
Novell®

AUTHORIZED DOCUMENTATION
www.novell.com

PlateSpin® Orchestrate

2.6
March 29, 2011
Developer Guide and Reference

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2011 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

404 Wyman Street, Suite 500

Waltham, MA 02451

U.S.A.

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/info/exports/
http://www.novell.com/documentation
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents
About This Guide 9

1 Getting Started With Development 11

1.1 What You Should Know . 11
1.1.1 Prerequisite Knowledge. 11
1.1.2 Setting Up Your Development Environment . 12

1.2 Prerequisites for the Development Environment . 12

2 Job Development Concepts 15

2.1 Contents of a Job Package . 15
2.2 JDL Job Scripts . 15

2.2.1 What is JDL? . 15
2.2.2 Using Facts in Job Scripts . 16

2.3 Policies. 18
2.3.1 Policy Types . 18
2.3.2 Job Arguments and Parameter Lists in Policies . 19
2.3.3 The Role of Policy Constraints in Job Operation . 21

2.4 Resource Discovery . 28
2.4.1 Resource Discovery in Provisioning Jobs . 29
2.4.2 Some Specific Resource Discovery Jobs . 29

2.5 Workload Management Performed by the Provisioning Manager . 29
2.6 Deploying Packaged Job Files. 30
2.7 Running Your Jobs. 30
2.8 Monitoring Job Results. 31

2.8.1 Monitoring Jobs from the Command Line . 31
2.8.2 Monitoring Jobs from the Server Portal . 32

2.9 Debugging Jobs . 32

3 Job Architecture 35

3.1 Understanding JDL . 35
3.2 JDL Package . 36

3.2.1 .sched Files . 37
3.3 Job Class . 37

3.3.1 Job State Transition Events. 37
3.3.2 Handling Custom Events . 38

3.4 Job Invocation . 39
3.5 Deploying Jobs. 40

3.5.1 Using the PlateSpin Orchestrate Development Client to Deploy Jobs 40
3.5.2 Using the zosadmin Command Line Tool to Deploy Jobs . 40

3.6 Starting PlateSpin Orchestrate Jobs . 41
3.7 Using Other Grid Objects . 41
3.8 Communicating Through Job Events . 42

3.8.1 Sending and Receiving Events . 42
3.8.2 Synchronization . 43

3.9 Executing Local Programs . 43
3.9.1 Output Handling. 43
3.9.2 Local Users . 44
Contents 3

4 PlateS
3.9.3 Safety and Failure Handling . 45
3.10 Logging and Debugging . 45

3.10.1 Creating a Job Memo . 45
3.10.2 Tracing. 47

3.11 Improving Job and Joblet Robustness . 47
3.12 Using an Event Notification in a Job . 48

3.12.1 Receiving Event Notifications in a Running Job . 48
3.12.2 Event Types. 50

4 Understanding Grid Object Facts and Computed Facts 53

4.1 Grid Object Facts and Fact Junctions . 53
4.1.1 Fact Type Definitions . 54
4.1.2 Understanding Fact Junctions . 54
4.1.3 Job, Jobinstance, and Joblet Object Facts and Fact Junctions. 56
4.1.4 Resource Object Facts and Fact Junctions . 68
4.1.5 Virtual Disk Object Facts and Fact Junctions . 90
4.1.6 Virtual NIC Object Facts and Fact Junctions . 91
4.1.7 Repository Object Facts and Fact Junctions . 94
4.1.8 Virtual Bridge Object Facts and Fact Junctions. 97
4.1.9 User Object Facts and Fact Junctions. 99
4.1.10 Matrix Object Facts . 104

4.2 Computed Facts. 106

5 The PlateSpin Orchestrate Datagrid 109

5.1 Defining the Datagrid . 109
5.1.1 PlateSpin Orchestrate Datagrid Filepaths . 109
5.1.2 Distributing Files . 111
5.1.3 Simultaneous Multicasting to Multiple Receivers. 111
5.1.4 PlateSpin Orchestrate Datagrid Commands . 111

5.2 Datagrid Communications . 112
5.2.1 Multicast Example . 112
5.2.2 Grid Performance Factors . 113
5.2.3 Plan for Datagrid Expansion . 113

5.3 datagrid.copy Example. 113

6 Virtual Machine Job Development 115

6.1 VM Job Best Practices . 115
6.1.1 Plan Robust Application Starts and Stops . 115
6.1.2 Managing VM Systems . 116
6.1.3 Managing VM Images . 116
6.1.4 Managing VM Hypervisors. 116
6.1.5 VM Job Considerations . 116

6.2 Virtual Machine Management . 116
6.3 VM Life Cycle Management . 117
6.4 Manual Management of a VM Lifecycle . 118

6.4.1 Manually Using the zos Command Line . 119
6.4.2 Automatically Using the Development Client Job Scheduler 119
6.4.3 Provision Job JDL . 119

6.5 Provisioning Virtual Machines . 120
6.5.1 Provisioning VMs Using Jobs . 122
6.5.2 VM Placement Policy. 123
6.5.3 Provisioning Example . 123

6.6 Automatically Provisioning a VM . 124
pin Orchestrate 2.6 Developer Guide and Reference

7 Job Examples 127

7.1 Simple Job Examples. 127
7.1.1 provisionBuildTestResource.job . 127
7.1.2 Workflow Job Example . 128

7.2 BuildTest Job Examples. 129
7.2.1 buildTest.policy Example . 130
7.2.2 buildTest.jdl Example. 131

7.3 Using Deployable Job Examples Included with Platespin Orchestrate 134
7.3.1 Preparing to Deploy Job Examples . 134
7.3.2 Summary of PlateSpin Orchestrate Deployable Job Examples. 135

7.4 Deployable Job Examples: Parallel Computing . 136
demoIterator.job . 136
quickie.job . 143

7.5 Deployable Job Examples: General Purpose . 148
dgtest.job . 148
failover.job . 157
instclients.job . 163
notepad.job . 170
sweeper.job . 174
whoami.job . 180

7.6 Job Examples: Miscellaneous Code-Only . 186
jobargs.job . 186

8 Job Scheduling 197

8.1 The PlateSpin Orchestrate Job Scheduler Interface . 197
8.2 Schedule and Trigger Files . 198

8.2.1 Schedule File Examples . 198
8.2.2 Trigger File XML Examples . 199

9 Provisioning Adapter Hooks 203

9.1 Grid Events for VMs That Are Implemented by Provisioning Adapters 203
9.2 Customizing Jobs for the Provisioning Adapter Hooks . 205

9.2.1 Adding Hooks Jobs to Customize a VM Event . 205
9.2.2 Customizing Pre- and Post-Job Execution Order . 207
9.2.3 Customizing Hooks Job Execution Based on Event Type. 208

A PlateSpin Orchestrate Client SDK 209

A.1 SDK Requirements . 209
A.2 Creating an SDK Client . 209
A.3 Client SDK Reference information . 210

A.3.1 Constraint Package . 210
A.3.2 Datagrid Package . 215
A.3.3 Grid Package . 217
A.3.4 TLS Package . 224
A.3.5 Toolkit Package . 226

B PlateSpin Orchestrate Job Classes and JDL Syntax 229

B.1 Job Class . 229
B.2 Joblet Class . 229
B.3 Utility Classes. 229
B.4 Built-in JDL Functions and Variables . 229
Contents 5

6 PlateS
B.4.1 getMatrix() . 230
B.4.2 system(cmd) . 230
B.4.3 Grid Object TYPE_* Variables. 230
B.4.4 The __agent__ Variable . 230
B.4.5 The __jobname__ Variable . 231
B.4.6 The __mode__ Variable . 231

B.5 Job State Field Values . 231
B.6 Repository Information String Values. 232
B.7 Joblet State Values . 232
B.8 Resource Information Values. 233
B.9 JDL Class Definitions . 233

AndConstraint . 235
BinaryConstraint. 235
BuildSpec . 235
CharRange. 236
ComputedFact . 236
ComputedFactContext . 236
Constraint . 236
ContainerConstraint . 237
ContainsConstraint. 237
Credential . 237
CredentialManager. 238
DataGrid. 238
DefinedConstraint . 238
EqConstraint . 238
Exec . 239
ExecError . 239
FileRange. 239
GeConstraint . 240
GridObjectInfo . 240
GroupInfo . 240
GtConstraint . 240
Job . 241
JobInfo . 241
Joblet . 241
JobletInfo . 242
JobletParameterSpace. 242
LeConstraint . 242
LtConstraint . 243
MatchContext . 243
MatchResult . 243
MatrixInfo . 243
MigrateSpec . 244
NeConstraint . 244
NotConstraint . 244
OrConstraint . 245
ParameterSpace . 245
PolicyInfo . 245
ProvisionJob. 245
ProvisionJoblet . 246
ProvisionSpec . 246
RepositoryInfo . 246
ResourceInfo . 246
RunJobSpec. 247
ScheduleSpec . 247
Timer . 247
UndefinedConstraint . 247
UserInfo . 248
pin Orchestrate 2.6 Developer Guide and Reference

VbridgeInfo. 248
VdiskInfo . 248
VMHostClusterInfo . 248
VMHostInfo . 249
VmSpec . 249
VnicInfo . 249

C Documentation Updates 251

C.1 March 29, 2011 . 251
C.2 January 28, 2011 . 251
Contents 7

8 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

About This Guide

This Developer Guide and Reference is a component of the documentation library for PlateSpin
Orchestrate. While PlateSpin Orchestrate provides the broad framework and networking tools to
manage complex virtual machines and high performance computing resources in a datacenter, this
guide explains how to develop grid application jobs and polices that form the basis of PlateSpin
Orchestrate functionality. This guide provides developer information to create and run custom
PlateSpin Orchestrate jobs. It also helps provides the basis to build, debug, and maintain policies
using PlateSpin Orchestrate.

This guide contains the following sections:

 Chapter 1, “Getting Started With Development,” on page 11

 Chapter 2, “Job Development Concepts,” on page 15

 Chapter 3, “Job Architecture,” on page 35

 Chapter 4, “Understanding Grid Object Facts and Computed Facts,” on page 53

 Chapter 5, “The PlateSpin Orchestrate Datagrid,” on page 109

 Chapter 6, “Virtual Machine Job Development,” on page 115

 Chapter 7, “Job Examples,” on page 127

 Chapter 8, “Job Scheduling,” on page 197

 Chapter 9, “Provisioning Adapter Hooks,” on page 203

 Appendix A, “PlateSpin Orchestrate Client SDK,” on page 209

 Appendix B, “PlateSpin Orchestrate Job Classes and JDL Syntax,” on page 229

 Appendix C, “Documentation Updates,” on page 251

Audience

The developer has control of a self-contained development system where he or she creates jobs and
policies and tests them in a laboratory environment. When the jobs are tested and proven to function
as intended, the developer delivers them to the PlateSpin Orchestrate administrator.

Prerequisite Skills

As data center managers or IT or operations administrators, it is assumed that users of the product
have the following background:

 General understanding of network operating environments and systems architecture.

 Knowledge of basic Linux* shell commands and text editors.

Additional Product Documentation

In addition to this Job Developer Guide and Reference, PlateSpin Orchestrate 2.6 includes the
following additional guides that contain valuable information about the product:

 PlateSpin Orchestrate 2.6 Getting Started Reference

 PlateSpin Orchestrate 2.6 Installation and Configuration Guide
About This Guide 9

10 PlateS
 PlateSpin Orchestrate 2.6 Upgrade Guide

 PlateSpin Orchestrate 2.6 High Availability Configuration Guide

 PlateSpin Orchestrate 2.6 Administrator Reference

 PlateSpin Orchestrate 2.6 VM Client Guide and Reference

 PlateSpin Orchestrate 2.6 Virtual Machine Management Guide

 PlateSpin Orchestrate 2.6 Development Client Reference

 PlateSpin Orchestrate 2.6 Command Line Reference

 PlateSpin Orchestrate 2.6 Troubleshooting Reference

 PlateSpin Orchestrate 2.6 Server Portal Reference

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/feedback.html

1
1Getting Started With Development

This Developer Guide for PlateSpin Orchestrate is intended for individuals acting as PlateSpin
Orchestrate job developers. This document discusses the tools and technology required to create
discrete programming scripts—called “jobs”—that control nearly every aspect of the PlateSpin
Orchestrate product. The guide also explains how to create, debug, and maintain policies that can be
associated with jobs running on the PlateSpin Orchestrate Server.

As a job developer, you need your own self-contained, standalone system with full access to your
network environment. As a job developer, you might eventually assume all system roles: job creator,
job deployer, system administrator, tester, etc. For more information about jobs, see “Jobs” in the
PlateSpin Orchestrate 2.6 Getting Started Reference.

This section includes the following information:

 Section 1.1, “What You Should Know,” on page 11

 Section 1.2, “Prerequisites for the Development Environment,” on page 12

1.1 What You Should Know
This section includes the following information:

 Section 1.1.1, “Prerequisite Knowledge,” on page 11

 Section 1.1.2, “Setting Up Your Development Environment,” on page 12

1.1.1 Prerequisite Knowledge

This guide assumes you have the following background:

 Sound understanding of networks, operating environments, and system architectures.

 Familiarity with the Python development language. For more information, see the following
online references:

 Python Development Environment (PyDEV): The PyDEV plug-in (http://
www.pydev.org/) enables developers to use Eclipse* for Python and Jython development.
The plug-in makes Eclipse a more robust Python IDE and comes with tools for code
completion, syntax highlighting, syntax analysis, refactoring, debugging, etc.

 Python Reference Manual: This reference (http://python.org/doc/2.1/ref/ref.html)
describes the exact syntax and semantics but does not describe the Python Library
Reference, (http://python.org/doc/2.1/lib/lib.html) which is distributed with the language
and assists in development.

 Python Tutorial: This online tutorial (http://python.org/doc/2.1/ref/ref.html)helps
developers get started with Python.

The PlateSpin Orchestrate Job Development Language (JDL) incorporates compact Python
scripts to create job definitions to manage nearly every aspect of the PlateSpin Orchestrate grid.
For more information, see Appendix B, “PlateSpin Orchestrate Job Classes and JDL Syntax,”
on page 229.

 Knowledge of basic UNIX shell commands or the Windows command prompt, and text editors.
Getting Started With Development 11

http://www.pydev.org/
http://python.org/doc/2.1/ref/ref.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/lib/lib.html
http://python.org/doc/2.1/ref/ref.html

12 PlateS
 An understanding of parallel computing and how applications are run on PlateSpin Orchestrate
infrastructure.

 Familiarity with the PlateSpin Orchestrate Development Client layout and use, as explained in
the PlateSpin Orchestrate 2.6 Development Client Reference.

 Familiarity with basic administrative tasks, as explained in the PlateSpin Orchestrate 2.6
Administrator Reference and in the “The zosadmin Command Line Tool” section of the
PlateSpin Orchestrate 2.6 Command Line Reference

 Familiarity with on-line PlateSpin Orchestrate API Javadoc as you build custom client
applications. For more information see Appendix A, “PlateSpin Orchestrate Client SDK,” on
page 209.

 Assumption of both PlateSpin Orchestrate administrative and end-user roles while testing and
debugging jobs.

1.1.2 Setting Up Your Development Environment

To set up a development environment for creating, deploying, and testing jobs, we recommend the
following procedure:

1 Initially set up a simple, easy-to-manage server, agent, and client on a single machine. Even on
a single machine, you can simulate multiple servers by starting extra agents (see “Installing the
Orchestrate Agent Only” in the PlateSpin Orchestrate 2.6 Installation and Configuration
Guide.

2 As you get closer to a production environment, your setup might evolve to handle more
complex system demands, such as any of the following:

 An Orchestrate Server instance deployed on one computer.

 An Orchestrate Agent installed on every managed server.

 An Orchestrate Development Client installed on your desktop machine.

From your desktop machine, you can build jobs/policies, and then remotely deploy them
using zosadmin command linetool. You can then remotely modify the jobs and other grid
object through the PlateSpin Orchestrate Development Client.

3 Use a version control system, such as Subversion*, to organize and track development changes.

4 Put the job version number inside the deployed file. This will help you keep your job versions
organized.

5 Create make or Ant scripts for bundling and deploying your jobs.

By leveraging the flexibility of the PlateSpin Orchestrate environment, you should not have to write
jobs targeted specifically for one hypervisor technology (Xen, VMware, etc.).

1.2 Prerequisites for the Development
Environment
 Install the Java* Development Kit (https://sdlc3d.sun.com/ECom/

EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1), version 1.5 or
later, to create jobs and to compile a Java SDK client in the PlateSpin Orchestrate environment.
The PlateSpin Orchestrate installer ships with a Java Runtime Environment (JRE) suitable for
running PlateSpin Orchestrate jobs.
pin Orchestrate 2.6 Developer Guide and Reference

https://sdlc3d.sun.com/ECom/EComActionServlet;jsessionid=DCA955A842E56492B469230CC680B2E1

 Components to write Python-based Job Description Language (JDL) scripts:

 Eclipse version 3.2.1 or later. (http://www.eclipse.org/).

 Development Environment: Set up your environment according to the guidelines outlined in
“Planning the Orchestrate Server Installation” in the PlateSpin Orchestrate 2.6 Installation and
Configuration Guide. In general, the installed PlateSpin Orchestrate Server requires 2
(minimum for 100 or fewer managed resources) to 4 gigabytes (recommended for more than
100 managed resources) of RAM.

 Network Capabilities: For Virtual Machine Management, you need a high-speed Gigabit
Ethernet. For more information about network requirements, see “PlateSpin Orchestrate VM
Client” and “VM Hosts” in the PlateSpin Orchestrate 2.6 Installation and Configuration
Guide.

 Initial Configuration: After you install and configure PlateSpin Orchestrate, start in the agent
and user auto registration mode as described in “First Use of Basic PlateSpin Orchestrate
Components” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide. As a
first-time connection, the server creates an account for you as you set up a self-contained
system.

IMPORTANT: Because auto registration mode does not provide high security, make sure you
prevent unauthorized access to your network from your work station during development. As
you migrate to a production environment, make sure that this mode is deactivated.
Getting Started With Development 13

http://www.eclipse.org/

14 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

2
2Job Development Concepts

This section provides advanced conceptual information to help you create your own PlateSpin
Orchestrate jobs:

 Section 2.1, “Contents of a Job Package,” on page 15

 Section 2.2, “JDL Job Scripts,” on page 15

 Section 2.3, “Policies,” on page 18

 Section 2.4, “Resource Discovery,” on page 28

 Section 2.5, “Workload Management Performed by the Provisioning Manager,” on page 29

 Section 2.6, “Deploying Packaged Job Files,” on page 30

 Section 2.7, “Running Your Jobs,” on page 30

 Section 2.8, “Monitoring Job Results,” on page 31

 Section 2.9, “Debugging Jobs,” on page 32

2.1 Contents of a Job Package
A job package might consist of the following elements:

 Job description language (JDL) code (the Python-based script containing the bits to control
jobs).

 One or more policy files, which apply constraints and other job facts to control jobs.

 Any other associated executables or data files that the job requires. For example, the
cracker.jdl sample job includes a set of Java code that discovers the user password in every
configured agent before the Java class is run.

Many discovery jobs that measure performance of Web servers or monitor any other
applications can also include resource discovery utilities that enable resource discovery.

Section 3.2, “JDL Package,” on page 36 provides more information about job elements.

2.2 JDL Job Scripts
This section contains the following information:

 Section 2.2.1, “What is JDL?,” on page 15

 Section 2.2.2, “Using Facts in Job Scripts,” on page 16

2.2.1 What is JDL?

The PlateSpin Orchestrate job definition language (JDL) is an extended and embedded
implementation of Python. The PlateSpin Orchestrate system provides additional constructs to
control and access the following:

 Interaction with the infrastructure under management (requesting resources, querying load,
etc.)
Job Development Concepts 15

16 PlateS
 Distributed variable space with job, user and system-wide scoping

 Extensible event callbacks mechanism

 Job logging

 Datagrid for efficient movement of files across the infrastructure.

 Automatic distribution of parallel operations

 Failover logic

For more information about the PlateSpin Orchestrate JDL script editor, see Section 3.2, “JDL
Package,” on page 36.

The JDL language allows for the scripted construction of logic that can be modified by external
parameters and constraints (through one or more associated policies) at the time the job instance is
executed. Development of a job with the JDL (Python) language is very straightforward. For a
listing of the job, joblet, and utility classes, see Appendix B, “PlateSpin Orchestrate Job Classes and
JDL Syntax,” on page 229.

A simple “hello world” Python script example that runs a given number of times (numTests) in
parallel (subject to resource availability and policy) is shown below:

class exampleJob(Job):
 def job_started_event(self):
 print 'Hello world started: got job_started_event'
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numTests")
 pspace = ParameterSpace()
 i = 1
 while i <= numJoblets:
 pspace.appendRow({'name':'test'+str(i)})
 i += 1
 self.schedule(exampleJoblet, pspace, {})

class exampleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from resource%s" % self.getFact("resource.id")

This example script contains two sections:

 The class that extends the job and runs on the server.

 The class that extends the joblet that will run on any resource employed by this job.

Because the resources are not requested explicitly, they are allocated based on the resource
constraints associated with this job. If none are specified, all resources match. The exampleJoblet
class would typically execute some process or test based on unique parameters.

2.2.2 Using Facts in Job Scripts

This section contains the following information:

 “Fact Values” on page 17

 “Fact Operations in the Joblet Class” on page 17

 “Using the Policy Debugger to View Facts” on page 18
pin Orchestrate 2.6 Developer Guide and Reference

Fact Values

Facts can be retrieved, compared against, and written to (if not read-only) from within jobs. Every
Grid object has a set of accessor and setter JDL functions. For example, to retrieve the cryptpw job
argument fact in the job example listed in Section 2.3.2, “Job Arguments and Parameter Lists in
Policies,” on page 19, you would write the following JDL code:

1 def job_started_event(self):
2 pw = self.getFact("jobargs.cryptpw")

In line 2, the function getFact() retrieves the value of the job argument fact. getFact() is
invoked on the job instance Grid object.

The following set of JDL Grid object functions retrieve facts:

getFact()
factExists()
getFactLastModified()
getFactNames()

The following set of JDL Grid object functions modify fact values (if they are not read-only) and
remove facts (if they are not deleteable):

setFact
setDateFact
setTimeFact
setArrayFact
setBooleanArrayFact
setDateArrayFact
setIntegerArrayFact
setTimeArrayFact
setStringArrayFact
deleteFact

For more complete information on these fact values, see GridObjectInfo (page 240).

Fact Operations in the Joblet Class

Each joblet is also a Grid object with its own set of well known facts. These facts are listed in
Section B.2, “Joblet Class,” on page 229. An instance of the Joblet class runs on the resource. The
joblet instance on the resource has access to the fact set of the resource where it is running. The
resource fact set has no meaning outside of this execution context, because the Joblet can be
scheduled to run on any of the resources that match the resource and allocation constraints.

For example, using the cracker job example shown in “Job Arguments and Parameter Lists in
Policies” on page 19, you would write the following JDL code to retrieve the cryptpw job argument
fact, the OS family fact for the resource, the Job instance ID fact, and the joblet number:

1 class CrackerJoblet(Joblet):
2 def joblet_started_event(self):
3 pw = self.getFact("jobargs.cryptpw")
4 osfamily = self.getFact("resource.os.family")
5 jobid = self.getFact("jobinstance.id")
6 jobletnum = self.getFact("joblet.number")

In line 3, the function getFact() retrieves the value of the job argument fact. getFact() is
invoked on the joblet instance grid object. In line 4, the resource.os.family fact is retrieved for
the resource where the Joblet is being executed. This varies, depending on which resource the Joblet
Job Development Concepts 17

18 PlateS
is scheduled to run on. In line 5, the ID fact for the job instance is retrieved. This changes for every
job instance. In line 6, the joblet index number for this joblet instance is returned. The index is 0
based.

Using the Policy Debugger to View Facts

The Policy Debugger page of the PlateSpin Orchestrate Development Client provides a table view
of all facts in a running or completed job instance. This view includes the Job instance facts
(jobinstance.* namespace) and the facts from the job context. After you select the Policy
Debugger tab in the Job Monitor view, the right side panel displays this fact table. For more details,
see “The Policy Debugger” in the PlateSpin Orchestrate 2.6 Development Client Reference.

2.3 Policies
Policies are XML-based files that aggregate the resource facts and constraints that are used to
control resources. This section includes the following information about policies:

 Section 2.3.1, “Policy Types,” on page 18

 Section 2.3.2, “Job Arguments and Parameter Lists in Policies,” on page 19

 Section 2.3.3, “The Role of Policy Constraints in Job Operation,” on page 21

For information about facts, see Chapter 4, “Understanding Grid Object Facts and Computed Facts,”
on page 53.

2.3.1 Policy Types

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, etc. They can be
associated with various grid objects (jobs, users, resources, etc.). The policy example below shows a
constraint that limits the number of running jobs to a defined value, while exempting certain users
from this limit. Jobs started that exceed the limit are queued until the running jobs count decreases
and the constraint passes:

<policy>
 <constraint type="start" reason="too busy">
 <or>
 <lt fact="job.instances.active" value="5" />
 <eq fact="user.name" value="canary" />
 </or>
 </constraint>
</policy>

Policies can be based on goals, entitlements, quotas, and other factors, all of which are controlled by
jobs.
pin Orchestrate 2.6 Developer Guide and Reference

Figure 2-1 Policy Types and Examples

2.3.2 Job Arguments and Parameter Lists in Policies

Part of a job’s static definition might include job arguments. A job argument defines what values can
be passed in when a job is invoked. This allows the developer to statically define and control how a
job behaves, while the administrator can modify policy values.

You define job arguments in an XML policy file, which is typically given the same base name as the
job. The example job cracker.jdl, for example, has an associated policy file named
cracker.policy. The cracker.policy file contains entries for the <jobargs> namespace, as
shown in the following partial example from cracker.policy.

 <jobargs>
 <fact name="cryptpw"
 type="String"
 description="Password of abc"
 value="4B3lzcNG/Yx7E"
 />
 <fact name="joblets"
 type="Integer"
 description="joblets to run"
 value="100"
 />
 </jobargs>

The above policy defines two facts in the jobargs namespace for the cracker job. One is a String
fact named cryptpw with a default value. The second jobargs fact is an integer named joblets.
Both of these facts have default values, so they do not require being set on job invocation. If the
default value was omitted, then job would require that the two facts be set on job invocation. The job
will not start unless all required job argument facts are supplied at job invocation. The default values
of job argument facts can be overridden at job invocation. Job arguments are passed to a job when
the job is invoked. This is done in one of the following ways:

 From the zos run command, as shown in the following example:

>zos run cracker cryptpw="dkslsl"

Policies

Goal-Based (examples)
• Priorities
• Acceptable response times
• Time to completion
• Minimum transaction volume

Entitlement-based (examples)
• Number of resources or % of resource
• Time of day allocations
• Historical utilization pattern
• Queue size
• Processor Utilization

Quota-Based (examples)
• Number of jobs per hour/day/month
• Resource utilization credits
• Limits by Group/Service/Application/Job
Job Development Concepts 19

20 PlateS
 From within a JDL job script when invoking a child job, as shown in the following job JDL
fragment:

self.runjob("cracker", { "cryptpw" : "asdfa" })

 From the Job Scheduler, either with the PlateSpin Orchestrate Development Client or by a
.sched file.

When you deploy a job, you can include an XML policy file that defines constraints and facts.
Because every job is a Grid object with its own associated set of facts (job.id, etc.), it already has a
set of predefined facts, so jobs can also be controlled by changing job arguments at run time.

As a job writer, you define the set of job arguments in the jobargs fact space. Your goal in writing
a job is to define the specific elements a job user is permitted to change. These job argument facts
are defined in the job’s XML policy for every given job.

The job argument fact values can be passed to a job with any of the following methods used for
running a job:.

 as command-line arguments to the zos run command

 from the Job Arguments tab of the Job Scheduler in the Development Client

 from the Server Portal

 through the runJob() method of the JDL Job class

Consequently, the Orchestrate Server run command passes in the job arguments. Similarly, for the
Job Scheduler, you can define which job arguments you want to schedule or run a job. You can also
specify job arguments when you use the Server Portal.

For example, in the following quickie.job example the number of joblets allowed to run and the
amount of sleep time between running joblets are set by the arguments numJoblets and sleeptime
as defined in the policy file for the job. If no job arguments are defined, the client cannot affect the
job:

...
 # Launch the joblets
 numJoblets = self.getFact("jobargs.numJoblets")
 print 'Launching ', numJoblets, ' joblets'

 self.schedule(quickieJoblet, numJoblets)

class quickieJoblet(Joblet):

 def joblet_started_event(self):
 sleeptime = self.getFact("jobargs.sleeptime")
 time.sleep(sleeptime)

To view the complete example, see quickie.job (page 143).

As noted, when running a job, you can pass in a policy to control job behavior. Policy files define
additional constraints to the job, such as how a resource might be selected or how the job runs. The
policy file is an XML file defined with the .policy extension.

For example, as shown below, you can pass in a policy for the job named quickie, with an
additional constraint to limit the chosen resources to those with a Linux OS. Suppose a policy file
name linux.policy in the directory named /mypolicies with this content:
pin Orchestrate 2.6 Developer Guide and Reference

<constraint type="resource">
 <eq fact="resource.os.family" value="linux" />
</constraint>

To start the quickie job using the additional policy, you would enter the following command:

>zos run quickie --policyfile=/mypolicies/linux.policy

2.3.3 The Role of Policy Constraints in Job Operation

This section includes the following information:

 “How Constraints Are Used” on page 21

 “Constraint Types” on page 23

 “Scheduling with Constraints” on page 26

 “Constraints Constructed in JDL” on page 27

How Constraints Are Used

PlateSpin Orchestrate lets you create jobs that meet the infrastructure scheduling and resource
management requirements of your data center, as illustrated in the following figure.

Figure 2-2 Multi-Dimensional Resource Scheduling Broker

There are many combinations of constraints and scheduling demands on the system that can be
managed by the highly flexible PlateSpin Orchestrate Resource Broker. As shown in the figure
below, many object types are managed by the Resource Broker. Resource objects are discovered
(see Section 2.4, “Resource Discovery,” on page 28). Other object types such as users and jobs can
also be managed. All of these object types have “facts” that define their specific attributes and
operational characteristics. PlateSpin Orchestrate compares these facts to requirements set by the
administrator for a specific data center task. These comparisons are called “constraints.”

Users/Groups
Quotas Priorities

IT Policy SLAs

Performance Criteria
Workload Needs
Resource Metrics
Job Development Concepts 21

22 PlateS
Figure 2-3 Policy-Based Resource Management Relying on Various Constraints

A policy is an XML file that specifies (among other things) constraints and fact values. Policies
govern how jobs are dynamically scheduled based on various job constraints. These job constraints
are represented in the following figure.

Figure 2-4 Policy-Based Job Management

The Resource Broker allocates or “dynamically schedules” resources based on the runtime
requirements of a job (for example, the necessary CPU type, OS type, and so on) rather than
allocating a specific machine in the data center to run a job. These requirements are defined inside a

Multi-Dimensional
Resource Broker

Constrained users

Policies
Constrained jobs

Constrained resources

Multi-Dimensional
Resource Broker

Constrained users

Policies

Placement

Optimizations

Allocation

Execution

Constrained jobs

Constrained resources Resource facts
pin Orchestrate 2.6 Developer Guide and Reference

job policy and are called “resource constraints.” In simpler terms, in order to run a given job, the
Resource Broker looks at the resource constraints defined in a job and then allocates an available
resource that can satisfy those constraints.

Constraint Types

The constraint element of a policy can define the selection and allocation of Grid objects (such as
resources) in a job. The required type attribute defines the selection type.

The following list explains how constraint types are applied in a job’s life cycle through policies:

 accept: A job-related constraint used to prevent work from starting; enforces a hard quota on
the jobs. If the constraint is violated, the job fails.

 start: A job-related constraint used to queue up work requests; limits the quantity of jobs or the
load on a resource. If the constraint is violated, the job stays queued.

 continue: A job-related constraint used to cancel jobs; provides special timeout or overrun
conditions. If the constraint is violated, the job is canceled.

 provision: A joblet-related constraint (for resource selection) used to control automatic
provisioning.

Provision constraints are used by the Orchestrate Broker as it evaluates VMs or VM templates
tthat could be automatically provisioned to satisfy a scheduled joblet. By default, a job’s
job.provision.maxcount fact is set to 0, which means no automatic provisioning. If this
value is greater than 0 and a joblet cannot be allocated to a physical resource, the provision
constraints are evaluated to find a suitable VM or a VM template to provision that also satisfies
the allocation and resource constraints.

 allocation: A joblet-related constraint (for resource selection) used to put jobs in a waiting
state when the constraint is violated.

 resource: A joblet-related constraint (for resource selection) used to select specific resources.
The joblet is put in a waiting state if the constraint is violated.

 vmhost: A VM-related constraint used to define a suitable VM host and repository for VM
provisioning.

 repository: A VM-related constraint used to define a suitable repository for the storage of a
VM.

It is possible to create or edit a policy that constrains a repository during VM provisioning;
however, a vmhost constraint type must be used, rather than a repository constraint type.

For example:

<constraint type="vmhost">
 <eq fact="repository.id" value="XXXX"/>
</constraint>

 authorize: A VM-related constraint evaluated before a vmhost or repository constraint.

While allocation constraints are continuously evaluated, the results of resource constraints are
cached for a short period of time (30 seconds). This difference allows you as a job writer to separate
constraints between those that require an immediate check of a constantly changing fact, and those
that require fewer checks because the fact changes infrequently.
Job Development Concepts 23

24 PlateS
For example, a resource’s OS type might be unlikely to change, so a constraint that checks this fact
fits in the resource constraint type (the assumption is that resource facts change infrequently,
especially if they are used for determining joblet assignment). In contrast, a job instance fact can be
changed frequently by a job instance, so a constraint that checks a job instance fact should fit in the
allocation constraint type.

All of these constraints are visible and can be tested in the Policy Debugger in the PlateSpin
Orchestrate Development Client.

A job’s life cycle as determined by constraints is illustrated in the following figure.

Figure 2-5 Constraint-Based Job State Transition

The following three figures provide more detail about the sequence of a job initiated by a user and
the constraints it must satisfy before it runs. The diagrams are not intended to represent a finely-
detailed flow, with every possible constraint, action, or state, but they do illustrate a high-level
constraint workflow.

Res
ource Constraints

“Give me N
resources
of type M”

Accept
Constraints

User-initiated or
scheduled job

Running

Start
Constraints

Continue
Constraints

Brokering/
Resource

Allocation

Queued

Canceled
pin Orchestrate 2.6 Developer Guide and Reference

Figure 2-6 VM-related Constraint Workflow

Figure 2-7 Job-related Constraint Workflow

User initiates a
VM-related action

Authorize
constraints

Type of
action

Vmhost
constraints

Repository
constraints

Queued state*

Failed state Queued state*

Pass

Provision
Build

Migrate

Pass

Fail FailMove
Clone

Fail

Job-related
action is initiated

*While in the queued state,
the vmhost/repository

constraints are re-evaluated
at an interval.

Job-related
action is initiated

Completed state**Running state

Canceled state

Accept
constraints

Start
constraints

Continue
constraints

Queued state*Failed state

Pass Pass

Pass

(conditional)

Fail Fail

Fail

(interval)

*While in the queued state,
the start constraints are

re-evaluated at an interval.

**This state occurs when a
job schedules a joblet

based on the success or
failure of the job."

Running state
Job Development Concepts 25

26 PlateS
Figure 2-8 Joblet-related Constraint Workflow

Scheduling with Constraints

The constraint specification of the policies is comprised of a set of logical clauses and operators that
compare property names and values. The grid server defines most of these properties, but they can
also be arbitrarily extended by the user/developer.

All properties appear in the job context, which is an environment where constraints are evaluated.
Compound clauses can be created by logical concatenation of earlier clauses. A rich set of
constraints can thus be written in the policies to describe the needs of a particular job.

You can also set constraints through the use of deployed policies, and you can use jobs to specify
additional constraints that can further restrict a particular job instance. The figure below shows the
complete process employed by the Orchestrate Server to constrain and schedule jobs.

When a user issues a work request, the user facts (user.* facts) and job facts (job.* facts) are
added to the job context. The server also makes all available resource facts (resource.* facts)
visible by reference. This set of properties creates an environment where constraints can be
executed.

The Job Scheduling Manager applies a logic ANDing of job constraints (specified in the policies),
grid policy constraints (set on the server), optionally additional user-defined constraints specified on
job submission, and optional constraints specified by the resources.

This procedure results in a list of matching resources. The PlateSpin Orchestrate solution returns
three lists:

 Available resources

 Pre-emptable resources (nodes running lower priority jobs that could be suspended)

 Resources that could be “stolen” (nodes running lower-priority jobs that could be killed)

These lists are then passed to the resource allocation logic where, given the possible resources, the
ordered list of desired resources is returned along with minimum acceptable allocation information.
The Job Scheduling Manager uses all of this data to appropriate resources for all jobs within the
same priority group.

Joblet-related
action is initiated

Running state

Allocation
constraints

Resource
constraints

Waiting state*Waiting state*

Pass Pass

Fail Fail

*While in the waiting state,
the resource and allocation
constraints are re-evaluated

at an interval.
pin Orchestrate 2.6 Developer Guide and Reference

Figure 2-9 Job Scheduling Priority

As the Job Scheduling Manager continually re-evaluates the allocation of resources, it relies on the
job policies as part of its real-time algorithm to help provide versatile and powerful job scheduling.

Setting up a constraint for use by the Job Scheduling Manager is accomplished by adding a
constraint in the job policy. For example, you might write just a few lines of policy code to describe
a job requiring a node with a x86 machine, greater than 512 MB of memory, and a resource
allocation strategy of minimizing execution time. Below is an example.

 <constraint type=”resource”>
 <and>
 <eq fact="cpu.architecture" value="x86" />
 <gt fact="memory.physical.total" value="512" />
 </and>
 </constraint>

Constraints Constructed in JDL

Constraints can also be constructed in JDL and in the Java Client SDK. A JDL-constructed
constraint can be used for grid search and for scheduling. A Java Client SDK-constructed constraint
can only be used for Grid object search.

When you create constraints, it is sometimes useful to access facts on a Grid object that is not in the
context of the constraint evaluation. An example scenario would be to sequence the running of jobs
triggered by the Job Scheduler.

In this example, you need to make job2 run only when all instances of job1 are complete. To do
this, you could add the following start constraint to the job2 definition:

<constraint type="start">
 <eq fact="job[job1].instances.active" value="0"/>
</constraint>

Here, the job in the context is job2, however the facts on job1 (instances.active) can still be
accessed. The general form of the fact name is:

6 8 7 9

1 2 3 4 5

Priority 7 Scheduler

Priority 2 Scheduler

Job Job

Priority 1 Scheduler

Job Job Job Job Job

Resource
Re-negotiation <allocate>
Job Development Concepts 27

28 PlateS
<grid_object_type>[<grid_object_name>].rest.of.fact.space

PlateSpin Orchestrate supports specific Grid object access for the following Grid objects:

 Jobs

 Resources (physical or virtual machines)

 VM hosts (physical machines hosting guest VMs)

 Virtual Disks

 Virtual NICs

 Repositories

 Virtual Bridges

 Users

Currently, explicit group access is not supported.

For more detailed information, see the following JDL constraint definitions:

 AndConstraint (page 235)

 BinaryConstraint (page 235)

 Constraint (page 236)

 ContainerConstraint (page 237)

 ContainsConstraint (page 237)

 DefinedConstraint (page 238)

 EqConstraint (page 238)

 GeConstraint (page 240)

 GtConstraint (page 240)

 LeConstraint (page 242)

 LtConstraint (page 243)

 NeConstraint (page 244)

 NotConstraint (page 244)

 OrConstraint (page 245)

 UndefinedConstraint (page 247)

2.4 Resource Discovery
Resource discovery jobs inspect a resource’s environment to set resource facts that are to be stored
with the Resource grid object. These jobs automatically discover the resource attributes (fully
extensible facts relating to such things as CPU, memory, storage, bandwidth, load, software
inventory) of the resources being managed by the PlateSpin Orchestrate Server. These facts are later
used during PlateSpin Orchestrate runtime from within a policy or constraint to select resources that
have certain identifiable attributes.

 Section 2.4.1, “Resource Discovery in Provisioning Jobs,” on page 29

 Section 2.4.2, “Some Specific Resource Discovery Jobs,” on page 29
pin Orchestrate 2.6 Developer Guide and Reference

For more information, see “Walkthrough: Observing Discovery Jobs” in the PlateSpin Orchestrate
2.6 Installation and Configuration Guide, and “Discovering Registered VM Hosts” in the PlateSpin
Orchestrate 2.6 VM Client Guide and Reference.

2.4.1 Resource Discovery in Provisioning Jobs

Provisioning jobs (also known as “provisioning adapters”) are used to discover VM hosts (those
resources running a VM technology such as Xen, VMware, or Hyper-V) and VM image repositories
(such as Amazon EC2), as well as VM images residing in those repositories.

For more information, see “Configuring VM Provisioning Adapters and Discovered VMs” in the
PlateSpin Orchestrate 2.6 Virtual Machine Management Guide.

2.4.2 Some Specific Resource Discovery Jobs

Some of the commonly used resource discovery jobs include:

 “cpuInfo.job” on page 29

 “demoInfo.job” on page 29

 “findApps.job” on page 29

 “osInfo.job” on page 29

cpuInfo.job

Gets CPU information of a resource.

demoInfo.job

Generates the CPU, operating system, and application information for testing.

findApps.job

Finds and reports what applications are installed on the datagrid.

osInfo.job

Gets the operating system of a grid resource. On Linux, it reads the /proc/cpuinfo; on Windows,
it reads the registry; on UNIX, it executes uname.

 resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpu.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

2.5 Workload Management Performed by the
Provisioning Manager
The Orchestrate Server uses a Provisioning Manager to allocate (assign) and preempt (reassign)
resources.
Job Development Concepts 29

30 PlateS
The Provisioning Manager preempts a resource by monitoring the job queue that is waiting for
allocation. The manager then compares the job’s relative priority to jobs already consuming
resources. Higher priority jobs can preempt lower priority jobs.

Figure 2-10 Workload Management

Depending on the tasks that applications might require, the Orchestrate Server submits the required
jobs to one or more of the connected managed resources to perform specific tasks.

For more information about how job scheduling and provisioning works, see the following sections:

 Chapter 8, “Job Scheduling,” on page 197

 Section 6.6, “Automatically Provisioning a VM,” on page 124

 Examples: dgtest.job (page 148)

2.6 Deploying Packaged Job Files
After jobs are created, you deploy .jdl or multi-element .job files to the Orchestrate Server by
using any of the following methods:

 Copying job files into the “hot” Orchestrate Server deployment directory. See “Deploying a
Sample System Job” in the PlateSpin Orchestrate 2.6 Development Client Reference.

 Using the Orchestrate Development Client. This process is discussed in Section 3.5.1, “Using
the PlateSpin Orchestrate Development Client to Deploy Jobs,” on page 40.

 Using the PlateSpin Orchestrate command line (CLI) tools. This process is discussed in
Section 3.5.2, “Using the zosadmin Command Line Tool to Deploy Jobs,” on page 40.

2.7 Running Your Jobs
After your jobs are deployed, you can execute them by using the following methods:

 Command Line Interface: Nearly all PlateSpin Orchestrate functionality, including deploying
and running jobs, can be performed using the command line tool, as shown in the following
example:

Optimizations

placement

allocation

execution

Provisioning
Manager
pin Orchestrate 2.6 Developer Guide and Reference

zos run buildTest [testlist=mylist]
JobID: paul.buildTest.14

More detailed CLI information is available in the zos command line tool.

 Server Portal: After PlateSpin Orchestrate is installed, you can use the PlateSpin Orchestrate
Server Portal to run jobs. This process is discussed in the PlateSpin Orchestrate 2.6 Server
Portal Reference.

 Custom Client: The PlateSpin Orchestrate toolkit provides an SDK that provides a custom
client that can invoke your custom jobs. This process is discussed in Appendix A, “PlateSpin
Orchestrate Client SDK,” on page 209.

 Built-in Job Scheduler: The Orchestrate Server uses a built-in Job Scheduler to run deployed
jobs. This tool is discussed in Chapter 8, “Job Scheduling,” on page 197 and in “The PlateSpin
Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference.

 From Other Jobs: As part of a job workflow, jobs can be invoked from within other jobs. You
integrate these processes within your job scripts as described in the Chapter 8, “Job
Scheduling,” on page 197.

2.8 Monitoring Job Results
PlateSpin Orchestrate lets you monitor jobs by using the same methods outlined in Section 2.7,
“Running Your Jobs,” on page 30.

This section includes the following information:

 Section 2.8.1, “Monitoring Jobs from the Command Line,” on page 31

 Section 2.8.2, “Monitoring Jobs from the Server Portal,” on page 32

2.8.1 Monitoring Jobs from the Command Line

The following example shows the status of the job ray.buildtest.18 using different monitoring
interfaces:

zos status -e ray.buildtest.18

Job Status for ray.buildtest.18

 State: Completed (0 this job)
 Resource Count: 0
 Percent Complete: 100%
 Queue Pos: 1 of 1 (initial pos=1)
 Child Job Count: 0 (0 this job)

 Instance Name: Buildtest
 Job Type: buildtest
 Memo: Build Test BuildID 02-02-09 1705 , failed: 1, Run: 5,
 Passed: 4
 Priority: medium
 Arguments: <none>

 Submit Time: 02/02/2009 01:46:12
 Delayed Start: n/a
 Start Time: 02/02/2009 01:46:12
Job Development Concepts 31

32 PlateS
 End Time: 01/01/1009 01:46:14
 Elapsed Time: 0:00:01
 Queue Time: 0:00:00
 Pause Time: 0:00:00

 Total CPU Time: 0:00:00 (0:00:00 this job)
 Total GCycles: 0:00:00 (0:00:00 this job)
 Total Cost: $0.0002 ($0.0002 this job)
 Burn Rate: $0.0003/hr (0.0003/hr this job)

The bottom section of the status report shows that you can also monitor job costing metrics, which
are quite minimal in this example. More sophisticated job monitoring is possible.

2.8.2 Monitoring Jobs from the Server Portal

You can use the status page of the Server Portal to monitor jobs. In this example, the job memo field
is displayed.

Figure 2-11 Server Portal Job Monitoring Example

2.9 Debugging Jobs
The following view of the Development Client shows how you can determine that the buildTest
job was not able to find or match any resources because resources were not added to the buildtest
group as required by the policy.
pin Orchestrate 2.6 Developer Guide and Reference

Figure 2-12 Debugging Jobs Using the Orchestrate Development Client

The policy debugger shows the blocking constraint, and the tooltip gives the reason. If you drag and
drop to add resources to the required group, the job continues quickly with no restart.
Job Development Concepts 33

34 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

3
3Job Architecture

The PlateSpin Orchestrate Job Scheduler is a sophisticated scheduling engine that maintains high
performance network efficiency and quality user service when running jobs on the grid. Such
efficiencies are managed through a set of grid component facts that operate in conjunction with job
constraints. Facts and constraints operate together like a filter system to maintain both the
administrator’s goal of high quality of service and the user’s goal to run fast, inexpensive jobs.

This section explains the following job architectural concepts:

 Section 3.1, “Understanding JDL,” on page 35

 Section 3.2, “JDL Package,” on page 36

 Section 3.3, “Job Class,” on page 37

 Section 3.4, “Job Invocation,” on page 39

 Section 3.5, “Deploying Jobs,” on page 40

 Section 3.6, “Starting PlateSpin Orchestrate Jobs,” on page 41

 Section 3.7, “Using Other Grid Objects,” on page 41

 Section 3.8, “Communicating Through Job Events,” on page 42

 Section 3.9, “Executing Local Programs,” on page 43

 Section 3.10, “Logging and Debugging,” on page 45

 Section 3.11, “Improving Job and Joblet Robustness,” on page 47

 Section 3.12, “Using an Event Notification in a Job,” on page 48

3.1 Understanding JDL
The PlateSpin Orchestrate Grid Management system uses an embedded Python-based language for
describing jobs (called the Job Definition Language or JDL). This scripting language is used to
control the job flow, request resources, handle events and generally interact with the Grid server as
jobs proceed.

Jobs run in an environment that expects facts (information) to exist about available resources. These
facts are either set up manually through configuration or automatically discovered via discovery
jobs. Both the end-user jobs and the discovery jobs have the same structure and language. The only
difference is in how they are scheduled.

The job JDL controls the complete life cycle of the job. JDL is a scripting language, so it does not
provide compile-time type checking. There are no checks for infinite loops, although various
precautions are available to protect against runaway jobs, including job and joblet timeouts,
maximum resource consumption, quotas, and limited low-priority JDL thread execution.

As noted, the JDL language is based on the industry standard Python language, which was chosen
because of its widespread use for test script writing in QA departments, its performance, its
readability of code, and ease to learn.
Job Architecture 35

36 PlateS
The Python language has all the familiar looping and conditional operations as well as some
powerful operations. There are various books on the language including O’Reilly’s Python in a
Nutshell and Learning Python. Online resources are available at http://www.python.org (http://
www.python.org)

Within the Orchestrate Server and grid jobs, JDL not only adds a suite of new commands but also
provides an event-oriented programming environment. A job is notified of every state change or
activity by calling an appropriately named event handler method.

A job only defines handlers for events it is interested in. In addition to built-in events (such as,
joblet_started_event, job_completed_event, job_cancelled_event, and
job_started_event) it can define handlers for custom events caused by incoming messages. For
example, if a job (Job (page 241) class) defines a method as follows:

 def my_custom_event(self, params):
 print Got a my_custom event carrying ", params

And the joblet (Joblet (page 241) class) sends an event/message as follows:

 self.sendEvent(“my_custom_evemt”, {“arg1”:”one”})

NOTE: The event being sent has to be the same name as the defined method receiving the event.

The following line is added to the job log:

 Got a my_custom event carrying {'arg1':'one'}

JDL can also define timer events (periodic and one-time) with similar event handlers.

Each event handler can run in a separate thread for parallel execution or can be synchronized to a
single thread. A separate thread results in better performance, but also incurs the development
expense of ensuring that shared data structures are thread safe.

TIP: If you utilize the sys module in custom JDL files that you use in PlateSpin Orchestrate, an
“import sys” directive must be included in the file in the appropriate place. In prior versions of
PlateSpin Orchestrate, you were not required to explicitly import the sys module, but this changed in
version 2.5.

In PlateSpin Orchestrate 2.6, if this import is not performed, you see the following error message:

NameError: name 'sys' is not defined

3.2 JDL Package
The job package consists of the following elements:

 Job Description Language (JDL) code, consisting of a Python-based script containing the bits
to control jobs.

 An optional policy XML file, which applies constraints and other job facts to control jobs.

 Any other associated executables or data files that the job requires.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.python.org

The cracker.jdl sample job, for example, includes a set of Java code that discovers the user
password in every configured agent before the Java class is run. Or, many discovery jobs, which
measure performance of Web servers or monitor any other applications, might include resource
discovery utilities that enable resource discovery.

Jobs include all of the code, policy, and data elements necessary to execute specific, predetermined
tasks administered either through the PlateSpin Orchestrate Development Client user interface or
from the command line. Because each job has specific, predefined elements, jobs can be scripted
and delivered to any agent, which ultimately can lead to automating almost any datacenter task.

3.2.1 .sched Files

Job packages also can contain optional XML .sched files that describe the scheduling requirements
for any job. This file defines when the job is run.

For example, jobs might be run whenever an agent starts up, which is defined in the .sched file.
The discovery job “osInfo.job” on page 29 has a schedule XML file that specifies to always run a
specified job whenever a specific resource is started and becomes available.

3.3 Job Class
The Job class is a representation of a running job instance. This class defines functions for
interacting with the server, including handling notification of job state transitions, child job
submission, managing joblets and for receiving and sending events from resources and from clients.
A job writer defines a subclass of the job class and uses the methods available on the job class for
scheduling joblets and event processing.

For more information about the methods this class uses, see Section 3.3.1, “Job State Transition
Events,” on page 37.

The following example demonstrates a job that schedules a single joblet to run on one resource:

 class Simple(Job):
 def job_started_event(self):
 self.schedule(SimpleJoblet)

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 print "Hello from Joblet"

For the above example, the class Simple is instantiated on the server when a job is run either by
client tools or by the job scheduler. When a job transitions to the started state, the method
job_started_event is invoked. Here the job_started_event invokes the base class method
schedule() to create a single joblet and schedule the joblet to run on a resource. The
SimpleJoblet class is instantiated and run on a resource. A Resource is a physical or virtual
machine on which the Orchestrate Agent is installed and running and where the Joblet code is
executed.

3.3.1 Job State Transition Events

Each job has a set of events that are invoked at the state transitions of a job. On the starting state of a
job, the job_started_event is always invoked.

The following is a list of job events that are invoked upon job state transitions:
Job Architecture 37

38 PlateS
 job_started_event
 job_completed_event
 job_cancelled_event
 job_failed_event
 job_paused_event
 job_resumed_event

The following is a list of job events that are invoked upon child job state transitions:

 child_job_started_event
 child_job_completed_event
 child_job_cancelled_event
 child_job_failed_event

The following is a list of provisioner events that are invoked upon provisioner state transitions:

 provisioner_completed_event
 provisioner_cancelled_event
 provisioner_failed_event

The following is a list of joblet events that are invoked as the joblet state transitions:

 joblet_started_event
 joblet_completed_event
 joblet_failed_event
 joblet_cancelled_event
 joblet_retry_event

NOTE: Only the job_started_event is required; other events are optional.

3.3.2 Handling Custom Events

A job writer can also handle and invoke custom events within a job. Events can come from clients,
other jobs, and from joblets.

The following example defines an event handler named mycustom_event in a job:

 class Simple(Job):
 def job_started_event(self):
 ...

 def mycustom_event(self,params):
 dir = params["directory_to_list"]
 self.schedule(MyJoblet,{ "dir" : dir })

In this example, the event retrieves a element from the params dictionary that is supplied to every
custom event. The dictionary is optionally filled by the caller of the event.

The following example invokes the custom event named mycustom_event from the PlateSpin
Orchestrate client command line tool:

 zos event <jobid_of_running_job> mycustom_event directory_to_list="/tmp"

In this example, a message is sent from the client tool to the job running on the server. The following
example invokes the same custom event from a joblet:
pin Orchestrate 2.6 Developer Guide and Reference

 class SimpleJoblet(Joblet):
 def joblet_started_event(self):
 ...
 self.sendEvent("mycustom_event", {"directory_to_list":"/tmp"})

In this example, a message is sent from the joblet running on a resource to the job running on the
server. The running job has access to a factset which is the aggregation of the job instance factset
(jobinstance.*), the deployed job factset (job.*, jobargs.*), the User factset (user.*), the Matrix
factset (matrix.*) and any jobargs or policy facts supplied at the time the job is started.

Fact values are retrieved using the GridObjectInfo (page 240) functions that the job class inherits.

The following example retrieves the value of the job instance fact state.string from the jobinstance
namespace:

 class Simple(Job):
 def job_started_event(self):
 jobstate = self.getFact("jobinstance.state.string")
 print "job state=%s" % (jobstate)

For further details about each of the events above, see Section B.1, “Job Class,” on page 229.

The following example uses the joblet_started_event to determine the resource a Joblet is
running on. If you implement the joblet_started_event job method, your job is notified when a
Joblet has started execution:

1 class test(Job):
2 def job_started_event(self):
3 self.schedule(TestJoblet)
4
5 def joblet_started_event(self,jobletNum,resourceId):
6 print "joblet %d is running on %s" % (jobletNum, resourceId)
7
8 class TestJoblet(Joblet):
9 def joblet_started_event(self):
10 import time
11 time.sleep(10)

In lines 5 and 6, the joblet_started_event is notified when the instance of TestJoblet is
executing on a resource.

3.4 Job Invocation
Jobs can be started using either the zos command line tool, scheduling through a .sched file, or
manually through the PlateSpin Orchestrate Development Client. Internally, when a job is invoked,
an XML file is created. It can be deployed immediately or it can be scheduled for later deployment,
depending upon the requirements of the job.

Jobs also can be started within a job. For example, you might have a job that contains JDL code to
run a secondary job. Jobs also can be started through the Web portal.

Rather than running jobs immediately, there are many benefits to using the Job Scheduling Manager:

 Higher priority jobs can be run first and jump ahead in the scheduling priority band.

 Jobs can be run on the least costly node resources when accelerated performance is not as
critical.
Job Architecture 39

40 PlateS
 Jobs can be run on specific types of hardware.

 User classes can be defined to indicate different priority levels for running jobs.

3.5 Deploying Jobs
A job must be deployed to the Orchestrate Server before that job can be run. Deployment to the
server is done in either of the following ways:

 Section 3.5.1, “Using the PlateSpin Orchestrate Development Client to Deploy Jobs,” on
page 40

 Section 3.5.2, “Using the zosadmin Command Line Tool to Deploy Jobs,” on page 40

3.5.1 Using the PlateSpin Orchestrate Development Client to
Deploy Jobs

1 In the Actions menu, click Deploy Job.

2 For additional deployment details, see “Walkthrough: Deploying a Sample Job” in the
PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

3.5.2 Using the zosadmin Command Line Tool to Deploy Jobs

From the CLI, you can deploy a component file (.job, .jdl, .sar) or refer to a directory
containing job components.

.job files are Java jar archives containing .jdl, .policy, .sched and any other files required by
your job. A .sar file is a Java jar archive for containing multiple jobs and policies.

1 To deploy a .job file from the command line, enter the following command:

>zosadmin deploy <myjob>.job

2 To deploy a job from a directory where the directory /jobs/myjob contains .jdl, .policy,
.sched, and any other files required by your job, enter the following command:

>zosadmin deploy /jobs/myjob

Deploying from a directory is useful if you want to explode an existing job or .sar file and
redeploy the job components without putting the job back together as a .job or .sar file.

3 Copy the job file into the “hot” deploy directory by entering the following command:

>cp <install dir>/examples/whoami.job <install dir>/deploy

As part of an iterative process, you can re-deploy a job from a file or a directory again after specified
local changes are made to the job file. You can also undeploy a job out of the system if you are done
with it. Use zosadmin redeploy and zosadmin undeploy to re-deploy and undeploy jobs,
respectively.

A typical approach to designing, deploying, and running a job is as follows:

1. Identify and outline the job tasks you want the Orchestrate Server to perform.

2. Use the preconfigured JDL files for specific tasks listed in Appendix B, “PlateSpin Orchestrate
Job Classes and JDL Syntax,” on page 229.

3. To configure jobs, edit the JDL file with an external text editor.
pin Orchestrate 2.6 Developer Guide and Reference

4. Repackage the job as a .jar file.

NOTE: The job could also be packaged and sent as an “exploded” file.

5. Run the zos CLI administration tool to redeploy the packaged job into the Orchestrate Server.

6. Run the job using the zos command line tool.

7. Monitor the results of the job in the PlateSpin Orchestrate Development Client.

Another method to deploy jobs is to edit JDL files through the Orchestrate Development Client. The
Development Client has a text editor that enables you to make changes directly in the JDL file as it
is stored on the server ready to deploy. After changes are made and the file is saved using the
Orchestrate Development Client, you simply re-run the job without redeploying it. The procedure is
useful when you need to fix typos in the JDL file or have minor changes to make in the job
functionality.

NOTE: Redeploying a job overwrites any job that has been previously saved on the Orchestrate
Server. The Orchestrate Development Client has a Save File menu option if you want to preserve
JDL modifications you made using the Orchestrate Development Client.

There is no way “undo” a change to a .jdl file after the JDL editor in the Orchestrate Development
Client has saved the file, nor is there a method for rolling back to a previously deployed version. We
recommend that you use an external source code control system such as CVS or SVN for version
control.

3.6 Starting PlateSpin Orchestrate Jobs
Jobs can be started by using any of the following options:

 Running jobs from the zos command line (see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.6 Command Line Reference).

 Running jobs from the PlateSpin Orchestrate Job Scheduler (see “The PlateSpin Orchestrate
Job Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference).

 Running jobs from Web applications (see “Using the PlateSpin Orchestrate Server Portal” in
the PlateSpin Orchestrate 2.6 Server Portal Reference).

 Running jobs from within jobs (see Section 2.2.2, “Using Facts in Job Scripts,” on page 16).

3.7 Using Other Grid Objects
Grid objects can be created and retrieved using jobs. This is done when facts from other objects are
needed for job decision processing or when joblets are executed on a resource.

The MatrixInfo (page 243) Grid object represents the system and from the MatrixInfo object, you
can retrieve other grid objects in the system. For example, to retrieve the resource grid object named
webserver and a fact named resource.id from this object, you would enter the following JDL
code:

 webserver = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
 id = webserver.getFact("resource.id")
Job Architecture 41

42 PlateS
In Line 1, the ResourceInfo Grid object for webserver is retrieved. The getMatrix() built-in
function retrieves the MatrixInfo object instance. getGridObject() is a method on the
MatrixInfo class. In Line 2, the fact value for the resource fact resource.id is retrieved.

The MatrixInfo Grid object also provides functions for creating other Grid objects. For more
complete information about these functions, see MatrixInfo (page 243).

The MatrixInfo object can be used in both Job and Joblet classes. In the Joblet class,
MatrixInfo cannot create new Grid objects. If your job is required to create Grid objects, you must
use MatrixInfo in the Job class.

3.8 Communicating Through Job Events
JDL events are how the server communicates job state transitions to your job. The required
job_started_event is always invoked when the job transitions to the starting state.

Likewise, all the other state transitions have JDL equivalents that can be optionally implemented in
your job. For example, the joblet_completed_event is invoked when a joblet has transitioned to
completed. You could implement joblet_completed_event to launch another job or joblet or
send a custom event to a Client, another job, or another joblet.

You can also use your own custom events for communicating between Client, job, child jobs and
joblets.

Every partition of a job (client, job, joblet, child jobs) can communicate directly or indirectly with
any other partition of a job by using Events. Events are messages that are communicated to each of
the job partitions. For example, a joblet running on a resource can send an event to the job portion
running on the server to communicate the completion of a stage of operation.

A job can send an event to a Java Client signaling a stage completion or just to send a log message to
display in a client GUI.

Every event carries a dictionary as a payload. You can put any key/values you want to fulfill the
requirements of your communication. The dictionary can be empty.

For more information about events are invoked at the state transitions of a job, see Job (page 241)
and Section B.7, “Joblet State Values,” on page 232.

3.8.1 Sending and Receiving Events

To send an event from a joblet to a job running on a server, you would input the following:

1 The portion in the joblet JDL to send the event:

self.sendEvent("myevent", { "message": "hello from joblet" })

2 The portion in job JDL to receive the event:

def myevent(self,params):
 print "hello from myevent. params=",params

To send an event from a job running on the server to a client, you would input the following:

self.sendClientEvent("notifyClient", { "log" : "Web server installation
completed" })

In your Java client, you must implement AgentListener and check for an Event message.
pin Orchestrate 2.6 Developer Guide and Reference

For testing, you can use the zos run ... --listen option to print events from the server. For
additional details about the sendEvent() and sendClientEvent() methods in the Job (page 241)
and Joblet (page 241) documentation.

3.8.2 Synchronization

By default, no synchronization occurs on job events. However, synchronization is necessary when
you update the same grid objects from multiple events.

In that case, you must put a synchronization wrapper around the critical section you want to protect.
The following JDL script is how this is done:

1 import synchronize
2 def objects_discovered_event(self, params):
3 print "hello"
4 objects_discovered_event =
synchronize.make_synchronized(objects_discovered_event)

Line 1 specifies to use the synchronization wrapper, which requires you to import the synchronize
package.

Lines 2 and 3 provide the normal definition to an event in your job, while line 4 wraps the function
definition with a synchronized wrapper.

3.9 Executing Local Programs
Running local programs is one of the main reasons for scheduling joblets on resources. Although
you are not allowed to run local programs on the server side job portion of JDL, there are two ways
to run local programs in a joblet:

1 Use the built-in system() function.

This function is used for simple executions requiring no output or process handling. It simply
runs the supplied string as a shell command on the resource and writes stdout and stderr to
the job log.

2 Use the Exec JDL class.

The Exec class provides flexibility in how to invoke executables, to process the output, and to
manage the process once running. There is provision for controlling stdin, stdout, and
stderr values. stdout and stderr can be redirected to a file, to the job log, or to a stream
object.

Exec provides control of how the local program is run. You can choose to run as the agent user
or the job user. The default is to run as the job user, but fallback to agent user if the job user
does not exist on the resource.

For more information, see Exec (page 239).

3.9.1 Output Handling

The Exec (page 239) function provides controls for specifying how to handle stdout out stderr.
By default, Exec discards the output.

The following example runs a program that directs stdout and stderr to the job log:
Job Architecture 43

44 PlateS
 e = Exec()
 e.setShellCommand(cmd)
 e.writeStdoutToLog()
 e.writeStderrToLog()
 e.execute()

The following example runs a program that directs stdout and stderr to files and opens the
stdout file if there is no error in execution:

 e = Exec()
 e.setCommand("ps -aef")
 e.setStdoutFile("/tmp/ps.out")
 e.setStderrFile("/tmp/ps.err")
 result = e.execute()
 if result == 0:
 output = open("/tmp/ps.out").read()
 print output

3.9.2 Local Users

You can choose to run local programs and have file operations done as the agent user or the job user.
The default is to run as the job user, but fallback to agent user if the job user does not exist on the
resource. These controls are specified on the job. The job.joblet.runtype fact specifies how file and
executable operations run in the joblet in behalf of the job user, or not.

The choices for job.joblet.runtype are defined in the following table:

Table 3-1 Job Run Type Values

There is also a fact on the resource grid object that can override the job.joblet.runtype fact. The
fact resource.agent.config.exec.asagentuseronly on the resource grid object can overwrite
the job.joblet.runtype fact.

Option Description

RunAsJobUserFallingBackToNodeUser Default. This means if the job user exists as a user on the
resource, then executable and file operations is done on
behalf of that user. By falling back, this means that if the job
user does not exist, the agent will still execute the joblet
executable and file operation as the agent user. If the
executable or file operation still has a permission failure, then
the agent user is not allowed to run the local program or do
the file operation.

RunOnlyAsJobUser This means resource can only run the executable or file
operation as the job user and will fail immediately if the job
user does not exist on the resource. You want to use this
mode of operation if you wish to strictly enforce execution and
file ownership. You must have your resource setup with NIS or
other naming scheme so that your users will exist on the
resource.

RunOnlyAsNodeUser This means the resource will only run executables and do file
operations as the agent user.
pin Orchestrate 2.6 Developer Guide and Reference

This ability to run as the job user is supported by the enhanced exec feature of the Orchestrate
Agent. A resource might not support PlateSpin Orchestrate enhanced execution of running as job
users. If the capability is not supported, the fact resource.agent.config.exec.enhancedused is
False. This fact is provided so you can create a resource or allocation constraint to exclude such a
resource if your grid mixes resource with/without the enhanced exec support and your job requires
enhanced exec capabilities.

3.9.3 Safety and Failure Handling

An exception in JDL will fail the job. By default, an exception in the joblet will fail the joblet. The
job.joblet.* facts provide controls on how many times a failure will fail the joblet. For more
information, see Section 3.11, “Improving Job and Joblet Robustness,” on page 47.

 try :
 < JDL >
 except:
 exc_type, exc_value, exc_traceback = sys.exc_info()
 print "Exception:", exc_type, exc_value

JDL also provides the fail() function on the Job and Joblet class for failing a job and joblet. The
fail() function takes an optional reason message.

You would use fail() when you detect an error condition and wish to end the job or joblet
immediately. Usage of the joblet fail() fails the currently running instance of the joblet. The actual
failed state of the joblet occurs when the maximum number of retries has been reached.

3.10 Logging and Debugging
The following sections show some examples how jobs can be logged and debugged:

 Section 3.10.1, “Creating a Job Memo,” on page 45

 Section 3.10.2, “Tracing,” on page 47

3.10.1 Creating a Job Memo

The following job example shows logExample.jdl output inthe JDL editor of the Orchestrate
Development Client.
Job Architecture 45

46 PlateS
Figure 3-1 Example Job Displayed in the JDL Editor of the Development Client

In the job section of this example (lines 7-17), the fact jobinstance.memo (line 14) is set by the job
instance. The job log text is emitted on line 11. Both of those are visible in the following example.

Figure 3-2 Example Displaying the jobinstance.memo Fact and Job Log Text in the Jobs Monitor View of the
Development Client

In the joblet section of this example (lines 24-29), the fact named joblet.memo (line 27) is set by
the joblet instance and consists of a brief memo for each joblet. This is typically used for providing
detailed explanations, such as the name of the executable being run.
pin Orchestrate 2.6 Developer Guide and Reference

The name of the joblet is specified by the fact named joblet.instancename (line 28). This is
typically a simple word displayed in the Development Client joblet column view. The following
example shows the joblet facts joblet.memo and joblet.instancename in the Development
Client.

Figure 3-3 Example of Joblet Facts Displayed in the Development Client

3.10.2 Tracing

There are two facts on the job grid object to turn tracing on or off. The tracing fact writes a message
to the job log when a job and/or joblet event is entered and exited. The facts are job.tracing and
job.joblet.tracing. You can turn these on using the Orchestrate Development Client or you can
use the zos run command tool.

3.11 Improving Job and Joblet Robustness
The job and joblet grid objects provide several facts for controlling the robustness of job and joblet
operation.

The default setting of these facts is to fail the job on first error, since failures are typical during the
development phase. Depending on your job requirements, you adjust the retry maximum on the fact
to enable your joblets either to failover or to retry.

The fact job.joblet.maxretry defaults to 0, which means the joblet is not retried. On first failure,
the joblet is considered failed. This, in turn, fails the job. However, after you have written and tested
your job, you should introduce fault tolerance to the joblet.

For example, suppose you know that your resource application might occasionally timeout due to
network or other resource problems. Therefore, you might want to introduce the following behavior
by setting facts appropriately:

 On timeout of 60 seconds, retry the joblet.

 Retry a maximum of two times. This may cause a retry on another resource matching your
resource and allocation constraints.

 On the third timeout, fail the joblet.
Job Architecture 47

48 PlateS
To configure this setup, you use the following facts in either the job policy (using the Orchestrate
Development Client to edit the facts directly) or within the job itself:

 job.joblet.timeout set to 60 job.joblet.maxretry set to 2

In addition to timeout, there are different kinds of joblet failures for which you can set the maximum
retry. There are forced (job errors) and unforced connection errors. For example, an error condition
detected by the JDL code (forced) might require more retries than a network error, which might
cause resource disconnections. In the connection failure case, you might want to lower the retry
limit because you probably do not want a badly setup resource with connection problems to keep
retrying and getting work.

3.12 Using an Event Notification in a Job
Jobs can be notified of a PlateSpin Orchestrate event in two ways.

 A running Job can subscribe to receive PlateSpin Orchestrate event notifications. (See
Section 3.12.1, “Receiving Event Notifications in a Running Job,” on page 48)

 A Job can be scheduled to start upon an Event notification.

For more information about job scheduling, see Chapter 8, “Job Scheduling,” on page 197 or
“The PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.6 Development
Client Reference.

3.12.1 Receiving Event Notifications in a Running Job

 “Subscribe” on page 48

 “Unsubscribe” on page 49

 “Callback Method Signature” on page 49

 “How an Event Notification Can Start a Job” on page 49

Subscribe

For a job to receive notifications, a job subscribes to an event and must remain running for the
notification to occur.

How to subscribe to an event is accomplished using the subscribeToEvent() Job method, shown
below:

 def subscribeToEvent(<event Name>, <Job callback method>)

In this method, <event name> is the string name of the event being subscribed to; <Job callback
method> is the reference to a Job method. Joblets and globals are not supported.

Example: The following is an example of the subscribeToEvent() method.

 self.subscribeToEvent("vmhost" ,self.eventHandler)

In this example, vmhost is the name of the event and self.eventHandler is a reference to the
callback method.
pin Orchestrate 2.6 Developer Guide and Reference

Unsubscribe

To unsubscribe, use the unscribeFromEvent() Job method. For the subscribe example shown
above, the following is how to unsubscribe.

 self.unsubscribeFromEvent("vmhost",self.eventHandler)

Callback Method Signature

 def <Job callback method>(self, context):

The callback method must be a Job method. The context argument is a dictionary containing name/
value pairs. The dictionary contents passed to the callback vary depending on the event type.

Example: The following is an example of the callback method.

 def eventHandler(self,context):

In this method, context is the required dictionary argument passed to every callback. The contents
of the dictionary vary depending on event type (for details, see Section 3.12.2, “Event Types,” on
page 50).

How an Event Notification Can Start a Job

You can create a schedule using the Job Scheduler or deploy a .sched file to start a job on an event
notification. For more information, see Chapter 8, “Job Scheduling,” on page 197 or “The PlateSpin
Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference.

The job to be started must match a required job argument signature where the job must define at
least one job argument.

The required job argument must be called “context” and be of type Dictionary. The contents of the
dictionary vary depending on event type (refer to "Event Types " below for details).

The contents of EventResponse.jdl is an example of a job and policy that can be scheduled on an
event notification:

1class EventResponse(Job):
2
3 def job_started_event(self):
4 context = self.getFact("jobargs.context")
5
6 print "Context:"
7 keys = context.keys()
8 keys.sort()
9 for k in keys:
10 v = context[k]
11 print " key(%s) type(%s) value(%s)" % (k,type(v),str(v))

Line 4: This line pulls out the job argument for the event context.

Lines 6-11: These lines print out the contents of the context dictionary.

The contents of EventResponse.policy are shown below:
Job Architecture 49

50 PlateS
1<policy>
2 <jobargs>
3 <fact name="context" type="Dictionary"
4 description="Dictionary containing the context for the event " />
5 </jobargs>
6</policy>

Lines 3-4: These lines define the required job argument containing the Event context. The running
job receives the job argument named context with the dictionary completed by the PlateSpin
Orchestrate Event Manager with the context that matches the trigger rules.

3.12.2 Event Types

 “Event Objects” on page 50

 “Built-in Events” on page 51

 “External Events” on page 51

Event Objects

Event objects are defined in an XML document and deployed to a server and managed using the
Orchestrate Development Client. In the Development Client, these objects are shown in the tree
view.

The callback method context argument dictionary contains every grid object type and a value or list
of values. The dictionary depends on the event XML definition and the matching grid objects of the
<trigger> rule.

The following example event file (vmhost.event) shows the contents of the dictionary that will be
passed as either a jobarg to a job to be scheduled to start, or as a argument to an event callback for a
running job.

1<event>
2
3 <context>
4 <vmhost />
5 <user>system</user>
6 </context>
7
8 <trigger>
9 <gt fact="vmhost.resource.loadaverage" value="2" />
10 </trigger>
11
12</event>

Lines 3-6: Define the context for the Event object.

Line 4: Defines the match for the trigger rule that iterates over all vmhosts.

Line 5: Defines the context, and contains the user grid object named system.

Assuming that there are 10 vmhosts named "vmhost1, vmhost2, ... vmhost10, but only the first
three vmhosts match the trigger rule, the context includse a list of the matching vmhosts. In this
case, the context dictionary contains the following:
pin Orchestrate 2.6 Developer Guide and Reference

 {
1 "vmhost" : ["vmhost1", "vmhost2", "vmhost3"],
2 "user" : "system",
3 "repository" : "" ,
4 "resource" : "",
5 "job" : ""
 }

Line 1: List of the matching VM Hosts that passed the <trigger> rule.

Line 2: The user object that is defined in the <context> XML. In this case, system.

Lines 3-5: These grid objects are not defined in the context. Their value is empty.

In this example, the dictionary is passed as a job argument to a scheduled job that triggers on the
event or is passed to a callback method in a running job that has subscribed to the event.

Built-in Events

Built-in events occur when a managed object comes online or offline or when that object has a
health status change. For built-in events, the dictionary contains the name of the grid object type.
The value is the name of the grid object.

The PlateSpin Orchestrate built-in events are named as follows:

 RESOURCE_ONLINE

 RESOURCE_NEEDS_UPGRADE

 USER_ONLINE

 RESOURCE_HEALTH

 USER_HEALTH

 VMHOST_HEALTH

 REPOSITORY_HEALTH

For example, when the resource xen1 comes online, the built-in event called RESOURCE_ONLINE is
invoked. Any scheduled jobs are started and any running jobs that have subscribed are invoked. The
context dictionary contains the following:

 {
 "resource" : "xen1"
 }

The dictionary shown above is passed as a job argument to a scheduled job that triggers on the event
or that is passed to a callback method in a running job that has subscribed to the event.

External Events

External events are events that are invoked by an outside process. In this case, the callback method
context dictionary is free form and contains what was supplied to the external event.

For example, if the external event was invoked with a dictionary mapping of two elements like this:

 { "name" : "foo", "age" : 40 }

The corresponding JDL callback method receives the same dictionary.
Job Architecture 51

52 PlateS
Example: The following example of an external event subscribes to a previously deployed event
named vmhost. This job continue running until the job is canceled or an error occurs.

1 EVENT = "vmhost"
2
3 class EventDaemon(Job):
4
5 def job_started_event(self):
6
7 self.setFact("job.autoterminate",False)
8 self.subscribeToEvent(EVENT,self.eventHandler)
9 print "Waiting for notification for event '%s'" % (EVENT)
10
11
12 def eventHandler(self,context):
13 print "Context:"
14
15 keys = context.keys()
16 keys.sort()
17 for k in keys:
18 v = context[k]
19 print " key(%s) type(%s) value(%s)" % (k,type(v),str(v))

Line 7: Sets the autoterminate fact so that the job remains running upon completion of the
job_started_event().

Line 8: Subscribes to the named event vmhost and passes in a reference to the Job method
eventHandler() to callback on when the event notification occurs.

Line 12: Definition of the callback method to invoke when the event notification occurs.

Lines 15-19: prints out the context dictionary received upon event notification.
pin Orchestrate 2.6 Developer Guide and Reference

4
4Understanding Grid Object Facts
and Computed Facts

This section includes the following information:

 Section 4.1, “Grid Object Facts and Fact Junctions,” on page 53

 Section 4.2, “Computed Facts,” on page 106

4.1 Grid Object Facts and Fact Junctions
Every component discovered in a PlateSpin Orchestrate-enabled network is identified and
abstracted as an object. Within the PlateSpin Orchestrate management framework, objects are stored
within an addressable database called a Grid. Every Grid object has an associated set of facts and
constraints that define its properties and characteristics. Essentially, by building, deploying, and
running jobs on the PlateSpin Orchestrate Server, you can individually change the functionality of
any and all system resources by managing an object’s facts and constraints.

The components that have facts include Jobs, Resources (including physical machines, virtual
machines and VM hosts), Virtual Disks (vDisks), Virtual NICs (vNICs), Repositories, Virtual
Bridges, and Users. The PlateSpin Orchestrate Server assigns default values to each of the
component facts, although they can be changed at any time by the administrator (unless they are
read-only).

The XML fact element defines a fact to be stored in the grid object’s fact namespace. The name,
type and value of the fact are specified as attributes. For list or array fact types, the element tag
defines list or array members. For dictionary fact types, the dict tag defines dictionary members.

See the examples in the directory, /allTypes.policy. This example policy has an XML
representation for all the fact types.

Facts can also be created and modified in JDL and in the Java Client SDK

As a Job Developer, you might want certain constraints to be used for a job and you might specify
these in the policy. These comprise a set of logical clauses and operators that are compared with the
respective component’s fact values when the job is run by the Job Scheduling Manager. See

Remember, all properties appear in the job context, which is an environment where constraints are
evaluated. These constraints provide a multilevel filter for a job in order to ensure the best quality of
service the grid can provide.

This section includes the following information:

 Section 4.1.1, “Fact Type Definitions,” on page 54

 Section 4.1.2, “Understanding Fact Junctions,” on page 54

 Section 4.1.3, “Job, Jobinstance, and Joblet Object Facts and Fact Junctions,” on page 56

 Section 4.1.4, “Resource Object Facts and Fact Junctions,” on page 68

 Section 4.1.5, “Virtual Disk Object Facts and Fact Junctions,” on page 90

 Section 4.1.6, “Virtual NIC Object Facts and Fact Junctions,” on page 91
Understanding Grid Object Facts and Computed Facts 53

54 PlateS
 Section 4.1.7, “Repository Object Facts and Fact Junctions,” on page 94

 Section 4.1.8, “Virtual Bridge Object Facts and Fact Junctions,” on page 97

 Section 4.1.9, “User Object Facts and Fact Junctions,” on page 99

 Section 4.1.10, “Matrix Object Facts,” on page 104

For further fact information found in jobs, see Chapter 7, “Job Examples,” on page 127 and
Section 2.2.2, “Using Facts in Job Scripts,” on page 16.

4.1.1 Fact Type Definitions

The following table explains the abbreviated codes used to describe facts for PlateSpin Orchestrate
Grid objects:

Table 4-1 PlateSpin Orchestrate Fact Types

4.1.2 Understanding Fact Junctions

A fact junction is a special type of fact that provides a convenient way to access facts on Grid
objects related to the one where the fact lookup is being performed. The following diagram shows
the fact junction relationships of all the Grid objects:

Type Description

Automatic The fact should be automatically set after the successful discovery of virtual
resources (VM Hosts and VMs).

Boolean The fact is a Boolean value.

Default The specified default value of the fact is set.

Dictionary The fact is selected from a specified dictionary listing.

Dynamic The fact is dynamically generated.

Enumerate The fact is a specified enumerated value.

Example When available, provides an example how a fact might be applied to an object.

Integer The fact is an integer value.

Real The fact is a real number.

String The fact is a string value.

Datagrid Facts relate to datagrid object types.

Local Facts relate to local object types.

NAS Facts relate to Network Attached Storage (NAS) object types.

SAN Facts relate to Storage Area Network (SAN) object types.

Virtual Facts relate to virtual object types.
pin Orchestrate 2.6 Developer Guide and Reference

Figure 4-1 Fact Junctions Between Objects in a Sample PlateSpin Orchestrate Grid

As an example of how a fact junction works, a fact lookup on vmhost.resource.id is redirected
from the VM host object, through the junction onto the underlying physical Resource object. In
other words, the value returned is the same as if a fact lookup for resource.id was performed on
the underlying physical resource. This is accomplished with the following JDL:

vmhost1 = getMatrix().getGridObject(TYPE_VMHOST, "vmhost1")
print vmhost1.getFact("vmhost.resource.id")

Another example is vdisk.repository.freespace, which returns the amount of free space in the
repository that is associated with the virtual disk where the fact lookup is being performed:

vdisk = getMatrix().getGridObject(TYPE_VDISK, "vm1_vdisk1")
print vdisk.getFact("vdisk.repository.freespace")

Note that the fact junction refers to the related Grid object rather than to any of its facts. Therefore,
to obtain the ID of the repository associated with a given virtual disk, you must perform a lookup on
vdisk.repository.id rather than vdisk.repository.

It is important to understand how the fact name is constructed from the junction, otherwise certain
usages of fact junctions can be confusing, especially when used with facts that contain the dot (“.”)
character. For example, starting with a vDisk Grid object as above:

vdisk = getMatrix().getGridObject(TYPE_VDISK, "vm1_vdisk1")

vDisk objects have a fact junction, vdisk.vm, that points to the VM associated with the vDisk. If
you want to find all VNICs associated with this VM, remember that VMs have a fact
resource.vm.vnics that provides the desired array. However, because PlateSpin Orchestrate
accesses this fact by using the vdisk.vm fact junction, you must replace the resource component of
the resource.vm.vnics fact with vdisk.vm. Therefore, the required code is:

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vbridge

 .id: String

 .groups: String[]

 .vmhost: String

 .vnics: String[]

vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]

vnic

 .id: String

 .groups: String[]

 .vbridgegroup: String

 .vbridge: String

 .vm: String

network
vbridge group

 group.id: String

 group.vlanid: Integer

vdisk

 .id: String

 .groups: String[]

 .vm: String

 .repository: String

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Fact Junctions

user

 .id: String

 .priviledgedjobgroups: String[]

 .groups: String[]

 .accountinggroup: String[]

jobinstance

 .id: String

 .originid: String

 .parentid: String

 .childids: String[]

 .provision.problemresources: String[]

 .provision.avoidresources: String[]

 .problemresources: String[]

 .avoidresources: String[]

job

 .id: String

 .resourcegroup: String

 .groups: String[]

 .accountinggroup: String

user group

 .id: String

job group

 .id: String

resource group

 .id: String

vdisk group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend

resource
VM host

 .id: String

 .groups: String[]

vnic group

 .id: String

repository group

 .id: String
Understanding Grid Object Facts and Computed Facts 55

56 PlateS
print vdisk.getFact(“vdisk.vm.vm.vnics”)

Some fact junctions return an array of values rather than a single value. For example, the junction
vmhost.repositories returns an array of all the repositories visible to the VM host where the
lookup is being performed:

vmhost1 = getMatrix().getGridObject(TYPE_VMHOST, "vmhost1")
print host1.getFact("vmhost.repositories")

In this case, you can also single out one of the Grid objects returned in the array and perform fact
lookups on that object. For example, if the repository san1 is accessible by vmhost1, then

print vmhost1.getFact("vmhost.repositories[san1].freespace")

returns the amount of free space available in the san1 repository.

repo_host1 = getMatrix().getGridObject(TYPE_REPOSITORY, "host1")
print repo_host1.getFact("repository.vmhosts[host1_demoAdapter].networks")

Fact junction lookups can be chained multiple times, even mixing use of single-valued and array-
valued junctions:

vdisk = m.getGridObject(TYPE_VDISK, "vm1_vdisk1")
print vdisk.getFact("vdisk.repository.vmhosts[vmhost1].networks")

host1 = m.getGridObject(TYPE_RESOURCE, "host1")
print
host1.getFact("resource.vmhosts[host1_demoAdapter].repositories[san1].freespa
ce")

For a more comprehensive list of available fact junctions, see the example factJunction.job
stored at /opt/novell/zenworks/zos/server/examples on your server installation system.

4.1.3 Job, Jobinstance, and Joblet Object Facts and Fact
Junctions

This section includes the following information:

 “Job Object Facts” on page 56

 “Job Object Fact Junctions” on page 63

 “Job Group Facts” on page 64

 “Jobinstance Facts” on page 64

 “Jobinstance Fact Junctions” on page 66

 “Joblet Facts” on page 67

Job Object Facts

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by changing the policy constraints and fact values for a job, you can change the behavior of
the job and how the PlateSpin Orchestrate Server allocates available system resources to it. The
Orchestrate Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only.
pin Orchestrate 2.6 Developer Guide and Reference

The following table lists the default facts created by the PlateSpin Orchestrate Server for the Job
object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time. Where facts can
be deleted in the Development Client, they can also be deleted in the
GridObjectInfo.deleteFact() method in JDL.

Table 4-2 Job Facts

Fact Name Fact Type Mode Description

job.accountinggroup String The default job group whose
statistics are updated when
this job runs.

job.autoterminate Boolean Whether this job ends when
all child jobs and joblets end

job.cacheresourcematches.ttl Integer Indicates the jobs willingness
to allow resource maches to
be cached if the scheduler
becomes too loaded. The
value is the TTL of the cache
in seconds ('<=0' to disable
caching)

job.description String Textual description of job

job.enabled Boolean True if the job is enabled (able
to be run).

job.groups String[] r/o The groups where this job is a
member.

job.history.cost.average Real dynamic, r/o The average cost of running
this job measured since job
deployment or last
modification. Only updated if
the job finishes successfully.

job.history.cost.total Real dynamic, r/o The total cost of running this
job measured since job
deployment or last
modification

job.history.gcycles.average Integer dynamic, r/o The average amount of
normalized grid time (gcycles)
taken by running this job. Only
updated if the job finishes
successfully.
Understanding Grid Object Facts and Computed Facts 57

58 PlateS
job.history.gcycles.total Integer dynamic, r/o The total amount of
normalized grid time (gcycles)
consumed by this job since
deployment

job.history.jobcount Integer dynamic, r/o The total number of job
instances of this job ever
initiated on the system
(includes those denied by
'accept' constraints

job.history.jobcount.cancelled Integer dynamic, r/o The total number of job
instances of this job that were
cancelled

job.history.jobcount.complete Integer dynamic, r/o The total number of job
instances of this job that were
completed

job.history.jobcount.failed Integer dynamic, r/o The total number of job
instances of this type that
failed

job.history.queuetime.average Integer dynamic, r/o The average wall time spent
waiting for this job to start in
seconds

job.history.queuetime.total Integer dynamic, r/o The total amount of time this
job has spent in a queued
state since last deployment.

job.history.runtime.average Integer dynamic, r/o The average runtime of this
job in seconds. Only updated
if the job finishes successfully.

job.history.runtime.total Integer dynamic, r/o The total runtime of the job
since deployment in seconds

job.history.samplesize Integer The number of points used in
the trailing average calculation
for all historical averages

job.history.time.average Integer dynamic, r/o The average wall time taken
by running this job in seconds.
This fact is updated only if the
job finishes successfully.

job.history.time.total Integer dynamic, r/o The total combined resource
wall time of all work performed
on behalf of this job since
deployment in seconds

job.id String r/o The name of the job.

job.instances.active Integer dynamic, r/o The number of job instances
of this type that are active in
the system ('running' or
'paused')c

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

job.instances.queued Integer dynamic, r/o The number of job instances
of this type that are in a
queued state

job.instances.total Integer dynamic, r/o The total number of job
instances of this type that
exist in the sytem

job.joblet.immediateretry Boolean Specifies whether the system
to attempt to immediately retry
a joblet rather than waiting
until all others are running/
complete before retrying

job.joblet.max Integer The absolute maximum
number of joblets this job may
schedule.

job.joblet.maxfailures Integer Specifies the number of non-
fatal joblet errors to tolerate
before failing completely or '-1'
to attempt to continue after
errorsc

job.joblet.maxperresource Integer The absolute maximum
number of joblets this job may
occupy on any one resource
('-1' indicates no limit)

job.joblet.maxretry Integer The maximum number of
joblet retries of any type that
will be attempted before
considering the joblet as failed
(0 means don't retry, <0
means keep retrying)

job.joblet.maxrunning Integer The absolute maximum
number of joblets a job is
allowed to have running at
one time. This value will never
be exceeded ('-1' indicates no
limit)

job.joblet.maxwaittime Integer The maximum (resource) wait
time permitted by a joblet in
seconds ('-1' indicates no
timeout)

job.joblet.retrylimit.disconne
ct

Integer The number of joblet retries
caused by unexpected
resource disconnect that will
be allowed before considering
the joblet as failed (0 means
don't retry, <0 means keep
retrying). Can never exceed
job.joblet.maxretry

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 59

60 PlateS
job.joblet.retrylimit.forced Integer The number of forced joblet
retries (requested by the joblet
to run an another resource)
that will be allowed before
considering the joblet as failed
(0 means don't retry, <0
means keep retrying). Can
never exceed
job.joblet.maxretry

job.joblet.retrylimit.timeout Integer The number of joblet retries
caused by server inititated
joblet timeout that will be
allowed before considering
the joblet as failed (0 means
don't retry, <0 means keep
retrying). Can never exceed
job.joblet.maxretry.

job.joblet.retrylimit.unforced Integer The number of unforced joblet
retries that will be allowed
before considering the joblet
as failed (0 means don't retry,
<0 means keep retrying). Can
never exceed
job.joblet.maxretry

job.joblet.runtype String Specify file and executable
operations run in Joblet are in
behalf of the Job user or not.

job.joblet.timeout Integer The timeout after which the
server will take action to
cancel the joblet (seconds, '-1'
indicates no timeout)

job.joblet.tracing Boolean Indicates whether the joblet
should include tracing
information in the job log when
executing joblet events

job.jobtime The average wall time this job
should take to run. Used to
override the computed
average when job is of type
'fixedtime' (in seconds)

job.jobtype String The type of job -- used in
completion time calulation
(normal, workflow, pspace,
fixedtime, fixedcycles)

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

job.maxnodefailures Integer The maximum number of
resource failures that are to be
tolerated before excluding the
node from future joblet
processing. A value of -1
indicates that unlimited
failures are acceptable.

job.maxresources Integer The absolute maximum
number of resources that a job
is allow to use at one time.
This value will never be
exceeded. A value of -1
indicates no limit.

job.persistfactsonfinish Boolean Whether the Grid objects that
this job modifies are to be
persisted at job end. Used and
applicable only when installed
in a high availablity cluster.

job.preemptible Boolean Indicates whether this job is
willing or able to be
preempted. Turned on by
setting
joblet.preemptible. (can
be overridden by the job
instance).

job.preemption.rankby String[] The ranking specification used
to select suitable jobs to
automatically preempt a
resource on. The syntax for
each element in the list is
<fact>/<order> where
order is either “a” for
ascending or “d” for
descending.

job.provision.hostselection String The strategy used in finding a
host for any automatically
provisioned resource (queue,
immediate).

job.provision.maxcount Integer The number of resources that
can be automatically
provisioned on behalf of this
job. A value of 0 turns off
automatic provisioning
behavior. A value of -1 allows
unlimited provisioning.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 61

62 PlateS
job.provision.maxnodefailures Integer The maximum number of
provision failures that will be
tolerated before excluding the
node from future automatic
provisioning. A value of -1
indicates that unlimited
failures are acceptable.

job.provision.maxpending Integer The number of resources tha
can be automatically
provisioned at one time
(simulataneously) on behalf of
this job. A value of <=0 turns
off automatic provisioning
behavor.

job.provision.rankby String[] The ranking specification used
to select suitable resources to
automatically provision.
Element syntax is <fact>/
<order> where order is
either ascending or
descending.

job.queuedtimeout Integer The timeout (measured in
seconds) after which the
server takes action to cancel a
queued job, including all
joblets and subjobs. A value of
-1 indicates no timeout.

job.queuetime String The average wall time
(measured in seconds) spent
waiting for this job to start .
Used to override the
computed average when
queue is of type fixedtime.

job.queuetype String The type of queue from which
this job is typically accessed.
This is used in start time
calculation (none, pfifo,
fifo, lifo, fixedtime).

job.resourcegroup String The default resource group
from which resources will be
selected for this job (in
addition to any resource
policies).

job.resources.rankby String[] The ranking specification used
to select suitable resources.
Element syntax is <fact>/
<order> where order is
either ascending or
descending.

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

Job Object Fact Junctions

The following diagram illustrates the relationship between the Job Grid object facts and other Grid
objects. It also shows the relationship between other discrete Grid object facts and the Job Grid
object itself.

Figure 4-2 Job Fact Junctions

job.restartable Boolean Indicates whether this job is
willing to be restarted on
server restarts (can be
overridden by the job
instance).

job.timeout Integer The timeout (measured in
seconds) after which the
server will take action to
cancel the whole job including
all joblets and subjobs. A
value of -1 indicates no
timeout.

job.tracing Boolean Indicates whether this job
should include tracing
information in the job log when
executing job events.

job.visible Boolean Whether this job should be
visible to the client in queries
or UI (it does not stop it being
run).

Fact Name Fact Type Mode Description

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Job Fact Junctions

job

 .id: String

 .resourcegroup: String

 .groups: String[]

 .accountinggroup: String job group

 .id: String

resource group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend
Understanding Grid Object Facts and Computed Facts 63

64 PlateS
Job Group Facts

Table 4-3 Job Group Facts

Jobinstance Facts

A job instance is a currently running or recently completed job. All jobinstance facts are viewable
only in the Policy Debugger page of the Jobs Monitor. You need to select the All Facts check box to
view these facts. These facts are not editable.

NOTE: If the job you want to view finished previously, it is possible that it can no longer be viewed
in the Policy Debugger if other jobs followed it on the Orchestrate Server.

Table 4-4 Jobinstance Facts

Fact Name Fact Type Mode Description

group.id String r/o The name of the group.

group.jobinstances.active Integer dynamic, r/o The number of job instances
that are active on resources
in this group ('running' or
'paused').

group.jobinstances.queued Integer dynamic, r/o The number of job instances
that are in a queued state
awaiting start on resources in
this group.

group.jobinstances.total Integer dynamic, r/o The total number of job
instances running on, or
awaiting start on resources in
this group.

Fact Name Fact Type Description

jobinstance.childids String[] String array of child job IDs. If no child jobs
were launched, the arrayis empty.

jobinstance.cost Real The cost (measured in dollars) of this job.

jobinstance.cost.burnrate Real The computed moving average burn rate
(measured in dollars per hour) of the job.

jobinstance.errors String The error messages recorded for a failed job.

jobinstance.id String The job instance unique identifier

jobinstance.instancename String The optional, human readable name for this
job instance.

jobinstance.joblet.pspace Integer The number of rows in a fully expanded p-
space definition. Will be equal to the number
of joblets only if
jobinstance.joblet.size is 1.
pin Orchestrate 2.6 Developer Guide and Reference

jobinstance.joblet.size Integer The number of p-space rows encapsulated in
each joblet. May be explicitly set of derived as
a result of specifing joblet count

jobinstance.joblets.cancelled Integer The number of joblets that ended in a
cancelled state.

jobinstance.joblets.complete Integer Number of joblets that completed
successfully.

jobinstance.joblets.count Integer The number of joblets under management of
this job instance.

jobinstance.joblets.failed Integer The number of joblets that ended in a failed
state.

jobinstance.joblets.running Integer The number of joblets that are actively
running on resources.

jobinstance.joblets.waiting Integer The number of joblets that are waiting for
available resources.

jobinstance.matchingresources Integer The number of currently active resources that
match the resource contraints.

jobinstance.memo String A brief memo set by this job instance that can
be seen in user/administrator portals.

jobinstance.originid String The job identifier of the root job of this
hierarchy or this job if a top level job.

jobinstance.parentid String The job identifier of the parent job of this
hierarchy or empty if this is a top level job with
no parent.

jobinstance.preemptible Boolean Specifies that this job instance is willing to
give up resources if required. Initially set from
the equivalent job fact.

jobinstance.priority Integer The numeric representation of the current
priority of this job instance (1=lowest,
9=highest). Default value is the user's default
priority.

jobinstance.priority.string String The string representation of the current
priority of this job instance.

jobinstance.problemresources String[] The number of resources that are excluded
from this job instance due to reaching the
job.maxnodefailures limit.

jobinstance.provision.avoidre
sources

String[] The names of automatically provisioned
resources that are currently being avoided
(not yet excluded) because of prior
provisioning errors.

jobinstance.provision.count Integer The total number of resources that have been
automaticaly provisioned (or are in progress)
for this job.

Fact Name Fact Type Description
Understanding Grid Object Facts and Computed Facts 65

66 PlateS
Jobinstance Fact Junctions

The following diagram illustrates the relationship between the Jobinstance facts and other Grid
objects.

jobinstance.provision.pending Integer The total number of automatically provisioned
resources that are pending online status.

jobinstance.provision.problem
resources

String[] The names of automatically provisioned
resources that encountered provisioning
errors and have been excluded.

jobinstance.provision.problem
resources.count

Integer The number of automatically provisioned
resources that encountered provisioning
errors and have been excluded.

jobinstance.resources String[] The resources currently in use by this job

jobinstance.resources.count Integer Number of resources currently in use by this
job

jobinstance.restarted Boolean Whether this job instance was been restarted
due to server restart.

jobinstance.startat Date The date/time that this job was requested to
start atc

jobinstance.starttime The formated start date and time for this job
instance

jobinstance.state Integer The numeric state of this job instance

jobinstance.state.string String String representation of the current state of
this job instance

jobinstance.terminationtype String The cause of the termination for a cancelled
or failed job.

jobinstance.time.completed Date The time this job instance completed or an
estimation if still active

jobinstance.time.elapsed Integer The elapsed wall time this job instance has
been running or ran (in seconds)

jobinstance.time.elapsed.stri
ng

String The elapsed wall time this job instance has
been in a running

jobinstance.time.queued Integer The elapsed wall time this job instance has
been a queued (in second)s

jobinstance.time.started Date The time this job instance was actually started
or an estimating if queued

jobinstance.time.submitted Date The time this job instance was submitted

Fact Name Fact Type Description
pin Orchestrate 2.6 Developer Guide and Reference

Figure 4-3 Jobinstance Fact Junctions

Joblet Facts

Joblet facts can be accessed only if you write code within the Joblet subclass of a JDL file. If you
code a job to expose the joblet fact values, PlateSpin Orchestrate runs the scheduled joblets and you
can see the joblet fact values in the Job Log tab of the Devlopment Client.

The available joblet facts and their descriptions are listed in the following table.

Table 4-5 Joblet Facts

Fact Name Description

joblet.autoterminate Whether the joblet ends when all events for the joblet ends.

joblet.errors The list of error dictionaries encapsulating the error history for this joblet.
Dictionary keys:

 ts: timestamp in milliseconds

 node: the node name where execution failed

 error: the error message

joblet.history The list of resource IDs where the joblet has run.

joblet.id The unique identifier for this joblet.

joblet.instancename A human readable name for this joblet instance.

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

VM specification
(editable in VM client)

Job Instance Fact Junctions

jobinstance

 .id: String

 .originid: String

 .parentid: String

 .childids: String[]

 .provision.problemresources: String[]

 .provision.avoidresources: String[]

 .problemresources: String[]

 .avoidresources: String[]

dynamic, r/or/o

no mode dynamic

Legend

resource
VM host

 .id: String

 .groups: String[]
Understanding Grid Object Facts and Computed Facts 67

68 PlateS
4.1.4 Resource Object Facts and Fact Junctions

This section includes the following information:

 “Resource Object Facts” on page 68

 “Resource Object Fact Junctions” on page 82

 “VM Host Object Facts” on page 83

 “VM Host Resource Object Fact Junctions” on page 85

 “Resource Group Facts” on page 86

 “Understanding Resource Metrics Facts” on page 87

Resource Object Facts

The Resource object (a physical or virtual machine) has an associated set of facts and constraints
that define its properties. The PlateSpin Orchestrate Server assigns default values to each of the
component facts, although they can be changed at any time by the administrator, unless they are
read-only. Facts with mode r/o have read-only values, which can be viewed but changes cannot be
made.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the
Resource object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

joblet.memo An (optional) memo field for this joblet that can be displayed in the
management console.

joblet.number The joblet number.

joblet.preemptible Indicates whether this joblet is willing or able to be preempted.

joblet.retrynumber The number of retries for this joblet (0 on first attempt).

joblet.state The numeric state of this joblet instance.

joblet.state.string String representation of the current state of this joblet instance.

joblet.timeout The time after which this joblet will be cancelled/retried. (seconds,
defaults to job.joblet.timeout).

Fact Name Description
pin Orchestrate 2.6 Developer Guide and Reference

Table 4-6 Resource Facts

Fact Name Fact Type Mode Description

resource.agent.clustered Boolean Whether the agent is
clustered (converts
duplicate logins to
failover logins)

resource.agent.config.datagrid.cache Boolean Whether the agent
caches datagrid files.

resource.agent.config.datagrid.cache.cl
eanupinterval

Integer Wait time (measured in
minutes) between
cleanup sweeps of the
datagrid cache.

resource.agent.config.datagrid.cache.li
fetime

Integer How long inactive files
should remain in the
agent's datagrid cache (in
minutes). 0 turns off the
cache.

resource.agent.config.exec.asagentusero
nly

Boolean Whether the agent
always runs executables
only as the agent user.
This overrides any Job
fact settings
('job.joblet.runtype').

resource.agent.config.exec.daemon.timeo
ut

Integer How long for the
enhanced exec daemon
to remain running (in
seconds). 0 means
remain running.

resource.agent.config.exec.enhancedused Boolean Whether the agent uses
the enhanced exec or
not.

resource.agent.config.gmond.port Integer Setting for gmond port
(8649 is the default). 0 or
less means values will
not be read.

resource.agent.config.joblet.cleanup Boolean Whether the agent cleans
up temporary directories
created for each joblet.
Can be turned off for
debugging purposes and
then “catches up” when
re-enabled.

resource.agent.config.logdebug Boolean Turns on agent
debugging (additive to log
level)

resource.agent.config.loglevel String Controls the verbosity of
agent logging (quiet,
normal, verbose)
Understanding Grid Object Facts and Computed Facts 69

70 PlateS
resource.agent.exec.installed Boolean Whether the agent is
installed with the
enhanced exec or not.

resource.agent.home String The home directory of the
agent install.

resource.agent.jvm.home String The home directory of the
JVM in use by the agent.

resource.agent.jvm.memory Integer The memory available to
the agent (megabytes).

resource.agent.jvm.runtime String The Java JVM runtime in
use by the agent.

resource.agent.jvm.vendor String The Java JVM vendor in
use by the agent.

resource.agent.jvm.version String The Java JVM version in
use by the agent.

resource.agent.version String dynamic,
r/o

The agent version and
build number
<major>.<minor>.<point>
_<build>

resource.auth.provider String dynamic,
r/o

The authentication
provider to which the
node authenticates

resource.becameidle Date dynamic,
r/o

The date/time the
resource became idle or
'-1' if not idle

resource.billfor String Whether to bill on wall
time or grid time
(walltime, gcycles)

resource.billingrate Real The billing rate for this
resources in $/hr

resource.cpu.architecture String del The CPU architecture
e.g. x86, x86_64, sparc
(requires cpuInfo system
job).

resource.cpu.hvm Boolean del True if the CPU has
hardware virtualization
support.

resource.cpu.mhz Integer del The speed (measured in
MHz) of the processor
(requires cpuInfo system
job)

resource.cpu.model String del The CPU model number
(requires cpuInfo system
job)

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.cpu.number Integer The number of available
CPU cores available for
processing. This counts
each core in a multicore
package as its own core,
so a Core 2 duo physical
CPU displays as two
CPUs.

resource.cpu.vendor String del The CPU vendor
(requires cpuInfo system
job).

resource.cpuload Integer dynamic,
r/o

The percent CPU load on
the resource.

resource.enabled Boolean True if the resource is
enabled (allowed to log in
and accept work).

resource.groups String[] r/o The groups this node is a
member of.

resource.hardware.model String The vendor-specific
hardware model (for
example, Dell
PowerEdge 1850).

resource.hardware.vendor String The name of the
hardware vendor (for
example, Dell, IBM, or
similar).

resource.health Boolean The health of this
resource. True indicates
good health.

resource.history.cost.total Real dynamic,
r/o

The cost (measured in
matrix dollars ($)) of all
work performed on this
resource.

resource.history.gcycles.total Integer dynamic,
r/o

The total grid time
(gcycles) of all work
performed on this
resource.

resource.history.jobletcount Integer dynamic,
r/o

The total number of
joblets ever run on this
resource.

resource.history.jobletcount.cancelled Integer dyanmic,
r/o

The total number of
joblets that were
canceled.

resource.history.jobletcount.completed Integer dynamic,
r/o

The total number of
joblets that completed
successfully.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 71

72 PlateS
resource.history.jobletcount.failed Integer dynamic,
r/o

The total number of
joblets that failed.

resource.history.time.total Integer dynamic,
r/o

The total wall time
(measured in seconds) of
all work performed on this
resource.

resource.hostname String del The resource’s hostname

resource.hostname.full String del The fully qualified
hostname.

resource.id String r/o The node’s login name

resource.installed.apps String[] del The installed applications

resource.ip String del The resources IP address

resource.joblets.active Integer dynamic,
r/o

The number of joblets
currently active on this
resource

resource.joblets.maxslots Integer dynamic,
r/o

The absolute maximum
number of work slots
availabe to regular and
privileged joblets.

resource.joblets.slots Integer The number of regular
joblets that this resource
runs at one time.

resource.joblets.systemslots Integer The number of extra slots
that will be made
available to privileged
“system” joblets.

resource.loadaverage Real dynamic,
r/o

The load average on the
resource (from 'uptime' or
equivalent).

resource.memory.physical.available Integer del The amount (measured in
Mb) of free physical
memory available on the
resource.

resource.memory.physical.total Integer del The total amount
(measured in Mb) of
physical memory on the
resource.

resource.memory.swap.available Integer del The amount (measured in
Mb) of free swap space.

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.memory.swap.total Integer del The total amount
(measured in Mb) of
external VM swap space
configured on the host.
Wwap space allows the
hypervisor or OS to swap
out infrequently used
memory pages to disk or
other storages to make it
appear that virtual
memory is larger than
physical memory.

resource.memory.virtual.available Integer del The amount of available
(free) virtual memory
(measured in Mb) on the
system. This might be
more than the amount of
physical memor if the
host hypervisor or
Operating system
supports paging of VM to
disk or other swap
storage.

resource.memory.virtual.total Integer del The total amount
(measured in Mb) of
virtual memory on the
resources.

resource.network.agent.address The agent side IP
address for the current
connection

resource.network.agent.port The agent side TCP port
number for the current
connection

resource.network.config.server.address The IP address used by
the agent to connect to
the server

resource.network.config.server.hostname The host name used by
the agent to connect to
the server

resource.network.config.server.port The TCP port number
used by the agent to
connect to the server

resource.network.server.address The server side IP
address for the current
connection

resource.network.server.port The server side TCP port
number for the current
connection

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 73

74 PlateS
resource.network.throughput The measured average
network connection
throughput in Mbits/sec to
neighouring resource
(requires netInfo system
job)

resource.network.throughput.max The maximium network
connection speed in
Mbits/sec (requires
netInfo system job)

resource.online Boolean dynamic,
r/o

True if the agent is online

resource.os.arch String del The operating system
architecture e.g. x86,
amd64, i386, sparc

resource.os.family String The family of operating
system (windows, linux,
solaris, unix, aix, mac

resource.os.file.separator String del The resource operating
system file separator

resource.os.name String The name of the resource
operating system

resource.os.type String Unique string identifier for
each OS release (e.g.
'sles11')

resource.os.vendor String The operating system
vendor (SuSE for SLES/
SLED)

resource.os.vendor.string String del The operating system full
identification string
(requires osInfo system
job)

resource.os.vendor.version String del The vendor defined
version number, for
example, 10 for SUSE
v10.

resource.os.version String del The operating system
version numberc

resource.os.version.string String del The operating system
vendor full identification
string (requires osInfo
system job)

resource.password string dynamic The agents's login
password

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.powerfactor Real dynamic,
r/o

The normalized power
index of this machine
relative to a 2.0Ghz, Intel
Pentium 4

resource.provision.automatic Boolean dynamic,
r/o

Signifies that this
resource was cloned/
provisioned automatically
and thus will be
shutdown/destroyed
automatically as well

resource.provision.currentaction String dynamic,
r/o

The current management
action in progress on this
provisionable resource

resource.provision.jobid String dynamic,
r/o

The current or last job id
that performed a
provisioning action on
this resource. Useful for
viewing job log.

resource.provision.resync Boolean dynamic Specifies that the
provisioned resource's
state needs to be
resynced with the
underlying provisioning
technology and the next
opportunity

resource.provision.state String dynamic,
r/o

The current state of this
provisioned instance
('down', 'suspended', 'up',
'paused') or 'unknown' if
an admin action is
currently being
performed.

resource.provision.status String dynamic,
r/o

The current descriptive
status of the provisioned
resource

resource.provision.template String dynamic,
r/o

The id of the template
resource that this
instance was created
from (if applicable)

resource.provision.time.hostwait Integer dynamic,
r/o

The time (seconds) this
resource has been
waiting / waited for a
suitable host

resource.provision.time.request Date dynamic,
r/o

The time when the last
provision (or other
administrative action)
request was made

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 75

76 PlateS
resource.provision.time.shutdown Date dynamic,
r/o

The time when the
resource was last
shutdown

resource.provision.time.start Date dynamic,
r/o

The time when the
resource was last
successfully provisionedc

resource.provision.vmhost String dynamic The id of the host
currently housing this
provisioned resource

resource.provisionable Boolean dynamic,
r/o

True if the resources is a
provisionable type

resource.provisioner.autoprep.DNSServer
s

List of DNS servers for
name lookup. This is only
for cloning/personalize
actions.

resource.provisioner.autoprep.DNSSuffix
es

List of suffixes to append
to a name for lookup.
This is only for cloning/
personalize actions.

resource.provisioner.autoprep.Gateways List of internet gateways
available to this VM. This
is only for cloning/
personalize actions.

resource.provisioner.autoprep.linuxglob
al.ComputerName

Host name of new VM.
An asterisk (*) means use
the new VM's ID.

resource.provisioner.autoprep.linuxglob
al.Domain

The name of the domain
where the new new VM
belongs.

resource.provisioner.autoprep.options.c
hangeSID

The Windows Security
ID. If true, sysprep
generates a new Security
ID.

resource.provisioner.autoprep.options.d
eleteAccounts

If true, removes all
accounts from the
destination VM. If false,
existing accounts from
the source VM are
retained.

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.provisioner.autoprep.sysprep.G
uiRunOnce.Command

List of commands that r
un the first time a user
logs on after the new VM
is created. Commands
are sched uled using the
HKEY_LOCAL_MACHINE
\Software\Microsof
t\Windows\CurrentV
ersion\RunOnce
registry key.

resource.provisioner.autoprep.sysprep.G
uiUnattended.AdminPassword.plainText

True if the
AdminPassword is plain
text.

resource.provisioner.autoprep.sysprep.G
uiUnattended.AdminPassword.value

The AdminPassword.

resource.provisioner.autoprep.sysprep.G
uiUnattended.AutoLogon

If true, the VM auto logs
into the Administrator
account using
AdminPassword. If false,
login is prompted..

resource.provisioner.autoprep.sysprep.G
uiUnattended.AutoLogonCount

The limit count for the VM
to auto log in with the
Administrator account.
AutoLogon must be
True.

resource.provisioner.autoprep.sysprep.G
uiUnattended.TimeZone

The time zone of the new
VM. See provisioning
reference for values, for
example: 04 indicates
PST, 10 indicates MST,
20 indicates CST, and 35
indicates EST.

resource.provisioner.autoprep.sysprep.I
dentification.DomainAdmin

Windows domain
administrator name.

resource.provisioner.autoprep.sysprep.I
dentification.DomainAdminPassword.plain
Text

True if
DomainAdminPasswor
d is in plain text.

resource.provisioner.autoprep.sysprep.I
dentification.DomainAdminPassword.value

Windows domain
administrator account
password.

resource.provisioner.autoprep.sysprep.I
dentification.JoinDomain

Windows domain n ame.
If joining a workgroup,
then use JoinWorkgroup.
For joining a domain,
Domai nAdmin and
DomainAdminPasswor
d must be defined.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 77

78 PlateS
resource.provisioner.autoprep.sysprep.I
dentification.JoinWorkgroup

Windows workgroup
name. If joining a domain,
use JoinDomain.

resource.provisioner.autoprep.sysprep.L
icenseFilePrintData.AutoMode

Value is either
PerServer or
PerSeat. If
PerServer, AutoUsers
must be set.

resource.provisioner.autoprep.sysprep.L
icenseFilePrintData.AutoUsers

The number of client
licenses. Used only if
AutoMode is
PerServer.

resource.provisioner.autoprep.sysprep.U
serData.ComputerName

The VM's new host na
me. An asterisk (*) means
to generate the name
based on source VM
name.

resource.provisioner.autoprep.sysprep.U
serData.FullName

The user's full name.

resource.provisioner.autoprep.sysprep.U
serData.OrgName

The organization name.

resource.provisioner.autoprep.sysprep.U
serData.ProductID

The Windows product
key.

resource.provisioner.count Integer dynamic,
r/o

The total count of
operational instances and
provisions in progress

resource.provisioner.debug Boolean Controls the debug log
level in the provisioner

resource.provisioner.host.maxwait Integer The maximum time to
wait for a suitable host
before timing out (in
seconds, '<0' to wait
indefinitely

resource.provisioner.host.preferredwait Integer The time after which
some vmhost constraints
will be lifted to increase
the available pool by, for
example, considering
moving the disk image (in
seconds, '<0' to wait
indefinitely

resource.provisioner.instancecount Integer dynamic,
r/o

The total count of cloned
instances of the template

resource.provisioner.instances String[] dynamic,
r/o

The list of id's of the
instances of this template
resource (if applicable)

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.provisioner.job String The name of the
provisioning job that
manages the lifecycle of
this resource

resource.provisioner.maxinstances Integer The maximum allowed
number of instances of
this provisionable
resource (applicable only
to templates)c

resource.provisioner.recommendedhost String dynamic The host on which the
image for this resource is
associated. E.g. was
suspended or is the
preferred host for quick
start up. Combined with
the
'resource.provisioner.host
.preferredwait' can lock a
VM to one host.

resource.remotedesktop Boolean Whether the resource
has a remote desktop (or
VNC) access enabled.

resource.repositories The list of VM
repositories visible by this
resource (aggregated
from VM host containers)

resource.runningjobs String[] dynamic,
r/o

The list of jobs currently
running on this resource

resource.sessions Integer dynamic,
r/o

The number of active
sessions (resource
instances with active
agent). Will be 0 or 1
unless a resource
template

resource.shuttingdown Boolean dynamic,
r/o

True if the node is
attempting to shutdown/
pause/suspend and does
not want new workc

resource.type String dynamic The type of resource
(whether or not the
resource is a VM and if so
what type of image
(physical, vm,
vmTemplate)

resource.vm.basepath String The filesystem location of
the VM file(s) either
absolute or relative to the
'repository.location'.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 79

80 PlateS
resource.vm.cpu.architecture String The required cpu
architecture e.g. x86,
x86_64, sparc, ppcc

resource.vm.cpu.hvm Boolean True if the VM requires
host HVM support (for
para virtualization
otherwise only full
virtualization will be
possible).

resource.vm.cpu.weight Real The CPU weight for this
VM. A value of 1.0
represents normal
weighting; setting another
VM to a weight of 2.0
would mean it would get
twice as much cpu as this
VM.

resource.vm.files Dictionary Files that make up this
VM. The dictionary key
(String) represents the file
type (adapter specific),
the value is the file path
either absolute or relative
to
repository.locatio
n of the
resource.vm.reposi
tory.

resource.vm.maxinstancespervmhost Integer The maximum allowed
number of instances of
this VM image per
vmhost

resource.vm.memory Integer The configured virtual
memory requirement of
this VM image
(megabytes)

resource.vm.networks String[] dynamic,
r/o

The networks associated
with the vm network
interfaces.

resource.vm.preventmove Boolean Administrator set attribute
that will prevent moving
VM disks and thus
consideration potential
other hosts.

resource.vm.repositories String[] dynamic,
r/o

The repositories where
the vm disk images are
stored.

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

resource.vm.repositories.moveable String[] dynamic,
r/o

The repositories where
the moveable vm disk
images are stored.

resource.vm.repositories.unmoveable String[] dynamic,
r/o

The repositories where
the unmoveable vm disk
images are stored.c

resource.vm.repository String dynamic The default repository
where this vm disk
images and other config
files are/will be stored.

resource.vm.spec Dictionary containing the
specification for building
this VM. Interpreted by
the Provisioning Adapter.

resource.vm.underconstruction Boolean True if the VM is currently
under construction

resource.vm.uuid String The UUID of a virtual
machine (vendor/adapter
specific).

resource.vm.vcpu.number Integer The number of virtual
CPUs for this VM.

resource.vm.vdisks String[] dynamic,
r/o

The list of virtual disks
that make up this VM.c

resource.vm.vdisksize Integer dynamic,
r/o

The total size of all the
moveable virtual disks for
this VM image
(megabytes)

resource.vm.vendor String The vendor of a virtual
machine

resource.vm.version Integer The version number for
this VM.

resource.vm.vmhost.rankby String[] The ranking specification
used to select suitable vm
hosts. Element syntax is
'<fact>/<order>' where
order is either 'ascending'
or 'descending'

resource.vm.vnics String[] dynamic,
r/o

The list of virtual nics that
make up this VM.
(aggregated from the
VNIC containers)

resource.vmhosts String[] dynamic,
r/o

The list of VM host
containers supported by
this resource (aggregated
from VM host containers)

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 81

82 PlateS
Resource Object Fact Junctions

The following diagram illustrates the relationship between the Resource Grid object facts and other
Grid objects. It also shows the relationship between other discrete Grid object facts and the Resource
Grid object itself.

Figure 4-4 Resource Fact Junctions

resource.vnc.ip String The port number for a vnc
session running on the
resource.

resource.vnc.port Integer The port number for a vnc
session running on the
resource.

Fact Name Fact Type Mode Description

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[] vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]

vnic

 .id: String

 .groups: String[]

 .vbridgegroup: String

 .vbridge: String

 .vm: String

network
vbridge group

 group.id: String

 group.vlanid: Integer

vdisk

 .id: String

 .groups: String[]

 .vm: String

 .repository: String

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Resource Fact Junctions

jobinstance

 .id: String

 .originid: String

 .parentid: String

 .childids: String[]

 .provision.problemresources: String[]

 .provision.avoidresources: String[]

 .problemresources: String[]

 .avoidresources: String[]

job

 .id: String

 .resourcegroup: String

 .groups: String[]

 .accountinggroup: String

resource group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend

obsolete?
pin Orchestrate 2.6 Developer Guide and Reference

VM Host Object Facts

The VM Host Resource object has an associated set of facts and constraints that define its
properties. The PlateSpin Orchestrate Server assigns default values to each of the component facts,
although they can be changed at any time by the administrator, unless they are read-only. Facts with
mode r/o have read-only values, which can be viewed but changes cannot be made.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the VM
Host Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-7 VM Host Facts

Fact Name Fact Type Mode Description

vmhost.accountinggroup String The default VM host group
which will be adjusted for
VM stats

vmhost.controllingjob String dynamic The ID of a running job
that manages VM
operations on this host.
Setting this informs the VM
Manager to prevent other
jobs from initiating
provisioning actions. This
fact is cleared when the
managing job ends.

vmhost.enabled Boolean True if the VM host is
enabled (new VM
instances can be
provisioned)

vmhost.groups String[] r/o The groups this VM host is
a member of

vmhost.health Boolean The health of this VM host.
True indicates good health

vmhost.hvm Boolean True if the hypervisor
supports the hardware
virtualization.

vmhost.id String r/o The VM host's unique
name

vmhost.loadindex.slots Real dynamic, r/o The loading index (the
ratio of active hosted VMs
to the specified max)
Understanding Grid Object Facts and Computed Facts 83

84 PlateS
vmhost.loadindex.virtualmemory Real dynamic, r/o The loading index (ratio of
consumed memory to the
specifed max)

vmhost.location String The VM host's physical
location

vmhost.maxvmslots Integer The maximum number of
hosted VM instances

vmhost.memory.available Integer dynamic, r/o The amount of memory
available to new virtual
machines

vmhost.memory.max Integer The maximum amount of
memory available to virtual
machines (in megabytes)

vmhost.migration Boolean True if the VM host can
support VM migration (also
subject to provision
adapter cababilities

vmhost.networks String[] dynamic, r/o List of Networks visible to
this VM host

vmhost.online Boolean dynamic, r/o True if the agent on the
physical host is online

vmhost.provisioner.job String The name of the
provisioning adapter job
that manages VM
discovery on this host

vmhost.provisioner.password String The password required for
provisioning on the VM
host (Used by provisioning
adapter)

vmhost.provisioner.username String The username required for
provisioning on the VM
host (Used by provisioning
adapter)

vmhost.repositories String[] This list of repositories
(VM disk stores) visible to
this VM host

vmhost.resource String r/o The name of the resource
that houses this vm host
container

vmhost.resync Boolean dynamic Specifies that the host
should be probed to
resync all VMs managed
on this host at the next
opportunity

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

VM Host Resource Object Fact Junctions

The following diagram illustrates the relationship between the Vm Host Resource Grid object facts
and other Grid objects. It also shows the relationship between other discrete Grid object facts and
the VM Host Resource Grid object itself.

vmhost.shuttingdown Boolean dynamic, r/o True if the VM host is
attempting to shutdown
and does not want to be
provisioned

vmhost.vbridges String[] dynamic, r/o List of Vbridge objects
visible to this VM host

vmhost.vm.available.groups String[] The list of resource groups
containing VMs that are
allowed to run on this host

vmhost.vm.count Integer dynamic, r/o The current number of
active VM instances

vmhost.vm.instanceids String[] dynamic, r/o The list of active VM
instances

vmhost.vm.placement.score Integer dynamic, r/o The 'cost' (score) of
moving the disks for a VM
to this vmhost. This is
only visible and valid
during a 'vmhost'
constraint match (-1 = not
possible, 0 = affinity, >0 =
expense)

vmhost.vm.templatecounts Dictionary dynamic, r/o A dictionary of running
instance counts for each
running VM templatec

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 85

86 PlateS
Figure 4-5 VM Host Fact Junctions

Resource Group Facts

Table 4-8 Resource Group Facts

Fact Name Fact Type Mode Description

group.id String r/o The group's name

group.loadaverage Real dynamic, r/o The aggregated load average
of all the resource in this
group (the membership may
be dynamic).

group.loadpercent Integer dynamic, r/o The percentage of online
resources in this group that
are currently busy.

group.resources.busy Integer dynamic, r/o The total number of available
resources that are currently
busy performing work in this
group.

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vbridge

 .id: String

 .groups: String[]

 .vmhost: String

 .vnics: String[]

vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]

network
vbridge group

 group.id: String

 group.vlanid: Integer

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Fact Junctions

job

 .id: String

 .resourcegroup: String

 .groups: String[]

 .accountinggroup: String

resource group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend

resource
VM host

 .id: String

 .groups: String[]
pin Orchestrate 2.6 Developer Guide and Reference

Understanding Resource Metrics Facts

When you install the PlateSpin Orchestrate Agent on a machine, you can optionally install the
Orchestrate Monitoring Agent along with it. The Monitoring Agent uses the Ganglia Monitoring
Daemon (gmond) to automatically collect metrics and send them to the Orchestrate Monitoring
Server. You can use the following command to check the status of an installed Monitoring Agent:

/etc/init.d/novell-gmond status

If the daemon is operating normally, it returns a running status.

When you install and configure the Orchestrate Monitoring Agent (gmond), it is set by default to
report metrics on port 8649, which is also detected by the Orchestrate Agent. When communication
is established, the gmond daemon sends out metrics data, which are then gathered by the Orchestrate
Agent and set as fact values associated with the resource where the daemon is running. You can
verify the connection with the following command:

telnet localhost 8649

If gmond is running and communicating properly, an XML document listing the reported metrics is
displayed.

This section includes information about the resource metrics facts that are gathered, the unit
conversion performed by Orchestrate on the Ganglia-provided values, and how you can use these
facts to help you manage the resources in the grid.

 “Resource Metrics Facts” on page 87

 “Interpreting the Units of Metrics Fact Values” on page 89

Resource Metrics Facts

The Orchestrate Agent uses the metrics collected by gmond to create fact values for a given
resource. These facts are therefore externally generated and are not among the default facts reported
by the PlateSpin Orchestrate Agent. The agent updates these externally generated fact values every
30 seconds. All of these fact values have a resource.metrics. prefix.

For example, gmond collects a metrics value called load_one. The Orchestrate Agent sets this
value as the resource.metrics.load_one fact.

To see a list of these facts in the Orchestrate Development Client,

1 In the Explorer panel, select a resource.

2 In the Workspace panel, select Constraints/Facts.

group.resources.idle Integer dynamic, r/o The total number of available
resources that are ready for
work in this group.

group.resources.online Integer dynamic, r/o The total number of online
resources (busy and idle) in
this group.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 87

88 PlateS
The names of the resource metrics facts are displayed in bold font (in the Development Client
interface) because they were added as new facts to the default fact list. The following sample is a list
of the default Ganglia-generated metrics facts with data type and an example value:

<fact name="resource.metrics.boottime" value="1239122234.0000" type="Real" />
<fact name="resource.metrics.bytes_in" value="208.8800" type="Real" />
<fact name="resource.metrics.bytes_out" value="68.9700" type="Real" />
<fact name="resource.metrics.cpu_aidle" value="76.9000" type="Real" />
<fact name="resource.metrics.cpu_idle" value="95.2000" type="Real" />
<fact name="resource.metrics.cpu_nice" value="0.0000" type="Real" />
<fact name="resource.metrics.cpu_num" value="2" type="Integer" />
<fact name="resource.metrics.cpu_speed" value="1596" type="Integer" />
<fact name="resource.metrics.cpu_system" value="0.3000" type="Real" />
<fact name="resource.metrics.cpu_user" value="4.0000" type="Real" />
<fact name="resource.metrics.cpu_wio" value="0.4000" type="Real" />
<fact name="resource.metrics.disk_free" value="27090" type="Integer" />
<fact name="resource.metrics.disk_total" value="48213" type="Integer" />
<fact name="resource.metrics.gexec" value="OFF" type="String" />
<fact name="resource.metrics.load_fifteen" value="0.2000" type="Real" />
<fact name="resource.metrics.load_five" value="0.4100" type="Real" />
<fact name="resource.metrics.load_one" value="1.1900" type="Real" />
<fact name="resource.metrics.machine_type" value="x86" type="String" />
<fact name="resource.metrics.mem_buffers" value="299" type="Integer" />
<fact name="resource.metrics.mem_cached" value="761" type="Integer" />
<fact name="resource.metrics.mem_free" value="65" type="Integer" />
<fact name="resource.metrics.mem_shared" value="0" type="Integer" />
<fact name="resource.metrics.mem_total" value="1989" type="Integer" />
<fact name="resource.metrics.os_name" value="Linux" type="String" />
<fact name="resource.metrics.os_release" value="2.6.27.19-5-pae" type="String"
/>
<fact name="resource.metrics.part_max_used" value="70.8000" type="Real" />
<fact name="resource.metrics.part_max_used.units" value="" type="String" />
<fact name="resource.metrics.pkts_in" value="0.4500" type="Real" />
<fact name="resource.metrics.pkts_out" value="0.6300" type="Real" />
<fact name="resource.metrics.proc_run" value="0" type="Integer" />
<fact name="resource.metrics.proc_total" value="411" type="Integer" />
<fact name="resource.metrics.swap_free" value="2039" type="Integer" />
<fact name="resource.metrics.swap_total" value="2047" type="Integer" />
<fact name="resource.metrics.vm_type" value="" type="String" />
<fact name="resource.metrics.vm_type.units" value="" type="String" />

These are the metrics reported in Orchestrate systems that use the gmond.conf created when
Orchestrate Monitoring Agent was installed and configured. The open source gmond might include
other metrics that can be monitored. You can modify the default Orchestrate gmond configuration
file to report these metrics after it is initially installed and configured. For information about
modifying the file, see the gmond.conf man page (http://linux.die.net/man/5/gmond.conf).

By using the XML constraint language, you can utilize these resource metrics facts as you would
use any other fact in PlateSpin Orchestrate. For example, you could create an Event that sets
thresholds for the amount of incoming network packets. When that threshold is exceeded, a
Scheduled Job could be triggered or a notification e-mail sent. For more information, see
Section 3.12, “Using an Event Notification in a Job,” on page 48.
pin Orchestrate 2.6 Developer Guide and Reference

http://linux.die.net/man/5/gmond.conf

Interpreting the Units of Metrics Fact Values

The Orchestrate Agent converts most of the Ganglia metrics values to PlateSpin Orchestrate
standard units. This allows fact values to be compared in constraints without the need to perform
conversions explicitly. In cases where units are not known or cannot be converted, a separate fact
with a .units suffix is included. For example:

<fact name="resource.metrics.bytes_in" value="bytes/sec" type="String" />

The following table lists the resource.metrics facts and the units of measure used for each fact
value:

Table 4-9 Resource Metrics Facts

Resource Metric Fact With Reported Value Orchestrate Measurement Unit of the Value

boottime 32-bit seconds timestamp

bytes_in byte rate measured in bytes per second

bytes_out byte rate measured in bytes per second

cpu_aidle percentage

cpu_idle percentage

cpu_nice percentage

cpu_num number of CPUs

cpu_speed megahertz as an integer

cpu_system percentage

cpu_user percentage

cpu_wio percentage

disk_total total in binary megabytes

disk_free total in binary megabytes

gexec simple string

load_fifteen real number

load_five real number

load_one real number

machine_type simple string

mem_buffers memory in megabytes (integer)

mem_cached memory in megabytes (integer)

mem_free memory in megabytes (integer)

mem_shared memory in megabytes (integer)

mem_total memory in megabytes (integer)

os_name simple string
Understanding Grid Object Facts and Computed Facts 89

90 PlateS
4.1.5 Virtual Disk Object Facts and Fact Junctions

This section includes the following information:

 “Virtual Disk Object Facts” on page 90

 “Virtual Disk Object Fact Junctions” on page 91

Virtual Disk Object Facts

The vDisk object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only. Facts with mode r/o have
read-only values, which can be viewed but changes cannot be made.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the vDisk
Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deletable, which means they can be deleted at any time.

Table 4-10 vDisk Facts

os_release simple string

pkts_in packet rate in packets per second

pkts_out packet rate in packets per second

proc_run processes run (integer)

proc_total total processes (integer)

swap_free memory in megabytes (integer)

swap_total memory in megabytes (integer)

Fact Name Fact Type Mode Description

vdisk.description String Description of vDisk

vdisk.groups String[] r/o The groups this vDisk is a member of

vdisk.health Boolean The health of this vDisk. True indicates
good health

vdisk.id String r/o The vDisk’s unique ID.

vdisk.location String The repository dependent location
definition

Resource Metric Fact With Reported Value Orchestrate Measurement Unit of the Value
pin Orchestrate 2.6 Developer Guide and Reference

Virtual Disk Object Fact Junctions

The following diagram illustrates the relationship between the Virtual Disk object facts and other
Grid objects. It also shows the relationship between other discrete Grid object facts and the Virtual
Disk Grid object itself.

Figure 4-6 Virtual Disk Fact Junctions

4.1.6 Virtual NIC Object Facts and Fact Junctions

This section includes the following information:

 “Virtual NIC Object Facts” on page 92

 “Virtual NIC Object Fact Junctions” on page 93

vdisk.moveable Boolean True if the vDisk is moveable.

The vDisk cannot be deleted if this fact
is set to false.

vdisk.repository String The name of the repository containing
the vDisk image

vdisk.size Integer The size of this virtual disks
(megabytes)

vdisk.type String The type of vDisk: - file (file backed
disk) - block (block device)

vdisk.vm String r/o The name of the VM that uses this
vDisk

Fact Name Fact Type Mode Description

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vdisk

 .id: String

 .groups: String[]

 .vm: String

 .repository: String

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Fact Junctions

vdisk group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend
Understanding Grid Object Facts and Computed Facts 91

92 PlateS
Virtual NIC Object Facts

The VNIC object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the VNIC
Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-11 VNIC Facts

Fact Name
Fact
Type

Mode Description

vnic.description String Description of vNIC

vnic.groups String[] r/o The groups that this vNIC
belongs to.

vnic.health Boolean The health of this vNIC. True
indicates good health

vnic.id String r/o The unique name of this
VNIC.

vnic.mac String The MAC address assigned to
this VNIC. A empty string
implies auto-generate MAC
address.

vnic.network String The network (vbridge group)
on which this Vnic is
provisioned or wishes to be
provisioned.

vnic.provisioner.autoprep.DNSDomain String Windows only. Adapter's
Domain.

vnic.provisioner.autoprep.DNSFromDHCP Boolean (Optional, SUSE VM only.) If
true, then the SUSE VM is
configured to retrieve its DNS
server settings from DHCP.

vnic.provisioner.autoprep.DNSServers Adapter's list of DNS servers
for name look up.

vnic.provisioner.autoprep.DNSSuffixes Adapter's suffix appended to
name for lookup.

vnic.provisioner.autoprep.Gateways List of Internet gateways
available to the interface.
pin Orchestrate 2.6 Developer Guide and Reference

Virtual NIC Object Fact Junctions

The following diagram illustrates the relationship between the VNIC object facts and other Grid
objects. It also shows the relationship between other discrete object facts and the VNIC object itself.

vnic.provisioner.autoprep.IPAddress String del IP address for this adapter.

vnic.provisioner.autoprep.MACAddress String del MAC address for the interface.
Asterisk (*) or not set means
to generate a new MAC.

vnic.provisioner.autoprep.UseDHCP Boolean del If true, new VM retrieves its
network settings from a DHCP
server and any adapter
settings are ignored. If false,
then any req uired adapter
settings must be defined.

vnic.provisioner.autoprep.netBIOS String del NetBios options for VM. The
values are:

 EnableNetBIOSViaDhcp

 EnableNetBIOS

 DisableNetBIOS

vnic.provisioner.autoprep.primaryWINS String del Windows only. Adapter's
Primary WINS server.

vnic.provisioner.autoprep.secondaryWI
NS

String del Windows only. Adapter's
Secondary WINS server.

vnic.provisioner.autoprep.subnetMask String del Subnet mask for this adapter.

vnic.vbridge String dynamic,
r/o

The name of the Vbridge used
by this vNIC

vnic.vm String r/o The name of the VM that uses
this vNIC

Fact Name
Fact
Type

Mode Description
Understanding Grid Object Facts and Computed Facts 93

94 PlateS
Figure 4-7 Virtual NIC Fact Junctions

4.1.7 Repository Object Facts and Fact Junctions

This section includes the following information:

 “Repository Object Facts” on page 94

 “Repository Object Fact Junctions” on page 97

 “Repository Group Facts” on page 97

Repository Object Facts

The Repository object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the
Repository Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vbridge

 .id: String

 .groups: String[]

 .vmhost: String

 .vnics: String[]

vnic

 .id: String

 .groups: String[]

 .vbridgegroup: String

 .vbridge: String

 .vm: String

network
vbridge group

 group.id: String

 group.vlanid: Integer

VM specification
(editable in VM client)

Vnic Fact Junctions

dynamic, r/or/o

no mode dynamic

Legend

vnic group

 .id: String
pin Orchestrate 2.6 Developer Guide and Reference

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-12 Repository Facts

Fact Name Fact Type Mode Description

repository.capacity Integer The maximum amount of
storage space available to
virtual machines (in
megabytes). -1 means
unlimited.

repository.description String Description of repository

repository.efficiency Real The efficiency coefficient
used to calculate the cost
of moving VM disk images
to and from the repository.
This value is multiplied by
the disk image size in Mb
to determine score (thus 0
means no cost -- very
efficient).

repository.enabled Boolean True if the Repository is
enabled (new VM
instances can be
provisioned)

repository.freespace Integer Dynamic r/o The amount of storage
space available to new
virtual machines (in
megabytes). -1 means
unlimited.

repository.groups String[] r/o The groups to which this
repository belongs.

repository.health Boolean The health of this
repository. True indicates
good health

repository.id String r/o The Repository’s unique
name

repository.location String The Repository's logical
root location, for example,
/ or c:/vm or nas:/vol1

repository.preferredpath String The relative path from
repository.location
to search and place VM
files for movement and
cloning
Understanding Grid Object Facts and Computed Facts 95

96 PlateS
repository.provisioner.j
obs

String[] The names of the
provisioning adapter jobs
that can manage VM's on
this repository

repository.san.type String The type of SAN (Adapter
specific, iSCSI or Fibre
Channel)

repository.san.vendor String The vendor of SAN
(Adapter specific, iqn,
npiv, emc). An empty
string indicates bind/unbind
is a noop.

repository.searchpath String[] The relative path from
repository.location
to search for VM
configuration files
(implicitly includes
resource.preferredpa
th)

repository.type String The type of repository:

 local (for example,
local disk)

 NAS (for example,
NFS mount)

 SAN (a Storage area
Network such as
iSCSI or Fibre
Channel)

 datagrid (an
Orchestrate built-in,
datagrid-backed
store)

 virtual (an
externally managed
store such as
VMware Virtual
Center)

repository.usedspace Integer Dynamic r/o The amount of storage
space used for virtual
machines

repository.vmhosts String[] Dynamic r/o The amount of storage
space used for virtual
machines

repository.vmimages String[] Dynamic r/o The list of VM images
stored in this repository
(aggregated from individual
VM fact)

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

Repository Object Fact Junctions

The following diagram illustrates the relationship between the Repository object facts and other
Grid objects. It also shows the relationship between other discrete Grid object facts and the
Repository object itself.

Figure 4-8 Repository Fact Junctions

Repository Group Facts

Table 4-13 Repository Group Facts

4.1.8 Virtual Bridge Object Facts and Fact Junctions

This section includes the following information:

 “Virtual Bridge Object Facts” on page 98

 “Virtual Bridge Object Fact Junctions” on page 98

 “Network Group Facts” on page 99

Fact Name Fact Type Mode Description

group.id String r/o The name of the group.

resource
VM

 .id: String

 .vm.vdisks: String[]

 .vm.repository: String

 .vm.repositories: String[]

 .vm.repositories.moveable: String[]

 .vm.repositories.unmoveable: String[]

 .groups: String[]

 .vm.provision.cloneofid: String

 .provisioner.job: String

 .provision.jobid: String

 .provisioner.instances: String[]

 .provision.vmhost: String

 .provisioner.recommendedhost: String

 .vm.networks: String[]

 .vm.vnics: String[]

vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]

vdisk

 .id: String

 .groups: String[]

 .vm: String

 .repository: String

repository

 .id: String

 .groups: String[]

 .vmimages: String[]

 .vmhosts: String[]

 .provision.jobs: String[]

VM specification
(editable in VM client)

Repository Fact Junctions

job

 .id: String

 .resourcegroup: String

 .groups: String[]

 .accountinggroup: String

dynamic, r/or/o

no mode dynamic

Legend

repository group

 .id: String
Understanding Grid Object Facts and Computed Facts 97

98 PlateS
Virtual Bridge Object Facts

The VNIC object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the
Vbridge Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-14 Vbridge Facts

Virtual Bridge Object Fact Junctions

The following diagram illustrates the relationship between the Virtual Bridge (Vbridge) object facts
and other Grid objects. It also shows the relationship between other discrete Grid object facts and
the Vbridge object itself.

Fact Name Fact Type Mode Description

vbridge.description String Description of Vbridge

vbridge.enabled Boolean True if the vbridge is enabled

vbridge.groups String[] r/o The groups this Vbridge is a member of

vbridge.health Boolean True if the vbridge is in a healthy state

vbridge.id String r/o The unique identifier for the Vbridge.

vbridge.vmhost String r/o The ID of the vmhost containing this
vbridge

vbridge.vnics String[] dynamic, r/o The virtual NICs attached to this
vbridge
pin Orchestrate 2.6 Developer Guide and Reference

Figure 4-9 Virtual Bridge Fact Junctions

Network Group Facts

Table 4-15 Network Group Facts

4.1.9 User Object Facts and Fact Junctions

This section includes the following information:

 “User Object Facts” on page 99

 “User Object Fact Junctions” on page 103

 “User Group Facts” on page 103

User Object Facts

The User object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only.

Fact Name Fact Type Mode Description

group.id String r/o The group name.

group.provisioner.jobs String[] dynamic, r/o Provision adapters with
vBridge instances on this
network.

group.provisioner.preferred String[] Provision adapters explicitly
associated with this network.

group.vlanid String The name of the VLAN
accessed by this network
(Vbridge group).

vbridge

 .id: String

 .groups: String[]

 .vmhost: String

 .vnics: String[]

vmhost

 .id: String

 .groups: String[]

 .repositories: String[]

 .vm.available.groups: String[]

 .vm.instanceids: String[]

 .provisioner.job: String

 .accountinggroup: String

 .resource: String

 .networks: String[]

 .vbridges: String[]vnic

 .id: String

 .groups: String[]

 .vbridgegroup: String

 .vbridge: String

 .vm: String

network
vbridge group

 group.id: String

 group.vlanid: Integer

VM specification
(editable in VM client)

Vbridge Fact Junctions

dynamic, r/or/o

no mode dynamic

Legend
Understanding Grid Object Facts and Computed Facts 99

100 PlateS
The following table lists the default facts created by the PlateSpin Orchestrate Server for the User
Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-16 User Facts

Fact Name Fact Type Mode Description

user.account.balance Real dynamic The amount of matrix dollars
spent by this user since last
reset ($). Useful for
implementation of quotas

user.account.gcycles Integer dynamic The amount of grid time
(gcycles) spent by this user
since last reset. Useful for
implementation of quotas

user.account.maxspendrate Real This value is used by the
resource scheduler to throttle
the rate at which matrix
computing cycles are
comsumed by the user ($/hr,
<=0 turns feature off)

user.account.spendrate Real dynamic, r/o The computed moving average
spending over the last hour of
user activity ($/hr)

user.account.time Integer dynamic The amount of wall time spent
by this user since last reset.
Useful for implementation of
quotas

user.accountinggroup String The default user group which will
be billed for work conducted by
this user

user.auth.provider String The authentication provider to
which the user authenticates

user.datagrid.maxhistory Integer The maximum number job
instance directories that should
be kept in the datagrid for this
user

user.enabled Boolean True if the user is enabled
(allowed to log in and run jobs)

user.env Dictionary The uploaded and default user
environment
pin Orchestrate 2.6 Developer Guide and Reference

user.external.groups String[] dynamic, r/o The external groups (e.g. LDAP)
this user is a member ofc

user.groups String r/o The groups this user is a
member of

user.health Boolean The health of this user. True
indicates good health

user.history.cost.total Real dynamic, r/o The total amount of matrix
dollars spent by this user on the
matrix

user.history.gcycles.total Integer dynamic, r/o The total amount of grid time
(gcycles) spent by this user on
the matrix

user.history.jobcount Integer dynamic, r/o The total number of jobs a user
has ever initiated on the matrix

user.history.time.total Integer dynamic, r/o The total amount of wall time
spent by this user on the matrix

user.id String r/o The user's login name

user.jobcount Integer dynamic A counter that records the
number of jobs a user has
initiated since last reset. Useful
for implementation of quotas

user.jobs.active Integer dynamic, r/o The number of top-level jobs a
user has in an active state

user.jobs.queued Integer dynamic, r/o The number of top-level jobs
that are queued for this user

user.jobs.total Integer dynamic, r/o The total number of top-level
jobs a user currently has in the
matrix

user.location.city String The city of location of the user

user.location.country String The country of location of the
user

user.location.site String The site where the users work,
for example, a building number.

user.location.state String The state of location of the user

user.name.email String The user's email address

user.name.first String The user's first name

user.name.last String The user's last name

user.online Boolean dynamic. r/o Whether the user is currently
logged into the matrix

user.password String dynamic The user's login password

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 101

102 PlateS
user.preemption.enabled Boolean Allows this user to preempt
willing jobs of a priority less than
the priority of the running job
instance

user.preemption.priority.delta Integer Indicates the highest job priority
band that this user is allowed to
preempt resources from (acts as
a delta from the current job
instance priority). The maximum
preemptible priority is always <=
user.priority.max

user.priority.default Integer The numeric representation of
the default priority at which this
user's jobs will run (1=lowest,
9=highest)

user.priority.default.string String dynamic, r/o The string representation of the
default priority at which this user
can run a job (matches
user.priority.default)

user.priority.max Integer The numeric representation of
the maximum priority that this
user can run a job at (1=lowest,
9=highest)

user.priority.max.string String dynamic, r/o The string representation of the
maximum priority at which this
user can run a job (matches
user.priority.max)

user.privilegedjobgroups String[] Allows this user's to run jobs and
thus joblets on resources that
have reached their slot
maximum or are provisioned
resources that have been
reserved for another user/job.
This is primarily to allow
discovery jobs to be 'squeezed'
onto the resource

user.sessions Integer dynamic, r/o The number of active sessions
(connections) a user currently
has with the matrix

user.stealing.enabled Boolean Allows this user to steal
resources running jobs of a
priority less than the priority of
running job instance

user.stealing.priority.delta Integer Indicates the highest job priority
band that this user is allowed to
steal resources from (acts as a
delta from the current job
instance priority, must be < '0')

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

User Object Fact Junctions

The following diagram illustrates the relationship between the User object facts and other Grid
objects. It also shows the relationship between other discrete Grid object facts and the User object
itself.

Figure 4-10 User Fact Junctions

User Group Facts

Table 4-17 User Group Facts

Fact Name Type Mode Description

group.account.balance Real dynamic he aggregated cost of work done by
members of this group since last
reset ($).

group.account.gcycles Integer dynamic The aggregated amount of grid time
(gcycles) spent by members of this
group since last reset.

group.account.time Integer dynamic The aggregated amount of wall time
spent by members of this group
since last reset

group.id String r/o The name of the group.

VM specification
(editable in VM client)

User Fact Junctions

user

 .id: String

 .priviledgedjobgroups: String[]

 .groups: String[]

 .accountinggroup: String[] user group

 .id: String

job group

 .id: String

dynamic, r/or/o

no mode dynamic

Legend
Understanding Grid Object Facts and Computed Facts 103

104 PlateS
4.1.10 Matrix Object Facts

The Matrix object has an associated set of facts and constraints that define its properties. The
PlateSpin Orchestrate Server assigns default values to each of the component facts, although they
can be changed at any time by the administrator, unless they are read-only.

The following table lists the default facts created by the PlateSpin Orchestrate Server for the Matrix
Grid object.

NOTE: Facts with mode dynamic are dyamic read/write facts, which means you can dynamically
change the values for that fact.

Facts with mode r/o have read-only values, which means they can be viewed but changes cannot be
made.

Facts with mode del are deleteable, which means they can be deleted at any time.

Table 4-18 Matrix Facts

group.jobcount Integer dynamic The aggregated number of jobs run
by members of this group since last
reset.

Fact Name Fact Type Mode Description

matrix.activejobs Integer dynamic, r/o The number of active jobs
(including child jobs) for this
Orchestrate Server.

matrix.clustered Boolean dynamic, r/o Server is configured in a high
availabilitly cluster.

matrix.datagrid.root String dynamic, r/o The root directory of the datagrid.

matrix.date Date dynamic, r/o The date of this server.

matrix.date.dayofmonth Integer dynamic, r/o The numerical representation of
the current day of the month.

matrix.date.dayofweek String dynamic, r/o The string representation of the
current week day.

matrix.date.dayofweek.num
ber

Integer dynamic, r/o The numerical representation of
the current week day.

matrix.date.month String dynamic, r/o The string representation of the
current month.

matrix.date.month.number Integer dynamic, r/o The numerical representation of
the current month.

matrix.date.year Integer dynamic, r/o The current year.

matrix.groups.job String[] dynamic, r/o List of Group Names of type Job.

Fact Name Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

matrix.groups.repository String[] dynamic, r/o List of Group Names of type
Repository.

matrix.groups.resource String[] dynamic, r/o List of Group Names of type
Resource.

matrix.groups.user String[] dynamic, r/o List of Group Names of type User.

matrix.groups.vbridge String[] dynamic, r/o List of Group Names of type
Vbridge.

matrix.hostname String dynamic, r/o The server hostname.

matrix.hostname.full String dynamic, r/o The fully qualified server
hostname.

matrix.id String r/o The name of the matrix

matrix.loadaverage Real Indicates the average load of the
grid server. A value less than 1.0 is
unloaded.

matrix.maxactive Integer The hard limit for the maximum
number of active jobs (including
child jobs) allowed on this server at
one time. Jobs exceeding this
value will be queued.

matrix.maxqueued Integer The maximum number of queued
jobs that will be accepted by this
matrix server

matrix.maxtopjobs Integer The maximum number of active
jobs after which new top-level jobs
will be queued (child jobs may be
be able to start). Should be less
than matrix.maxactive.

matrix.physical.hostname String dynamic, r/o The physical server hostname

matrix.physical.hostname.
full

String dynamic, r/o The fully qualified physical server
hostname.

matrix.queuedjobs Integer dynamic, r/o The number of queued jobs for this
matrix server.

matrix.time Time dynamic, r/o The time of this server.

matrix.timeout.jobfinishi
ng

Integer The approximate number of
seconds to wait for a job to
complete its finishing state. That is,
to run any failed/canceled/
completed JDL event handlers.

matrix.timezone String dynamic, r/o The string description of the time
zone in which this matrix server
resides.

matrix.uptime String dynamic, r/o The time since the last server
restart.

Fact Name Fact Type Mode Description
Understanding Grid Object Facts and Computed Facts 105

106 PlateS
4.2 Computed Facts
Computed facts are derived from a value, like that generated from the cell of a spreadsheet.
Computed facts have some kind of logic behind them which derives their values.

For example, you might have two numeric facts that you want expressed in another fact as an
average of the two. You could compose a computed fact which averages two other facts and express
it as an average value under a certain fact name. This enables you to create facts that represent other
metrics on the system that are not necessarily available in the default set, or are not static to anything
that might impact other dynamic facts.

Computed facts are used when you want to run JDL to generate the value for a fact. Although
computed facts are not jobs, they use the same JDL syntax.

To create a new computed fact, you subclass the ComputedFact class with the .cfact extension.
An implementation uses the ComputedFactContext to get the evaluation context. For more
information, see the job structure from the following examples:

 ComputedFact (page 236)

 ComputedFactContext (page 236)

After the new computed fact is created, you deploy it using the same procedures required for jobs
(using either the zosadmin command line tool or the PlateSpin Orchestrate Development Client).

The following example shows a computed fact that returns the number of active job instances for a
specific job for the current job instance.This fact can be used in an accept or start constraint to limit
how many jobs a user can run in the system.The constraint is added to the job policy in which to
have the limit.In this example, the start constraint uses this fact to limit the number of active jobs for
a user to one:

"""
 <constraint type="start" >
 <lt fact="cfact.activejobs"
 value="1"
 reason="You are only allowed to have 1 job running at a time" />
 </constraint>

Change JOB_TO_CHECK to define which job is to be limited.
"""
JOB_TO_CHECK="quickie"

class activejobs(ComputedFact):

 def compute(self):

 j = self.getContext()
 if j == None:
 # This means computed Fact is executed in a non running

matrix.version String dynamic, r/o The version of this server in form
<major>.<minor>.<point>_<buildN
umber>

Fact Name Fact Type Mode Description
pin Orchestrate 2.6 Developer Guide and Reference

 # job context. e.g., the ZOC fact browser
 print "no job instance"
 return 0
 else:
 # Computed fact is executing in a job context
 user = j.getFact("user.id")
 activejobs = self.getMatrix().getActiveJobs()
 count = 0
 for j in activejobs:
 jobname = j.getFact("job.id")

 # Don't include queued in count !
 state = j.getFact("jobinstance.state.string")
 if jobname == JOB_TO_CHECK \
 and j.getFact("user.id") == user \
 and (state == "Running" or state == "Starting"):
 count+=1

 jobid = j.getFact("jobinstance.id")
 print "jobid=%s count=%d" % (jobid,count)
 return count

For another computed fact example, see activejobs.cfact (located in the examples/
activejobs.cfact directory).
Understanding Grid Object Facts and Computed Facts 107

108 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

5
5The PlateSpin Orchestrate
Datagrid

This section explains concepts related to the datagrid of the PlateSpin Orchestrate Server datagrid
and specifies many of the objects and facts that are managed in the grid environment:

 Section 5.1, “Defining the Datagrid,” on page 109

 Section 5.2, “Datagrid Communications,” on page 112

 Section 5.3, “datagrid.copy Example,” on page 113

5.1 Defining the Datagrid
Within the PlateSpin Orchestrate environment, the datagrid has three primary functions:

 Section 5.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on page 109

 Section 5.1.2, “Distributing Files,” on page 111

 Section 5.1.3, “Simultaneous Multicasting to Multiple Receivers,” on page 111

5.1.1 PlateSpin Orchestrate Datagrid Filepaths

The PlateSpin Orchestrate datagrid provides a file naming convention that is used in JDL code and
by the PlateSpin Orchestrate CLI for accessing files in the datagrid. The naming convention is in the
form of a URL. For more information, see “Jobs”in the PlateSpin Orchestrate 2.6 Administrator
Reference.

The datagrid defines the root of the namespace as grid://, with further divisions under the root as
illustrated in the figure below:
The PlateSpin Orchestrate Datagrid 109

110 PlateS
Figure 5-1 File Structure of Data Nodes in a Datagrid

The grid URL naming convention is the form grid://<gridID>/<file path>. Including the grid
ID is optional and its absence means the host default grid.When writing jobs and configuring a
datagrid, you can use the symbol ^ as a shortcut to the <jobid> directory either standalone,
indicating the current job, or followed by the jobid number to identify a particular job. Likewise, the
symbol ! can be used as a shortcut to the deployed jobs’ home directory either standalone, indicating
the current jobs’ type, or followed by the deployed jobs’ name. The symbol ~ is also a shortcut to the
user’s home directory in the datagrid, either by itself, indicating the current user, or followed by the
desired user ID to identify a particular user.

The following examples show address locations in the datagrid using the zos command line tool.
These examples assume you have logged in using zos login to the Orchestrate Server you are
using:

 “Directory Listing of the Datagrid Root Example” on page 110

 “Directory Listing of the Jobs Subdirectory Example” on page 111

Directory Listing of the Datagrid Root Example

$ zos dir grid:///
 <DIR> Jun-26-2007 9:42 installs
 <DIR> Jun-26-2007 9:42 jobs
 <DIR> Jun-26-2007 14:26 users
 <DIR> Jun-26-2007 9:42 vms
 <DIR> Jun-26-2007 10:09 warehouse
pin Orchestrate 2.6 Developer Guide and Reference

Directory Listing of the Jobs Subdirectory Example

$ zos dir grid:///jobs
 <DIR> Jun-26-2007 9:42 cpuInfo
 <DIR> Jun-26-2007 9:42 findApps
 <DIR> Jun-26-2007 9:42 osInfo
 <DIR> Jun-26-2007 9:42 vcenter
 <DIR> Jun-26-2007 9:42 vmHostVncConfig
 <DIR> Jun-26-2007 9:42 vmprep
 <DIR> Jun-26-2007 9:42 vmserver
 <DIR> Jun-26-2007 9:42 vmserverDiscovery
 <DIR> Jun-26-2007 9:42 xen30
 <DIR> Jun-26-2007 9:42 xenDiscovery
 <DIR> Jun-26-2007 9:42 xenVerifier

5.1.2 Distributing Files

The PlateSpin Orchestrate datagrid provides a way to distribute files in the absence of a distributed
file system. This is an integrated service of PlateSpin Orchestrate that performs system-wide file
delivery and management.

5.1.3 Simultaneous Multicasting to Multiple Receivers

The datagrid provides a multicast distribution mechanism that can efficiently distribute large files
simultaneously to multiple receivers. This is useful even when a distributed file system is present.
For more information, see Section 5.2, “Datagrid Communications,” on page 112.

5.1.4 PlateSpin Orchestrate Datagrid Commands

The following datagrid commands can be used when creating job files. To see where these
commands are applied in the PlateSpin Orchestrate Development Client, see “Typical Use of the
Grid”.

Command Description

cat Displays the contents of a datagrid file.

copy Copies files and directories to and from the datagrid.

delete Deletes files and directories in the datagrid.

dir Lists files and directories in the datagrid.

head Displays the first of a datagrid file.

log Displays the log for the specified job.

mkdir Makes a new directory in the datagrid.

move Moves files and directories in the datagrid.

tail Displays the end of a datagrid file.
The PlateSpin Orchestrate Datagrid 111

112 PlateS
5.2 Datagrid Communications
There is no set limit to the number of receivers (nodes) that can participate in the datagrid or in a
multicast operation. Indeed, multicast is rarely more efficient when the number of receivers is small.
Any type of file or file hierarchy can be distributed via the datagrid.

The datagrid uses both a TCP/IP and IP multicast protocols for file transfer. Unicast transfers (the
default) are reliable because of the use of the reliable TCP protocol. Unicast file transfers use the
same server/node communication socket that is used for other job coordination datagrid packets are
simply wrapped in a generic DataGrid message. Multicast transfers use the persistent socket
connection to setup a new multicast port for each transfer.

After the multicast port is opened, data packets are received directly. The socket communication is
then used to coordinate packet resends. Typically, a receiver will loose intermittent packets (because
of the use of IP multicast, data collisions, etc.). After the file is transferred, all receivers will respond
with a bit map of missed packets. The logically ANDing of this mask is used to initiate a resend of
commonly missed packets. This process will repeat a few times (with less data to resend on each
iteration). Finally, any receiver will still have incomplete data until all the missing pieces are sent in
a reliable unicast fashion.

The data transmission for a multicast datagrid transmission is always initiated by the Orchestrate
Server. Currently this is the same server that is running the grid.

With the exception of multicast file transfers, all datagrid traffic goes over the existing connection
between the agent/client and the server. This is done transparently to the end user or developer. As
long as the agent is connected and/or the user is logged in to the grid, the datagrid operations
function.

5.2.1 Multicast Example

Multicast transfers are currently only supported through JDL code on the agents. In JDL, after you
get the Datagrid object, you can enable and configure multicasting like this:

 dg.setMulticast(true)

Additional multicast tuneables can be set on the object as well, such as the following example:

 dg.setMulticastRate(20000000)

This would set the maximum data rate on the transfer to 20 million bytes/sec. There are a number of
other options as well. Refer to the JDL reference for complete information.

The actual multicast copy is initiated when a sufficient number of JDL joblets on different nodes
issue the JDL command:

 dg.copy(...)

to actually copy the requested file locally. See the setMulticastMin and setMulticastQuorum
options to change the minimum receiver count and other thresholds for multicasting.

For example, to set up a multicast from a joblet, where the data rate is 30 million bytes/sec, and a
minimum of five receivers must request multicast within 30 seconds, but if 30 receivers connect,
then start right away, use the following JDL:
pin Orchestrate 2.6 Developer Guide and Reference

 dg = DataGrid()
 dg.setMulticast(true)
 dg.setMulticastRate(30000000)
 dg.setMulticastMin(5)
 dg.setMulticastQuorum(30)
 dg.setMulticastWait(30000)
 dg.copy('grid:///vms/huge-image.dsk', 'image.dsk')

In the above example, if at least five agents running the joblet request the file within the same 30
second period, then a multicast is started to all agents that have requested multicast before the
transfer is started. Agents requesting after the cutoff have to wait for the next round. Also, if fewer
than 5 agents request the file, then each agent will simply fall back to plain old unicast file copy.

Furthermore, if more than 30 agents connect before 30 seconds is up, then the transfer begins
immediately after the 30th request. This is useful for situations where you know how many agents
will request the file and want to start as soon as all of them are ready.

5.2.2 Grid Performance Factors

The multicast system performance is dependent on the following factors:

 Network Load: As the load increases, there is more packet loss, which results in more retries.

 Number of Nodes: The more nodes (receivers) there are, the greater the efficiency of the
multicast system.

 File Size: The larger the file size, the better. Unless there are a large number of nodes, files less
than 2 Mb are probably too small.

 Tuning: The datagrid facility has the ability to throttle network bandwidth. Best performance
has been found at about maximum bandwidth divided by 2. Using more bandwidth leads to
more collisions. Also the number of simultaneous multicasts can be limited. Finally the
minimum receiver size, receiver wait time and quorum receiver size can all be tuned.

Access to the datagrid is typically performed via the CLI tool or JDL code within a job. There is also
a Java API in the Client SDK (on which the CLI is implemented). See “Interface ClientAgent” on
page 218.

5.2.3 Plan for Datagrid Expansion

When planning your datagrid, you need to consider where you want the Orchestrate Server to store
its data. Much of the server data is the contents of the datagrid, including ever-expanding job logs.
Every job log can become quite large and quickly exceed its storage constraints.

In addition, every deployed job with its job package—JDL scripts, policy information, and all other
associated executables and binary files—is stored in the datagrid. Consequently, if your datagrid is
going to grow very large, store it in a directory other than /opt.

5.3 datagrid.copy Example
This example fetches the specified source file to the destination. A recursive copy is then attempted
if setRecursive(True) is set. The default is a single file copy. A multicast also is attempted if
setMulticast(True) is set. The default is to do a unicast copy. The following example copies a
file from the datagrid to a resource, then read the lines of the file:
The PlateSpin Orchestrate Datagrid 113

114 PlateS
1 datagrid = DataGrid()
2 datagrid.copy("grid:///images/myFile","myLocalFile")
3 text = open("myLocalFile").readlines()

This is an example to recursively copy a directory and its sub directories from the datagrid to a
resource:

4 datagrid = DataGrid()
5 datagrid.setRecursive(True)
6 datagrid.copy("grid:///testStore/testFiles","/home/tester/
myLocalFiles")

Here’s an example to copy down a file from the job deployment area to a resource and then read the
lines of the file:

7 datagrid = DataGrid()
8 datagrid.copy("grid:///!myJob/myFile","myLocalFile")
9 text = open("myLocalFile").readlines()

Here are the same examples without using the shortcut characters. This shows the job “myJob” is
under the “jobs” directory under the Datagrid root:

10 datagrid = DataGrid()
11 datagrid.copy("grid:///jobs/myJob/myFile","myLocalFile")
12 text = open("myLocalFile").readlines()
pin Orchestrate 2.6 Developer Guide and Reference

6
6Virtual Machine Job Development

This section explains the following concepts related to developing virtual machine (VM)
management jobs with PlateSpin Orchestrate:

 Section 6.1, “VM Job Best Practices,” on page 115

 Section 6.2, “Virtual Machine Management,” on page 116

 Section 6.3, “VM Life Cycle Management,” on page 117

 Section 6.4, “Manual Management of a VM Lifecycle,” on page 118

 Section 6.5, “Provisioning Virtual Machines,” on page 120

 Section 6.6, “Automatically Provisioning a VM,” on page 124

6.1 VM Job Best Practices
This section discusses some of VM job architecture best practices to help you understand and get
started developing VM jobs:

 Section 6.1.1, “Plan Robust Application Starts and Stops,” on page 115

 Section 6.1.2, “Managing VM Systems,” on page 116

 Section 6.1.3, “Managing VM Images,” on page 116

 Section 6.1.4, “Managing VM Hypervisors,” on page 116

 Section 6.1.5, “VM Job Considerations,” on page 116

6.1.1 Plan Robust Application Starts and Stops

An application is required for a service, and a VM is provisioned on its behalf. As part of the
provisioning process, the VM’s OS typically must be prepared for specific work; for example, NAS
mounts, configuration, and other tasks. The application might also need customizing, such as
configuring file transfer profiles, client/server relationships, and other tasks.

Then, the application is started and its “identity” (IP address, instance name, and other identifying
characteristics) might need to be transferred to other application instances in the service, or a load
balancer).

If the Orchestrate Server loses the job/joblet communication state machine, such as when a server
failover or job timeout occurs, all of the state information must be able to be recovered from “facts”
that are associated with the server. This kind of job should also work in a disaster recovery mode, so
it should be implemented in jobs regularly when relevant services from Data Center A must be
started in Data Center B in a DR case. These jobs require special precautions.
Virtual Machine Job Development 115

116 PlateS
6.1.2 Managing VM Systems

A series of VMs must typically be provisioned in order to run system-wide maintenance tasks.
Because there might not be enough resources to bring up every VM simultaneously, you might
consider running discovery jobs to limit how many resources (RAM, cores, etc.) that can be used at
any given time. Then, you should consider running a task that writes a consolidated audit trail.

6.1.3 Managing VM Images

Similar to how the job installagent searches for virtual machine grid objects using specified
Constraints and runs a VM operation (installAgent) on the VMs that are returned, a PlateSpin
Orchestrate image must be modified when the VM is not running. Preferably, this should occur
without having to provision the VM itself.

6.1.4 Managing VM Hypervisors

The management engine (“hypervisor”) underlying the host server must be “managed” while a VM
is running. For example, VM memory or CPU parameters must be adjusted on behalf of a
monitoring job or a Development Client action.

6.1.5 VM Job Considerations

In some instances, some managed resources might host VMs that do not contain an Orchestrate
Agent. Such VMs can only be controlled by administrators interacting directly with them.

Long-running VMs can be modified or migrated while the job managing the VM is not actively
interacting with it. If you have one joblet running on the container and one inside the VM, that
relationship might have to be re-established.

6.2 Virtual Machine Management
The PlateSpin Orchestrate provisioning manager provides the ability to manage the use of virtual
machines, as shown in the following figure:
pin Orchestrate 2.6 Developer Guide and Reference

Figure 6-1 VM Management

For more information about managing virtual machines, see the PlateSpin Orchestrate 2.6 VM
Client Guide and Reference.

While PlateSpin Orchestrate enables you manage many aspects of your virtual environment, as a
developer, you can create custom jobs that do the following tasks:

 Create and clone VMs: These jobs create virtual machine images to be stored or deployed.
They also create templates for building images to be stored or deployed (see “VM Instance:” on
page 121 and “VM Template:” on page 121).

 Discover resources that can be used as VM hosts.

 Provision, migrate, and move VMs: Virtual machine images can be moved from one physical
machine to another.

 Provide checkpoints, restoration, and re-synchronization of VMs: Snapshots of the virtual
machine image can be taken and used to restore the environment if needed. For more
information, refer to the documentation for your hypervisor or contact technical support
organization for that hypervisor.

 Monitor VM operations: Jobs can start, shut down, suspend and restart VMs.

 Manage on, off, suspend, and restart operations.

6.3 VM Life Cycle Management
The life cycle of a VM includes its creation, testing, modifications, use in your environment, and
removal when it's no longer needed.

Provisioning
Manager

Orchestrate
Server

System Configuration
Definition

Broker/Scheduler

Virtual Machine
Image Repository

VM1

VM Control

VM Placement

VM3

VM2VM1

VM3VM2

VM Physical Host Resources
Virtual Machine Job Development 117

118 PlateS
For example, in setting up your VM environment, you might want to first create basic VMs from
which you can create templates. Then, to enable the most efficient use of your current hardware
capabilities, you can use those templates to create the many different specialized VMs that you need
to perform the various jobs. You can create and manage VM-related jobs through the Development
Client interface.

Life cycle functions are performed one at a time per given VM in order to prevent conflicts in using
the VM. Life cycle events include:

 Creating a VM

 Starting and stopping a VM

 Pausing and resuming a VM

 Suspending and provisioning a VM

 Installing the Orchestrate Agent on a VM

 Creating a template from a VM

 Using the VM (starting, stopping, pausing, suspending, restarting, and shutting down)

 Running jobs for the VM

 Editing a VM

 Editing a template

 Moving a stopped VM to another host server

 Migrating a running VM to another host server

 Resynchronizing a VM to ensure that the state of the VM displayed in the Development Client
is accurate

 Cloning a VM

6.4 Manual Management of a VM Lifecycle
The example provided in this section is a general purpose job that only provisions a resource.

You might use a job like this, for example, each day at 5:00 p.m. when your accounting department
requires extra SAP servers to be available. As a developer, you would create a job that provisions the
required VMs, then use the PlateSpin Orchestrate Scheduler to schedule the job to run every day at
the time specified.

In this example, the provision job retrieves the members of a resource group (which are VMs) and
invokes the provision action on the VM objects. For an example of a provision job JDL, see
Section 6.4.3, “Provision Job JDL,” on page 119.

To setup to create the provision.job, use the following procedure:

1 Create your VMs and follow the discovery process in the Development Client so that the VMs
are contained in the PlateSpin Orchestrate inventory.

2 In the Development Client, create a Resource Group called sap and add the required VMs as
members of the group.

3 Given the .jdl and .policy below you would create a .job file (jar them):
pin Orchestrate 2.6 Developer Guide and Reference

>jar cvf provision.job provision.jdl provision.policy

4 Deploy the provision.job file to the Orchestrate Server using either the Development Client
or the zosadmin command line.

To run the job, use either of the following procedures:

 Section 6.4.1, “Manually Using the zos Command Line,” on page 119

 Section 6.4.2, “Automatically Using the Development Client Job Scheduler,” on page 119

6.4.1 Manually Using the zos Command Line

1 At the command line, enter:

>zos login <zos server>
>zos run provision VmGroup="sap"

For more complete details about entering CLI commands, see “The zos Command Line Tool” in the
PlateSpin Orchestrate 2.6 Command Line Reference.

6.4.2 Automatically Using the Development Client Job
Scheduler

1 In the Development Client, create a New schedule.

2 Fill in the job name (provision), user, and priority.

3 For the jobarg VmGroup, enter sap.

4 Create a Trigger for the time you want this job to run.

5 Save the Schedule and enable it by clicking Resume.

You can manually force scheduling by clicking Test Schedule Now.

For more complete details about using the Job Scheduler, see “The PlateSpin Orchestrate Job
Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference. You can also refer to
Section 6.6, “Automatically Provisioning a VM,” on page 124 in this guide.

6.4.3 Provision Job JDL

"""Job that retrieves the members of a supplied resource group and invokes the
provision action on all members. For more details about this class, see Job
(page 241). See also ProvisionSpec (page 246).

The members must be VMs.

"""
class provision(Job):

 def job_started_event(self):

 # Retrieves the value of a job argument supplied in
 # the 'zos run' or scheduled run.
 VmGroup = self.getFact("jobargs.VmGroup")

 #
 # Retrieves the resource group grid object of the supplied name.
Virtual Machine Job Development 119

120 PlateS
 # The job Fails if the group name does not exist.
 #
 group = getMatrix().getGroup(TYPE_RESOURCE,VmGroup)
 if group == None:
 self.fail("No such group '%s'." % (VmGroup))

 #
 # Gets a list of group members and invokes a provision action on each
one.
 #
 members = group.getMembers()
 for vm in members:
 vm.provision()
 print "Provision action requested for VM '%s'" %
(vm.getFact("resource.id"))

Job Policy:
<!--
 The policy definition for the provision example job.

 This specifies the job argument VmGroup' which is required
-->
<policy>

 <jobargs>

 <fact name="VmGroup"
 type="String"
 description="Name of a VM resource group whose members will be
provisioned"
 />

 </jobargs>

</policy>

6.5 Provisioning Virtual Machines
VM provisioning adapters run just like regular jobs on PlateSpin Orchestrate. The system can detect
a local store on each VM host and if a local disk might contain VM images. The provisioner puts in
a request for a VM host. However, before a VM is brought to life, the system pre-reserves that VM
for exclusive use.

That reservation prevents a VM from being stolen by any other job that’s waiting for a resource that
might match this particular VM. The constraints specified to find a suitable host evaluates machine
architectures, CPU, bit width, available virtual memory, or other administrator configured
constraints, such as the number of virtual machine slots.

This process provides heterogeneous virtual machine management using the following virtual
machine adapters (also called “provisioning adapters”):

 Xen Adapter: For more information, see XenSource* (http://www.xensource.com/).

 VMware vSphere 4.x: For more information, see VMware (http://www.vmware.com).

 Hyper-V: For more information, see Microsoft* Windows Server 2008 Virtualization with
Hyper-V (http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx).
pin Orchestrate 2.6 Developer Guide and Reference

http://www.xensource.com/
http://www.vmware.com
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx

For more information, see “Provisioning a Virtual Machine” in the PlateSpin Orchestrate 2.6 Virtual
Machine Management Guide.

There are two types of VMs that can be provisioned:

 VM Instance: A VM instance is a VM that is “state-full.” This means there can only ever be
one VM that can be provisioned, moved around the infrastructure, and then shut down, yet
maintains its state.

 VM Template: A VM template represents an image that can be cloned. After it is finished its
services, it is shut down and destroyed.

It can be thought of as a “golden master.” The number of times a golden master or template can
be provisioned or cloned is controlled though constraints that you specify when you create a
provisioning job.

The following graphic is a representation of the provisioning adapters and the way they function to
communicate joblets to VMs:

Figure 6-2 VM Management Provisioning Communications

NOTE: The Xen VM Monitor can support more than just SUSE Linux Enterprise (SLE) 10 (which
uses Xen 3.0.4) and Red Hat Enterprise Linux (RHEL) 5 (which uses Xen 3.0.3) VMs. For a
complete list of supported guest operating systems, see the Xen Web site (http://www.xen.org/).

The following sections provide more information on provision of VMs:

 Section 6.5.1, “Provisioning VMs Using Jobs,” on page 122

Orchestrate Server
(SLES 10 or 11)

Orchestrate
VM Client

VM
Builder

Hypervisor

Xen

VMware
Virtual
Center

Microsoft
Hyper-V

Virtual Center
Infrastructure

Virtual Center ESX VMs

Win 2008

Hyper-V

Win 2008

Hyper-V

SLES 11

ESX ESX

Xen

SLES 10

Xen
Virtual Machine Job Development 121

http://www.xen.org/

122 PlateS
 Section 6.5.2, “VM Placement Policy,” on page 123

 Section 6.5.3, “Provisioning Example,” on page 123

6.5.1 Provisioning VMs Using Jobs

The following actions can be performed by jobs:

 Provision (schedule or manually provision a set of VMs at a certain time of day).

 Move

 Clone (clone a VM, an online VM, or a template)

 Migrate

 Destroy

 Restart

 Check status

 Create a template to instance

 Create an instance to template

 Affiliate with a host

 Make it a stand-alone VM

 Create checkpoints

 Restore

 Delete

 Cancel Action.

You might want to provision a set of VMs at a certain time of day before the need arises. You also
might create a job to shut down all VMs or a constrained group of VMs. You can perform these tasks
programmatically (using a job), manually (through the Development Client), or automatically on
demand.

When performing tasks automatically, a job might make a request for an unavailable resource,
which triggers a job to look for a suitable VM image and host. If located, the image is provisioned
and the instance is initially reserved for calling a job to invoke the required logic to select, place, and
use the newly provisioned resource.

For an example of this job, see sweeper.job (page 174).

VM operations are available on the ResourceInfo (page 246) grid object, and VmHost operations are
available on the VMHostClusterInfo (page 248) grid object. In addition, as shown in Section 6.5.3,
“Provisioning Example,” on page 123, three provisioner events are fired when a provision action has
completed, failed, or cancelled.

The API is equivalent to the actions available within the Development Client. The selection and
placement of the VM host is governed by policies, priorities, queues, and ranking, similar to the
processes used selecting resources.

Provisioning adapters on the Orchestrate Server abstract the VM. These adapters are special
provisioning jobs that perform operations for each integration with different VM technologies. The
following figure shows the VM host management interface that is using the Development Client.
pin Orchestrate 2.6 Developer Guide and Reference

Figure 6-3 VM Hosts Management

6.5.2 VM Placement Policy

To provision virtual machines, a suitable host must be found. The following shows an example of a
VM placement policy:

<policy>
 <constraint type="vmhost">
 <and>
 <eq fact="vmhost.enabled" value="true"
 reason="VmHost is not enabled" />
 <eq fact="vmhost.online" value="true"
 reason="VmHost is not online" />
 <eq fact="vmhost.shuttingdown" value="false"
 reason="VmHost is shutting down" />
 <lt fact="vmhost.vm.count" factvalue="vmhost.maxvmslots"
 reason="VmHost has reached maximum vmslots" />
 <ge fact="vmhost.virtualmemory.available"
 factvalue="resource.vmimage.virtualmemory"
 reason="VmHost has insufficient virtual memory for guest VM" />
 <contains fact="vmhost.vm.availableids"
 factvalue="resource.id"
 reason="VmImage is not available on this VmHost" />
 </and>
 </constraint>
</policy>

6.5.3 Provisioning Example

This job example provisions a virtual machine and monitors whether provisioning completed
successfully. The VM name is “webserver” and the job requires a VM to be discovered before it is
run. After the provision has started, one of the three provisioner events is called.
Virtual Machine Job Development 123

124 PlateS
1 class provision(Job):
2
3 def job_started_event(self):
4 vm = getMatrix().getGridObject(TYPE_RESOURCE,"webserver")
5 vm.provision()
6 self.setFact("job.autoterminate",False)
7
8 def provisioner_completed_event(self,params):
9 print "provision completed successfully"
10 self.setFact("job.autoterminate",True)
11
12 def provisioner_failed_event(self,params):
13 print "provision failed"
14 self.setFact("job.autoterminate",True)
15
16 def provisioner_cancelled_event(self,params):
17 print "provision cancelled"
18 self.setFact("job.autoterminate",True)

See additional provisioning examples in Section 6.4, “Manual Management of a VM Lifecycle,” on
page 118 and Section 6.6, “Automatically Provisioning a VM,” on page 124.

6.6 Automatically Provisioning a VM
If you write jobs to automatically provision virtual machines, you set the following facts in the job
policy:

 resource.provision.maxcount
 resource.provision.maxpending
 resource.provision.hostselection
 resource.provision.maxnodefailures
 resource.provision.rankby

These are the job facts to enable and configure the usage of virtual machines for resource allocation.
These facts can be set in a job’s policy.

For example, setting the provision.maxcount fact to greater than 0 allows for virtual machines to
be included in resource allocation:

 <job>
 <fact name="provision.maxcount" type="Integer" value="1" />
 <fact name="provision.maxpending" type="Integer" value="1" />
 </job>

The following figure shows the job’s Development Client settings that are used to automatically
provision VMs:
pin Orchestrate 2.6 Developer Guide and Reference

Figure 6-4 Job Settings for Automatic VM Provisioning

When using automatic provisioning, the provisioned resource is reserved for the job requesting the
resource. This prevents another job requiring resources from obtaining the provisioned resource.

When the job that reserved the resource has finished its work (joblet has completed) on the
provisioned resource, the reservation is relaxed allowing other jobs to use the provisioned resource.

Using JDL, the reservation can be specified to reserve by JobID and also user. This is done using the
ProvisionSpec (page 246) class.
Virtual Machine Job Development 125

126 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

7
7Job Examples

The following sections demonstrate some practical ways to use PlateSpin Orchestrate and should
help you better understand how to write your own jobs:

 Section 7.1, “Simple Job Examples,” on page 127

 Section 7.2, “BuildTest Job Examples,” on page 129

 Section 7.3, “Using Deployable Job Examples Included with Platespin Orchestrate,” on
page 134

 Section 7.4, “Deployable Job Examples: Parallel Computing,” on page 136

 Section 7.5, “Deployable Job Examples: General Purpose,” on page 148

 Section 7.6, “Job Examples: Miscellaneous Code-Only,” on page 186

7.1 Simple Job Examples
The following simple examples demonstrate how you can use JDL scripting to manage specific
functionality:

 Section 7.1.1, “provisionBuildTestResource.job,” on page 127

 Section 7.1.2, “Workflow Job Example,” on page 128

To learn about other job examples that are packaged with PlateSpin Orchestrate, see Chapter 7, “Job
Examples,” on page 127.

7.1.1 provisionBuildTestResource.job

The following job example illustrates simple scripting to ensure that each of three desired OS
platforms might be available in the grid and, if not, it tries to provision them (provided that a VM
image matching the OS type exists). The resource Constraint object is created programmatically, so
there is no need for external policies.

1 class provisionBuildTestResource(Job):
2
3 def job_started_event(self):
4 oslist = ["Windows XP", "Windows 2000", "Windows 2003 Server"]
5 for os in oslist:
6 constraint = EqConstraint()
7 constraint.setFact("resource.os.name")
8 constraint.setValue(os)
9 resources = getMatrix().getGridObjects("resource",constraint)
10 if len(resources) == 0:
11 print "No resources were found to match constraint. \
12 os:%s" % (os)
13 else:
14 #
15 # Find an offline vm instance or template.
16 #
17 instance = None
18 for resource in resources:
19 if resource.getFact("resource.type") != "Fixed Physical"
Job Examples 127

128 PlateS
and \
20 resource.getFact("resource.online") == False:
21 # Found a vm or template. provision it for job.
22 print "Submitting provisioning request for vm %s." %
(resource)
23 instance = resource.provision()
24 print "Provisioning successfully submitted."
25 break
26 if instance == None:
27 print "No offline vms or templates found for os: %s" %
(os)

It is not necessary to always script resource provisioning. Automatic resource provisioning (“on
demand”) is one of the built-in functions of the Orchestrate Server. For example, a job requiring a
Windows 2003 Server resource that cannot be satisfied with online resources only needs to have the
appropriate facts set in the Orchestrate Development Client; that is, job.provision.maxcount is
enabled.

This fact could also be set through association with a policy. If it is set up this way, PlateSpin
Orchestrate detects that a job is in need of a resource and automatically takes the necessary
provisioning steps, including reservation of the provisioned resource.

All provisioned virtual machines and the status of the various hosts are visible in the following view
of the Orchestrate Development Client.

Figure 7-1 The PlateSpin Orchestrate Development Client Showing Virtual Machine Management

7.1.2 Workflow Job Example

This brief example illustrates a job that does not require resources but simply acts as a coordinator
(workflow) for the buildTest and provision jobs discussed in Section 7.2, “BuildTest Job Examples,”
on page 129.
pin Orchestrate 2.6 Developer Guide and Reference

1 class Workflow(Job):
2 def job_started_event(self):
3 self.runJob("provisionBuildTestResource", {})
4 self.runJob("buildTest", { "testlist" : "/QA/testlists/production",
5 "buildId": "2006-updateQ1" })

The job starts in line 1 with the job_started_event, which initiates provisionBuildTestResource.job
(page 127) to ensure all the necessary resources are available, and then starts the buildTest.jdl
Example (page 131). This workflow job does not complete until the two subjobs are complete, as
defined in lines 3 and 4.

If so desired, this workflow could monitor the progress of subjobs by simply defining new event
handler methods (by convention, using the _event suffix). The system defines many standard
events. Every message received by the job executes the corresponding event handler method and can
also contain a payload (a Python dictionary).

7.2 BuildTest Job Examples
There are many available facts that you can use in creating your jobs. If you find that you need
specific kinds of information about a resource or a job, such as the load average of a user or the ID
of a job or joblet, chances are that it is already available.

If a fact is not listed, you can create your own facts by creating a <fact> element in the job policy.
You can also create a fact directly in the JDL job code.

If you want to remember something from one loop to the next or make something available to other
objects in the grid, you can set a fact with your own self-defined name.

This section shows an example of a relatively simple working job that performs a set (100) of
regression tests on three different platform types. A number of assumptions have been made to
simplify this example:

 Each regression test is atomic and has no dependencies.

 Every resource is preconfigured to run the tests. Typically, the configuration setup is included
as part of the job.

 The tests are expressed as line entries in a file. PlateSpin Orchestrate has multiple methods to
specify parameters. This (/QA/testlists/nightly.dat) is just one example:

dir c:/windows
dir c:/windows/system32
dir c:/notexist
dir c:/tmp
dir c:/cygwin

To demonstrate the possible functionality for this example, here are some policies that might apply
to this example:

 Only users running tests can use resources owned by their group.

 To conserve resources, terminate the test after 50 failures.

 Because the system under test requires a license, prevent more than three of these regression
tests from running at one time.
Job Examples 129

130 PlateS
 To prevent a job backlog, limit the number of queued jobs in the system.

 To allow the regression test run to tolerate resource failures (for example, unexpected network
disconnections, unexpected reboots, and so on), enable automatic failover without affecting the
regression run.

The section includes the following information:

 Section 7.2.1, “buildTest.policy Example,” on page 130

 Section 7.2.2, “buildTest.jdl Example,” on page 131

7.2.1 buildTest.policy Example

Policies are typically spread over different objects, entities, and groups on the system. However, to
simplify the concept, we have combined all policies into this one example that is directly associated
with the job.

The arguments available to the job are specified in the in the <jobargs> section (lines 1-11). When
the job is run, job arguments are made available as facts to the job instance. The default values of
these arguments can be overridden when the job is invoked.

1 <policy>
2 <jobargs>
3 <fact name="buildId"
4 type="String"
5 value="02-24-06 1705"
6 description="Build Id to show in memo field" />
7 <fact name="testlist" type="String"
9 value="/QA/testlists/nightly.dat"
10 description="Path to testlist to use in tests" />
11 </jobargs>

The <job> section (lines 12-25) defines facts that are associated with the job. These facts are used in
other policies or by the JDL logic itself. Typically, these facts are aggregated from inherited policies.

12 <job>
13 <fact name="max_queue_size"
14 type="Integer"
15 value="10"
16 description="Limit of queued jobs. Any above this limit are not
accepted." />
17 <fact name="max_licenses"
18 type="Integer"
19 value="5"
20 description="License count to limit number of jobs to run
simultaneously. Any above this limit are queued." />
21 <fact name="max_test_failures"
22 type="Integer"
23 value="50"
24 description="To decide to end the job if the number of failures
exceeds a limit" />
25 </job>

The <accept> (line 26), <start> (line 31), and <continue> (line 40) constraints control the job
life cycle and implement the policy outlined in the example. In addition, allowances are made for
“privileged users” (lines 28 and 33) to bypass the accept and start constraints.
pin Orchestrate 2.6 Developer Guide and Reference

26 <constraint type="accept" reason="Maximum number of queued jobs has been
reached">
27 <or>
28 <defined fact="user.privileged_user" />
28 <lt fact="job.instances.queued" factvalue="job.max_queue_size" />
29 </or>
30 </constraint>
31 <constraint type="start">
32 <or>
33 <defined fact="user.privileged_user" />
34 <lt fact="job.instances.active" factvalue="job.max_licenses" />
35 </or>
36 </constraint>

The <resource> constraint (lines 37 and 38) ensures that only resources that are members of the
buildtest group are used by this job.

37 <constraint type="resource">
38 <contains fact="resource.groups" value="buildtest" reason="No
resources are in the buildtest group" />
39 </constraint>
40 <constraint type="continue" >
41 <lt fact="jobinstance.test_failures"
factvalue="job.max_test_failures" reason="Reached test failure limit" />
42 </constraint>
</policy>

7.2.2 buildTest.jdl Example

The following example shows how additional resource constraints representing the three test
platform types are specified in XML format. These also could have been specified in the PlateSpin
Orchestrate Development Client.

This section includes the following information:

 Setting Resource Constraints

 Creating a Memo Field

 Joblet Definition

Setting Resource Constraints

The annotated JDL code represents the job definition, consisting of base Python v2.1 (and libraries)
as well as a large number of added PlateSpin Orchestrate operations that allow interaction with the
Orchestrate Server:

1 import sys,os,time

2 winxp_platform = "<eq fact=\"resource.os.name\" value=\"Windows XP\" />"
3 win2k_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2000\" />"
4 win2003_platform = "<eq fact=\"resource.os.name\" value=\"Windows 2003
Server\" />"

Lines 2-4 specify the resource constraints representing the three test platform types (Windows XP,
Windows 2000, and Windows 2003) in XML format.
Job Examples 131

132 PlateS
The job_started_event in line 6 is the first event delivered to the job on the server. The logic in
this method performs some setup and defines the parameter space used to iterate over the tests.

5 class BuildTest(Job):

6 def job_started_event(self):
7 self.total_counts = {"failed":0,"passed":0,"run":0}
8 self.setFact("jobinstance.test_failures",0)

9 self.testlist_fn = self.getFact("jobargs.testlist")
10 self.buildId = self.getFact("jobargs.buildId")
11 self.form_memo(self.total_counts)

12 # Form range of tests based on a testlist file
13 filerange = FileRange(self.testlist_fn)

Parameter spaces (lines 14-16) can be multidimensional but, in this example, they schedule three
units of work (joblets), one for each platform type, each with a parameter space of the range of lines
in the (optionally) supplied test file (lines 21, 24 and 27).

14 # Form ParameterSpace defining Joblet Splitting
15 pspace = ParameterSpace()
16 pspace.appendDimension("cmd",filerange)

17 # Form JobletSet defining execution on resources
18 jobletset = JobletSet()
19 jobletset.setCount(1)
20 jobletset.setJobletClass(BuildTestJoblet)

Within each platform test, a joblet is scheduled for each test line item on each different platform.

21 # Launch tests on Windows XP
22 jobletset.setConstraint(winxp_platform)
23 self.schedule(jobletset)

24 # Launch tests on Windows 2000
25 jobletset.setConstraint(win2k_platform)
26 self.schedule(jobletset)

27 # Launch tests on Windows 2003
28 jobletset.setConstraint(win2003_platform)
29 self.schedule(jobletset)

The test_results_event in line 32 is a message handler that is called whenever the joblets send
test results.

30 # Event invoked when a Joblet has completed running tests.
31 #
32 def test_results_event(self,params):
33 self.form_memo(params)

Creating a Memo Field

In line 37, the form_memo method is called to form an informational string to display the running
totals for this test. These totals are displayed in the memo field for the job (visible in the Orchestrate
Development Client, and Web interface tools). The memo field is accessed through setting the String
fact jobinstance.memo in line 55.
pin Orchestrate 2.6 Developer Guide and Reference

34 #
35 # Update the totals and write totals to memo field.
36 #
37 def form_memo(self,params):
38 # total_counts will be empty at start
39 m = "Build Test BuildId %s " % (self.buildId)
40 i = 0
41 for key in self.total_counts.keys():
42 if params.has_key(key):
43 total = self.total_counts[key]
44 count = params[key]
45 total += count
46 printable_key = str(key).capitalize()
47 if i > 0:
48 m += ", "
48 else:
49 if len(m) > 0:
50 m+= ", "
51 m += printable_key + ": %d" % (total)
52 i += 1
53 self.total_counts[key] = total
54 self.setFact("jobinstance.test_failures",self.total_counts["failed"])
55 self.setFact("jobinstance.memo",m)

Joblet Definition

As previously discussed, a joblet is the logic that is executed on a remote resource employed by a
job, as defined in lines 56-80, below. The joblet_started_event in line 60 mirrors the
job_started_event (line 6) but runs on a different resource than the server.

The portion of the parameter space allocated to this joblet in line 65-66 represents some portion of
the total test (parameter) space. The exact breakdown of this is under full control of the
administrator/job. Essentially, the size of the “work chunk” in line 67 is a compromise between
overhead and retry convenience.

In this example, each element of the parameter space (a test) in line 76 is executed and the exit code
is used to determine pass or failure. (The exit code is often insufficient and additional logic must be
added to analyze generated files, copy results, or to perform other tasks.) A message is then sent
back to the job prior to completion with the result counts.

56 #
57 # Define test execution on a resource.
58 #

59 class BuildTestJoblet(Joblet):
60 def joblet_started_event(self):
61 passed = 0
62 failed = 0
63 run = 0
64 # Iterate over parameter space assigned to this Joblet
65 pspace = self.getParameterSpace()
66 while pspace.hasNext():
67 chunk = pspace.next()
68 cmd = chunk["cmd"].strip()
69 rslt = self.run_cmd(cmd)
70 print "rslt=%d cmd=%s" % (rslt,cmd)
71 if rslt == 0:
72 passed +=1
Job Examples 133

134 PlateS
73 else:
74 failed +=1
75 run += 1
76
self.sendEvent("test_results_event",{"passed":passed,"failed":failed,"run":ru
n})
77 def run_cmd(self,cmd):
78 e = Exec()
79 e.setCommand(cmd)
80 return e.execute()

7.3 Using Deployable Job Examples Included
with Platespin Orchestrate
The basic examples delivered with PlateSpin Orchestrate are located in either of two possible
installation directories depending on the type of installation. For server installations, look here:

/opt/novell/zenworks/zos/server/examples/

For client installation, look here:

/opt/novell/zenworks/zos/client/examples/

When you unjar or unzip examples from the <path>/examples/<example>.job file or view jobs
using the details panel and the JDL and Policy tabs in PlateSpin Orchestrate Development Client,
you should see the .jdl and .policy files.

Policy files specify how the job arguments and static attributes are defined. Or, you can use the zos
jobinfo command to simply display job arguments and their default values.

All of the examples can be opened and modified using a standard code editor, then redeployed and
examined using the procedure explained in “Walkthrough: Deploying a Sample Job” in the
PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

This section includes the following information:

 Section 7.3.1, “Preparing to Deploy Job Examples,” on page 134

 Section 7.3.2, “Summary of PlateSpin Orchestrate Deployable Job Examples,” on page 135

You can find the detailed deployable job example documentation in the following sections:

 Section 7.4, “Deployable Job Examples: Parallel Computing,” on page 136

 Section 7.5, “Deployable Job Examples: General Purpose,” on page 148

 Section 7.6, “Job Examples: Miscellaneous Code-Only,” on page 186

7.3.1 Preparing to Deploy Job Examples

To run the PlateSpin Orchestrate jobs described in this section, use the following guidelines:

 Install and configure PlateSpin Orchestrate properly (see “Installing and Configuring All
PlateSpin Orchestrate Components Together” in the PlateSpin Orchestrate 2.6 Installation and
Configuration Guide.
pin Orchestrate 2.6 Developer Guide and Reference

 Unless otherwise indicated, install at least one agent on a managed resource and have it running
(see “Installing the PlateSpin Orchestrate Agent on Other Supported Operating Systems” in the
PlateSpin Orchestrate 2.6 Installation and Configuration Guide).

 Before running zosadmin or zos commands, you must log into the Orchestrate Server.

The zosadmin command is required for administrating jobs. This includes deploying and
undeploying a job to the server. The zos command is for job control, including starting a job
and viewing a job’s log. As you learn about the PlateSpin Orchestrate job samples, you will use
the zosadmin command for deploying a sample job and the zos command for running the
sample.

 For an explanation of the zosadmin commands, see “The zosadmin Command Line Tool”
in the PlateSpin Orchestrate 2.6 Command Line Reference.

> zosadmin login --user psoadmin
Login to server: skate
Please enter current password for 'psoadmin':
Logged into grid on server 'skate'

 For an explanation of zos commands, see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.6 Command Line Reference.

> zos login --user psouser
Please enter current password for 'psouser':
Logged into grid as psouser

You should create a user (see “Walkthrough: Creating a User Account” in the PlateSpin
Orchestrate 2.6 Installation and Configuration Guide) before logging in.

7.3.2 Summary of PlateSpin Orchestrate Deployable Job
Examples

The following table provides a high-level explanation of the PlateSpin Orchestrate job examples that
are delivered with PlateSpin Orchestrate and the job developer concepts you might want to
understand:

Table 7-1 PlateSpin Orchestrate Job Development Examples

Example Name Job Function Capabilities

demoIterator.job (page 136)  Using policy constraints and job arguments to restrict joblet
execution to specific resources.

 Scheduling joblets using a ParameterSpace.

 Provides an example of executing a command on a resource.

dgtest.job (page 148)  Downloading files stored on grid management servers to networked
nodes.

failover.job (page 157)  Managing how joblets failover to enhance the robutsness of your
jobs.

instclients.job (page 163)  Installing an PlateSpin Orchestrate client on multiple machines.

 Provides an example of executing a command on a resource.
Job Examples 135

136 PlateS
7.4 Deployable Job Examples: Parallel
Computing
The following examples demonstrate high performance or parallel computing concepts:

 “demoIterator.job” on page 136

 “quickie.job” on page 143

demoIterator.job

Reference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using
policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling
joblets using a ParameterSpace, and 3) An example of executing a command on a resource.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail demoIterator
Jobname/Parameters Attributes
------------------ ----------
demoIterator Desc: This example job is a reference for a simple test
 iterator. It is useful for demonstrating how policies
 and job args can be used to target the job to a
 particular resource.

 cpu Desc: Regular expression match for CPU architecture
 Type: String
 Default: .*

 os Desc: Regular expression match for Operating System
 Type: String

jobargs.job (page 186)  Understanding the various argument types that jobs can accept
(integer, real, Boolean, string, time, date, list, dictionary, and array,
which can contain the types integer, real, Boolean, time, date, and
String).

notepad.job (page 170)  Understanding how to launch specific applications on specified
resources.

quickie.job (page 143)  Understanding how jobs can start multiple instances of a joblet on
one or more resources.

sweeper.job (page 174)  Understanding how poll all resources on the grid.an ordered
serialized scheduling of the joblets

whoami.job (page 180)  Sending a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX
systems, this is /bin/sh.

Example Name Job Function Capabilities
pin Orchestrate 2.6 Developer Guide and Reference

 Default: .*

 cmd Desc: Simple command to execute
 Type: String
 Default:

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

Description

The files that make up the DemoIterator job include:

demoIterator # Total: 156 lines
|-- demoIterator.jdl # 79 lines
`-- demoIterator.policy # 77 lines

demoIterator.jdl

 1 # ---

 2 # Copyright (C) 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11# ---

12 # $Id: demoIterator.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
15 import time, random
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
Job Examples 137

138 PlateS
31
32 class demoIteratorJob(Job):
33
34 def job_started_event(self):
35 print 'job_started_event'
36 self.completed = 0
37
38 # Launch the joblets
39 numJoblets = self.getFact("jobargs.numJoblets")
40 print 'Launching ', numJoblets, ' joblets'
41
42 pspace = ParameterSpace()
43 i = 1
44 while i <= numJoblets:
45 pspace.appendRow({'name':'joblet'+str(i)})
46 i += 1
47 pspace.maxJobletSize = 1
48 self.schedule(demoIteratorJoblet,pspace,{})
49
50 def joblet_completed_event(self, jobletnumber, node):
51 self.completed += 1
52 self.setFact("jobinstance.memo", "Tests run: %s" %
(self.completed))
53
54
55 class demoIteratorJoblet(Joblet):
56
57 def joblet_started_event(self):
58 print "Hi from joblet ", self.getFact("joblet.number")
59 time.sleep(random.random() * 15)
60
61 cmd = self.getFact("jobargs.cmd")
62 if len(cmd) > 0:
63 system(cmd)
64
65
66
67 # Example of more sophisticated exec
68 # e.g. e.signal("SIGUSR1")
69 """
70 e = Exec()
71 e.setCommand(cmd)
72 #e.setStdoutFile("cmd.out")
73 e.writeStdoutToLog()
74 e.writeStderrToLog()
75 #try:
76 e.execute()
77 #except:
78 #self.retry("retryable example error")
79 """
pin Orchestrate 2.6 Developer Guide and Reference

demoIterator.policy

 1 <!--
 2
*==
=
 3 * Copyright (C) 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: demoIterator.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18 <constraint type="accept" reason="Too busy for more work. Try again
later!">
19 <or>
20 <lt fact="job.instances.queued" value="4" />
21 <contains fact="user.groups" value="superuser" />
22 </or>
23 </constraint>
24
25 <constraint type="start" reason="Waiting on queue">
26 <or>
27 <lt fact="job.instances.active" value="2" />
28 <contains fact="user.groups" value="superuser" />
29 </or>
30 </constraint>
31
32 <jobargs>
33 <fact name="numJoblets"
34 type="Integer"
35 description="joblets to run"
36 value="100"
37 visible="true" />
38
39 <fact name="cmd"
40 type="String"
41 description="Simple command to execute"
42 value="" />
43
44 <fact name="os"
45 type="String"
46 description="Regular expression match for Operating System"
Job Examples 139

140 PlateS
47 value=".*" />
48
49 <fact name="cpu"
50 type="String"
51 description="Regular expression match for CPU architecture"
52 value=".*" />
53 </jobargs>
54
55 <constraint type="resource" reason="Does not match">
56 <and>
57 <eq fact="resource.os.family" factvalue="jobargs.os" match="regexp" /
>
58 <eq fact="resource.cpu.architecture" factvalue="jobargs.cpu"
match="regexp"/>
59
60 <or>
61 <and>
62 <defined fact="env.VENDOR" />
63 <eq fact="resource.os.vendor" factvalue="env.VENDOR"
match="regexp" />
64 </and>
65 <undefined fact="env.VENDOR" />
66 </or>
67 </and>
68 </constraint>
69
70 <job>
71 <fact name="description"
72 type="String"
73 value="This example job is a reference for a simple test iterator.
It is useful for demonstrating how policies and job args can be used to target
the job to a particular resource." />
74 </job>
75
76 </policy>
77

Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.
pin Orchestrate 2.6 Developer Guide and Reference

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec

Used to manage command line execution on resources.

ParameterSpace

Defines a parameter space to be used by the scheduler to create a Joblet set. A parameter space
might consist of rows of columns or a list of columns that is expanded and can be turned into a
cross product.

Job Details

The following sections describe the DemoIterator job:

 “zosadmin deploy” on page 141

 “job_started_event” on page 141

 “joblet_started_event” on page 142

zosadmin deploy

The deployment for the DemoIterator job is performed by lines 20-29 of demoIterator.jdl
(page 137). When jobs are deployed into the grid, they can optionally be organized for grouping. In
this case, the demoIterator job is added to the group named examples, and can be displayed in the
PlateSpin Orchestrate Development Client in the Explorer view at the location:

/Orchestrate Servers/Grid_Name/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the “PlateSpin Orchestrate 2.6 Installation and Configuration Guide.”

job_started_event

When the DemoIterator job receives a job_started_event, it creates a ParameterSpace JDL class and
adds the number of rows as indicated by the value of the argument numJoblets (see lines 42-46 in
demoIterator.jdl (page 137)). A ParameterSpace object is like a spreadsheet, containing rows and
columns of information that might all be given to one joblet or sliced up across many joblets at
schedule time. In this case, the ParameterSpace is told that maxJobletSize is 1 (see line 47), meaning
a joblet instance is created for each row in the ParameterSpace during job scheduling (see line 48).

Not shown in this example is the fact that a joblet can get access to this “spreadsheet” of information
by calling self.getParameterSpace(), and calling hasNext() and next() to enumerate through
each row of information. To learn more about putting information in a ParameterSpace object from a
job and obtaining that information from the JobletParameterSpace object from a joblet, see
ParameterSpace (page 245).

The resource that runs the joblet is determined from the resource constraint specified in lines 18-30
and 55-68 of demoIterator.policy (page 139), and from the values specified for the parameters os
and cpu supplied on the command line. If these parameters are not specified on the command line,
the default value for both is the regular expression .*, which means to include everything.
Job Examples 141

142 PlateS
The constraints at lines 18-30 in demoIterator.policy (page 139) define the work load for the
resources. In this case, resources do not accept jobs if there are already four jobs queued up, and are
not to run jobs if there are two or more jobs currently in progress.

To learn more about setting start, resource, or accept constraints in a policy file, see “Job
Arguments and Parameter Lists in Policies” on page 19.

joblet_started_event

As the DemoIterator joblet is executed on a particular resource, it receives a
joblet_started_event. When this happens, the DemoIterator joblet simply sleeps for a random
amount of time to stagger the execution of the joblets and then sends a command to the operating
system, if one was supplied as a job argument. The command is executed on the target operating
system using the built-in function system(), which is an alternative to using the more feature-rich
class Exec.

For more information on sending commands to the operating system using the Exec class, see Exec .

After the joblet is finished running, a joblet_completed_event is sent to demoIteratorJob, which
increments the variable completed, and posts the updated value to the job fact jobinstance.memo
(see lines 50-52 in demoIterator.jdl (page 137)). You can see the text for the memo displayed on the
Job Log tab in the list of running jobs in the PlateSpin Orchestrate Development Client.

For more information, see “Starting and Stopping the PlateSpin Orchestrate Development Client” in
the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

Configure and Run

Execute the following commands to deploy and run demoIterator.job:

1 Deploy demoIterator.job into the grid:

> zosadmin deploy demoIterator.job

2 Display the list of deployed jobs:

> zos joblist

demoIterator should appear in this list.

3 Run the job on the first available resource without regard to OS or CPU, and use the default
value for number of joblets, which is 100:

> zos run demoIterator

4 Run 10 joblets on Intel Windows resources, and launch the Notepad application on each one:

> zos run demoIterator numJoblets=10 cmd=dir os=windows cpu=i386

NOTE: If a resource with the matching OS is not available, the job remains in the “waiting” state.

Here is an example that runs the pwd command on three joblets on the Linux operating system:
pin Orchestrate 2.6 Developer Guide and Reference

> zos run demoIterator numJoblets=3 cmd=pwd os=linux
JobID: zenuser.demoIterator.417

zos log zenuser.demoIterator.417
job_started_event
Launching 3 joblets
[freeze] Hi from joblet 1
[freeze] /var/opt/novell/zenworks/zos/agent/node.default/freeze/
zenuser.demoIterator.417.1
[skate] Hi from joblet 0
[skate] /var/opt/novell/zenworks/zos/agent/node.default/skate/
zenuser.demoIterator.417.0
[melt] Hi from joblet 2
[melt] /var/opt/novell/zenworks/zos/agent/node.default/melt/
zenuser.demoIterator.417.2

See Also

 Setting Constraints Using Policies (see Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53).

 quickie.job (page 143) demonstrates how a job starts up multiple instances of a joblet on one or
more resources. The Joblet class defines how a joblet is executed on a resource.

 Setting default parameter values using policies

 Configuring constraints in a policy file

 Naming conventions for policy facts (see Section 5.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 109)

 Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file

 Using the zos command line tool (see “The zos Command Line Tool” in the PlateSpin
Orchestrate 2.6 Command Line Reference.

 Running commands using the Exec class

quickie.job

Demonstrates a job starting up multiple instances of a joblet on one or more resources. Because this
job simply launches and returns immediately, it can also be useful for testing network latency.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail quickie
Jobname/Parameters Attributes
------------------ ----------
quickie Desc: This example job does absolutely nothing. It just
 returns immediately. For testing network latency.
Job Examples 143

144 PlateS
 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 0

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 100

Description

The files that make up the Quickie job include:

quickie # Total: 88 lines
|-- quickie.jdl # 48 lines
`-- quickie.policy # 40 lines

quickie.jdl

 1 # --

 2 # Copyright (C) 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: quickie.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
15 import time
16
17 #
18 # Add to the 'examples' group on deployment
19 #
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
31
32 class quickieJob(Job):
pin Orchestrate 2.6 Developer Guide and Reference

33
34 def job_started_event(self):
35
36 # Launch the joblets
37 numJoblets = self.getFact("jobargs.numJoblets")
38 print 'Launching ', numJoblets, ' joblets'
39
40 self.schedule(quickieJoblet, numJoblets)
41
42
43 class quickieJoblet(Joblet):
44
45 def joblet_started_event(self):
46 self.setFact("joblet.memo", "quickie's memo - joblet started")
47 sleeptime = self.getFact("jobargs.sleeptime")
48 time.sleep(sleeptime)

quickie.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: quickie.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20 <fact name="numJoblets"
21 type="Integer"
22 description="joblets to run"
23 value="100"
24 visible="true" />
25
26 <fact name="sleeptime"
27 type="Integer"
28 description="time to sleep (in seconds)"
29 value="0"
Job Examples 145

146 PlateS
30 visible="true" />
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This example job does absolutely nothing. It just
returns immediately. For testing network latency." />
37 </job>
38
39 </policy>
40

Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Job Details

The quickie job can be broken down into the following separate operations:

 “zosadmin deploy” on page 146

 “job_started_event” on page 147

 “joblet_started_event” on page 147

zosadmin deploy

The job is first deployed into the grid, as shown in lines 20-29 of quickie.jdl (page 144). When jobs
are deployed into the grid, they can optionally be organized for grouping. In this example, the
Quickie job is added to the group named examples and displays in the PlateSpin Orchestrate
Development Client in the Explorer view at the location:

/Orchestrate Servers/Grid_Name/Jobs/examples
pin Orchestrate 2.6 Developer Guide and Reference

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

job_started_event

As shown in line 37 of quickie.jdl (page 144), scheduling one or more instances of the Quickie
joblet to run immediately is the second operation performed by the Quickie job. When the Quickie
job class receives a job_started_event() notification, it schedules the number of QuickieJoblet
instances as indicated by the value of the setting numJoblets, whose value might have been
supplied on the command line or from the quickie.policy file (see line 20-24 in quickie.policy
(page 145)).

joblet_started_event

The final operation performed by the Quickie job is for the joblet to sleep an amount of time as
specified by the value of the setting sleeptime (see line 48 in quickie.jdl (page 144)), and then exit.

Configure and Run

1 Deploy quickie.job into the grid:

> zosadmin deploy quickie.job

2 Display the list of deployed jobs:

> zos joblist

quickie should appear in this list.

3 Run the job on one or more resources using the default values for numJoblets and sleeptime:

> zos run quickie

4 Run the job on one or more resources using supplied values for numJoblets and sleeptime:

> zos run quickie numJoblets=10 sleeptime=3
JobID: zenuser.quickie.418

> zos status zenuser.quickie.418
Completed

> zos log zenuser.quickie.418
Launching 10 joblets

Ten joblets will be run simultaneously, depending on the number of resources available in the
grid and how many simultaneous jobs each resource is configured to run. After the job runs,
each quickie joblet instance simply starts up, sleeps for 3 seconds, and then exits.

See Also

 Setting Constraints Using Policies (see Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53).

 Scheduling multiple instances of a joblet
Job Examples 147

148 PlateS
7.5 Deployable Job Examples: General Purpose
The following examples demonstrate general purpose job concepts:

 “dgtest.job” on page 148

 “failover.job” on page 157

 “instclients.job” on page 163

 “notepad.job” on page 170

 “sweeper.job” on page 174

 “whoami.job” on page 180

dgtest.job

This job demonstrates downloading a file from the datagrid.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
Logged into grid as zenuser

> zos jobinfo --detail dgtest
Jobname/Parameters Attributes
------------------ ----------
dgtest Desc: This job demonstrates downloading from the Datagrid

 multicast Desc: Whether to download using multicast or unicast
 Type: Boolean
 Default: false

 filename Desc: The filename to download from the Datagrid
 Type: String
 Default: None! Value must be specified

Description

Demonstrates usage of the datagrid to download a file stored on the PlateSpin Orchestrate Server to
a node. For additional background information, see Section 5.1, “Defining the Datagrid,” on
page 109.

Because it typically grows quite large, the physical location of the PlateSpin Orchestrate root
directory is important. Use the following procedure to determine the location of the datagrid in the
Orchestrate Development Client:

1 Select the grid id on the left in the PlateSpin Orchestrate Explorer window >

2 Click the Constraints/Facts tab.

The read-only fact name (matrix.datagrid.root) is located here by default:

/var/opt/novell/zenworks/zos/server

The top level directory name is dataGrid.
pin Orchestrate 2.6 Developer Guide and Reference

Contents of the PlateSpin Orchestrate can be seen with the command:

> zos dir grid:///
 <DIR> Feb-17-2010 15:10 installs
 <DIR> Feb-17-2010 15:10 jobs
 <DIR> Feb-17-2010 15:10 lib
 <DIR> Feb-24-2010 15:59 users
 <DIR> Feb-17-2010 15:10 vms

Job Filesdg

The files that make up the Dgtest job include:

dgtest # Total: 238 lines
|-- dgtest.jdl # 172 lines
`-- dgtest.policy # 66 lines

dgtest.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 11 # ---

 12 # $Id: dgtest.jdl 10344 2009-11-20 21:46:43Z jastin $
 13 # ---

 14
 15 """
 16 Example usage of DataGrid to download a file stored on the Server to a
node.
 17
 18 Setup:
 19 Before running the job, you must:
 20 (1) Create a dgtest resource group using the management console.
 21 (2) Copy a suitable file into the Server DataGrid
 22 (3) Modify the dgtest policy with the filename to download
 23 (to not use the default test file).
 24
 25 For example, use the following command to copy the file 'suse-10-fla
t.vmdk'
 26 into the deployment area for the job 'dgtest'
 27 >zos mkdir grid:///images
 28
 29 >zos copy suse-10-flat.vmdk grid:///images/
 30
 31 To verify the file is there:
Job Examples 149

150 PlateS
 32 >zos dir grid:///images
 33
 34
 35 To start the job after the above setup steps are complete:
 36 >zos run dgtest filename=suse-10-flat.vmdk
 37
 38 """
 39 import os,time
 40
 41 #
 42 # Add to the 'examples' group on deployment
 43 #
 44 if __mode__ == "deploy":
 45 try:
 46 jobgroupname = "examples"
 47 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
 48 if jobgroup == None:
 49 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
 50 jobgroup.addMember(__jobname__)
 51 except:
 52 exc_type, exc_value, exc_traceback = sys.exc_info()
 53 print "Error adding %s to %s group: %s %s" % (__jobname__, jobgr
oupname, exc_type, exc_value)
 54
 55
 56 class test(Job):
 57
 58 def job_started_event(self):
 59 filename = self.getFact("jobargs.filename")
 60 print "Starting Datagrid Test Job."
 61 print "Filename: %s" % (filename)
 62
 63 rg = None
 64 try:
 65 rg = getMatrix().getGroup("resource","dgtest")
 66 except:
 67 # no such group
 68 pass
 69
 70 if rg == None:
 71 self.fail("The resource group 'dgtest' was not found. It is
required for this job.")
 72 return
 73
 74 members = rg.getMembers()
 75 count = 0
 76 for resource in members:
 77 if resource.getFact("resource.online") == True and \
 78 resource.getFact("resource.enabled") == True:
 79 count += 1
 80
 81 memo = "Scheduling Datagrid Test on %d Joblets" % (count)
 82 self.setFact("jobinstance.memo",memo)
 83 print memo
 84 self.schedule(testnode,count)
 85
 86
 87 class testnode(Joblet):
 88
pin Orchestrate 2.6 Developer Guide and Reference

 89 def joblet_started_event(self):
 90 jobletnum = self.getFact("joblet.number")
 91 print "Running datagrid test joblet #%d" % (jobletnum)
 92 filename = self.getFact("jobargs.filename")
 93 multicast = self.getFact("jobargs.multicast")
 94
 95 # Test download a file from server job directory
 96 dg_url = "grid:///images/" + filename
 97
 98 # Create an intance of the JDL DataGrid object
 99 # This object is used to manage DataGrid operations
100 dg = DataGrid()
101
102 # Set to always force a download.
103 dg.setCache(False)
104
105 # Set whether to use multicast or unicast
106 # If set to True, then the following 4 multicast
107 # options are applicable
108 dg.setMulticast(multicast)
109
110 # how long to wait for a quorom (milliseconds)
111 #dg.setMulticastWait(10000)
112
113 # Number of receivers that constitute a quorum
114 #dg.setMulticastQuorum(4)
115
116 # Requested data rate in bytes per second. 0 means use default
117 #dg.setMulticastRate(0)
118
119 # Min number of receivers
120 #dg.setMulticastMin(1)
121
122 if multicast:
123 mode = "multicast"
124 else:
125 mode = "unicast"
126
127 memo = "Starting %s download of file: %s" % (mode,dg_url)
128 self.setFact("joblet.memo",memo)
129 print memo
130
131 # Destination defaults to Node's Joblet dir.
132 # Change this path to go to any other local filesystem.
133 # e.g. to store in /tmp:
134 # dest = "/tmp/" + filename
135 dest = filename
136 try:
137 dg.copy(dg_url,dest)
138 except:
139 exc_type, exc_value, exc_traceback = sys.exc_info()
140 retryUnicast = False
141 if multicast == True:
142 # If node's OS and/or NIC does not fully support multi
cast,
143 # then the node will timeout waiting for broadcasts.
144 # Note the error and fallback to unicast
145 if exc_type != None and len(str(exc_type)) > 0:
146 msg = str(exc_type)
Job Examples 151

152 PlateS
147 index = msg.find("Multicast receive timed out")
148 retryUnicast = index != -1
149
150 if retryUnicast:
151 memo = "Multicast timeout. Fallback to unicast"
152 self.setFact("joblet.memo",memo)
153 print memo
154 dg.setMulticast(False)
155 dg.copy(dg_url,dest)
156 else:
157 raise exc_type,exc_value
158
159 if os.path.exists(dest):
160 print dg_url + " downloaded successfully."
161
162 # Show directory listing of downloaded file to job log
163 if self.getFact("resource.os.family") == "windows":
164 cmd = "dir %s" % (dest)
165 else:
166 cmd = "ls -lsart %s" % (dest)
167
168 system(cmd)
169 else:
170 raise RuntimeError, "Datagrid copy() failed"
171
172 print "Datagrid test completed"

dgtest.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: dgtest.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
pin Orchestrate 2.6 Developer Guide and Reference

20
21 <!--
22 Name of file that is stored in the Datagrid area to
23 download to the resource.
24
25 A value for this fact the 'zos run' is assigned when
26 using the 'zos run' command.
27 -->
28 <fact name="filename"
29 type="String"
30 description="The filename to download from the Datagrid"
31 />
32
33 <fact name="multicast"
34 type="Boolean"
35 description="Whether to download using multicast or unicast"
36 value="false" />
37
38 </jobargs>
39
40 <job>
41 <fact name="description"
42 type="String"
43 value="This job demonstrates downloading from the Datagrid"
/>
44
45 <!-- limit to one per host -->
46 <fact name="joblet.maxperresource"
47 type="Integer"
48 value="1" />
49 </job>
50
51
52 <!--
53 This job will only run on resources in the "dgtest" resource group.
54
55 You must create a Resource Group named 'dgtest' using the
management
56 console and populate the new group with resources that you wish to
have
57 participate in the datagrid test.
58 -->
59 <constraint type="resource" reason="No resources are in the dgtest
group" >
60
61 <contains fact="resource.groups" value="dgtest"
62 reason="Resource is not in the dgtest group" />
63
64 </constraint>
65
66 </policy>
Job Examples 153

154 PlateS
Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

test

Class test (line 56 in dgtest.jdl (page 149) is derived from the Job class.

testnode

Class testnode (line 87 in dgtest.jdl (page 149) is derived from the Joblet (page 241) class.

Job Details

dgtest.job can be broken down into the following parts:

 “Policy” on page 154

 “zosadmin deploy” on page 155

 “job_started_event” on page 155

 “joblet_started_event” on page 155

Policy

In addition to describing the filename and multicast jobargs and the default settings for
multicast (lines 19-38) in the dgtest.policy (page 152) file, there is the <job/> section (lines 40-
49), which describes static facts. You must assign the filename argument when executing this
example. This is only the name of the file in the “images” area of PlateSpin Orchestrate. For
example, for grid:///images/disk.img, just assign disk.img to the argument. This file must be
in the PlateSpin Orchestrate file system for fetching and delivering to remote nodes used in this
example.

To populate the PlateSpin Orchestrate, use the zos copy command. For example, for a file named
suse-10-flat.vmd in the current directory, use the following command:

> zos mkdir grid:///images
> zos copy suse-10-flat.vmd grid:///images/
pin Orchestrate 2.6 Developer Guide and Reference

The multicast jobarg is a Boolean, defaulted to false so that unicast is used for transport. Set this
value to true to use multicast transport for delivery of the file.

The policy also describes a resource.groups constraint.This requires a resource group named
dgtest (lines 52-64 in dgtest.policy (page 152)) and that group should have member nodes.
Consequently, you must create this resource group using the Orchestrate Server Development Client
and assign it some nodes to run this example successfully.

zosadmin deploy

When the Orchestrate Server deploys a job for the first time (see Section 3.5, “Deploying Jobs,” on
page 40), the job JDL files are executed in a special deploy mode. Looking at dgtest.jdl (page 149),
you might notice that when the job is deployed (line 44), either through the Orchestrate
Development Client or the zosadmin deploy command, that it attempts to find the examples
jobgroup (lines 46-47), create it if missing (lines 48-49), and add the dgtest job to the group (line
50).

If this deployment fails for some reason, an exception is thrown (line 51), which prints (line 53) the
job name, group name, exception type, and value.

job_started_event

In dgtest.jdl (page 149), the test class (line 56) defines only the required job_started_event (line
58) method. This method runs on the Orchestration server when the job is run to launch the joblets.

When job_started_event is executed, it gets the name of the file assigned to the
jobargs.filename variable and prints useful tracing information (lines 59-61). It then tries to find
the resource group named dgtest. If the resource group does not exist, the member fail string is
set to inform the user and returns without scheduling the joblet(s) (lines 63-72).

After finding the dgtest group, the job gets the member list and determines how many nodes are
online and enabled. The total count is stored in lines 74-79. After setting the memo line in the
Orchestrate Development Client (81-82), the job schedules count number of testnode joblets (line
84).

joblet_started_event

In dgtest.jdl (page 149), the testnode class (line 87) defines only the required joblet_started_event
(line 89) method. This method runs on the Orchestrate Agent nodes when scheduled by a Job
(page 241) class.

The joblet_started_event prints some trace information (lines 90-91), gets the name of the file to
transfer (line 92) and the mode of transfer (line 93), and creates the grid URL for the file (line 96).

A DataGrid (page 238) is instantiated (line 100), set not to cache (line 103), and set to use the
multicast jobarg (line 108). The next four settings control multicast behavior are commented out
(lines 111, 114, 117, and 120).

The joblet prints a memo line for the Orchestrate Development Client (lines 122-128), sets the
location for the file on the local node (line 135), and tries to transfer the file from the datagrid (line
137).

If the datagrid copy at line 137 fails for some reason, we have a retry mechanism in the exception
handler (lines 138-157). The information for why the exception occurred is fetched (line 139).
Job Examples 155

156 PlateS
The variable retryUnicast (line 140) is set False and will only be set True if the failed download
attempt was using multicast transport and the exception type has the string “Multicast receive timed
out” (lines 140-148). If the timed out string is not found, the triad assigns the retryUnicast a
value of -1. With this logic, either multicast timeout or not, a unicast attempt is made if multicast
fails.

If you get to line 150 from a failed multicast copy, a memo for the Orchestrate Development Client
is set and printed to the log (151-152), setMulticast is set to false (154), and another copy from
the datagrid is attempted.

If we get to line 150 from a failed unicast copy, an exception is raised (line 157) and we’re done.

Configure and Run

> zos run dgtest filename=suse-10-flat.vmd
JobID: zenuser.dgtest.323

Looks like it ran successfully; let’s see what the log says:

> zos log zenuser.dgtest.323
Starting Datagrid Test Job.
Filename: suse-10-flat.vmd
Job 'zenuser.dgtest.323' terminated because of failure. Reason: The resource
group 'dgtest' was not found. It is required for this job.

There is no resource group. Using the Orchestrate Development Client, create the resource group
dgtest:

> zos run dgtest filename=suse-10-flat.vmd
JobID: zenuser.dgtest.324

> zos log zenuser.dgtest.324
Starting Datagrid Test Job.
Filename: suse-10-flat.vmd
Scheduling Datagrid Test on 0 Joblets

NOTE: No joblets were scheduled because we have no active nodes in the group.

Using the Orchestrate Development Client, populate the dgtest group with nodes that are both
online and enabled:

> zos run dgtest filename=suse-10-flat.vmd
JobID: zenuser.dgtest.325

> zos log zenuser.dgtest.325
Starting Datagrid Test Job.
Filename: suse-10-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-10-flat.vmd
[freeze] Traceback (innermost last):
[freeze] File "dgtest.jdl", line 170, in joblet_started_event
[freeze] copy() failed: DataGrid file "/images/suse-10-flat.vmd" does not
exist.
pin Orchestrate 2.6 Developer Guide and Reference

Job 'zenuser.dgtest.325' terminated because of failure. Reason: Job failed
because of too many joblet failures (job.joblet.maxfailures = 0)
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-10-flat.vmd
[melt] Traceback (innermost last):
[melt] File "dgtest.jdl", line 170, in joblet_started_event
[melt] copy() failed: DataGrid file "/images/suse-10-flat.vmd" does not exist.

Because the path and the file in the datagrid are missing, we need to create and populate them:

> zos mkdir grid:///images
Directory created.

> zos copy suse-10-flat.vmd grid:///images/
suse-10-flat.vmd copied.

> zos run dgtest filename=suse-10-flat.vmd
JobID: zenuser.dgtest.326

> zos log zenuser.dgtest.326
Starting Datagrid Test Job.
Filename: suse-10-flat.vmd
Scheduling Datagrid Test on 2 Joblets
[melt] Running datagrid test joblet #1
[melt] Starting unicast download of file: grid:///images/suse-10-flat.vmd
[melt] grid:///images/suse-10-flat.vmd downloaded successfully.
[melt] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:32 suse-10-flat.vmd
[melt] Datagrid test completed
[freeze] Running datagrid test joblet #0
[freeze] Starting unicast download of file: grid:///images/suse-10-flat.vmd
[freeze] grid:///images/suse-10-flat.vmd downloaded successfully.
[freeze] 16732 -rw-r--r-- 1 root root 17108462 Dec 21 21:31 suse-10-flat.vmd
[freeze] Datagrid test completed

Finally, the file is deployed from the datagrid and copied successfully. However, you will not find it
if you look for it on the agent after the joblet is finished. By default, the file is deployed only for the
joblet’s lifetime into a directory for the joblet, like the following:

/var/opt/novell/zenworks/zos/agent/node.default/melt/zenuser.dgtest.326.0

So, for a more permanent demonstration, see lines 132-134 in dgtest.jdl (page 149). Uncomment
line 134 and comment out line 135 to store your file in the /tmp directory and have it continue to
exist on the agent after the joblet executes completely.

failover.job

A test job that demonstrates handling of joblet failover.
Job Examples 157

158 PlateS
Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail failover
Jobname/Parameters Attributes
------------------ ----------
failover Desc: This test jobs can be used to demonstrate joblet
 failover handling.

 sleeptime Desc: specify the execute length of joblet before failure in
 seconds
 Type: Integer
 Default: 7

 numJoblets Desc: joblets to run
 Type: Integer
 Default: 1

Description

Schedules one joblet, which fails, then re-instantiates in a repeating cycle until a specified retry limit
is reached and the Orchestration Server does not create another instance. This example demonstrates
how the orchestration server can be made more robust, as described in Section 3.11, “Improving Job
and Joblet Robustness,” on page 47.

The files that make up the Failover job include:

failover # Total: 94 lines
|-- failover.jdl # 64 lines
`-- failover.policy # 30 lines

failover.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: failover.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
pin Orchestrate 2.6 Developer Guide and Reference

15 # Test job to illustrate joblet failover and max retry limits
16 #
17 # Job args:
18 # numJoblets - specify number of Joblets to run
19 # sleeptime -- specify the execute length of joblet before failure in
seconds
20 #
21
22 import sys,os,time
23
24 #
25 # Add to the 'examples' group on deployment
26 #
27 if __mode__ == "deploy":
28 try:
29 jobgroupname = "examples"
30 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
31 if jobgroup == None:
32 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
33 jobgroup.addMember(__jobname__)
34 except:
35 exc_type, exc_value, exc_traceback = sys.exc_info()
36 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
37
38
39 class failover(Job):
40
41 def job_started_event(self):
42 numJoblets = self.getFact("jobargs.numJoblets")
43 print 'Launching ', numJoblets, ' joblets'
44 self.schedule(failoverjoblet,numJoblets)
45
46
47 class failoverjoblet(Joblet):
48
49 def joblet_started_event(self):
50 print "------------------ joblet_started_event"
51 print "node=%s joblet=%d" % (self.getFact("resource.id"),
self.getFact("joblet.number"))
52 print "self.getFact(joblet.retrynumber)=%d" %
(self.getFact("joblet.retrynumber"))
53 print "self.getFact(job.joblet.maxretry)=%d" %
(self.getFact("job.joblet.maxretry"))
54
55 sleeptime = self.getFact("jobargs.sleeptime")
56 print "sleeping for %d seconds" % (sleeptime)
57 time.sleep(sleeptime)
58
59 # This will cause joblet failure and thus retry
60 raise RuntimeError, "Artifical error in joblet. node=%s" %
(self.getFact("resource.id"))
61
62
63
64
Job Examples 159

160 PlateS
failover.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: failover.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18 <jobargs>
19 <fact name="sleeptime" description="specify the execute length of
joblet before failure in seconds" value="7" type="Integer" />
20 <fact name="numJoblets" description="joblets to run" value="1"
type="Integer" />
21 </jobargs>
22
23 <job>
24 <fact name="description" value="This test jobs can be used to
demonstrate joblet failover handling." type="String" />
25
26 <!-- Number of times to retry joblet on failure -->
27 <fact name="joblet.maxretry" type="Integer" value="3" />
28 </job>
29 </policy>
30

Classes and Methods

Definitions:

Class failover in line 25 of failover.jdl (page 158) is derived from the Job (page 241) class; and the
class failoverjoblet in line 33 of failover.jdl (page 158) is derived from the Joblet (page 241) class.

Job

A representation of a running job instance.
pin Orchestrate 2.6 Developer Guide and Reference

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

failover

Class failover (line 39 in dgtest.jdl (page 149) is derived from the Job class.

failoverjoblet

Class failoverjoblet (line 47 in dgtest.jdl (page 149) is derived from the Joblet (page 241) class.

Job Details

The following sections describe the Failover job:

 “zosadmin deploy” on page 161

 “job_started Event” on page 161

 “job_started Event” on page 162

zosadmin deploy

In failover.policy (page 160), in addition to describing the jobargs and default settings for
sleeptime and numJoblets (lines 18-21), the <job/> section (lines 23-28) describes static facts.
Note that the joblet.maxretry attribute in line 27 has a default setting of 0 but is set here to 3.
This attribute can also be modified in the failover.jdl (page 158) file by inserting a line between line
41 and 42, as shown in the following example:

 41 def job_started_event(self):
 ++ self.setFact("job.joblet.maxretries", 3)
 42 numJoblets = self.getFact("jobargs.numJoblets")

job_started Event

After the Orchestrate Server deploys a job for the first time (see Section 3.5, “Deploying Jobs,” on
page 40), the job JDL files are executed in a special “deploy” mode. When the job is deployed (line
27, failover.jdl (page 158), it attempts to find the examples jobgroup (lines 29-30), creates it if is
missing (lines 31-32), and adds the failover job to the group (line 33).

Jobs can be deployed using either the Orchestrate Development Client or the zosadmin deploy
command. If the deployment fails for some reason, an exception is thrown (line 34), which prints the
job name (line 36), group name, exception type, and value.
Job Examples 161

162 PlateS
job_started Event

In failover.jdl (page 158), the failover class (line 39) defines only the required job_started_event
(line 41) method. This method runs on the Orchestrate Server when the job is run to launch the
joblets.

On execution, the job_started_event simply gets the number of joblets to create (numJoblets in
line 42), then schedules that specified number of instances (line 44) of the failoverjoblet
class.failoverjoblet. The failoverjoblet class (lines 47-60) defines only the required
joblet_started_event (line 49) method.

When executed on an agent node, the joblet_started_event prints some helpful information for
tracking execution (lines 50-53). The first output is where the joblet is running and which instance is
running (line 51). The current joblet retry number (line 52) is displayed, followed by the job’s static
joblet.maxretry (line 53) that was specified in the policy file.

The joblet then sleeps for jobargs.sleeptime seconds (lines 55-57) and on waking raises an
exception of type RuntimeError (line 60).

This is the point of this example. After a RuntimeError exception is thrown, the zos server attempts
to run the same instance of the joblet again if job.joblet.maxretry (default is 0) is less than or
equal to joblet.retrynumber.

Configure and Run

You must be logged into the Orchestrate Server before you run zosadmin or zos commands.

1 Deploy failover.job into the grid:

> zosadmin deploy failover.job
JobID: zenuser.failover.269

The job appears to have run successfully, now take a look at the log and see the joblet failure
and being relaunched until finally the "maxretry" count is exceeded and the job exits with a
failure status:

2 Display the list of deployed jobs:

> zos joblist

failover should appear in this list.

3 Run the job on one or more resources using the default values for numJoblets and sleeptime,
specified in the failover.policy file:

> zos run failover sleeptime=1 numJoblets=2
JobID: zenuser.failover.269

The job appears to have run successfully, now take a look at the log and see the joblet failure and
being relaunched until finally the maxretry count is exceeded and the job exits with a failure status:

> zos log zenuser.failover.269Launching 2 joblets
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=0
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
pin Orchestrate 2.6 Developer Guide and Reference

[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=0
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=0
[melt] self.getFact(joblet.retrynumber)=1
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=1
[freeze] self.getFact(joblet.retrynumber)=1
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze
[melt] ------------------ joblet_started_event
[melt] node=melt joblet=1
[melt] self.getFact(joblet.retrynumber)=2
[melt] self.getFact(job.joblet.maxretry)=3
[melt] sleeping for 1 seconds
[melt] Traceback (innermost last):
[melt] File "failover.jdl", line 60, in joblet_started_event
[melt] RuntimeError: Artifical error in joblet. node=melt
[freeze] ------------------ joblet_started_event
[freeze] node=freeze joblet=0
[freeze] self.getFact(joblet.retrynumber)=2
[freeze] self.getFact(job.joblet.maxretry)=3
[freeze] sleeping for 1 seconds
[freeze] Traceback (innermost last):
[freeze] File "failover.jdl", line 60, in joblet_started_event
[freeze] RuntimeError: Artifical error in joblet. node=freeze

See Also

 Setting Constraints Using Policies (Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53).

 Executing Commands Using Exec (page 239)

instclients.job

Installs the PlateSpin Orchestrate client applications to the specified resource machine. Note that
while most of the other examples are deployed by default, this example is not.
Job Examples 163

164 PlateS
Detail

The following concepts are demonstrated:

 Using constraints to restrict joblet execution to a specific resource.

 Adding files to a job’s directory in the datagrid, and retrieving them during joblet execution.

 Using the Exec class to send a command to the operating system. The system command is
invoked directly without using the system command interpreter (either cmd.exe or /bin/sh).

Usage

> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy instclients.job
instclients successfully deployed

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail instclients
Jobname/Parameters Attributes
------------------ ----------
instclients Desc: This job installs the clients on a resource

 host Desc: The host name of resource to install on
 Type: String
 Default: None! Value must be specified

Description

The files that make up the instclients job include:

instclients # Total: 138 lines
|-- instclients.jdl # 97 lines
`-- instclients.policy # 41 lines

instclients.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
pin Orchestrate 2.6 Developer Guide and Reference

SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: instclients.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
15 """
16
17 Run install clients on a resource
18
19 Setup:
20 Before running the job, you must copy installers into DataGrid of
21 server.
22
23 >zos copy zosclients_windows_1_3_0_with_jre.exe grid:///\!instclients/
24
25 """
26 import os,time
27
28 #
29 # Add to the 'examples' group on deployment
30 #
31 if __mode__ == "deploy":
32 try:
33 jobgroupname = "examples"
34 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
35 if jobgroup == None:
36 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
37 jobgroup.addMember(__jobname__)
38 except:
39 exc_type, exc_value, exc_traceback = sys.exc_info()
40 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
41
42
43 class InstClients(Job):
44
45 def job_started_event(self):
46 print "Scheduling joblet"
47 self.schedule(InstClientsJoblet)
48
49
50 class InstClientsJoblet(Joblet):
51
52 def joblet_started_event(self):
53 print "Launching Installer"
54 windowsInstaller = "zosclients_windows_2_0_0_with_jre.exe"
55 linuxInstaller = "zosclients_linux_2_0_0_with_jre.sh"
56 if self.getFact("resource.os.family") == "windows":
57 print "Downloading Windows install"
58 dg = DataGrid()
59 dg.copy("grid:///!instclients/" +
windowsInstaller,windowsInstaller)
60
61 print "Starting install"
62 cmd = self.getcwd() + "/" + windowsInstaller + " -q "
63 e = Exec()
Job Examples 165

166 PlateS
64 e.setCommand(cmd)
65 e.setRunAsJobUser(False)
66 e.writeStdoutToLog()
67 e.writeStderrToLog()
68 result = e.execute()
69 else:
70 print "Downloading Linux install"
71 dg = DataGrid()
72 dg.copy("grid:///!instclients/" +
linuxInstaller,linuxInstaller)
73
74 print "Starting install"
75 cmd = "chmod +x " + self.getcwd() + "/" + linuxInstaller
76 print "cmd=%s" % (cmd)
77 e = Exec()
78 e.setCommand(cmd)
79 e.setRunAsJobUser(False)
80 e.writeStdoutToLog()
81 e.writeStderrToLog()
82 result = e.execute()
83
84 cmd = self.getcwd() + "/" + linuxInstaller + " -q"
85 print "cmd=%s" % (cmd)
86 e = Exec()
87 e.setRunAsJobUser(False)
88 e.setCommand(cmd)
89 e.writeStdoutToLog()
90 e.writeStderrToLog()
91 result = e.execute()
92
93 if result == 0:
94 print "Install complete"
95 else:
96 print "result=%d" % (result)
97

instclients.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=

pin Orchestrate 2.6 Developer Guide and Reference

13 * $Id: instclients.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="host"
22 type="String"
23 description="The host name of resource to install on"
24 />
25
26 </jobargs>
27
28 <job>
29 <fact name="description"
30 type="String"
31 value="This job installs the clients on a resource" />
32 </job>
33
34 <constraint type="resource" >
35
36 <eq fact="resource.id" factvalue="jobargs.host" />
37
38 </constraint>
39
40 </policy>
41

Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.
Job Examples 167

168 PlateS
Exec

Used to manage command line execution on resources.

DataGrid

Provides a way to interact with the datagrid. Operations include copying files from the datagrid
down to the resource for joblet usage and uploading files from a resource to the datagrid.

Job Details

The following sections describe the instclients job:

 “zosadmin deploy” on page 168

 “job_started_event” on page 168

 “joblet_started_event” on page 168

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the instclients job will be added to the group named Examples (lines 31-
40), and will show up in the PlateSpin Orchestrate Development Client in the Explorer view at the
location:

/Orchestrate Servers/Grid_Name/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

job_started_event

When the instclients job receives a job_started_event, it schedules a single instance of the Instclients
joblet to be run (see line 45 of instclients.jdl (page 164)). The resource that runs the joblet is
determined from the resource constraint specified in instclients.policy (page 166), lines 21-24, and
from the value for the parameter host supplied on the command line.

joblet_started_event

After the Instclients joblet is executed on a particular resource, it receives a joblet_started_event.
When this happens, the Instclients joblet decides which Orchestrate Client installation file to
download, and the commands to execute on the operating system by checking the value of
resource.os.family (see line 56 of instclients.jdl (page 164)). The resource.os.family fact
does not exist in the instclients.policy file, but is instead provided by the PlateSpin Orchestrate
system.

After deciding which operating system the joblet is being run on, the Instclients joblet uses the
DataGrid class to download the appropriate client installation file to the current working directory of
the running joblet (see lines 58-59 and 71-72 in instclients.jdl (page 164)). The URL grid://
!instclients/ points to a directory reserved for the joblet in the datagrid on the server.

After the client installation file has been downloaded from the server, the Instclients joblet uses
the Exec class to begin the installation (see lines 63-68 and 86-91 in instclients.jdl (page 164)). As
indicated by lines 66, 67, 80, 81, 89 and 90, all standard out and standard err are written to the job’s
log file.
pin Orchestrate 2.6 Developer Guide and Reference

To view the log file for the Instclients job after it has been run, you can execute the command

zos log instclients

For more information about using zos, see Section 3.5.2, “Using the zosadmin Command Line Tool
to Deploy Jobs,” on page 40. See the Exec class in PlateSpin Orchestrate Job Classes and JDL
Syntax for more information on running commands.

NOTE: The Instclients job uses the Exec class twice when running on a Linux resource. The
first command changes the mode of the installation file to be an executable, and the second runs the
installation file.

Configure and Run

Execute the following commands to deploy and run instclients.job:

1 Copy client installation files into the directory reserved for the Instclients joblet in the
datagrid of the Orchestrate Server:

zos copy zosclients_linux_2_1_0_with_jre.sh grid:///\!instclients/

NOTE: Replace “linux” with windows, linux, solaris, etc. for your given operating system, and
replace 2_1_0 with your version of the product.

This command copies the file zosclients_linux_2_1_0_with_jre.sh into the datagrid job
directory for instclients.

For more information about using PlateSpin Orchestrate Development Client to copy files, type
zos copy -help.

NOTE: Replace windows with linux, solaris, etc. for your given operating system.

2 Deploy instclients.job into the grid by entering:

zosadmin deploy instclients.job

3 Display the list of deployed jobs by entering:

zos joblist

instclients should appear in this list.

4 Run the job on the resource with the given host:

zos run instclients host=my_resource_host

Installs the Orchestrate clients onto the resource with the host: my_resource_host.

See Also

 Setting Constraints Using Policies (Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53).

 Scheduling multiple instances of a joblet

 Setting default parameter values using policies

 Configuring constraints in a policy file
Job Examples 169

170 PlateS
 Naming conventions for policy facts (Section 5.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 109.Section 5.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on
page 109)

 Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file

 Using the PlateSpin Orchestrate Development Client (“How Do I Interact with PlateSpin
Orchestrate?”)

 Running commands using the Exec class.

notepad.job

Launches the Notepad application on a Windows resource.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail notepad
Jobname/Parameters Attributes
------------------ ----------
notepad Desc: No description available.

Description

The files that make up the Notepad job include:

notepad # Total: 86 lines
|-- notepad.jdl # 54 lines
`-- notepad.policy # 32 lines

notepad.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: notepad.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

pin Orchestrate 2.6 Developer Guide and Reference

14
15 """
16
17 Run Notepad Application on windows resoure
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
25 if __mode__ == "deploy":
26 try:
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
35
36
37 class Notepad(Job):
38
39 def job_started_event(self):
40 print "Scheduling joblet"
41 self.schedule(NotepadJoblet)
42
43
44 class NotepadJoblet(Joblet):
45
46 def joblet_started_event(self):
47 print "Starting Notepad"
48 cmd = "notepad"
49 e = Exec()
50 e.setCommand(cmd)
51 e.writeStdoutToLog()
52 e.writeStderrToLog()
53 result = e.execute()
54

notepad.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
Job Examples 171

172 PlateS
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: notepad.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18
19 <constraint type="accept" >
20
21 <gt fact="jobinstance.matchingresources" value="0" reason="No
Windows's resources are available to run Notepad" />
22
23 </constraint>
24
25 <constraint type="resource" >
26
27 <eq fact="resource.os.family" value="windows" reason="Notepad
only runs on Windows OS" />
28
29 </constraint>
30
31 </policy>
32

Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.
pin Orchestrate 2.6 Developer Guide and Reference

Exec

Used to manage command line execution on resources.

Job Details

The Notepad job is broken down into three separate operations:

 “zosadmin deploy” on page 173

 “job_started_event” on page 173

 “joblet_started_event” on page 173

zosadmin deploy

In notepad.jdl (page 170), lines 25-34 places the job into the “examples” job group. After jobs are
deployed into the grid, they can optionally be placed in groups for organization and easy reference.
In this case, the Notepad job is added to the group named Examples and appears in the PlateSpin
Orchestrate Development Client in the Explorer view at the location:

/Orchestrate Servers/Grid_Name/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

job_started_event

Scheduling the Notepad joblet to run immediately is the second operation performed by the Notepad
job in line 41 of notepad.jdl (page 170). When the Notepad job class receives a
job_started_event() notification, it simply schedules the NotepadJoblet class to be run on any
target device that meets the restrictions identified in the notepad.policy file.

As specified in lines 21 and 27 of notepad.policy (page 171), there must be at least one Windows
machine available in the grid for the Notepad job to run. The accept constraint in lines 19-23
prevents the Notepad job from being accepted for running if there are no Windows resources
available.

The resource constraint in lines 25-29 constrain the Orchestrate Job Scheduler to choose a
resource that is running a Windows OS only.

For more information on setting constraints using policies, see Section 2.3, “Policies,” on page 18
and Chapter 4, “Understanding Grid Object Facts and Computed Facts,” on page 53.

joblet_started_event

As specified in lines 49-53 in notepad.jdl (page 170), the joblet executing a command on the target
machine is the last operation performed by the Notepad job.

In this example, after the joblet_started_event() method of the NotepadJoblet class gets
called, the PlateSpin Orchestrate API class named Exec is used to run the command notepad on is
captured and written to the log file for the Notepad job.
Job Examples 173

174 PlateS
Configure and Run

Execute the following commands to deploy and run notepad.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy notepad.job

2 Display the list of deployed jobs:

> zos joblist

notepad should appear in this list.

3 Run the job on the first available Windows resource.

> zos run notepad

You should now see the Windows Notepad application appear on the screen of the target
Windows system. You will see the following error if there are no Windows resources.

No Windows resources available to run Notepad

See Also

 Setting Constraints Using Policies see Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53.

 Executing Commands Using Exec (page 239)

sweeper.job

This example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling
of the joblets across all matching resources.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail sweeper
Jobname/Parameters Attributes
------------------ ----------
sweeper Desc: This example job ilustrates how to schedule a 'sweep'
 accross all matching resources.

 sleeptime Desc: time to sleep (in seconds)
 Type: Integer
 Default: 1

Options

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.
pin Orchestrate 2.6 Developer Guide and Reference

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec

Used to manage command line execution on resources.

sleeptime

Specifies the time in seconds that the job remains dormant before running (default 1).

Description

The files that make up the Sweeper job include:

sweeper # Total: 140 lines
|-- sweeper.jdl # 66 lines
`-- sweeper.policy # 74 lines

The ScheduleSpec (page 247) utility class is also related to this example.

sweeper.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: sweeper.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
15 import time
16
17 #
18 # Add to the 'examples' group on deployment
19 #
Job Examples 175

176 PlateS
20 if __mode__ == "deploy":
21 try:
22 jobgroupname = "examples"
23 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
24 if jobgroup == None:
25 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
26 jobgroup.addMember(__jobname__)
27 except:
28 exc_type, exc_value, exc_traceback = sys.exc_info()
29 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
30
31
32 class sweeperJob(Job):
33
34 def job_started_event(self):
35 self.setFact("jobinstance.memo", self.getFact("job.description"))
36
37 sp = ScheduleSpec()
38
39 # Optionally a constraint can be specified to further limit
matching
40 # resources from the job's default 'resource' constraint. Could
also
41 # compose an object Constraint.
42 # For example, uncomment to restrict to resource group 'sweeper'
43 #sp.setConstraint("<contains fact='resource.groups'
value='sweeper' />")
44
45 # Specify the joblet to run on each resource
46 sp.setJobletClass(sweeperJoblet)
47
48 # Specify the sweep across active nodes
49 sp.setUseNodeSet(sp.ACTIVE_NODE_SET)
50
51 # Schedule a sweep (creates preassigned joblets)
52 self.scheduleSweep(sp)
53
54 # Now the ScheduleSpec contains the number of joblets created
55 print 'Launched', sp.getCount(), 'joblets'
56
57
58 class sweeperJoblet(Joblet):
59
60 def joblet_started_event(self):
61 msg = "run on resource %s" % (self.getFact("resource.id"))
62 self.setFact("joblet.memo", msg)
63 print "Sweep", msg
64 sleeptime = self.getFact("jobargs.sleeptime")
65 time.sleep(sleeptime)
66
pin Orchestrate 2.6 Developer Guide and Reference

sweeper.policy

 1 <!--
 2
*==
=
 3 * Copyright (c) 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12
*==
=
13 * $Id: sweeper.policy 10344 2009-11-20 21:46:43Z jastin $
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20 <!--
21 - Defines and sets the length of time the joblet should pretend
22 - it is doing something important
23 -->
24 <fact name="sleeptime"
25 type="Integer"
26 description="time to sleep (in seconds)"
27 value="1"
28 visible="true" />
29 </jobargs>
30
31
32 <job>
33 <!--
34 - Give the job a description for GUI's
35 -->
36 <fact name="description"
37 type="String"
38 value="This example job ilustrates how to schedule a 'sweep'
accross all matching resources." />
39
40 <!--
41 - This activates a built in throttle to limit the number of
42 - resources this job will run on at a time
43 -->
44 <fact name="maxresources"
45 type="Integer"
46 value="3" />
47
Job Examples 177

178 PlateS
48 <!--
49 - Rank resources from least loaded to the highest loaded. The
50 - idea is to run the joblets on the least loaded node first
51 - and hopefully by the time we get to the higher loaded
machines
52 - their load may have gone down
53 -->
54 <!--
55 <fact name="resources.rankby">
56 <array>
57 <string>resource.loadaverage/a</string>
58 </array>
59 </fact>
60 -->
61
62 <!--
63 - Alternative ranking that is easier to see:
64 - decending alphabetic of node name
65 -->
66 <fact name="resources.rankby">
67 <array>
68 <string>resource.id/d</string>
69 </array>
70 </fact>
71 </job>
72
73 </policy>
74

Classes and Methods

The class sweeperJob (see line 32, sweeper.jdl (page 175)) is derived from the Job Class.

The class sweeperJoblet (see line 58, sweeper.jdl (page 175)) is derived from the Joblet Class.

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

Job Details

The sweeper.job can be broken down into four separate parts:

 “Policy” on page 179

 “zosadmin deploy” on page 179

 “job_started_event” on page 179

 “joblet_started_event” on page 180
pin Orchestrate 2.6 Developer Guide and Reference

Policy

In addition to specifying the jobarg and default settings for sleeptime in lines 24-28,
sweeper.policy (page 177)), there also is the <job/> section in lines 32-71, which describes static
facts..

The resources.rankby array has two notable setting in this example:

 resource.loadaverage: This is the first string assignment (lines 55-59), which is commented
out, that causes joblets to run on the least loaded nodes first.This is the default value and the
default launch order for scheduleSweep.

 resource.id: This is the second string assignment (lines 66-70), which is actually used, and
assigns the string to the rank by array so that joblets run on nodes in reverse alphabetical order.

zosadmin deploy

When the Orchestrate Server deploys a job for the first time (see Section 3.5, “Deploying Jobs,” on
page 40), the job JDL files are executed in a special deploy mode. When sweeper.jdl is run in this
way (either through the Development Client or the zosadmin deploy command), lines 20-29 are
executed. This attempts to locate the examples jobgroup (lines 22-23), creates the group if it is not
found (lines 24-25), and adds the sweeper job to the group (line 26).

If the deployment fails for any reason, then an exception is thrown (line 27), which prints the job
name, group name, exception type and value (line 29).

job_started_event

The sweeperJob class (line 32) defines only the required job_started_event (line 34) method.
This method runs on the Orchestrate Server when the job is run to launch the joblets.

When executed, job_started_event displays a message on the memo line of the Job Log tab
within the Jobs view in the Orchestrate Development Client (line 35), via jobinstance.memo (see
Section 3.10.1, “Creating a Job Memo,” on page 45).

Jumping ahead for a moment, instead of calling self.schedule() as most the other examples do to
instantiate joblets, sweeperJob calls self.scheduleSweep() (line 52). scheduleSweep requires an
instance of ScheduleSpec (page 247), so one is created (line 37).

The ScheduleSpec method setConstraint can be used to constrain the available resources to a
particular group, as shown with a comment (line 43). If this setConstraint line is uncommented,
joblets will only run on members of the sweeper resource.group instead of using the default
resource group all.

NOTE: The sweeper group must already be created and have computing nodes assigned to it (see
“Walkthrough: Creating a Resource Account” in the PlateSpin Orchestrate 2.6 Installation and
Configuration Guide). This constraint would also be ANDed to any existing constraint, including
any aggregated policies.

The sweeperJoblet is set to be scheduled (line 52), and setUseNodeSet(intnodeSet) is assigned (line
49) the value sp.ACTIVE_NODE_SET. So, the joblet set is constructed after applying resource
constraints to the active/online resources. This in contrast to the other possible value of
sp.PROVISIONABLE_NODE_SET, where constraints are applied to all provisionable resources.
Job Examples 179

180 PlateS
joblet_started_event

The sweeperJoblet class (lines 58-65) defines only the required joblet_started_event (line 60)
method. After this method is executed, it displays a message on the memo line of the Joblet tab
within the Jobs view in the Orchestrate Development Client (lines 61-62). It also prints a similar log
message (line 63), and then just sleeps for jobargs.sleeptime seconds (lines 64-65) before
completion.

Configure and Run

Execute the following commands to deploy and run sweeper.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy sweeper.job

2 Display the list of deployed jobs:

> zos joblist

sweeper should appear in this list.

3 Run the job on one or more resources using the default values for numJoblets and resource,
specified in the sweeper.policy file:

> zos run sweeper sleeptime=30
JobID: zenuser.sweeper.420

> zos status zenuser.sweeper.420
Completed

> zos log zenuser.sweeper.420
Launched 3 joblets
[melt] Sweep run on resource melt
[freeze] Sweep run on resource freeze
[skate] Sweep run on resource skate

See Also

 Setting Constraints Using Policies, see Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53.

whoami.job

Demonstrates using the Exec class to send a command to the operating system’s default command
interpreter. On Microsoft Windows, this is cmd.exe. On POSIX systems, this is /bin/sh.

Usage

> zos login --user zenuser
Please enter current password for 'zenuser':
 Logged into grid as zenuser

~> zos jobinfo --detail whoami
Jobname/Parameters Attributes
------------------ ----------
whoami Desc: This is a demo example of enhanced exec
pin Orchestrate 2.6 Developer Guide and Reference

 numJoblets Desc: The number of joblets to schedule
 Type: Integer
 Default: 1

 resource Desc: The resource id to run on
 Type: String
 Default: .*

Description

The files that make up the Whoami job include:

whoami # Total: 118 lines
|-- whoami.jdl # 69 lines
`-- whoami.policy # 49 lines

whoami.jdl

 1 # --

 2 # Copyright (c) 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: whoami.jdl 10344 2009-11-20 21:46:43Z jastin $
13 # --

14
15 """
16
17 Demonstrate running setuid exec.
18
19 """
20 import os,time
21
22 #
23 # Add to the 'examples' group on deployment
24 #
25 if __mode__ == "deploy":
26 try:
27 jobgroupname = "examples"
28 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
29 if jobgroup == None:
30 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
31 jobgroup.addMember(__jobname__)
32 except:
Job Examples 181

182 PlateS
33 exc_type, exc_value, exc_traceback = sys.exc_info()
34 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
35
36
37 class Whoami(Job):
38
39 def job_started_event(self):
40 # Launch the joblets
41 numJoblets = self.getFact("jobargs.numJoblets")
42 user = self.getFact("user.id")
43 print "Launching %d joblets for user '%s'" % (numJoblets,user)
44 self.schedule(WhoamiJoblet,numJoblets)
45
46
47 class WhoamiJoblet(Joblet):
48
49 def joblet_started_event(self):
50 if self.getFact("resource.os.family") == "windows":
51 cmd = "echo %USERNAME%"
52 elif self.getFact("resource.os.family") == "solaris":
53 cmd = "echo $USER"
54 else:
55 cmd = "whoami"
56 print "cmd=%s" % (cmd)
57
58 # example using built-in system()
59 #result = system(cmd)
60
61 # example using Exec class
62 e = Exec()
63 e.setShellCommand(cmd)
64 e.writeStdoutToLog()
65 e.writeStderrToLog()
66 result = e.execute()
67
68 print "result=%d" % (result)
69

whoami.policy

 1 <!--
 2
*==
=
 3 * Copyright (c) 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pin Orchestrate 2.6 Developer Guide and Reference

12
*==
=
13 * $Id: whoami.policy 10344 2009-11-20 21:46:43Z jastin $
14
*==
=
15 -->
16
17 <policy>
18
19 <jobargs>
20
21 <fact name="numJoblets"
22 type="Integer"
23 description="The number of joblets to schedule"
24 value="1" />
25
26 <fact name="resource"
27 type="String"
28 description="The resource id to run on"
29 value=".*" />
30
31 </jobargs>
32
33 <job>
34 <fact name="description"
35 type="String"
36 value="This is a demo example of enhanced exec" />
37
38 <!-- only allow one run resource at a time so that multiple re
sources can be visited -->
39 <fact name="joblet.maxperresource"
40 type="Integer"
41 value="1" />
42 </job>
43
44 <constraint type="resource" >
45 <eq fact="resource.id" factvalue="jobargs.resource" match="regex p"
/>
46 </constraint>
47
48 </policy>
49

Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.
Job Examples 183

184 PlateS
MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Exec

Used to manage command line execution on resources.

Job Details

The following sections describe the Whoami job:

 “zosadmin deploy” on page 184

 “job_started_event” on page 184

 “joblet_started_event” on page 185

zosadmin deploy

When jobs are deployed into the grid, they can optionally be placed in groups for organization and
easy reference. In this case, the Whoami job is added to the group named “examples” (see lines 25-
34 of whoami.jdl) and is displayed in the PlateSpin Orchestrate Development Client in the
Explorer view at the location:

/Orchestrate Servers/Grid_Name/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

job_started_event

When the Whoami job receives a job_started_event, it schedules one or more instances of the
Whoami joblet to be run (see line 44 in whoami.jdl (page 181)). The number of WhoamiJoblet
instances is indicated by the value of the numJoblets fact, whose value might have been supplied
on the command-line, or referenced from what’s been supplied in the whoami.policy file by default
(see lines 21-24 in whoami.policy (page 182)).

In addition to supplying a default value for numJoblets, the whoami.policy file also supplies a
default value for the ID of the resource on which the joblet runs. The default value is .*, which
means all resources are included (see lines 26-29 in whoami.policy (page 182)).

Note that the setting for resource is not used in the JDL code but is used to affect which resources on
which the joblet run. This occurs because a constraint is specified in whoami.policy that restricts
the resources that can run this joblet to the current value of the resource fact (see line 45 in
whoami.jdl (page 181)).
pin Orchestrate 2.6 Developer Guide and Reference

maxperresource is another job setting that affects scheduling of the Whoami joblet. The system
uses maxperresource to determine how many instances of the joblet can run simultaneously on the
same resource. In this case, only one instance of the Whoami job can be run on a machine at a time,
as specified in lines 39-42 in whoami.policy (page 182).

When facts are referenced in the JDL file, they are prepended with jobargs. or job. However,
when supplied on the command line, this prefix is omitted. JDL files must use an explicit naming
convention when it references facts from the different sections of the policy files. For more
information on naming conventions for policy facts, see Section 5.1.1, “PlateSpin Orchestrate
Datagrid Filepaths,” on page 109.

joblet_started_event

When the Whoami joblet is executed on a particular resource it receives a joblet_started_event.
After this happens, the Whoami joblet decides which command to use to get the current username
by checking the value of resource.os.family (see lines 50-55 in whoami.jdl (page 181)). This
setting is not set in the whoami.policy, but instead is available from the PlateSpin Orchestrate
system.

After the command to get the current username has been decided, the PlateSpin Orchestrate API
class named Exec is used to execute the command on the resource where the joblet is running (see
lines 62-66 in whoami.jdl (page 181)).

By passing the command to the Exec setShellCommand method, the command will be executed by
the operating system’s default command interpreter. On Microsoft Windows this cmd.exe. On
POSIX systems, this is /bin/sh. As indicated by lines 64-65 in whoami.jdl (page 181), all standard
out and standard errors are written to the job’s log file.

To view the log file for the whoami job after it has been run, execute the command > zos log
whoami.

For more information about using the zos command line, see “The zosadmin Command Line Tool”
in the PlateSpin Orchestrate 2.6 Command Line Reference. For more information on running
commands using the Exec class, see Exec (page 239).

Configure and Run

Execute the following commands to deploy and run whoami.job:

1 Deploy notepad.job into the grid:

> zosadmin deploy whoami.job

2 Display the list of deployed jobs:

> zos joblist

whoami should appear in this list.

3 Run the job on one or more resources using the default values for numJoblets and resource,
specified in the whoami.policy file:

> zos run whoami

4 Run the job on one or more resources using supplied values for numJoblets and resource:

> zos run whoami numJoblets=10 resource=my_resource_.*

Run 10 joblets simultaneously, but only on resources beginning with the name "my_resource_".
Job Examples 185

186 PlateS
NOTE: The value for “resource” is specified using regular expression syntax.

See Also

 Setting Constraints Using Policies (Section 2.3, “Policies,” on page 18 and Chapter 4,
“Understanding Grid Object Facts and Computed Facts,” on page 53).

 Scheduling multiple instances of a joblet

 Setting default parameter values using policies

 Configuring constraints in a policy file

 Naming conventions for policy facts (Section 5.1.1, “PlateSpin Orchestrate Datagrid
Filepaths,” on page 109.Section 5.1.1, “PlateSpin Orchestrate Datagrid Filepaths,” on
page 109)

 Facts provided by the PlateSpin Orchestrate system that can be referenced within a JDL file

 Using PlateSpin Orchestrate (“How Do I Interact with PlateSpin Orchestrate?”)

 Running commands using the Exec class.

7.6 Job Examples: Miscellaneous Code-Only
The following examples demonstrate useful, miscellaneous code-only job concepts:

 “jobargs.job” on page 186

jobargs.job

Demonstrates the usage of the various argument types that jobs can accept. These types are integer,
Real, Boolean, String, Time, Date, List, Dictionary, and Array (which can contain the types Integer,
Real, Boolean, Time, Date, String). For more information about how to define job arguments, and
specify their values on the command line, see Chapter 4, “Understanding Grid Object Facts and
Computed Facts,” on page 53.

Usage

> zosadmin login --user zosadmin Login to server: skate
Please enter current password for 'zosadmin':
Logged into grid on server 'skate'

> cd /opt/novell/zenworks/zos/server/examples
> zosadmin deploy jobargs.job
jobargs successfully deployed

> zos login --user zenuser Please enter current password for 'zenuser':
 Logged into grid as zenuser

> zos jobinfo --detail jobargs
Jobname/Parameters Attributes
------------------ ----------
jobargs Desc: This example job tests all fact types.

 OptionalRealArray Desc: No description available.
pin Orchestrate 2.6 Developer Guide and Reference

 Type: Real[]
 Default: [1.1,2.2]

 RequiredRealArg Desc: No description available.
 Type: Real
 Default: None! Value must be specified

 RequiredDateArg Desc: No description available.
 Type: Date
 Default: None! Value must be specified

 OptionalListArg Desc: No description available.
 Type: List
 Default: [hi, mom, 42]

 OptionalIntegerArg Desc: Optional Integer Arg
 Type: Integer
 Default: 123

 OptionalStringArg Desc: Optional String Arg
 Type: String
 Default: foo

 OptionalDateArray Desc: No description available.
 Type: Date[]
 Default: [Mon Jan 02 12:01:00 MST 2006,Tue Jan 03
 12:02:00 MST 2006,Wed Jan 04 00:00:00
 MST 2006]

 OptionalStringArray Desc: No description available.
 Type: String[]
 Default: [string1,string2]

 RequiredBooleanArg Desc: No description available.
 Type: Boolean
 Default: None! Value must be specified

 OptionalString2ArgAsTag Desc: Optional String Arg as tag
 Type: String
 Default: bar

 RequiredTimeArg Desc: No description available.
 Type: Time
 Default: None! Value must be specified

 OptionalBooleanArg Desc: Optional Boolean Arg
 Type: Boolean
 Default: true

 OptionalTimeArg Desc: Optional Time Arg
 Type: Time
 Default: 43260000

 RequiredStringArg Desc: No description available.
 Type: String
 Default: None! Value must be specified

 OptionalRealArg Desc: Optional Real Arg
 Type: Real
Job Examples 187

188 PlateS
 Default: 3.14

 OptionalDateArg Desc: Optional Date Arg
 Type: Date
 Default: Mon Jan 02 12:01:00 MST 2006

 RequiredIntegerArg Desc: No description available.
 Type: Integer
 Default: None! Value must be specified

 OptionalDictArg Desc: No description available.
 Type: Dictionary
 Default: {time=12600000, date=Sat Apr 15 00:00:00
 MDT 2006, age=12, name=joe}

 OptionalString3ArgAsCDATA Desc: Optional String Arg as CDATA
 Type: String
 Default: this text is part of | a multi-line
 cdata section containing | xml
 <html>test</html> | <eq fact="foo.bar"
 value="qwerty" /> | cool!

 OptionalTimeArray Desc: No description available.
 Type: Time[]
 Default: [43260000,43320000]

 OptionalIntegerArray Desc: No description available.
 Type: Integer[]
 Default: [1,2]

Description

The files that make up the Jobargs job include:

jobargs.job # Total: 254 lines
|-- jobargs.jdl # 77 lines
`-- jobargs.policy # 177 lines

jobargs.jdl

 1 # --

 2 # Copyright © 2010 Novell, Inc. All Rights Reserved.
 3 #
 4 # NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 5 # WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY ,
 6 # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGMENT. NOVELL, THE
AUTHORS
 7 # OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 8 # FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 9 # TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
10 # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
11 # --

12 # $Id: jobargs.jdl 10344 2009-11-20 21:46:43Z jastin $
pin Orchestrate 2.6 Developer Guide and Reference

13 # --

14
15 """
16 Example job showing all available job argument types.
17
18 Example cmd line to run job:
19
20 zos run jobargs RequiredTimeArg="12:01 AM" RequiredRealArg="3.14"
RequiredIntegerArg="123" RequiredStringArg="foo" RequiredBooleanArg="true"
RequiredDateArg="6/10/08 11:35 AM"
21
22 """
23
24 import time
25
26 #
27 # Add to the 'examples' group on deployment
28 #
29 if __mode__ == "deploy":
30 try:
31 jobgroupname = "examples"
32 jobgroup = getMatrix().getGroup(TYPE_JOB, jobgroupname)
33 if jobgroup == None:
34 jobgroup = getMatrix().createGroup(TYPE_JOB, jobgroupname)
35 jobgroup.addMember(__jobname__)
36 except:
37 exc_type, exc_value, exc_traceback = sys.exc_info()
38 print "Error adding %s to %s group: %s %s" % (__jobname__,
jobgroupname, exc_type, exc_value)
39
40
41 class jobargs(Job):
42
43 def job_started_event(self):
44
45 jobid = self.getFact("jobinstance.id")
46 print "*****Dumping %s JobInstance jobargs facts*****" % (jobid)
47 keys = self.getFactNames()
48 keys.sort()
49 for s in keys:
50 if s.startswith("jobargs"):
51 v = self.getFact(s)
52 ty = type(v)
53
54 if str(ty).endswith("Dictionary"):
55 self.dump_dict(s,v)
56 else:
57 if s.endswith("TimeArg") or s.endswith("TimeArgReq"):
58 hrs = v/3600
59 min = (v % 3600)/60
60 sec = (v % 3600) % 60
61 print "%s %s %s hrs:%d min:%d sec:%d" %
(s,type(v),v,hrs,min,sec)
62
63 elif s.endswith("DateArg") or
s.endswith("DateArgReq"):
64 sv = time.ctime(v)
65 print "%s %s %s" % (s,type(v),sv)
Job Examples 189

190 PlateS
66
67 else:
68 print "%s %s %s" % (s,type(v),str(v))
69
70 print "*****End %s dump*****" % (jobid)
71
72 #self.schedule(jobargsJoblet)
73
74 def dump_dict(self,name,dict):
75 print "Dict: %s" % (name)
76 keys = dict.keys()
77 for k in keys:
78 v = dict[k]
79 ty = type(v)
80 if k == "dob":
81 v = time.ctime(v/1000)
82 print " %s %s %s" % (k,ty,str(v))
83
84
85 class jobargsJoblet(Joblet):
86
87 def joblet_started_event(self):
88 pass
89

jobargs.policy

 1 <!--
 2
*==
=
 3 * Copyright © 2010 Novell, Inc. All Rights Reserved.
 4 *
 5 * NOVELL PROVIDES THE SOFTWARE "AS IS," WITHOUT ANY EXPRESS OR IMPLIED
 6 * WARRANTY, INCLUDING WITHOUT THE IMPLIED WARRANTIES OF MERCHANTABILITY,
 7 * FITNESS FOR A PARTICULAR PURPOSE, AND NON INFRINGMENT. NOVELL, THE
AUTHORS
 8 * OF THE SOFTWARE, AND THE OWNERS OF COPYRIGHT IN THE SOFTWARE ARE NOT
LIABLE
 9 * FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT,
 10 * TORT, OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE
SOFTWARE
 11 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 12
*==
=
 13 * $Id: jobargs.policy 10344 2009-11-20 21:46:43Z jastin $
 14
*==
=
 15 -->
 16
 17 <policy>
 18
 19 <jobargs>
 20
 21 <!-- Optional job args -->
pin Orchestrate 2.6 Developer Guide and Reference

 22 <fact name="OptionalDateArg"
 23 description="Optional Date Arg"
 24 type="Date"
 25 value="1/2/06 12:01 PM"/>
 26
 27 <fact name="OptionalTimeArg"
 28 description="Optional Time Arg"
 29 type="Time"
 30 value="12:01 PM"/>
 31
 32 <fact name="OptionalRealArg"
 33 description="Optional Real Arg"
 34 type="Real"
 35 value="3.14" />
 36
 37 <fact name="OptionalIntegerArg"
 38 description="Optional Integer Arg"
 39 type="Integer"
 40 value="123" />
 41
 42 <fact name="OptionalStringArg"
 43 description="Optional String Arg"
 44 type="String"
 45 value="foo" />
 46
 47 <fact name="OptionalString2ArgAsTag"
 48 description="Optional String Arg as tag">
 49 <string>bar</string>
 50 </fact>
 51
 52 <fact name="OptionalString3ArgAsCDATA"
 53 description="Optional String Arg as CDATA">
 54 <string>
 55 <![CDATA[this text is part of
 56 a multi-line cdata section containing
 57 xml <html>test</html>
 58 <eq fact="foo.bar" value="qwerty" />
 59 cool!
 60]]>
 61 </string>
 62 </fact>
 63
 64 <fact name="OptionalBooleanArg"
 65 description="Optional Boolean Arg"
 66 type="Boolean"
 67 value="true" />
 68
 69 <fact name="OptionalListArg">
 70 <list>
 71 <listelement value="hi" type="String" />
 72 <listelement value="mom" />
 73 <listelement value="42" type="Integer" />
 74 </list>
 75 </fact>
 76
 77 <fact name="OptionalDictArg">
 78 <dictionary>
 79 <dictelement key="name" type="String" value="joe" />
 80 <dictelement key="date" type="Date" value="4/15/06" />
Job Examples 191

192 PlateS
 81 <dictelement key="time" type="Time" value="3:30 AM" />
 82 <dictelement key="age" type="Integer" value="12" />
 83 </dictionary>
 84 </fact>
 85
 86 <fact name="OptionalDateArray">
 87 <array>
 88 <date>1/2/06 12:01 PM</date>
 89 <date>1/3/06 12:02 PM</date>
 90 <date>1/4/06</date>
 91 </array>
 92 </fact>
 93 <fact name="OptionalTimeArray">
 94 <array>
 95 <time>12:01 PM</time>
 96 <time>12:02 PM</time>
 97 </array>
 98 </fact>
 99 <fact name="OptionalRealArray">
100 <array>
101 <real>1.1</real>
102 <real>2.2</real>
103 </array>
104 </fact>
105 <fact name="OptionalIntegerArray">
106 <array>
107 <integer>1</integer>
108 <integer>2</integer>
109 </array>
110 </fact>
111 <fact name="OptionalStringArray">
112 <array>
113 <string>string1</string>
114 <string>string2</string>
115 </array>
116 </fact>
117 <!-- Arrays of dictionary or list not currently supported
118 <fact name="OptionalDictionaryArray">
119 <array>
120 <dictionary>
121 <dictelement key="name" type="String" value="joe" />
122 </dictionary>
123 </array>
124 </fact>
125 -->
126
127 <!-- Required job args -->
128 <fact name="RequiredDateArg" type="Date" />
129 <fact name="RequiredTimeArg" type="Time" />
130 <fact name="RequiredRealArg" type="Real" />
131 <fact name="RequiredIntegerArg" type="Integer" />
132 <fact name="RequiredStringArg" type="String" />
133 <fact name="RequiredBooleanArg" type="Boolean" />
134 <!-- XXX Ooops, not currently supported without value!
135 <fact name="RequiredListArg" type="list" />
136 <fact name="RequiredDictArg" type="dictionary" />
137 <fact name="RequiredStringArray" type="string">
138 <array />
139 </fact>
pin Orchestrate 2.6 Developer Guide and Reference

140 -->
141
142 <!-- Invisible job args -->
143 <fact name="InvisibleDateArg" type="Date" value="1/2/06 12:01 PM"
visible="False" />
144 <fact name="InvisibleTimeArg" type="Time" value="12:01 PM"
visible="False" />
145 <fact name="InvisibleRealArg" type="Real" value="3.14"
visible="False" />
146 <fact name="InvisibleIntegerArg" type="Integer" value="123"
visible="False" />
147 <fact name="InvisibleStringArg" type="String" value="foo"
visible="False" />
148 <fact name="InvisibleString2Arg" visible="False" >
149 <string>bar</string>
150 </fact>
151 <fact name="InvisibleBooleanArg" type="Boolean" value="true"
visible="False" />
152 <fact name="InvisibleListArg" visible="False">
153 <list>
154 <listelement value="hi" type="String" />
155 <listelement value="mom" />
156 <listelement value="42" type="integer" />
157 </list>
158 </fact>
159 <fact name="InvisibleDictArg" visible="False">
160 <dictionary>
161 <dictelement key="name" type="String" value="joe" />
162 <dictelement key="date" type="Date" value="4/15/06" />
163 <dictelement key="time" type="Time" value="3:30 AM" />
164 <dictelement key="age" type="Integer" value="12" />
165 </dictionary>
166 </fact>
167
168 </jobargs>
169
170 <job>
171 <fact name="description"
172 type="String"
173 value="This example job tests all fact types." />
174 </job>
175
176 </policy>
177

Schedule File (optional)

jobargs.sched

1 <schedule name="jobargs" description="Run jobargs" active="true">
2 <runjob job="jobargs" user="labuser" priority="medium" />
3 <triggers>
4 <trigger name="trigger1" />
5 <trigger name="trigger2" />
6 </triggers>
7 </schedule>
Job Examples 193

194 PlateS
Classes and Methods

Definitions:

Job

A representation of a running job instance.

Joblet

Defines execution on the resource.

MatrixInfo

A representation of the matrix grid object, which provides operations for retrieving and
creating grid objects in the system. MatrixInfo is retrieved using the built-in getMatrix()
function. Write capability is dependent on the context in which getMatrix() is called. For
example, in a joblet process on a resource, creating new grid objects is not supported.

GroupInfo

A representation of Group grid objects. Operations include retrieving the group member lists
and adding/removing from the group member lists, and retrieving and setting facts on the
group.

Job Details

The Jobargs job performs its work by handling the following events:

 “zosadmin deploy” on page 194

 “job_started_event” on page 194

 “joblet_started_event” on page 195

zosadmin deploy

In jobargs.jdl (page 188), lines 27-36 deploy the job into the grid. After jobs are deployed into the
grid, they can optionally be placed in groups for organization and easy reference. In this case, the
jobargs job will be added to the group named “examples”, and will show up in the PlateSpin
Orchestrate Development Client in the Explorer view at the location:

/Orchestrate Servers/Grid_Name/Jobs/examples

For a general overview of how jobs are added to groups during deployment, see “Walkthrough:
Deploying a Sample Job” in the PlateSpin Orchestrate 2.6 Installation and Configuration Guide.

job_started_event

After the Jobargs job receives a job_started_event, it gets a list of all the facts available to it, as
shown in line 45 of jobargs.jdl (page 188). This list is sorted, filtered according to whether or not it’s
a jobarg fact, and then enumerated (lines 46-58). Each jobarg fact is printed in a “name type value”
format. When the complex Dictionary type is encountered (line 52), a separate method is used to
print the values for all the key-value pairs (lines 63-71).

The list of optional and required arguments for this Jobargs example are available as facts within the
<jobargs> section (see lines 19-168 in jobargs.policy (page 190)).
pin Orchestrate 2.6 Developer Guide and Reference

For more information about defining job arguments and their types, see Chapter 4, “Understanding
Grid Object Facts and Computed Facts,” on page 53 and Section 2.3, “Policies,” on page 18.

joblet_started_event

The Jobargs job only illustrates passing job arguments to a job. Therefore, no work is performed on
the resource by the jobargsJoblet.

Configure and Run

To run this example, you must have PlateSpin Orchestrate installed and configured properly. No
agents on separate resources are required. You also must be logged into your Orchestrate Server
before you run zosadmin or zos commands.

Execute the following commands to deploy and run jobargs.job:

1 Deploy jobargs.job into the grid:

> zosadmin deploy jobarg.job

NOTE: Run zosadmin login to log in for zos administration.

2 Display the list of deployed jobs:

> zos joblist

jobargs should appear in this list.

NOTE: Run zos login to run zos client jobs.

3 Display the list of optional and required arguments for this job:

> zos jobinfo jobargs

4 Run the jobargs job and view the results.

NOTE: You must supply values for TimeArgReq, RealArgReq, StringArgReq,
BooleanArgReq, IntegerArgReq, and DateArgReq as follows (see jobargs.policy (page 190)
for the full list of arguments that can be specified):

> zos run jobargs TimeArgReq=12:01:02 RealArgReq=3.14 StringArgReq=Hello
BooleanArgReq=True IntegerArgReq=42 DateArgReq="04/05/07 7:45 AM"

> zos log jobargs

See Also

 Defining job arguments and their types

 Using PlateSpin Orchestrate (“How Do I Interact with PlateSpin Orchestrate?”)
Job Examples 195

196 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

8
8Job Scheduling

PlateSpin Orchestrate schedules jobs either start manually using the Job Scheduler or to start
programatically using the Job Description Language (JDL). This section contains the following
topics:

 Section 8.1, “The PlateSpin Orchestrate Job Scheduler Interface,” on page 197

 Section 8.2, “Schedule and Trigger Files,” on page 198

Job scheduling in JDL occurs in the sense that jobs are allocated in priority order (sometimes
referred to as “scheduling”) by the PlateSpin Resource Allocation Broker. For more information, see
“Scheduling with Constraints” on page 26.

8.1 The PlateSpin Orchestrate Job Scheduler
Interface
After PlateSpin Orchestrate is enabled with a license, users have access to a built-in job Scheduler.
This GUI interface allows jobs to be started periodically based upon user scheduling or when
various system or user-defined events occur.

The following figure illustrates the Job Scheduler, with nine jobs staged in the main Scheduler
panel.

Figure 8-1 The PlateSpin Orchestrate Scheduler GUI
Job Scheduling 197

198 PlateS
Jobs are individually submitted and managed using the Job Scheduler as discussed in “The
PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.6 Development Client
Reference and in “Using the PlateSpin Orchestrate Server Portal” in the PlateSpin Orchestrate 2.6
Server Portal Reference.

8.2 Schedule and Trigger Files
In addition to using the Job Scheduler GUI, developers can also write XML files to schedule and
trigger jobs to run when triggered by specific events. These files are designated using the .sched
and .trig extensions. and can be included as part of the job archive file (.job) or deployed
separately.

Everything that you do manually in the Job Scheduler can be automated by creating a .sched or
.trig XML script as part of a job. The XML files enable you to package system and job scheduling
logic without using the GUI. This includes setting up cron triggers (for example, running a job at
specified intervals) and other triggers that respond to built-in system events, such as resource
startup, user startup (that is, login), or user-defined events that trigger on a rule.

For example, the osInfo discovery job, which probes a resource for its operating system
information, is packaged with a schedule file, as shown in the “Schedule File Examples” on
page 198. See also Section 8.2.2, “Trigger File XML Examples,” on page 199.

This section includes the following information:

 Section 8.2.1, “Schedule File Examples,” on page 198

 Section 8.2.2, “Trigger File XML Examples,” on page 199

8.2.1 Schedule File Examples

A schedule file (.sched) can be packaged either within a .job archive alongside the .jdl file or
independently deployed using the zosadmin command line utility. Because the XML file defines the
job schedule programmatically outside of the Orchestrate Development Client, packaging these
scripts into jobs is typically a developer task.

This section includes the following information:

 “Schedule File Example: osInfo.sched” on page 198

 “Schedule File Example: Multiple Triggers” on page 199

Schedule File Example: osInfo.sched

The osinfo.sched file is packaged with the osInfo discovery job, which is deployed as part of the
base server. Its purpose is to trigger a run of the osInfo job on a resource when the resource comes
on line as it logs into the server.

The following shows the syntax of the schedule file that wraps the job:

1 <schedule name="osInfo" description="Discover OS info on resources."
active="true" reourcesRequired="false">
2 <runjob job="osInfo" user="system" priority="high" />
3 <triggers>
4 <trigger name="RESOURCE_ONLINE" />
5 </triggers>
6 </schedule>
pin Orchestrate 2.6 Developer Guide and Reference

Line 1: Defines a new schedule named osinfo, which is used to schedule a run of the job osInfo.
If the job (in this case, osinfo) is not deployed, the deployment returns a “Job is not deployed”
error.

Line 2: Instructs the schedule to run the named job (osinfo) by the named user (system) using a
defined priority (high). If the user (in this case, system) does not exist, the deployment returns a
User does not exist error.

NOTE: Only the PlateSpin Orchestrate users belonging to the administrators group can assign
priorities higher than medium. Assigning a higher priority than specified by the
user.priority.max fact defaults to a priority equal to user.priority.max when the job runs.

Line 3-5: Defines the triggers (in this case only one trigger, an event, RESOURCE_ONLINE) that
initiates the job.

Schedule File Example: Multiple Triggers

A schedule can include one or more triggers. The following example shows the syntax of a schedule
file that has two cron triggers for scheduling a job:

1 <schedule name="ReportTwice" active="true">
2 <runjob job="jobargs" user="JohnD" priority="medium" />
3 <triggers>
4 <trigger name="DailyReportTrigger" />
5 <trigger name="NightlyReportTrigger" />
6 </triggers>
7 </schedule>

Line 1: Defines the schedule name, deployed condition, and description (if any).

Line 2: Instructs the schedule to run the named job (jobargs) by the named user (JohnD) using a
defined priority (medium).

Lines 3-6: Defines the triggers (in this case two occurring time triggers) that initiate the job.

8.2.2 Trigger File XML Examples

Trigger files define when a job and how often a schedule fires. This can happen when a defined
event occurs, when a defined amount of time passes, or when a given point in time is reached. so
that one or more triggers can be associated with a job schedule (.sched). You can create these
triggers yourself in XML format and deploy them, or you can edit and choose them in the Job
Scheduler, which automatically deploys them. This section includes examples to show you the
syntax of different trigger files.

 “XML Example: Event Trigger” on page 200

 “XML Example: Interval Time Trigger” on page 200

 “XML Example: Cron Expression Trigger” on page 201
Job Scheduling 199

200 PlateS
 XML Example: Event Trigger

An event trigger starts a job when a defined event occurs. Several built-in event triggers (such as
events that occur when a managed object comes online or offline or has a health status change) are
available in the Trigger chooser of the Job Scheduler along with any user-defined Events:

 RESOURCE_ONLINE

 RESOURCE_OFFLINE

 USER_ONLINE

 USER_OFFLINE

 RESOURCE_HEALTH

 USER_HEALTH

 VMHOST_HEALTH

 REPOSITORY_HEALTH

When deployed as triggers in a schedule, built-in events do not generate a .trig file, as other
triggers do.

You can also associate an Event object with a job schedule (see “Event Triggers” in “The PlateSpin
Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.6 Development Client Reference). You
can define an Event object in an XML document, deploy it to a server, and then manage it with the
PlateSpin Orchestrate Development Client.

The following example, PowerOutage.trig shows the XML format for a trigger that references an
event object.

1 <trigger name="PowerOutage" description="Fires when UPS starts at power
outage">
2 <event value="UPS_interrupt"/>
3 </trigger>

Line 1: Defines the trigger name and description.

Line 2: Defines the event object chosen for the trigger.

For more information about events, see Section 3.12, “Using an Event Notification in a Job,” on
page 48.

XML Example: Interval Time Trigger

The following example, EveryMin1Hr.trig shows the XML format for a trigger that uses the
system clock to define (in seconds) how soon the schedule is to start, how often the schedule is to
repeat, and how many times the schedule is to be repeated:

1 <trigger name="EveryMin1Hr" description="Fires every minute for one hour">
2 <interval startin="600" interval="60" repeat="60"/>
3 </trigger>

Line 1: Defines the trigger name and description.

Lines 2-3: Defines how soon the schedule is to start, how often the schedule is to repeat, and how
many times the schedule is to be repeated
pin Orchestrate 2.6 Developer Guide and Reference

XML Example: Cron Expression Trigger

The following example, NoonDaily.trig shows the XML format for a trigger that uses a Quartz
Cron expression to precisely define when an event is to fire.

1 <trigger name="NoonDaily" description="Fires every day at noon">
2 <cron value="0 0 12 * * ?"/>
3 </trigger>

Line 1: Defines the trigger name and description.

Lines 2-3: Defines the cron expression to be used by the schedule. Cron expressions are used to
precisely define the future point in time when the schedule is to fires. For more information, see
“Understanding Cron Syntax in the Job Scheduler” in “The PlateSpin Orchestrate Job Scheduler” in
the PlateSpin Orchestrate 2.6 Development Client Reference.
Job Scheduling 201

202 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

9
9Provisioning Adapter Hooks

PlateSpin Orchestrate includes a “hooks” facility that lets you make grid events more extensible in
the provisioning adapters by adding pre-event or post-event jobs to prepare for and then to clean up
after the event.

This section includes the following information:

 Section 9.1, “Grid Events for VMs That Are Implemented by Provisioning Adapters,” on
page 203

 Section 9.2, “Customizing Jobs for the Provisioning Adapter Hooks,” on page 205

9.1 Grid Events for VMs That Are Implemented
by Provisioning Adapters
The grid events for VMs that are implemented by the respective PlateSpin Orchestrate provisioning
adapters are shown in the following table. The actual event names use a “pre_” or “post_” suffix,
depending on whether it occurs as a pre-event or post-event.

Table 9-1 Grid Events Implemented by Provision Adapters

Event Name
Parameters Passed with the
Event

Provisioning Adapters That Support
the Event

build_event  vm_host

 vm

 xen

clone_event  vm_host?

 vm

 new_vm

 xen

 vsphere

move_event  vm_host?

 vm

 xen

 vsphere

 hyperv

start_event  vm_host?

 vm

 xen

 vsphere

 hyperv

shutdown_event  vm  xen

 vsphere

 hyperv

restart_event  vm  xen

 vsphere

 hyperv
Provisioning Adapter Hooks 203

204 PlateS
destroy_event  vm  xen

 vsphere

 hyperv

suspend_event  vm  xen

 vsphere

 hyperv

pause_event  vm  xen

 hyperv

resume_event  vm  xen

 hyperv

personalize_event  vm  xen

 vsphere

saveConfig_event  vm  xen

 vsphere

 hyperv

applyConfig_event  vm  xen

createTemplate_event  vm_host?

 vm

 new_vm

 xen

 vsphere

migrate_event  vm

 new_vm_host

 xen

 vsphere

 hyperv

checkpoint_event  vm  vsphere

 hyperv

restore_event  vm  vsphere

 hyperv

installAgent_event  vm  xen

checkStatus_event  vm  xen

 vsphere

 hyperv

discoverVmHost_event  vm_hosts  xen

 vsphere

 hyperv

discoverRepository_event  repository  xen

 vsphere

 hyperv

Event Name
Parameters Passed with the
Event

Provisioning Adapters That Support
the Event
pin Orchestrate 2.6 Developer Guide and Reference

NOTE: A vm_host parameter with the (?) annotation signifies that it is passed by the event only if
the engine actually has the parameter when the event occurs. If the engine has only a VM but not a
VM host, the hooks framework performs an internal lookup for the VM host.

9.2 Customizing Jobs for the Provisioning
Adapter Hooks
This section includes the following information:

 Section 9.2.1, “Adding Hooks Jobs to Customize a VM Event,” on page 205

 Section 9.2.2, “Customizing Pre- and Post-Job Execution Order,” on page 207

 Section 9.2.3, “Customizing Hooks Job Execution Based on Event Type,” on page 208

9.2.1 Adding Hooks Jobs to Customize a VM Event

If you want to augment what happens when a VM event occurs, you can do so by adding your
custom hooks jobs to run in conjunction with the provisioning adapter. Pre- and Post-VM event jobs
are executed synchronously, defined by default sequence, or by custom sequence. The actual VM
event is allowed to run synchronously or asynchronously.

PlateSpin Orchestrate includes two example jobs (paHooks_mount and paHooks_simple) intended
as models that you can customize for use by the xen provisioning adapter. These example jobs
illustrate some of the implemented xen provisioning adapter pre- and post-hooks. You can use these
example jobs can help you to write similar jobs for performing tasks prior to and following a VM
event executed by the provisioning adapter.

This section includes the following information:

 “How to Use the paHooks_simple Example to Help Trigger Pre- and Post-Hook Events” on
page 205

 “Other Things to Know About Provisioning Adapter Hooks Jobs” on page 207

How to Use the paHooks_simple Example to Help Trigger Pre- and Post-Hook Events

You can use paHooks_simple as an example to help you trigger pre- and post-hook events. The
following are some requirements you must satisfy when customizing your own paHooks job.

 Your job needs to have an associated .policy file. It is standard practice for the policy to have
the same name as the job. This policy file must contain these jobargs:

makeStandalone_event  vm  xen

 vsphere

Event Name
Parameters Passed with the
Event

Provisioning Adapters That Support
the Event
Provisioning Adapter Hooks 205

206 PlateS
 <jobargs>
 <fact name="mode"
 type="String"
 description="The event received by the provision adapter job."
 value="" />
 <fact name="msg"
 type="String"
 description="The job memo describing this child job."
 value="" />
 <fact name="useJoblets"
 type="Boolean"
 description="Schedule joblets or simulation only."
 value="true" />
 <fact name="params"
 type="Dictionary"
 description="The parameters that were passed to the provision
adapter job for the current event (mode)." />
 </jobargs>

TIP: To avoid errors, we recommend that you make a copy of the paHooks_simple.policy
file and and rename it to match the name of your job (or create a new policy and then copy the
contents of the paHooks_simple.policy file to this file).

 Make sure that the .jdl file for your job has the job_started_event defined. The
job_started_event is responsible to parse the jobargs.mode argument sent at startup and in turn
call the correct pre- or post-event. The paHooks_simple.jdl file does this in a generalized
way:

 def job_started_event(self):
 msg = self.getFact("jobargs.msg")
 if msg:
 print msg
 self.setFact("jobinstance.memo", msg)

 mode = self.getFact('jobargs.mode')
 if not mode:
 self.fail('jobargs.mode not specified!')

 params = self.getFact('jobargs.params')
 params['mode'] = mode
 if self.factExists("job.debug") and self.getFact("job.debug"):
 print 'params=%s' % (params)

 func_name = '%s_event' % (mode)
 try:
 func= getattr(self, func_name)
 func.__call__(params)
 except AttributeError:
 print "Job mode '%s' not implemented" % (mode)
 except TypeError:
 print "Job mode '%s' has invalid signature" % (mode)

 Customize the .jdl file for your job needs by including the pre_ and post_ events you want to
call, for example:

 def pre_makeStandalone_event(self, params):
 print "******** pre_makeStandalone_event"
 self.__schedule_vmhost(params)
pin Orchestrate 2.6 Developer Guide and Reference

This schedules the joblet for your paHooks job on the vmHost resource that has access to the
files for the VM being affected. Your joblet code must then parse the jobletargs mode in order
to determine what action to take:

 def joblet_started_event(self):
 mode = self.getFact("jobletargs.mode")
 if mode.startswith("pre_makeStandalone"):
 """ do something useful here... """

 Make sure that the The job.paHooksVmJob fact is set in the provisioning adapter job. The
job.paHooksVmJob standard fact is available for implementation only in provision adapter
jobs (xen, vsphere, and hyperv). For information about the location of this fact in the
Development Client, see Provision Adapter Hook Jobs in “Job Control Settings” in the
PlateSpin Orchestrate 2.6 Development Client Reference.

The job.paHooksVmJob fact is a String array that needs to contain the names of the hooks job
or jobs that you create and customize for use with the provisioning adapter. By default, the fact
specifies that the listed jobs run sequentially as pre-event jobs. Then, after the provision adapter
runs, these same hooks jobs execute in reverse sequence.

 Make sure that the policy for the paHooks custom job is associated to the job.

Other Things to Know About Provisioning Adapter Hooks Jobs

 Hyper-V hooks jobs you create can use a job structure similar to the example Xen jobs. For the
vsphere provisioning adapter, however, we recommend that you confer with Novell Consulting
for assistance in creating your own hooks jobs.

 You can create hooks jobs that implement only one kind of event or many events. The jobs can
be configured to be triggered by a single type of event, or that include all of the VM events.
Customization options allow flexibility in the role of the job.

 To increase the amount of detail available for hooks job implementation and monitoring, go to
the hooks job and set the job.debug fact or the job.tracing fact to True.

9.2.2 Customizing Pre- and Post-Job Execution Order

If you do not want to use the default execution order for the Pre- and Post-event jobs, you can
customize the order of their execution by adding custom facts:

 job.paHooksPreVmJob: Use this fact to hard code the implementation order of the hooks jobs
prior to a VM event. Make sure the fact is defined as a String array.

 job.paHooksPostVmJob: Use this fact to hard code the implementation order of the hooks
jobs following a VM event. Make sure the fact is defined as a String array.

IMPORTANT: Make sure you create these custom facts using the exact naming syntax shown
above.

For example, if the default order for Pre-event VM jobs was Job 1, Job 2, Job 3 (specified using the
job.paHooksVmJob fact), you could add the job.paHooksPostVmJob custom fact to specify the
Post-event VM job execution order as Job 2, Job 1, Job 3.
Provisioning Adapter Hooks 207

208 PlateS
9.2.3 Customizing Hooks Job Execution Based on Event Type

If you want to make sure that a provisioning adapter is invoked only when certain events occur, you
have two options:

 Manually add hooks jobs to the job.paHooksVmJob fact that contain only the event types you
want (this is always an option).

 Create a custom fact for the hooks jobs that works only for a specific event.

The naming syntax for a custom fact like this follows the pattern of job.paHooks<Pre or
Post><event_name>VmJob. For example, if you wanted to invoke a job to execute exclusively
prior to a START event, you would add the custom fact job.paHooksPreStartVmJob, with
the hooks job name or names specified in its String array.

Each hooks job that you define is called only if it implements the event named, so you can set
up a job for the provisioning adapter that implements only the desired event. For example, if
you set up a Pre-Start VM hooks job for the Xen provisioning adapter, any other event except
Start that occurs in that hooks job is never invoked.

paHooks requires a policy and for the job start event to call the specific methods according to
jobargs.mode. For more information, see “How to Use the paHooks_simple Example to Help
Trigger Pre- and Post-Hook Events” on page 205.
pin Orchestrate 2.6 Developer Guide and Reference

A
APlateSpin Orchestrate Client SDK

PlateSpin Orchestrate includes a Java Client SDK in which you can write Java applications to
remotely manage jobs. The zos command line tool is written using the Client SDK, as described in
Appendix A, “PlateSpin Orchestrate Client SDK,” on page 209. This SDK application can perform
the following operations:

 Login and logout to an Orchestrate Server.

 Manage the life cycle of a job (run/cancel).

 Monitor running jobs (get job status).

 Communicate to a running job using events.

 Receive events from a running job.

 Search for grid objects using constraints.

 Retrieve and modify grid object facts.

 Datagrid operations (such as copying files to the server and downloading files from the server).

This section includes the following information:

 Section A.1, “SDK Requirements,” on page 209

 Section A.2, “Creating an SDK Client,” on page 209

 Section A.3, “Client SDK Reference information,” on page 210

A.1 SDK Requirements
Before you can run the PlateSpin Orchestrate Client SDK, you must perform the following tasks:

1. Install the PlateSpin Orchestrate Client package. For instructions, see “Installing and
Configuring All PlateSpin Orchestrate Components Together” and “Walkthrough: Launching
the PlateSpin Orchestrate Development Client” in the PlateSpin Orchestrate 2.6 Installation
and Configuration Guide.

2. Install JDK 1.6.x.

3. Examine the two example PlateSpin Orchestrate SDK client applications that are included in
the examples directory:

 extranetDemo: Provides a sophisticated example of launching multiple jobs and listening
and sending events to running jobs.

 cracker: Demonstrates a simple example how to launch a job and listen for events sent
from the job to the client application..

A.2 Creating an SDK Client
Use the following procedure to create an SDK client in conjunction with the sample Java code (see
“Interface ClientAgent” on page 218):

1 Create ClientAgent instance:
PlateSpin Orchestrate Client SDK 209

210 PlateS
 // example zos server host is "myserver"

 ClientAgent clientAgent = ClientAgentFactory.newClientAgent("myserver");

2 Use the following user and password example to log in to the Orchestrate Server (see
“Walkthrough: Logging In to the PlateSpin Orchestrate Server” in the PlateSpin Orchestrate
2.6 Installation and Configuration Guide):

 Credential credential =
CredentialFactory.newPasswordCredential(username,password);

 clientAgent.login(credential);

3 Run the server operations. In this case, it is the quickie.jdl example job (which must have
been previously deployed) with no job arguments:

 String jobID = clientAgent.runJob("quickie",null)

4 (Optional) Listen for server events using the AgentListener interface:

 clientAgent.addAgentListener(this);

4a Register with the PlateSpin Orchestrate Server to receive job events for the job you
started.

clientAgent.getMessages(jobID);

5 Log out of the server:

 clientAgent.logout()

A.3 Client SDK Reference information
This section provides the reference information for the Java classes used by the PlateSpin
Orchestrate Client SDK

 Section A.3.1, “Constraint Package,” on page 210

 Section A.3.2, “Datagrid Package,” on page 215

 Section A.3.3, “Grid Package,” on page 217

 Section A.3.4, “TLS Package,” on page 224

 Section A.3.5, “Toolkit Package,” on page 226

A.3.1 Constraint Package

The Java classes included in the Constraint package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation javadoc.

 “Interfaces” on page 210

 “Classes” on page 214

 “Exceptions” on page 214

Interfaces

The following Java files form the interfaces for the PlateSpin Orchestrate constraint grid structure:

 “Interface AndConstraint” on page 211
pin Orchestrate 2.6 Developer Guide and Reference

 “Interface BetweenConstraint” on page 211

 “Interface BinaryConstraint” on page 211

 “Interface Constraint” on page 211

 “Interface ContainerConstraint” on page 212

 “Interface ContainsConstraint” on page 212

 “Interface DefinedConstraint” on page 212

 “Interface EqConstraint” on page 212

 “Interface GeConstraint” on page 212

 “Interface GtConstraint” on page 212

 “Interface IfConstraint” on page 213

 “Interface IncludeConstraint” on page 213

 “Interface LeConstraint” on page 213

 “Interface LtConstraint” on page 213

 “Interface NeConstraint” on page 213

 “Interface NotConstraint” on page 213

 “Interface OperatorConstraint” on page 214

 “Interface OrConstraint” on page 214

 “Interface TypedConstraint” on page 214

 “Interface UndefinedConstraint” on page 214

Interface AndConstraint

Perform a logical and-ing of all child constraints.This is a no-op if this constraint contains no
children.

For complete documentation of the class, see AndConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/AndConstraint.html).

Interface BetweenConstraint

Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BetweenConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
BetweenConstraint.html).

Interface BinaryConstraint

Binary Operator Constraints that have both a left and right side.

For complete documentation of the class, see BinaryConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/BinaryConstraint.html).

Interface Constraint

Basic Constraint interface that allows traversal and evaluation of a constraint tree.
PlateSpin Orchestrate Client SDK 211

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/AndConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/BetweenConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/BinaryConstraint.html

212 PlateS
For complete documentation of the class, see Constraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/Constraint.html).

Interface ContainerConstraint

Container constraints that perform logical aggregation operations on contained constraints.

For complete documentation of the class, see ContainerConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
ContainerConstraint.html).

Interface ContainsConstraint

Performs a simple set operation that returns true if the right side of the operation is found in the
value set of the left side.

For complete documentation of the class, see ContainsConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
ContainerConstraint.html).

Interface DefinedConstraint

Evaluates to true only if the left side fact is defined in the match context. If the left side is not
defined, this will evaluate to false.

For complete documentation of the class, see DefinedConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
DefinedConstraint.html).

Interface EqConstraint

Performs a equality constraint operation. Missing arguments will always result in this constraint
evaluating to false.

Supported match modes:

 Strings — MATCH_MODE_REGEXP & MATCH_MODE_GLOB

For complete documentation of the class, see EqConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/EqConstraint.html).

Interface GeConstraint

Performs a “greater than or equal to” constraint operation. Missing arguments always result in this
constraint evaluating to false. The standard lexicographical ordering of values is used to determine
result.

For complete documentation of the class, see GeConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/GeConstraint.html).

Interface GtConstraint

Performs a “greater than” constraint operation. Missing arguments will always result in this
constraint evaluating to false. The standard lexicographical ordering of values is used to determine
result.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/Constraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/ContainerConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/ContainerConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/DefinedConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/EqConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/GeConstraint.html

For complete documentation of the class, see GtConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/GtConstraint.html).

Interface IfConstraint

Perform a conditional if,then,else block. If conditional passes, the pass block is run as it would be in
an AND constraint. If the the conditional fails, the fail block is run as it would be in an AND
constraint.

For complete documentation of the class, see IfConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/IfConstraint.html).

Interface IncludeConstraint

Extends the class Constraint.

For complete documentation of the class, see IncludeConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/IncludeConstraint.html).

Interface LeConstraint

Performs a “less than or equal to” constraint operation. Missing arguments always result in this
constraint evaluating to false. The standard lexicographical ordering of values is used to determine
result.

For complete documentation of the class, see LeConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/LeConstraint.html).

Interface LtConstraint

Performs a “‘less than” constraint operation. Missing arguments always result in this constraint
evaluating to false. The standard lexicographical ordering of values is used to determine result.

For complete documentation of the class, see LtConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/LtConstraint.html).

Interface NeConstraint

Performs a not equal constraint operation. Missing arguments always result in this constraint
evaluating to false.

Supported match modes:

 Strings — MATCH_MODE_REGEXP & MATCH_MODE_GLOB

For complete documentation of the class, see NeConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/NeConstraint.html).

Interface NotConstraint

Perform a logical not operation of all the child constraints. This is a no-op if this constraint contains
no children.

For complete documentation of the class, see NotConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/NotConstraint.html).
PlateSpin Orchestrate Client SDK 213

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/GtConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/IfConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/IncludeConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/LeConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/LtConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/NeConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/NotConstraint.html

214 PlateS
Interface OperatorConstraint

Operator constraints that perform comparison operation on facts.

For complete documentation of the class, see OperatorConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
OperatorConstraint.html).

Interface OrConstraint

Perform a logical or-ing operation of all the child constraints. This is a no-op if this constraint
contains no children.

For complete documentation of the class, see OrConstraint (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/constraint/OrConstraint.html).

Interface TypedConstraint

Typed constraint must only be used as the outermost wrapper when it is necessary to override the
default constraint type of ‘resource.’ It provides the necessary context about where to add the
contained constraints.

For complete documentation of the class, see TypedConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/TypedConstraint.html).

Interface UndefinedConstraint

Evaluates to true only if the left side fact is not defined in the match context. If the left side is not
defined, this will evaluate to false.

For complete documentation of the class, see UndefinedConstraint (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
UndefinedConstraint.html).

Classes

The following Java files form the classes for the PlateSpin Orchestrte class structure:

 “Class ContainsConstraint.ContainsMode” on page 214

Class ContainsConstraint.ContainsMode

For complete documentation of the class, see ContainsConstraint.containsMode (http://
www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
ContainsConstraint.ContainsMode.html).

Exceptions

The following Java files form the exceptions for the PlateSpin Orchestrate constraint grid structure:

 “Class ConstraintException” on page 214

Class ConstraintException

For exceptions that occur in parsing or executing constraints.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/ContainsConstraint.ContainsMode.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/OperatorConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/OrConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/TypedConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/UndefinedConstraint.html

For complete documentation of the class, see ConstraintException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/
ConstraintException.html).

A.3.2 Datagrid Package

The Java classes included in the Datagrid package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation javadoc.

 “Interfaces” on page 215

 “Classes” on page 216

 “Exceptions” on page 216

Interfaces

The following Java files form the interfaces for the PlateSpin Orchestrate datagrid structure:

 “Interface GridFile” on page 215

 “Interface GridFileFilter” on page 215

 “Interface GridFileNameFilter” on page 215

Interface GridFile

Specifies the PlateSpin Orchestrate datagrid interface for individual files and directories.

This interface rather closely mirrors java.io.File. It does not, however, extend that class, since
the standard Java I/O classes would not understand the semantics of this extended version. In
particular, path names specified by this class refer to remote files that might not be directly
accessible via the file system, as expected by standard Java file I/O classes.

The mirroring of java.io.File is done strictly for consistency and familiarity. There are a few
methods in java.io.File that don't make sense in the context of the datagrid, and have thus been
omitted. However, the commonly used methods such as canWrite, mkdir(), and so on are
implemented and provide functionality for datagrid paths that is analogous to that provided by
java.io.File for local file system paths.

For complete documentation of the class, see GridFile (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFile.html).

Interface GridFileFilter

Filter for accepting/rejecting file names in a directory list.

Filtering is done by fully qualified GridFile objects representing the files and directories contained
directly under the parent.

For complete documentation of the class, see GridFileFilter (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFileFilter.html).

Interface GridFileNameFilter

Filter for accepting/rejecting file names in a directory list.
PlateSpin Orchestrate Client SDK 215

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/constraint/ConstraintException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFile.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFileFilter.html

216 PlateS
Filtering is done by simple string path component names relative to the parent.

For complete documentation of the class, see GridFileNameFilter (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/
GridFileNameFilter.html).

Classes

The following Java files form the classes for the PlateSpin Orchestrate datagrid structure:

 “Class DGLogger” on page 216

Class DGLogger

Definitions of the DataGrid Logger options used for multicast.

For complete documentation of the class, see DGLogger (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/DGLogger.html).

Exceptions

The following Java files form the exceptions for the PlateSpin Orchestrate datagrid structure:

 “Class DataGridException” on page 216

 “Class DataGridNotAvailableException” on page 216

 “Class GridFile.CancelException” on page 216

Class DataGridException

General exception class for datagrid errors.

For complete documentation of the class, see DataGridException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/
DataGridException.html).

Class DataGridNotAvailableException

Exception thrown if the datagrid cannot be reached due to a network error.

For complete documentation of the class, see DataGridNotAvailableException (http://
www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/
DataGridNotAvailableException.html).

Class GridFile.CancelException

Exception thrown by cancelled requests.

For complete documentation of the class, see GridFile.CancelException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/
GridFile.CancelException.html).
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFileNameFilter.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/DGLogger.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/DataGridException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/DataGridNotAvailableException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/dataGrid/GridFile.CancelException.html

A.3.3 Grid Package

The Java classes included in the Grid package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation javadoc.

 “Interfaces” on page 217

 “Exceptions” on page 222

Interfaces

The following Java files form the interfaces for the PlateSpin Orchestrate grid structure:

 “Interface AgentListener” on page 218

 “Interface ClientAgent” on page 218

 “Interface Credential” on page 218

 “Interface Fact” on page 218

 “Interface FactSet” on page 218

 “Interface GridObjectInfo” on page 218

 “Interface JobInfo” on page 219

 “Interface Message” on page 219

 “Interface Message.Ack” on page 219

 “Interface Message.AuthFailure” on page 219

 “Interface Message.ClientResponseMessage” on page 219

 “Interface Message.ConnectionID” on page 220

 “Interface Message.Event” on page 220

 “Interface Message.GetGridObjects” on page 220

 “Interface Message.GridObjects” on page 220

 “Interface Message.JobAccepted” on page 220

 “Interface Message.JobError” on page 220

 “Interface Message.JobFinished” on page 220

 “Interface Message.JobIdEvent” on page 220

 “Interface Message.JobInfo” on page 221

 “Interface Message.Jobs” on page 221

 “Interface Message.JobStarted” on page 221

 “Interface Message.JobStatus” on page 221

 “Interface Message.LoginFailed” on page 221

 “Interface Message.LoginSuccess” on page 221

 “Interface Message.LogoutAck” on page 221

 “Interface Message.RunningJobs” on page 222

 “Interface Message.ServerStatus” on page 222

 “Interface Node” on page 222
PlateSpin Orchestrate Client SDK 217

218 PlateS
 “Interface Priority” on page 222

 “Interface WorkflowInfo” on page 222

Interface AgentListener

Provides the interface necessary for processing messages sent from the Orchestrate Server.

The implementation of this interface is registered with the agent using
ClientAgent.addAgentListener().

For complete documentation, see AgentListener (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/AgentListener.html).

Interface ClientAgent

API for client communication with server for job and datagrid operations. This includes retrieving
information about available jobs, to start jobs and to manage running jobs.

For complete documentation, see ClientAgent (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/ClientAgent.html).

Interface Credential

A credential used for identity on the PlateSpin Orchestrate system. Use the CredentialFactory to
create Credential instances.

For complete documentation, see Credential (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Credential.html).

Interface Fact

The Fact object. This contains accessors for setting and getting fact values and for describing a Fact.

For complete documentation, see Fact (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/Fact.html).

Interface FactSet

Definition of a set of facts. Typically, this represents all facts associated with a particular Grid
object.

NOTE: There is also a FactSetSnapshot that can hold a read-only, non-dynamic version of the
facts.

For complete documentation, see FactSet (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/FactSet.html).

Interface GridObjectInfo

Client interface to any Grid object. All “Info” objects are serializable.

For complete documentation, see GridObjectInfo (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridObjectInfo.html).
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/AgentListener.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/ClientAgent.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Credential.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Fact.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/FactSet.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridObjectInfo.html

Interface ID

A unique identifier for an engine or a facility or Grid object.

The default identifiers for the broker, facilities, and an unknown ID are defined here.

For complete documentation, see ID (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/ID.html).

Interface JobInfo

A client representation of a deployed job.

The interface describes details about a deployed job. This is a simplified interface that is likely to be
a subset of Job. It is used in the client API and for management.

For complete documentation, see JobInfo (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/JobInfo.html).

Interface Message

A base interface for all the messages in the system. It defines the basic methods that must be
implemented by a message class, and also defines sub-interfaces for each of the actual messages in
the system.

All of these message interfaces are intended to be viewed from the perspective of the consumer, not
the producer. Producers are responsible for implementing the concrete classes which will underly
these interfaces, and have complete freedom of choice as to how to implement constructors and set
methods.

For complete documentation, see Message (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/Message.html).

Interface Message.Ack

A general acknowledgement of “action” message.

For complete documentation, see Message.Ack (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Ack.html).

Interface Message.AuthFailure

Authentication failure messages indicating that processing of a client message will not occur
because client credentials are invalid.

For complete documentation, see Message.AuthFailure (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.AuthFailure.html).

Interface Message.ClientResponseMessage

All messages that can optionally carry an error string back to the client extend this.

For complete documentation, see Message.ClientResponseMessage (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
Message.ClientResponseMessage.html).
PlateSpin Orchestrate Client SDK 219

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/ID.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/JobInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Ack.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.AuthFailure.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.ClientResponseMessage.html

220 PlateS
Interface Message.ConnectionID

Messages assigned a connection ID by the session manager.

For complete documentation, see Message.ConnectionID (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.ConnectionID.html).

Interface Message.Event

An Event is used to signal clients and workflows. A client can receive an Event sent from a
workflow. The ClientAgent.sendEvent() constructs an Event to send to workflows.

For complete documentation, see Message.Event (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Event.html).

Interface Message.GetGridObjects

Client request to retrieve an (optionally ordered) set of grid objects that match a search criteria
(constraint).

For complete documentation, see Message.GetGridObjects (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.GetGridObjects.html).

Interface Message.GridObjects

Server response to client request to retrieve a grid object set.

For complete documentation, see Message.GridObjects (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.GridObjects.html).

Interface Message.JobAccepted

A JobAccepted message is sent in response to a RunJob message when a job is successfully
accepted into the system.

For complete documentation, see Message.JobAccepted (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobAccepted.html).

Interface Message.JobError

A JobError message is sent when an unrecoverable error occurs in a job.

For complete documentation, see Message.JobError (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobError.html).

Interface Message.JobFinished

A JobFinished message is sent when processing of a job completes.

For complete documentation, see Message.JobFinished (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobFinished.html).

Interface Message.JobIdEvent

Base Event interface for retrieving JobID used for jobid messages.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.ConnectionID.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Event.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.GetGridObjects.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.GridObjects.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobAccepted.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobError.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobFinished.html

For complete documentation, see Message.JobIdEvent (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobIdEvent.html).

Interface Message.JobInfo

A JobInfo message contains information describing a deployed job.

For complete documentation, see Message.JobInfo (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobInfo.html).

Interface Message.Jobs

A Jobs message contains a list of deployed job names.

For complete documentation, see Message.Jobs (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Jobs.html).

Interface Message.JobStarted

A JobStarted message is sent when a job is successfully started.

For complete documentation, see Message.JobStarted (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobStarted.html).

Interface Message.JobStatus

A JobStatus message contains the state of the specified job. This is used in lieu of JobStatusDetail to
get simple state info.

For complete documentation, see Message.JobStatus (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobStatus.html).

Interface Message.LoginFailed

Response message for an unsuccessful login.

For complete documentation, see Message.LoginFailed (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LoginFailed.html).

Interface Message.LoginSuccess

Response message for a successful login.

For complete documentation, see Message.LoginSuccess (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LoginSuccess.html).

Interface Message.LogoutAck

A LogoutAck indicates success or failure of logout operation. It is a specific message type so error
filtering can be applied when the message can't be delivered because the transport has already been
closed.

For complete documentation, see Message.LogoutAck (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LogoutAck.html).
PlateSpin Orchestrate Client SDK 221

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobIdEvent.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.Jobs.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobStarted.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.JobStatus.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LoginFailed.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LoginSuccess.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.LogoutAck.html

222 PlateS
Interface Message.RunningJobs

A RunningJobs message contains the list of running jobs.

For complete documentation, see Message.RunningJobs (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.RunningJobs.html).

Interface Message.ServerStatus

A ServerStatus message.

ServerStatus is different from a normal status message from the server because it normally requires
an action on the part of the receiver whereas a Status is more informational. ServerStatus can be
used for server shutdown, restart, version upgrade, migration to new host, and so on.

For complete documentation, see Message.ServerStatus (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.ServerStatus.html).

Interface Node

Internal interface for Node (Resource) Grid object.

For complete documentation, see Node (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/Node.html).

Interface Priority

Priority information.

For complete documentation, see Priority (http://www.novell.com/documentation/cloudmanager1/
resources/jdldoc/com/novell/zos/grid/Priority.html).

Interface WorkflowInfo

A WorkflowInfo can represent either a snapshot of a running instance or an historical record of an
instance. It can be thought of as the client view of a Workflow which is its big sister that is active
and runs in the server.

NOTE: Workflow extends WorkflowInfo. LiteWorkflowInfo implements WorkflowInfo.

Setter methods should be put in Workflow and not in WorkflowInfo.

For complete documentation, see WorkflowInfo (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/WorkflowInfo.html).

Exceptions

The following Java files form the exceptions for the PlateSpin Orchestrate grid structure:

 “Class ClientOutOfDateException” on page 223

 “Class FactException” on page 223

 “Class GridAuthenticationException” on page 223

 “Class GridAuthorizationException” on page 223

 “Class GridConfigurationException” on page 223
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.RunningJobs.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Message.ServerStatus.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Node.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/Priority.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/WorkflowInfo.html

 “Class GridDeploymentException” on page 223

 “Class GridException” on page 224

 “Class GridObjectNotFoundException” on page 224

Class ClientOutOfDateException

Grid exception indicating the client is not compatible with the server.

This exception is thrown if a connection cannot be established with the PlateSpin Orchestrate
Sserver because the current client software is either too old or too new to be compatible with the
server.

For complete documentation, see ClientOutOfDateException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
ClientOutOfDateException.html).

Class FactException

For exceptions that occur in accessing or setting facts.

For complete documentation, see FactException (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/FactException.html).

Class GridAuthenticationException

Thrown when authentication is denied by a PlateSpin Orchestrate Server.

For complete documentation, see GridAuthenticationException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
GridAuthenticationException.html).

Class GridAuthorizationException

Thrown when credentials are insufficient for the desired grid operation.

For complete documentation, see GridAuthorizationException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
GridAuthorizationException.html).

Class GridConfigurationException

Grid exception thrown to indicate a grid configuration error.

This exception is thrown to indicate a severe error in the grid’s configuration that prevents it or one
of its major components from operating correctly.

For complete documentation, see GridConfigurationException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
GridConfigurationException.html).

Class GridDeploymentException

Thrown when credentials are insufficient for the desired grid operation.
PlateSpin Orchestrate Client SDK 223

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/ClientOutOfDateException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/FactException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridAuthenticationException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridAuthorizationException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridConfigurationException.html

224 PlateS
For complete documentation, see GridDeploymentException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
GridDeploymentException.html).

Class GridException

The base exception for all grid exceptions. This provides an easy way to catch multiple types of
related exceptions in the system without needing to explicitly list every one.

For complete documentation, see GridException (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridException.html).

Class GridObjectNotFoundException

Thrown when a Grid object lookup does not find the requested object.

For complete documentation, see GridObjectNotFoundException (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/
GridObjectNotFoundException.html).

A.3.4 TLS Package

The Java classes included in the TLS package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation javadoc.

 “Interfaces” on page 224

 “Classes” on page 225

Interfaces

Interfaces used for secure authentication to Orchestrate Server include the following:

 “Interface TlsCallbacks” on page 224

Interface TlsCallbacks

Callback interface for TLS certificate exceptions.

An instance of this interface may be passed to
TlsConfiguration.setCallbacks(TlsCallbacks) or to
TlsConfiguration.setDefaultCallbacks(TlsCallbacks) to provide customized handling of
missing or mismatched TLS server certicates encountered while attempting to make TLS
connections to a PlateSpin Orchestrate Server.

The TlsCallbacks.onCertificateNotFound(SocketAddress,PemCertificate) method is
invoked when the PlateSpin Orchestrate Server returns a server certificate and there is currently no
certificate found for that server. If this method returns false, a certificate exception is thrown on the
client; otherwise, the code for this method can “accept” the certificate, possibly with user warnings
and a confirmation dialog before returning true to indicate that the certificate is “OK.”

The
TlsCallbacks.onCertificateMismatch(SocketAddress,PemCertificate,PemCertificat
e) method is invoked when the PlateSpin Orchestrate Server returns a server certificate that does not
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridDeploymentException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridException.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/grid/GridObjectNotFoundException.html

correctly match the current certificate held by the client. This exception is a more severe error than
“not found” because it indicates a possible spoofing attempt by a “man in the middle.” We
recommend that implementations of this callback method default to returning false unless the user or
administrator very specifically indicates a willingness to accept the new certificate.

For complete documentation of the class, see TlsCallbacks (http://www.novell.com/documentation/
cloudmanager1/resources/jdldoc/com/novell/zos/tls/TlsCallbacks.html).

Classes

Classes used for secure authentication to Orchestrate Server include the following:

 “Class PemCertificate” on page 225

 “Class TlsConfiguration” on page 225

Class PemCertificate

PEM certificate wrapper for X.509 certificates.

This convenience class wraps up an X.509 certificate in an object that allows the certificate to be
read from and stored to a standard PEM encoded X.509 certificate file. This allows the Orchestrate
Clients to make use of the Sun TLS provider without requiring that the Orchestrate Server certificate
be manually installed in the JRE’s keystore. The use of standardized PEM certificates allows more
portable handling and offline generation of certificates (if desired for security purposes) and enables
simplified management of certificates.

For complete documentation of the class, see PemCertificate (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/tls/PemCertificate.html).

Class TlsConfiguration

TLS Configuration parameters for Orchestrate Clients.

This class holds various TLS-related configuration parameters used by Orchestrate Clients to
connect to the server. By passing an instance of this class to the Development Client API upon login,
or by setting global defaults, the behavior and usage of Transport Layer Security (TLS) can be
modified by client writers.

The factory default behavior for Orchestrate Clients and agents is to enable TLS, with the level of
encryption specified by the server upon client connection. By default, “client” (as opposed to
“agent”) connection mode is assumed.

This class is fully cloneable and serializable. It is recommended that the type-safe
TlsConfiguration.copy() method be used for cloning.

The following is a simple example of the usage of this class to configure TLS support on a client
connection to a PlateSpin Orchestrate Server:
PlateSpin Orchestrate Client SDK 225

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/tls/TlsCallbacks.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/tls/PemCertificate.html

226 PlateS
 import com.novell.zos.tls.TlsConfiguration;
 import com.novell.zos.grid.ClientAgent;
 import com.novell.zos.grid.Credential;
 import com.novell.zos.toolkit.CredentialFactory;
 ...
 TlsConfiguration tlsConfig = new TlsConfiguration();
 tlsConfig.setCertificatePath("/tmp");
 Credential cred = CredentialFactory.newPasswordCredential("user",
"pass".toCharArray());
 ClientAgent client = ClientAgentFactory.newClientAgent("127.0.0.1");
 client.setTlsConfiguration(tlsConfig);
 client.login(cred);
 System.out.println("Logged In");

If custom handling of unknown or mismatched server certificates is required by the client, then add
a call to TlsConfiguration.setCallbacks(TlsCallbacks) with an instance of TlsCallbacks
providing methods for handling each of those cases.

If certain TLS parameters will always be the same for all instances (that is, they were specified on a
global command line at JVM launch), those parameters can be specified as “global defaults” using
the “setDefault*” versions of the various methods of this class. This can be used to avoid passing
global configuration parameters among many different objects.

For complete documentation of the class, see TlsConfiguration (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/tls/TlsConfiguration.html).

A.3.5 Toolkit Package

The Java classes included in the Toolkit package form the basis of the PlateSpin Orchestrate
infrastructure. For complete documentation of each class, click on the links to access the online
documentation javadoc.

 “Classes” on page 226

Classes

The following Java files form the classes for the PlateSpin Orchestrate toolkit structure:

 “Class ClientAgentFactory” on page 226

 “Class ConstraintFactory” on page 226

 “Class CredentialFactory” on page 227

Class ClientAgentFactory

Factory pattern used to create new clients for connection to a PlateSpin Orchestrate Server. This is
the starting point for clients to communicate with the server.

For complete documentation of the class, see ClientAgentFactory (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/ClientAgentFactory.html).

Class ConstraintFactory

Factory pattern used to create constraint objects that can be combined into larger constraint
hierarchies for use in searches or other constraint-based matching.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/tls/TlsConfiguration.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/ClientAgentFactory.html

For complete documentation of the class, see ConstraintFactory (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/ConstraintFactory.html).

Class CredentialFactory

Factory pattern used to create a Credential used for connection to a PlateSpin Orchestrate Server.

For complete documentation of the class, see CredentialFactory (http://www.novell.com/
documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/CredentialFactory.html).
PlateSpin Orchestrate Client SDK 227

http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/ConstraintFactory.html
http://www.novell.com/documentation/cloudmanager1/resources/jdldoc/com/novell/zos/toolkit/CredentialFactory.html

228 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

B
BPlateSpin Orchestrate Job
Classes and JDL Syntax

 Section B.1, “Job Class,” on page 229

 Section B.2, “Joblet Class,” on page 229

 Section B.3, “Utility Classes,” on page 229

 Section B.4, “Built-in JDL Functions and Variables,” on page 229

 Section B.5, “Job State Field Values,” on page 231

 Section B.6, “Repository Information String Values,” on page 232

 Section B.7, “Joblet State Values,” on page 232

 Section B.8, “Resource Information Values,” on page 233

 Section B.9, “JDL Class Definitions,” on page 233

B.1 Job Class
To review the detailed JDL structure of the joblet class, see Job (page 241).

B.2 Joblet Class
To review the detailed JDL structure of the joblet class, see Joblet (page 241).

B.3 Utility Classes
The following are some of the main utility JDL classes you can use to customize your PlateSpin
Orchestrate jobs:

 DataGrid (page 238)

 Exec (page 239)

 MatrixInfo (page 243)

 ResourceInfo (page 246)

 RunJobSpec (page 247)

 ScheduleSpec (page 247)

B.4 Built-in JDL Functions and Variables
The information in this section defines the built-in PlateSpin Orchestrate JDL functions and
variables.

 Section B.4.1, “getMatrix(),” on page 230

 Section B.4.2, “system(cmd),” on page 230

 Section B.4.3, “Grid Object TYPE_* Variables,” on page 230
PlateSpin Orchestrate Job Classes and JDL Syntax 229

230 PlateS
 Section B.4.4, “The __agent__ Variable,” on page 230

 Section B.4.5, “The __jobname__ Variable,” on page 231

 Section B.4.6, “The __mode__ Variable,” on page 231

B.4.1 getMatrix()

This function returns the matrix grid object. For more information, see MatrixInfo (page 243).

Purpose: The matrix object is used to retrieve other grid objects in the system.

B.4.2 system(cmd)

This executes a system command in a shell on the resource. The command is passed to the operating
system’s default command interpreter. On Microsoft Windows systems this is cmd.exe, while on
POSIX systems, this is /bin/sh. Stdout and stderr are directed to the job log. No access to stdin is
provided.

Returns: Returns an exit code result of the command execution.

B.4.3 Grid Object TYPE_* Variables

The list of variables are constants for grid object type. For more information, see MatrixInfo
(page 243).

Variable Names:

TYPE_USER
TYPE_JOB
TYPE_RESOURCE
TYPE_VMHOST
TYPE_REPOSITORY
TYPE_USERGROUP
TYPE_JOBGROUP
TYPE_RESOURCEGROUP
TYPE_REPOSITORYGROUP
TYPE_VNIC
TYPE_VDISK
TYPE_VBRIDGE
TYPE_VBRIDGEGROUP

Type: String.

Purpose: Use these in JDL functions for retrieving and creating grid objects.

B.4.4 The __agent__ Variable

Variable Name: __agent__

Type: Boolean.

Purpose: Defines whether the JDL is executing on the agent.
pin Orchestrate 2.6 Developer Guide and Reference

B.4.5 The __jobname__ Variable

Variable Name: __jobname__

Type: String.

Purpose: Defines the name of the deployed job.

B.4.6 The __mode__ Variable

Variable Name: __mode__

Type: String.

Purpose: Defines the execution mode.

Values:

parse - JDL is being parsed.

deploy - JDL is being deployed.

undeploy - JDL is being undeployed.

runtime - JDL is being executed.

B.5 Job State Field Values
Here are the job state field values for the Job (page 241) class:

Constant Value Description

int CANCELLED_STATE 9 Cancelled end state.

int CANCELLING_STATE 6 Cancelling. Transitions to: Cancelled.

int COMPLETED_STATE 8 Completed end state.

int COMPLETING_STATE 5 Completing. Transitions to: Completing.

int FAILED_STATE 10 Failed end state.

int FAILING_STATE 7 Failing. Transitions to: Failed.

int PAUSED_STATE 4 Paused. Transitions to: Running/Completing/
Failing/Cancelling.

int QUEUED_STATE 1 Queued. Transitions to: Starting/Failing/
Cancelling.

int RUNNING_STATE 3 Running. Transitions to: Paused/Completing/
Failing/Cancelling.

int STARTING_STATE 2 Starting. Transitions to: Running/Failing/
Cancelling.

int SUBMITTED_STATE 0 Submitted. Transitions to: Queued/Failing.
PlateSpin Orchestrate Job Classes and JDL Syntax 231

232 PlateS
B.6 Repository Information String Values

B.7 Joblet State Values
The following values are defined for the various states that the joblet can be in:

String TERMINATION_TYPE_ADMIN “Admin" Indicates Job was cancelled by the admin and
only applies if Job is in CANCELLED_STATE.
Value is obtained from
jobinstance.terminationtype fact.

String TERMINATION_TYPE_JOB “Job” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. The value is obtained
from jobinstance.terminationtype fact.

String TERMINATION_TYPE_TIMEOUT “Timeout” Indicates Job was cancelled due to exceeding
the job timeout value and only applies if Job is in
CANCELLED_STATE. Value is obtained from
jobinstance.terminationtype fact.

String TERMINATION_TYPE_USER “User” Indicate Job was cancelled by client user and
only applies if Job is in CANCELLED_STATE.
The value is obtained from
jobinstance.terminationtype fact.

Constant Value Description

SAN_TYPE_FibreChannel Fibre Channel Specifies a fibre channel SAN repository.

SAN_TYPE_ISCSI iSCSI Specifies an iSCSI SAN repository.

SAN_VENDOR_IQN iqn Specifies an IQN SAN repository.

SAN_VENDOR_NPIV npiv Specifies a N_Port ID Virtualization SAN repository.

TYPE_DATAGRID datagrid Specifies a datagrid repository.

TYPE_LOCAL local Specifies a local repository.

TYPE_NAS NAS Specifies a NAS repository.

TYPE_SAN SAN Specifies a SAN repository.

TYPE_VIRTUAL virtual Specifies a virtual repository.

Constant Value Description

INITIAL_STATE 0 Joblet initial state.

WAITING_STATE 1 Joblet waiting for a resource

WAITING_RETRY_STATE 2 Joblet waiting for a resource for retry.

Constant Value Description
pin Orchestrate 2.6 Developer Guide and Reference

See Joblet (page 241).

B.8 Resource Information Values
Use the following values to specify a resource type:

For full class descriptions, see ResourceInfo (page 246).

B.9 JDL Class Definitions
The following PlateSpin Orchestrate JDL classes can be implemented in the custom jobs that you
create. Because JDL is implemented in Java, we have provided direct links to detailed Javadoc for
each of the “Pythonized” JDL classes below:

 “AndConstraint” on page 235

 “BinaryConstraint” on page 235

 “BuildSpec” on page 235

 “CharRange” on page 236

 “ComputedFact” on page 236

 “ComputedFactContext” on page 236

CONTRACTED_STATE 3 Joblet waiting for a resource for retry.

STARTED_STATE 4 Joblet started on a resource.

PRE_CANCEL_STATE 5 Joblet starting cancellation.

CANCELLING_STATE 6 Joblet cancelling.

POST_CANCEL_STATE 7 Joblet finishing cancellation.

COMPLETING_STATE 8 Joblet completing state.

FAILING_STATE 9 Joblet failing state.

FAILED_STATE 11 Joblet failed end state.

CANCELLED_STATE 12 Joblet cancelled end state.

COMPLETED_STATE 13 Joblet completed end state.

Constant
Value
Type

Resource Description

TYPE_BM_INSTANCE String Blade server.

TYPE_BM_TEMPLATE String Blade server template.

TYPE_FIXED_PHYSICAL String Fixed physical server.

TYPE_VM_INSTANCE String VM server.

TYPE_VM_TEMPLATE String VM template.

Constant Value Description
PlateSpin Orchestrate Job Classes and JDL Syntax 233

234 PlateS
 “Constraint” on page 236

 “ContainerConstraint” on page 237

 “ContainsConstraint” on page 237

 “Credential” on page 237

 “CredentialManager” on page 238

 “DataGrid” on page 238

 “DefinedConstraint” on page 238

 “EqConstraint” on page 238

 “Exec” on page 239

 “ExecError” on page 239

 “FileRange” on page 239

 “GeConstraint” on page 240

 “GridObjectInfo” on page 240

 “GroupInfo” on page 240

 “GtConstraint” on page 240

 “Job” on page 241

 “JobInfo” on page 241

 “Joblet” on page 241

 “JobletInfo” on page 242

 “JobletParameterSpace” on page 242

 “LeConstraint” on page 242

 “LtConstraint” on page 243

 “MatchContext” on page 243

 “MatchResult” on page 243

 “MatrixInfo” on page 243

 “MigrateSpec” on page 244

 “NeConstraint” on page 244

 “NotConstraint” on page 244

 “OrConstraint” on page 245

 “ParameterSpace” on page 245

 “PolicyInfo” on page 245

 “ProvisionJob” on page 245

 “ProvisionJoblet” on page 246

 “ProvisionSpec” on page 246

 “RepositoryInfo” on page 246

 “ResourceInfo” on page 246

 “RunJobSpec” on page 247

 “ScheduleSpec” on page 247
pin Orchestrate 2.6 Developer Guide and Reference

 “Timer” on page 247

 “UndefinedConstraint” on page 247

 “UserInfo” on page 248

 “VbridgeInfo” on page 248

 “VdiskInfo” on page 248

 “VMHostClusterInfo” on page 248

 “VMHostInfo” on page 249

 “VmSpec” on page 249

 “VnicInfo” on page 249

AndConstraint

Representation of the And Constraint. Perform a logical ANDing of all child constraints. If this
constraint contains no children, no operation is performed. Constraints are added to this constraint
using add().

See Also

 ContainerConstraint (page 237)

 Javadoc: AndConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/AndConstraint.html)

BinaryConstraint

Representation of a Constraint operating on the left and right operands. This is a base class and is
not directly constructed.

See Also

 Subclasses: ContainsConstraint (page 237), EqConstraint (page 238), GeConstraint (page 240),
GtConstraint (page 240), LeConstraint (page 242), LtConstraint (page 243), NeConstraint
(page 244).

 Javadoc: BinaryConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/BinaryConstraint.html)

BuildSpec

Defines the attributes for building a new VM. An instance of this class is passed to
resource.build().

See Also

 Javadoc: BuildSpec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/BuildSpec.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 235

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/AndConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/BinaryConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/BuildSpec.html

236 PlateS
CharRange

Define lexical character string range of values for ParameterSpace scheduling.

See Also

 Javadoc: CharRange (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/CharRange.html)

ComputedFact

Defines the base class for creating custom computed facts. Computed facts provide the ability to
create custom calculations that extend the built-in factsets for a Grid object. The computed fact can
be in constraints. User defined computed facts are required to subclass this class. In order to use
ComputedFact, you must deploy a subclass of ComputedFact and then create a linked fact
referencing the deployed ComputedFact. The linked fact is then used in constraints.

See Also

 ComputedFactContext (page 236)

 Javadoc: ComputedFact (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ComputedFact.html)

ComputedFactContext

Provides access to the evaluation context.

Description

The context contains the grid objects that the constraint engine uses to evaluate constraints.If they
are available in the current context, the ComputedFactContext provides access to the current job
instance, deployed job, User, Resource, vBridge, and Repository grid objects.

The VM host, vBridge and Repository grid objects are only in the context for the evaluation of the
provisioning constraints such as vmHost. The Job and Job Instance objects are only in the context
for a resource or allocation constraint evaluation.

See Also

 ComputedFact (page 236)

 Javadoc: ComputedFactContext (http://www.novell.com/documentation/cloudmanager1/
resources/javadoc/com/novell/zos/jdl/ComputedFactContext.html)

Constraint

Defines the base class for all constraint classes.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/CharRange.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ComputedFact.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ComputedFactContext.html

See Also

 BinaryConstraint (page 235), ContainerConstraint (page 237), DefinedConstraint (page 238),
UndefinedConstraint (page 247).

 Javadoc: Constraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/Constraint.html)

ContainerConstraint

Representation of a Constraint that contains other Constraints. This is a base class and is not directly
constructed.

See Also

 Subclasses: AndConstraint (page 235), NotConstraint (page 244), OrConstraint (page 245)

 Javadoc: ContainerConstraint (http://www.novell.com/documentation/cloudmanager1/
resources/javadoc/com/novell/zos/jdl/ContainerConstraint.html)

ContainsConstraint

Representation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. Contains is typically used to
check membership of a value in a group fact.

See Also

Javadoc: ContainsConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ContainsConstraint.html)

Credential

Representation of a credital stored in the Credential Manager. Fields contained in this object are:

name: The ID of this credential

type: A string type used to group related credentials (for example, Amazon EC2)

user: The user string.

secret: The secreat associated with this user.

See Also

Javadoc: Credential (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/Credential.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 237

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Constraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ContainerConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ContainsConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Credential.html

238 PlateS
CredentialManager

The interface into the Credential Manager. This class is available only in a joblet context. Also, only
users in the administrator group or the system user are allowed access to these methods. From this
class you can add, get, update and delete credentials that are stored in an encrypted store on the
Orchestrate Server.

See Also

Javadoc: CredentialManager (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/CredentialManager.html)

DataGrid

General interface to the datagrid. See Chapter 5, “The PlateSpin Orchestrate Datagrid,” on
page 109.

See Also

 GridObjectInfo (page 240)

 Javadoc: DataGrid (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/DataGrid.html)

DefinedConstraint

Representation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the
match context. If the left side is not defined, this will evaluate to False. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also

 Constraint (page 236), ContainerConstraint (page 237), and ContainsConstraint (page 237)

 Javadoc: DefinedConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/DefinedConstraint.html)

EqConstraint

Representation of the Equals Constraint. This constraint can be used independently or added to a
And, Or, Not constraint to combine with other constraints. Extends BinaryConstraint (page 235).

See Also

 BinaryConstraint (page 235)

 Javadoc: EqConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/EqConstraint.html)
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/CredentialManager.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/DataGrid.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/DefinedConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/EqConstraint.html

Exec

The Exec class is used to manage command line execution on resources. This class defines options
for input, output and error stream handling, and process management including signaling, error and
timeout control.

Description

A command’s standard output and error can be redirected to a file, to a stream, to write to the job
log, or be discarded. By default, the output is discarded. A command’s standard input can be
directed from a file or a stream can be written to. By default, the input is not used.

By default, command line execution is done in behalf of the job user. Exec instances are only
allowed during the running of the Joblet class on a resource. The built-in function system() can also
be used for simple execution of command lines.

See Also

 BinaryConstraint (page 235) and ExecError (page 239)

 Javadoc: Exec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/Exec.html)

ExecError

ExecError is raised for errors in executing a command line using the Exec (page 239) class or
system(). Normal raising of this error causes the joblet to fail. Put this Error in an try except block to
handle the error.

See Also

 Exec (page 239)

 Javadoc: ExecError (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ExecError.html)

FileRange

Define a range of values for a ParameterSpace (page 245) based on the lines of a text file. An
instance of this class is used as a dimension in a ParameterSpace definition.The file name must
either refer to a file that is readable from the server and resources (on a shared file system) or must
be a DataGrid (page 238) file URL.

See Also

 DataGrid (page 238) and ParameterSpace (page 245)

 Javadoc: FileRange (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/FileRange.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 239

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Exec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ExecError.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/FileRange.html

240 PlateS
GeConstraint

Representation of the Greater than or Equals constraint. Performs a ‘greater than or equal to’
constraint operation. Missing arguments will always result in this constraint evaluating to false. The
standard lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints. Extends
BinaryConstraint (page 235).

See Also

 Constraint (page 236) and BinaryConstraint (page 235).

 Javadoc: GeConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/GeConstraint.html)

GridObjectInfo

The GridObjectInfo class is the base class representation of all grid objects in the system. This
provides accessors and setters to a grid object’s fact set.

See Also

Javadoc: GridObjectInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/GridObjectInfo.html)

GroupInfo

he GroupInfo class is a representation of Group grid objects. Operations include retrieving the group
member lists and adding/removing from the group member lists, and retrieving and setting facts on
the group. Extends GridObjectInfo (page 240).

See Also

 GridObjectInfo (page 240)

 Javadoc: GroupInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/GroupInfo.html)

GtConstraint

Representation of the Greater than Constraint. Performs a ‘greater than’ constraint operation.
Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/GeConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/GridObjectInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/GroupInfo.html

See Also

 Constraint (page 236)

 Javadoc: GtConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/GtConstraint.html)

Job

The Job class represents a running job instance. This class defines functions for interacting with the
server including handling notification of job state transitions, child job submission, managing
joblets and for receiving and sending events from resources and from clients. A job writer defines a
subclass of the Job class and uses the methods available on the Job class for scheduling joblets and
event processing.

See Also

 JobInfo (page 241), Joblet (page 241), JobletInfo (page 242), JobletParameterSpace (page 242)

 Javadoc: Job (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/Job.html)

JobInfo

The JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is
the aggregation of the job's policy and policies on the groups the job is a member of. This includes
the "job.*" and "jobargs.*" fact namespaces.

See Also

 Job (page 241)

 Javadoc: JobInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/JobInfo.html)

Joblet

Defines the execution on the resource. A Job writer constructs a subclass of Joblet to define code to
run on a resource. The method joblet_started_event is required to be implemented.
joblet_started_event is invoked on the resource. The Job writer invokes the schedule()
function in the Job subclass to define when and which resource the Joblet is executed. Each Joblet
instance has the Job instance (jobinstance.*, job.*, jobargs.*, user.*), Resource
(resource.*) and Joblet (joblet.*, jobletargs.*) fact sets available using the base
GridObjectInfo fact functions. For example, you can use self.getFact() to retrieve a Joblet
fact. Use the getMatrix() built-in function to retrieve facts for other Grid Objects that are not in
the context of this Joblet instance’s fact set.
PlateSpin Orchestrate Job Classes and JDL Syntax 241

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/GtConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Job.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/JobInfo.html

242 PlateS
See Also

 Job, JobInfo

 Javadoc: Joblet (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/Joblet.html)

JobletInfo

JobletInfo is a representation of the Joblet grid object created when a job calls schedule() to create
joblets. This class provides access to a joblet’s factset and operations on a joblet such as cancellation
and sending events to a joblet that is running on a resource. The separate Joblet class defines
execution on a resource.

See Also

Javadoc: JobletInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/JobletInfo.html)

JobletParameterSpace

JobletParameterSpace is a slice of the ParameterSpace allocated to a joblet. As the scheduler defines
slices of the parameter space for a given schedule(), JobletParameterSpace instances are created
for each joblet. This slice of the parameter space is delivered to the resource on joblet execution. The
JobletParameterSpace can also be retrieved from the Joblet object.

See Also

Javadoc: JobletParameterSpace (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/JobletParameterSpace.html)

LeConstraint

Representation of the Less than or equals Constraint. Performs a "less than or equal to" constraint
operation. Missing arguments will always result in this constraint evaluating to false. The standard
lexographical ordering of values is used to determine result. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also

Javadoc: LeConstraint (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/LeConstraint.html)
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Joblet.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/JobletInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/JobletParameterSpace.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/LeConstraint.html

LtConstraint

Representation of the Less than Constraint. Performs a "less than" constraint operation. Missing
arguments always result in this constraint evaluating to false. The standard lexographical ordering of
values is used to determine result. This constraint can be used independently or added to a And, Or,
Not constraint to combine with other constraints.

See Also

Javadoc: LtConstraint (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/LtConstraint.html)

MatchContext

The MatchContext defines a context for evaluating a constraint. An instance of this class is supplied
to match() for evaluating constraints. The MatchContext provides a way to setup an evaluation
context that the constraint engine is using to evaluate constraints. The MatchContext is filled out
with the context that is required for evaluating your constraints. This includes assigning a deployed
Job, User, Resource, VM Host, vBridge, vNIC, and Repository Grid objects.

See Also

 Javadoc: MatchContext (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/MatchContext.html)

MatchResult

The MatchResult class defines results of a Constraint match(). Instance of MatchResult is
returned from match() operations. From the MatchResult you can retrieve a list of the IDs of the
matching Grid objects and the non-matching Grid objects.

See Also

 Javadoc: MatchResult (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/MatchResult.html)

MatrixInfo

The MatrixInfo class is a representation of the matrix grid object (see GridObjectInfo (page 240)).
This provides operations for retrieving and creating grid objects in the system. MatrixInfo is
retrieved using the built-in getMatrix() function. Write capability is dependent on the context in
which getMatrix() is called. For example, in a joblet process on a resource, creating new grid
objects is not supported.
PlateSpin Orchestrate Job Classes and JDL Syntax 243

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/LtConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/MatchContext.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/MatchResult.html

244 PlateS
See Also

 Javadoc: MatrixInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/MatrixInfo.html)

 Section B.4, “Built-in JDL Functions and Variables,” on page 229.

MigrateSpec

The MigrateSpec class defines the options for the migrate action. An instance of this class is passed
to the resource.migrate() method.

Example

The following is an example of using MigrateSpec to define a migrate action for a Virtual Machine
named “sles10” to a VM host named “host2:”

 vm = getMatrix().getGridObject(TYPE_RESOURCE,"sles10")
 spec = MigrateSpec()
 spec.setHost('host2')
 vm.migrate(spec)

See Also

Javadoc: MigrateSpec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/MigrateSpec.html)

NeConstraint

Representation of the Not Equals Constraint. Performs a not equal constraint operation. Missing
arguments will always result in this constraint evaluating to false. This constraint can be used
independently or added to a And, Or, Not constraint to combine with other constraints.

See Also

Javadoc: NeConstraint (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/NeConstraint.html)

NotConstraint

Representation of a Not Constraint Object. Performs a logical not operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also

 See Constraint (page 236) and ContainerConstraint (page 237).

 Javadoc: NotConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/NotConstraint.html)
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/MatrixInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/MigrateSpec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/NeConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/NotConstraint.html

OrConstraint

Representation of Or Constraint Object. Perform a logical or-ing operation of all the child
constraints. This is a no-op if this constraint contains no children. Constraints are added to this
constraint using add().

See Also

 See Constraint (page 236) and ContainerConstraint (page 237).

 Javadoc: OrConstraint (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/OrConstraint.html)

ParameterSpace

Defines a parameter space to be used by the scheduler to create a joblet set. A parameter space may
consist of rows of columns or a list of columns that is expanded and can be turned into a cross
product. Use appendRow to create a rowMajor parameter space or appendCol to define a column
expansion. You cannot use both appendRow() and appendCol() in the same ParameterSpace.
Once the scheduler defines a slice of the parameter space for a given Joblet, the scheduler creates
JobletParameterSpace instances for each Joblet. This slice of the parameter space is delivered to
the resource. To limit how many Joblets or the number of rows in a Joblet, use setMaxJobletSize
or use the jobletCount argument to schedule() or SchedulSpec.

See Also

Javadoc: ParameterSpace (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ParameterSpace.html)

PolicyInfo

Representation of a Policy Object. This class allows for associating and unassociation of Grid
objects using this policy

See Also

Javadoc: PolicyInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/PolicyInfo.html)

ProvisionJob

This class extends ProvisionJobBase.

See Also

Javadoc: ProvisionJob (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/ProvisionJob.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 245

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/OrConstraint.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ParameterSpace.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/PolicyInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ProvisionJob.html

246 PlateS
ProvisionJoblet

This class extends Joblet.

See Also

Javadoc: ProvisionJoblet (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ProvisionJoblet.html)

ProvisionSpec

Defines the attributes for starting a provision. An instance of this class is passed to the
self.provision() method. If no reservations are specifed the lifecycle mode is
MODE_MANUAL.

See Also

Javadoc: ProvisionSpec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/ProvisionSpec.html)

RepositoryInfo

RepositoryInfo is a representation of a Repository grid object. This class provides accessors and
setters for Repository facts. See MatrixInfo (page 243) for how to script creation of Repository
objects.

See Also

 See GridObjectInfo (page 240) and MatrixInfo (page 243).

 Javadoc: RepositoryInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/RepositoryInfo.html)

ResourceInfo

ResourceInfo is a representation of a Resource grid object. This class inherits the base fact
operations from GridObjectInfo (page 240) and adds the provisioning operations for provisionable
resources such as VMs. See MatrixInfo (page 243) for how to script creation of Resource objects.

See Also

 GridObjectInfo (page 240) and MatrixInfo (page 243).

 Javadoc: ResourceInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ResourceInfo.html)
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ProvisionJoblet.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ProvisionSpec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/RepositoryInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ResourceInfo.html

RunJobSpec

Defines the attributes for starting a child job or a standalone job. An instance of this class is passed
to self.runJob().

See Also

Javadoc: RunJobSpec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/RunJobSpec.html)

ScheduleSpec

Defines one or more joblets to be scheduled and run on resources. A ScheduleSpec instance is
passed to the job’s schedule() or scheduleSweep(). schedule() creates the joblets and
schedules joblets to run on resources.

See Also

 Joblet (page 241)

 Javadoc: ScheduleSpec (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/ScheduleSpec.html)

Timer

Timer schedules a callback to a job or joblet method. Timers can schedule a one time or a repeated
callback on an interval basis. An active Timer keeps the job or joblet running. You must manually
cancel or terminate the job or joblet or invoke the Timer’s cancel() method.

See Also

Javadoc: Timer (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/Timer.html)

UndefinedConstraint

Representation of the Undefined Constraint. Evaluates to true only if the left side fact is not defined
in the match context. If the left side is not defined, this will evaluate to false. This constraint can be
used independently or added to a And, Or, Not constraint to combine with other constraints.

See Also

 Constraint (page 236)

 Javadoc: UndefinedConstraint (http://www.novell.com/documentation/cloudmanager1/
resources/javadoc/com/novell/zos/jdl/UndefinedConstraint.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 247

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/RunJobSpec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ScheduleSpec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/Timer.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/UndefinedConstraint.html

248 PlateS
UserInfo

UserInfo is a representation of a user grid object. This class provides accessors and setters for User
facts.

See Also

Javadoc: UserInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/UserInfo.html)

VbridgeInfo

VbridgeInfo is a representation of a vBridge grid object. This class provides accessors and setters for
vBridge facts. See VMHostInfo.createVbridge() (http://www.novell.com/documentation/
pso_orchestrate25/resources/jdldoc/com/novell/zos/jdl/
VMHostInfo.html#createVbridge(java.lang.String)) for how to script creation of vBridge objects.

See Also

Javadoc: VbridgeInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/VbridgeInfo.html)

VdiskInfo

VdiskInfo is a representation of a vDisk grid object. This class provides accessors and setters for
vDisk facts. See ResourceInfo.createVdisk() (http://www.novell.com/documentation/
pso_orchestrate25/resources/jdldoc/com/novell/zos/jdl/ResourceInfo.html#createVdisk()) for how
to script creation of vDisk objects.

See Also

Javadoc: VdiskInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/VdiskInfo.html)

VMHostClusterInfo

The VmHostClusterInfo class is a representation of a clustered VM host Grid object. This class
provides accessors and setters to the VMHostCluster facts and operations to control the state of the
VM host Cluster object.

See Also

Javadoc: VMHostClusterInfo (http://www.novell.com/documentation/cloudmanager1/resources/
javadoc/com/novell/zos/jdl/VmHostClusterInfo.html)
pin Orchestrate 2.6 Developer Guide and Reference

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/UserInfo.html
http://www.novell.com/documentation/pso_orchestrate25/resources/jdldoc/com/novell/zos/jdl/VMHostInfo.html#createVbridge(java.lang.String)
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VbridgeInfo.html
http://www.novell.com/documentation/pso_orchestrate25/resources/jdldoc/com/novell/zos/jdl/ResourceInfo.html#createVdisk()
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VdiskInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VmHostClusterInfo.html

VMHostInfo

The VmHostInfo class is a representation of a VM host grid object. This class provides accessors
and setters to the VM host facts and operations to control the state of the VM host object..

See Also

Javadoc: VMHostInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/VMHostInfo.html)

VmSpec

Defines the attributes for creating a virtual machine. An instance of this class is passed to
resource.createInstance(), resource.createTemplate(), resource.clone().

Example

Example of using VmSpec for creating a clone on a named host from a template resource:

 template = getMatrix().getGridObject(TYPE_RESOURCE,"myTemplate")
 spec = VmSpec()
 spec.setNewName("newvm")
 spec.setHost('vmhost-qa')
 template.clone(spec)

If the host and repository is not set, the default is to use the source resource object's repository as the
destination repository.

See Also

 VMHostClusterInfo (page 248)

 Javadoc: VmSpec (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/
com/novell/zos/jdl/VmSpec.html)

VnicInfo

VnicInfo is a representation of a vNIC grid object. This class provides accessors and setters for
vNIC facts. See ResourceInfo.createVnic() (http://www.novell.com/documentation/cloudmanager1/
resources/javadoc/com/novell/zos/jdl/ResourceInfo.html#createVnic()) for how to script creation of
vNIC objects.

See Also

Javadoc: VnicInfo (http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/
novell/zos/jdl/VnicInfo.html)
PlateSpin Orchestrate Job Classes and JDL Syntax 249

http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VMHostInfo.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VmSpec.html
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/ResourceInfo.html#createVnic()
http://www.novell.com/documentation/cloudmanager1/resources/javadoc/com/novell/zos/jdl/VnicInfo.html

250 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

C
CDocumentation Updates

This section contains information about documentation content changes that were made in this
PlateSpin Orchestrate Developer Guide and Reference after the initial release of Novell Cloud
Manager 1.1 with PlateSpin Orchestrate 2.6. The changes are listed according to the date they were
published.

The documentation for this product is provided on the Web in two formats: HTML and PDF. The
HTML and PDF documentation are both kept up-to-date with the changes listed in this section.

If you need to know whether a copy of the PDF documentation that you are using is the most recent,
the PDF document includes a publication date on the title page.

The documentation was updated on the following dates:

 Section C.1, “March 29, 2011,” on page 251

 Section C.2, “January 28, 2011,” on page 251

C.1 March 29, 2011
Updates were made to the following sections:

C.2 January 28, 2011
Updates were made to the following sections:

Location Update Description

Section 4.1.5, “Virtual Disk Object Facts and Fact
Junctions,” on page 90

Added a paragraph to clarify that when the
vdisk.moveable fact is marked as false, the
vDisk is not destroyed with its associated VM.

Location Update Description

“Constraint Types” on page 23 Added more detail about the allocation and provision constraint
types.
Documentation Updates 251

252 PlateS
pin Orchestrate 2.6 Developer Guide and Reference

	PlateSpin Orchestrate 2.6 Developer Guide and Reference
	About This Guide
	1 Getting Started With Development
	1.1 What You Should Know
	1.1.1 Prerequisite Knowledge
	1.1.2 Setting Up Your Development Environment

	1.2 Prerequisites for the Development Environment

	2 Job Development Concepts
	2.1 Contents of a Job Package
	2.2 JDL Job Scripts
	2.2.1 What is JDL?
	2.2.2 Using Facts in Job Scripts

	2.3 Policies
	2.3.1 Policy Types
	2.3.2 Job Arguments and Parameter Lists in Policies
	2.3.3 The Role of Policy Constraints in Job Operation

	2.4 Resource Discovery
	2.4.1 Resource Discovery in Provisioning Jobs
	2.4.2 Some Specific Resource Discovery Jobs

	2.5 Workload Management Performed by the Provisioning Manager
	2.6 Deploying Packaged Job Files
	2.7 Running Your Jobs
	2.8 Monitoring Job Results
	2.8.1 Monitoring Jobs from the Command Line
	2.8.2 Monitoring Jobs from the Server Portal

	2.9 Debugging Jobs

	3 Job Architecture
	3.1 Understanding JDL
	3.2 JDL Package
	3.2.1 .sched Files

	3.3 Job Class
	3.3.1 Job State Transition Events
	3.3.2 Handling Custom Events

	3.4 Job Invocation
	3.5 Deploying Jobs
	3.5.1 Using the PlateSpin Orchestrate Development Client to Deploy Jobs
	3.5.2 Using the zosadmin Command Line Tool to Deploy Jobs

	3.6 Starting PlateSpin Orchestrate Jobs
	3.7 Using Other Grid Objects
	3.8 Communicating Through Job Events
	3.8.1 Sending and Receiving Events
	3.8.2 Synchronization

	3.9 Executing Local Programs
	3.9.1 Output Handling
	3.9.2 Local Users
	3.9.3 Safety and Failure Handling

	3.10 Logging and Debugging
	3.10.1 Creating a Job Memo
	3.10.2 Tracing

	3.11 Improving Job and Joblet Robustness
	3.12 Using an Event Notification in a Job
	3.12.1 Receiving Event Notifications in a Running Job
	3.12.2 Event Types

	4 Understanding Grid Object Facts and Computed Facts
	4.1 Grid Object Facts and Fact Junctions
	4.1.1 Fact Type Definitions
	4.1.2 Understanding Fact Junctions
	4.1.3 Job, Jobinstance, and Joblet Object Facts and Fact Junctions
	4.1.4 Resource Object Facts and Fact Junctions
	4.1.5 Virtual Disk Object Facts and Fact Junctions
	4.1.6 Virtual NIC Object Facts and Fact Junctions
	4.1.7 Repository Object Facts and Fact Junctions
	4.1.8 Virtual Bridge Object Facts and Fact Junctions
	4.1.9 User Object Facts and Fact Junctions
	4.1.10 Matrix Object Facts

	4.2 Computed Facts

	5 The PlateSpin Orchestrate Datagrid
	5.1 Defining the Datagrid
	5.1.1 PlateSpin Orchestrate Datagrid Filepaths
	5.1.2 Distributing Files
	5.1.3 Simultaneous Multicasting to Multiple Receivers
	5.1.4 PlateSpin Orchestrate Datagrid Commands

	5.2 Datagrid Communications
	5.2.1 Multicast Example
	5.2.2 Grid Performance Factors
	5.2.3 Plan for Datagrid Expansion

	5.3 datagrid.copy Example

	6 Virtual Machine Job Development
	6.1 VM Job Best Practices
	6.1.1 Plan Robust Application Starts and Stops
	6.1.2 Managing VM Systems
	6.1.3 Managing VM Images
	6.1.4 Managing VM Hypervisors
	6.1.5 VM Job Considerations

	6.2 Virtual Machine Management
	6.3 VM Life Cycle Management
	6.4 Manual Management of a VM Lifecycle
	6.4.1 Manually Using the zos Command Line
	6.4.2 Automatically Using the Development Client Job Scheduler
	6.4.3 Provision Job JDL

	6.5 Provisioning Virtual Machines
	6.5.1 Provisioning VMs Using Jobs
	6.5.2 VM Placement Policy
	6.5.3 Provisioning Example

	6.6 Automatically Provisioning a VM

	7 Job Examples
	7.1 Simple Job Examples
	7.1.1 provisionBuildTestResource.job
	7.1.2 Workflow Job Example

	7.2 BuildTest Job Examples
	7.2.1 buildTest.policy Example
	7.2.2 buildTest.jdl Example

	7.3 Using Deployable Job Examples Included with Platespin Orchestrate
	7.3.1 Preparing to Deploy Job Examples
	7.3.2 Summary of PlateSpin Orchestrate Deployable Job Examples

	7.4 Deployable Job Examples: Parallel Computing
	demoIterator.jobReference implementation for a simple test iterator. Several concepts are demonstrated: 1) Using policy constraints and job arguments to restrict joblet execution to a specific resource, 2) Scheduling joblets using a ParameterSpace, and
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	quickie.jobDemonstrates a job starting up multiple instances of a joblet on one or more resources. Because this job simply launches and returns immediately, it can also be useful for testing network latency.
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	7.5 Deployable Job Examples: General Purpose
	dgtest.jobThis job demonstrates downloading a file from the datagrid.
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run

	failover.jobA test job that demonstrates handling of joblet failover.
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	instclients.jobInstalls the PlateSpin Orchestrate client applications to the specified resource machine. Note that while most of the other examples are deployed by default, this example is not.
	Detail
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	notepad.jobLaunches the Notepad application on a Windows resource.
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	sweeper.jobThis example job illustrates how to schedule a "sweep," which is an ordered, serialized scheduling of the joblets across all matching resources.
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	whoami.job
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	7.6 Job Examples: Miscellaneous Code-Only
	jobargs.job
	Usage
	Description
	Classes and Methods
	Job Details
	Configure and Run
	See Also

	8 Job Scheduling
	8.1 The PlateSpin Orchestrate Job Scheduler Interface
	8.2 Schedule and Trigger Files
	8.2.1 Schedule File Examples
	8.2.2 Trigger File XML Examples

	9 Provisioning Adapter Hooks
	9.1 Grid Events for VMs That Are Implemented by Provisioning Adapters
	9.2 Customizing Jobs for the Provisioning Adapter Hooks
	9.2.1 Adding Hooks Jobs to Customize a VM Event
	9.2.2 Customizing Pre- and Post-Job Execution Order
	9.2.3 Customizing Hooks Job Execution Based on Event Type

	A PlateSpin Orchestrate Client SDK
	A.1 SDK Requirements
	A.2 Creating an SDK Client
	A.3 Client SDK Reference information
	A.3.1 Constraint Package
	A.3.2 Datagrid Package
	A.3.3 Grid Package
	A.3.4 TLS Package
	A.3.5 Toolkit Package

	B PlateSpin Orchestrate Job Classes and JDL Syntax
	B.1 Job Class
	B.2 Joblet Class
	B.3 Utility Classes
	B.4 Built-in JDL Functions and Variables
	B.4.1 getMatrix()
	B.4.2 system(cmd)
	B.4.3 Grid Object TYPE_* Variables
	B.4.4 The __agent__ Variable
	B.4.5 The __jobname__ Variable
	B.4.6 The __mode__ Variable

	B.5 Job State Field Values
	B.6 Repository Information String Values
	B.7 Joblet State Values
	B.8 Resource Information Values
	B.9 JDL Class Definitions
	AndConstraint
	See Also

	BinaryConstraintRepresentation of a Constraint operating on the left and right operands. This is a base class and is not directly constructed.
	See Also

	BuildSpec
	See Also

	CharRangeDefine lexical character string range of values for ParameterSpace scheduling.
	See Also

	ComputedFact
	See Also

	ComputedFactContextProvides access to the evaluation context.
	Description
	See Also

	ConstraintDefines the base class for all constraint classes.
	See Also

	ContainerConstraintRepresentation of a Constraint that contains other Constraints. This is a base class and is not directly constructed.
	See Also

	ContainsConstraintRepresentation of the Contains Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. Contains is typically used to check membership of a
	See Also

	CredentialRepresentation of a credital stored in the Credential Manager. Fields contained in this object are:
	See Also

	CredentialManagerThe interface into the Credential Manager. This class is available only in a joblet context. Also, only users in the administrator group or the system user are allowed access to these methods. From this class you can add, get, update an
	See Also

	DataGrid
	See Also

	DefinedConstraintRepresentation of the Defined Constraint. Evaluates to true only if the left side fact is defined in the match context. If the left side is not defined, this will evaluate to False. This constraint can be used independently or added to
	See Also

	EqConstraint
	See Also

	ExecThe Exec class is used to manage command line execution on resources. This class defines options for input, output and error stream handling, and process management including signaling, error and timeout control.
	Description
	See Also

	ExecError
	See Also

	FileRange
	See Also

	GeConstraint
	See Also

	GridObjectInfo
	See Also

	GroupInfo
	See Also

	GtConstraintRepresentation of the Greater than Constraint. Performs a ‘greater than’ constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determin
	See Also

	Job
	See Also

	JobInfoThe JobInfo class is a representation of a deployed job. The factset available on the JobInfo class is the aggregation of the job's policy and policies on the groups the job is a member of. This includes the "job.*" and "jobargs.*" fact namespace
	See Also

	Joblet
	See Also

	JobletInfo
	See Also

	JobletParameterSpace
	See Also

	LeConstraintRepresentation of the Less than or equals Constraint. Performs a "less than or equal to" constraint operation. Missing arguments will always result in this constraint evaluating to false. The standard lexographical ordering of values is used
	See Also

	LtConstraintRepresentation of the Less than Constraint. Performs a "less than" constraint operation. Missing arguments always result in this constraint evaluating to false. The standard lexographical ordering of values is used to determine result. This
	See Also

	MatchContext
	See Also

	MatchResult
	See Also

	MatrixInfo
	See Also

	MigrateSpec
	Example
	See Also

	NeConstraintRepresentation of the Not Equals Constraint. Performs a not equal constraint operation. Missing arguments will always result in this constraint evaluating to false. This constraint can be used independently or added to a And, Or, Not constra
	See Also

	NotConstraint
	See Also

	OrConstraint
	See Also

	ParameterSpace
	See Also

	PolicyInfoRepresentation of a Policy Object. This class allows for associating and unassociation of Grid objects using this policy
	See Also

	ProvisionJob
	See Also

	ProvisionJoblet
	See Also

	ProvisionSpec
	See Also

	RepositoryInfo
	See Also

	ResourceInfo
	See Also

	RunJobSpec
	See Also

	ScheduleSpec
	See Also

	Timer
	See Also

	UndefinedConstraint
	See Also

	UserInfoUserInfo is a representation of a user grid object. This class provides accessors and setters for User facts.
	See Also

	VbridgeInfo
	See Also

	VdiskInfo
	See Also

	VMHostClusterInfoThe VmHostClusterInfo class is a representation of a clustered VM host Grid object. This class provides accessors and setters to the VMHostCluster facts and operations to control the state of the VM host Cluster object.
	See Also

	VMHostInfoThe VmHostInfo class is a representation of a VM host grid object. This class provides accessors and setters to the VM host facts and operations to control the state of the VM host object..
	See Also

	VmSpec
	Example
	See Also

	VnicInfo
	See Also

	C Documentation Updates
	C.1 March 29, 2011
	C.2 January 28, 2011

