentation was updated on the following dates:

Section D.1, “February 10, 2011,” on page 45

D.1 February 10, 2011
Updates were made to the following sections:

Location Update Description

Section 1.2.1, “Resource
Virtualization,” on page 18

Removed reference to the deprecated VM Builder utility and
replaced it with information about the vm-install binary.

Appendix C, “Understanding Grid ID
Usage in the Audit Database,” on
page 43

New content.
Documentation Updates 45

46 PlateS
pin Orchestrate 2.6 Administrator Reference

	PlateSpin Orchestrate 2.6 Administrator Reference
	About This Guide
	1 Basic PlateSpin Orchestrate Concepts
	1.1 Understanding PlateSpin Orchestrate Architecture
	1.1.1 The PlateSpin Orchestrate Agent
	1.1.2 The Resource Monitor
	1.1.3 Entity Types and Managers
	1.1.4 Jobs
	1.1.5 Constraint-Based Job Scheduling
	1.1.6 Understanding PlateSpin Orchestrate API Interfaces

	1.2 Understanding PlateSpin Orchestrate Functionality
	1.2.1 Resource Virtualization
	1.2.2 Policy-Based Management
	1.2.3 Grid Object Visualization
	1.2.4 Understanding Job Semantics
	1.2.5 Distributed Messaging and Failover
	1.2.6 Web-Based User Interaction

	2 Server Discovery and Multicasting
	2.1 Multicast Troubleshooting
	2.2 Multicast Routes
	2.3 Multi-homed Hosts
	2.4 Multiple Subnets
	2.5 Datagrid and Multicasting
	2.6 Datagrid Multicast Interface Selection

	3 PlateSpin Orchestrate and LDAP Authentication
	3.1 What is LDAP?
	3.2 Understanding LDAP Structure
	3.2.1 The Distinguished Name
	3.2.2 The Relative Distinguished Name

	3.3 How PlateSpin Orchestrate Uses an LDAP Entry to Authenticate

	4 Increasing the Kernel ARP Threshold Value on the Orchestrate Server
	4.1 Threshold Definitions
	4.2 Determining the Current Kernel Threshold Value
	4.3 Changing the Current Kernel Threshold Value
	4.3.1 Editing the /etc/sysctl.conf File
	4.3.2 Making Live Changes to the Threshold Values

	A PlateSpin Orchestrate Security
	A.1 User and Administrator Password Hashing Methods
	A.2 User and Agent Password Authentication
	A.3 Password Protection
	A.4 TLS Encryption
	A.4.1 Setting TLS Options
	A.4.2 Updating tje TLS Server Certificate

	A.5 Security for Administrative Services
	A.6 Plain Text Visibility of Sensitive Information

	B Adjusting the Orchestrate Server to Accommodate Loads
	B.1 Orchestrate Server Might Shut Down When Managing Large Numbers of VMs and Resources
	B.2 Changing Orchestrate Server Default Parameters and Values

	C Understanding Grid ID Usage in the Audit Database
	D Documentation Updates
	D.1 February 10, 2011

