
n

Identity Manager 3.5.1 Driver for JDBC: Implementation Guide
Novell

ovdocx (en) 11 D
ecem

ber 2007
w w w . n o v e l l . c o m

Identity Manager Driver for
JDBC*

3 . 5 . 1
F e b r u a r y 1 2 , 2 0 0 8

I M P L E M E N T A T I O N G U I D E

novdocx (en) 11 D
ecem

ber 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
For more information on exporting Novell software, see the Novell International Trade Services Web page (http://
www.novell.com/info/exports/). Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at Novell Legal Patents (http://www.novell.com/company/legal/patents/) and one or more additional
patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see Novell Documentation (http://www.novell.com/documentation/).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation/

novdocx (en) 11 D
ecem

ber 2007
Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (en) 11 D
ecem

ber 2007

Contents

novdocx (en) 11 D
ecem

ber 2007
About This Guide 13

1 Introducing the Identity Manager Driver for JDBC 15
1.1 What’s New in the Driver for JDBC . 15
1.2 Driver Concepts . 15

1.2.1 JDBC . 16
1.2.2 Identity Manager Driver for JDBC . 16
1.2.3 Third-Party JDBC Driver . 16
1.2.4 Identity Vault . 17
1.2.5 Directory Schema . 17
1.2.6 Application Schema. 17
1.2.7 Database Schema. 17
1.2.8 Synchronization Schema. 17
1.2.9 Logical Database Class. 18
1.2.10 XDS . 18

1.3 Database Concepts . 18
1.3.1 Structured Query Language . 18
1.3.2 Data Manipulation Language . 18
1.3.3 Data Definition Language . 18
1.3.4 View. 19
1.3.5 Identity Columns/Sequences. 19
1.3.6 Transaction . 20
1.3.7 Stored Procedures or Functions . 20
1.3.8 Trigger . 21
1.3.9 Instead-Of-Trigger . 21

1.4 Driver Features . 22
1.4.1 Local and Remote Platforms . 23
1.4.2 Role-Based Entitlements. 23
1.4.3 Password Synchronization . 23
1.4.4 Data Synchronization Models . 23
1.4.5 Triggerless vs. Triggered Publication . 26

2 Installing the Driver for JDBC 29
2.1 Before You Install . 29

2.1.1 Driver Prerequisites. 29
2.1.2 Known Issues . 29
2.1.3 Limitations . 30
2.1.4 Placing Jar Files . 31

2.2 Installing the Driver Separately . 31
2.3 Setting Up a Remote Loader . 32
2.4 Installing and Configuring Database Objects. 32

2.4.1 SQL Script Conventions . 32
2.4.2 Installing IBM DB2 Universal Database (UDB) . 34
2.4.3 Installing Informix Dynamic Server (IDS). 35
2.4.4 Installing Microsoft SQL Server . 36
2.4.5 Installing MySQL . 36
2.4.6 Installing Oracle. 36
2.4.7 Installing PostgreSQL 7. 37
2.4.8 Installing PostgreSQL 8. 37
Contents 5

6 Identity Man

novdocx (en) 11 D
ecem

ber 2007
2.4.9 Installing Sybase Adaptive Server Enterprise (ASE) . 38
2.5 Test Scripts. 38
2.6 Troubleshooting . 39

3 Uninstalling the IDM Driver for JDBC 41
3.1 Deleting Identity Manager Driver Objects. 41
3.2 Running the Product Uninstaller . 41
3.3 Executing Database Uninstallation Scripts . 41

3.3.1 IBM DB2 Universal Database (UDB) Uninstallation. 42
3.3.2 Informix Dynamic Server (IDS) Uninstallation . 42
3.3.3 Microsoft SQL Server Uninstallation . 42
3.3.4 MySQL Uninstallation. 43
3.3.5 Oracle Uninstallation . 43
3.3.6 PostgreSQL Uninstallation . 43
3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation . 44

4 Upgrading the JDBC Driver 45
4.1 Upgrading While Installing Identity Manager 3.5.1 . 45

4.1.1 Backward Incompatibilities. 46
4.2 Upgrading after Identity Manager Is Installed. 46

4.2.1 Upgrading the Driver by Using Designer . 46
4.2.2 Upgrading the Driver by Using iManager . 49

5 Importing an Example JDBC Configuration File 51
5.1 Using Designer to Import . 51
5.2 Using iManager to Import . 51
5.3 JDBC Driver Settings . 52

6 Configuring the JDBC Driver 55
6.1 Smart Configuration . 55
6.2 Configuration Parameters. 57

6.2.1 Viewing Driver Parameters . 57
6.2.2 Deprecated Parameters . 57
6.2.3 Authentication Parameters. 58

6.3 Driver Parameters . 59
6.3.1 Uncategorized Parameters . 60
6.3.2 Database Scoping Parameters . 64
6.3.3 Connectivity Parameters . 69
6.3.4 Compatibility Parameters . 71

6.4 Subscription Parameters . 81
6.4.1 Uncategorized Parameters . 82
6.4.2 Primary Key Parameters . 84

6.5 Publication Parameters . 89
6.5.1 Uncategorized Parameters . 90
6.5.2 Triggered Publication Parameters . 93
6.5.3 Triggerless Publication Parameters . 95
6.5.4 Polling Parameters. 95

6.6 Trace Levels . 98
6.7 Configuring Third-Party JDBC Drivers . 99
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
7 Activating the JDBC Driver 101

8 Managing the JDBC Driver 103
8.1 Starting, Stopping, or Restarting the JDBC Driver. 103
8.2 Migrating and Resynchronizing Data. 103
8.3 Using the DirXML Command Line Utility . 104
8.4 Viewing Driver Versioning Information. 104

8.4.1 Viewing a Hierarchical Display of Versioning Information . 104
8.4.2 Viewing the Versioning Information As a Text File . 106
8.4.3 Saving Versioning Information . 108

8.5 Reassociating a Driver Set Object with a Server Object . 109
8.6 Changing the Driver Configuration . 110
8.7 Storing Driver Passwords Securely with Named Passwords. 110

8.7.1 Using Designer to Configure Named Passwords . 111
8.7.2 Using iManager to Configure Named Passwords . 111
8.7.3 Using Named Passwords in Driver Policies . 113
8.7.4 Configuring Named Passwords by Using the DirXML Command Line Utility 114

8.8 Adding a Driver Heartbeat . 117

9 Synchronizing Objects 119
9.1 What Is Synchronization? . 119
9.2 When Does Synchronization Occur?. 119
9.3 How Does the Metadirectory Engine Decide Which Object to Synchronize? 120
9.4 How Synchronization Works . 121

9.4.1 Scenario One . 121
9.4.2 Scenario Two . 123
9.4.3 Scenario Three . 124

10 Schema Mapping 127
10.1 High-Level View. 127
10.2 Logical Database Classes . 127
10.3 Indirect Synchronization . 127

10.3.1 Mapping eDirectory Classes to Logical Database Classes. 128
10.3.2 Parent Tables . 130
10.3.3 Parent Table Columns. 130
10.3.4 Child Tables . 131
10.3.5 Referential Attributes. 132
10.3.6 Single-Value Referential Attributes . 132
10.3.7 Multivalue Referential Attributes . 133

10.4 Direct Synchronization. 135
10.4.1 View Column Meta-Identifiers . 136
10.4.2 Primary Key Columns . 138
10.4.3 Schema Mapping . 138

10.5 Synchronizing Primary Key Columns. 138
10.6 Synchronizing Multiple Classes . 138
10.7 Mapping Multivalue Attributes to Single-Value Database Fields . 139

11 Mapping XDS Events to SQL Statements 141
11.1 Mapping XDS Events for Indirect Synchronization . 141
Contents 7

8 Identity Man

novdocx (en) 11 D
ecem

ber 2007
12 The Event Log Table 143
12.1 Event Log Columns . 143
12.2 Event Types . 145

13 Embedded SQL Statements in XDS Events 153
13.1 Common Uses of Embedded SQL . 154
13.2 Embedded SQL Basics . 154

13.2.1 Elements . 154
13.2.2 Namespaces . 154
13.2.3 Embedded SQL Example. 155

13.3 Token Substitution . 155
13.4 Virtual Triggers . 158
13.5 Manual vs. Automatic Transactions . 159
13.6 Transaction Isolation Level . 160
13.7 Statement Type . 161
13.8 SQL Queries. 162
13.9 Data Definition Language (DDL) Statements . 163
13.10 Logical Operations . 164
13.11 Implementing Password Set with Embedded SQL. 164
13.12 Implementing Modify Password with Embedded SQL . 165
13.13 Implementing Check Object Password. 165
13.14 Calling Stored Procedures and Functions . 166

13.14.1 Using Embedded SQL to Call Stored Procedures or Functions 166
13.14.2 Using the jdbc:call-procedure Element . 167
13.14.3 Using the jdbc:call-function Element . 170

13.15 Best Practices. 174

14 Supported Databases 177
14.1 Database Interoperability . 177
14.2 Supported Databases. 177
14.3 Database Characteristics . 178

14.3.1 Database Features. 178
14.3.2 Current Time Stamp Statements . 179
14.3.3 Syntaxes for Calling Stored Procedures and Functions. 180
14.3.4 Left Outer Join Operators. 180
14.3.5 Undelimited Identifier Case Sensitivity . 181
14.3.6 Supported Transaction Isolation Levels . 181
14.3.7 Commit Keywords . 182
14.3.8 IBM DB2 Universal Database (UDB) . 182
14.3.9 Informix Dynamic Server (IDS) . 183
14.3.10 Microsoft SQL Server. 184
14.3.11 MySQL . 184
14.3.12 Oracle. 185
14.3.13 PostgreSQL . 186
14.3.14 Sybase Adaptive Server Enterprise (ASE). 186

15 Third-Party JDBC Drivers 189
15.1 Third-Party JDBC Driver Interoperability . 189
15.2 JDBC Driver Types. 189

15.2.1 Which Type To Use? . 190
15.3 Third-Party Jar File Placement . 190
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
15.3.1 Identity Manager File Paths. 190
15.3.2 Remote Loader File Paths. 190

15.4 Supported Third-Party JDBC Drivers. 191
15.4.1 Third-Party JDBC Driver Features. 191
15.4.2 JDBC URL Syntaxes . 192
15.4.3 JDBC Driver Class Names . 192
15.4.4 IBM DB2 Universal Database Type 4 JDBC Driver. 193
15.4.5 Informix JDBC Driver. 194
15.4.6 jTDS JDBC Driver . 195
15.4.7 MySQL Connector/J JDBC Driver . 196
15.4.8 Oracle Thin Client JDBC Driver. 197
15.4.9 Oracle OCI JDBC Driver . 199
15.4.10 PostgreSQL JDBC Driver . 201
15.4.11 Sybase Adaptive Server Enterprise JConnect JDBC Driver 201

15.5 Supported-But-Discouraged Third-Party JDBC Drivers. 202
15.5.1 Third-Party JDBC Driver Features. 202
15.5.2 JDBC URL Syntaxes . 202
15.5.3 JDBC Driver Class Names . 203
15.5.4 IBM DB2 Universal Database Type 3 JDBC Driver. 203
15.5.5 Microsoft SQL Server 2000 Driver for JDBC. 204
15.5.6 Microsoft SQL Server 2005 JDBC Driver . 206

15.6 Deprecated Third-Party JDBC Drivers. 207
15.6.1 BEA Weblogic jDriver for Microsoft SQL Server . 207

15.7 Other Third-Party JDBC Drivers . 208
15.7.1 IBM Toolbox for Java/JTOpen. 209
15.7.2 Minimum Third-Party JDBC Driver Requirements. 209
15.7.3 Considerations When Using Other Third-Party JDBC Drivers 209

15.8 Security Issues . 210

16 The Association Utility 211
16.1 Independent Operations . 211
16.2 Before You Begin. 212
16.3 Using the Association Utility . 213
16.4 Editing Associations. 213

17 Troubleshooting the JDBC Driver 215
17.1 Recognizing Publication Events . 215
17.2 Executing Test Scripts . 215
17.3 Troubleshooting Driver Processes. 215

17.3.1 Viewing Driver Processes . 215

18 Backing Up the JDBC Driver 223
18.1 Exporting the Driver in Designer . 223
18.2 Exporting the Driver in iManager . 223

A Best Practices 225

B FAQ 227
B.1 Can’t See Tables or Views . 227
B.2 Synchronizing with Tables . 227
B.3 Processing Rows in the Event Log Table . 228
Contents 9

10 Identity Man

novdocx (en) 11 D
ecem

ber 2007
B.4 Managing Database User Accounts . 228
B.5 Synchronizing Large Data Types . 228
B.6 Slow Publication . 228
B.7 Synchronizing Multiple Classes . 229
B.8 Encrypted Transport . 229
B.9 Mapping Multivalue Attributes . 229
B.10 Synchronizing Garbage Strings . 229
B.11 Running Multiple Driver for JDBC Instances . 229

C Supported Data Types 231

D java.sql.DatabaseMetaData Methods 233

E JDBC Interface Methods 235

F Third-Party JDBC Driver Descriptor DTD 241

G Third-Party JDBC Driver Descriptor Import DTD 243

H Database Descriptor DTD 245

I Database Descriptor Import DTD 247

J Policy Example: Triggerless Future Event Processing 249

K Setting Up an OCI Client on Linux 251
K.1 Downloading the Instant Client . 251
K.2 Setting Up the OCI Client . 251
K.3 Configuring the OCI Driver . 252

L Sybase Chain Modes and the Identity Manager Driver for JDBC 253
L.1 Error Codes . 253
L.2 Procedures and Modes . 254

L.2.1 Using Stored Procedure sp_proxmode . 254
L.2.2 Chained and Unchained Modes. 254
L.2.3 Managing Transactions in a Policy . 255
L.2.4 Useful Links . 255

M The DirXML Command Line Utility 257
M.1 Interactive Mode . 257
M.2 Command Line Mode . 266

N Properties of the JDBC Driver 271
N.1 Driver Configuration . 271

N.1.1 Driver Module. 272
N.1.2 Driver Object Password . 273
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
N.1.3 Authentication . 273
N.1.4 Startup Option . 274
N.1.5 Driver Parameters . 275

N.2 Global Configuration Values . 276
N.3 Named Passwords. 278
N.4 Engine Control Values . 278
N.5 Log Level . 280
N.6 Driver Image . 281
N.7 Security Equals . 281
N.8 Filter . 282
N.9 Edit Filter XML . 282
N.10 Misc . 283
N.11 Excluded Users . 283
N.12 Driver Manifest. 284
N.13 Driver Cache Inspector . 284
N.14 Driver Inspector . 285
N.15 Server Variables . 285

O Documentation Updates 289
O.1 October 10, 2007 . 289

O.1.1 Upgrading the JDBC Driver . 289
Contents 11

12 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
About This Guide

The Identity Manager Driver for Java* Database Connectivity (JDBC*) provides a generic solution
for synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

This guide is version 3.5.1. The preceding version was 3.5.

Audience

This guide is for Novell® eDirectory and Identity Manager administrators who are using the Identity
Manager Driver for JDBC.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please use the User Comment feature at the bottom of each
page of the online documentation, or go to www.novell.com/documentation/feedback.html and
enter your comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager 3.5.1 drivers (http://
www.novell.com/documentation/idm35drivers/index.html) documentation Web site.

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager 3.5.1
(http://www.novell.com/documentation/idm35/index.html) documentation Web site.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell® trademark. An asterisk (*) denotes a third-party
trademark.

What’s New

See Section 1.1, “What’s New in the Driver for JDBC,” on page 15.
About This Guide 13

http://www.novell.com/documentation/idm35drivers/index.html
http://www.novell.com/documentation/idm35/index.html

14 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

1
novdocx (en) 11 D

ecem
ber 2007
1Introducing the Identity Manager
Driver for JDBC

The Identity Manager Driver for Java DataBase Connectivity (JDBC) provides a generic solution
for synchronizing data between Identity Manager and JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most drivers that interface with
a single application, this driver can interface with most relational databases and database-hosted
applications.

Section 1.1, “What’s New in the Driver for JDBC,” on page 15
Section 1.2, “Driver Concepts,” on page 15
Section 1.3, “Database Concepts,” on page 18
Section 1.4, “Driver Features,” on page 22

1.1 What’s New in the Driver for JDBC
The JDBC Driver 3.5 included the new feature Stored Procedures. See Section 13.14, “Calling
Stored Procedures and Functions,” on page 166.

The following have been updated since the JDBC 3.5 driver guide:

See Chapter 14, “Supported Databases,” on page 177 and Chapter 15, “Third-Party JDBC
Drivers,” on page 189.
See Chapter 14, “Supported Databases,” on page 177 and Chapter 15, “Third-Party JDBC
Drivers,” on page 189.
Appendix F, “Third-Party JDBC Driver Descriptor DTD,” on page 241
Appendix G, “Third-Party JDBC Driver Descriptor Import DTD,” on page 243
Appendix H, “Database Descriptor DTD,” on page 245
Appendix I, “Database Descriptor Import DTD,” on page 247

You can now call stored procedures and functions from a policy. See Section 13.14, “Calling Stored
Procedures and Functions,” on page 166.

For information on what’s new in Identity Manager, see “What's New in Identity Manager 3.5.1? ”
in the Identity Manager 3.5.1 Installation Guide.

1.2 Driver Concepts
Section 1.2.1, “JDBC,” on page 16
Section 1.2.2, “Identity Manager Driver for JDBC,” on page 16
Section 1.2.3, “Third-Party JDBC Driver,” on page 16
Section 1.2.4, “Identity Vault,” on page 17
Section 1.2.5, “Directory Schema,” on page 17
Introducing the Identity Manager Driver for JDBC 15

16 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Section 1.2.6, “Application Schema,” on page 17
Section 1.2.7, “Database Schema,” on page 17
Section 1.2.8, “Synchronization Schema,” on page 17
Section 1.2.9, “Logical Database Class,” on page 18
Section 1.2.10, “XDS,” on page 18

1.2.1 JDBC
Java DataBase Connectivity (JDBC) is a cross-platform database interface standard that Sun*
Microsystems* developed.

Most enterprise database vendors provide a unique implementation of the JDBC interface. Three
versions of the JDBC interface are available:

JDBC 1 (Java 1.0)
JDBC 2 (Java 1.2 or 1.3)
JDBC 3 (Java 1.4 or 1.5)

The Identity Manager Driver for JDBC primarily uses the JDBC 1 interface. It uses a small subset of
JDBC 2 or JDBC 3 methods when supported by third-party JDBC drivers.

1.2.2 Identity Manager Driver for JDBC
The Identity Manager Driver for JDBC uses the JDBC interface to synchronize data and identities
between an Identity Vault and relational databases.

The driver consists of four jar files:

JDBCShim.jar

JDBCUtil.jar

JDBCConfig.jar

CommonDriverShim.jar

In addition to these files, you need a third-party JDBC driver to communicate with each individual
database.

1.2.3 Third-Party JDBC Driver
A third-party JDBC driver is one of the numerous JDBC interface implementations that the Identity
Manager Driver for JDBC uses to communicate with a particular database.

 For example, classes12.zip is one of the Oracle* JDBC drivers. Different third-party JDBC drivers
implement different portions of the JDBC interface specification and implement the interface in a
relatively consistent manner.

The following illustration indicates the relationship between the Driver for JDBC and third-party
JDBC drivers.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Figure 1-1 IDM JDBC Driver vs. Third-Party JDBC Drivers

1.2.4 Identity Vault
An Identity Vault is the data store that Identity Manager uses.

1.2.5 Directory Schema
The directory schema is the set of object classes and attributes in the directory.

For example, the eDirectoryTM User class and Given Name attribute are part of the eDirectory
schema.

1.2.6 Application Schema
The application schema is the set of classes and attributes in an application.

Because databases have no concept of classes or attributes, the Driver for JDBC maps eDirectory
classes to tables or views, and maps eDirectory attributes to columns.

1.2.7 Database Schema
Database schema is essentially synonymous with ownership. A database schema consists of
database objects (for example, tables, views, triggers, stored procedures, and functions) that a
database user owns.

With the Driver for JDBC, schema is useful to scope the database (reduce the number of database
objects visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation (for example, indirect.usr,
where indirect is the name of the database user that owns the table usr). All of the database
objects owned by indirect constitute the indirect database schema.

1.2.8 Synchronization Schema
The synchronization schema is the database schema visible to the driver at runtime.

SELECT

INSERT

UPDATE

DELETE

JDBC Interface

POSTGRES

Database

IFX

DB2

ORACLE

MYSQL

MSSQL

SYBASE

Third-Party

JDBC Driver
IDM JDBC DRIVER
Introducing the Identity Manager Driver for JDBC 17

18 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1.2.9 Logical Database Class
The logical database class is the set of tables or view used to represent an eDirectory class in a
database.

1.2.10 XDS
XDS format is the defined Novell® subset of possible XML formats that Identity Manager can use.

XDS is the initial format for data coming from the Identity Vault. By modifying default rules and
changing the style sheets, you can configure the Driver for JDBC to work with any XML format.

1.3 Database Concepts
Section 1.3.1, “Structured Query Language,” on page 18
Section 1.3.2, “Data Manipulation Language,” on page 18
Section 1.3.3, “Data Definition Language,” on page 18
Section 1.3.4, “View,” on page 19
Section 1.3.5, “Identity Columns/Sequences,” on page 19
Section 1.3.6, “Transaction,” on page 20
Section 1.3.7, “Stored Procedures or Functions,” on page 20
Section 1.3.8, “Trigger,” on page 21
Section 1.3.9, “Instead-Of-Trigger,” on page 21

1.3.1 Structured Query Language
Structured Query Language (SQL) is the language used to query and manipulate data in relational
databases.

1.3.2 Data Manipulation Language
Data Manipulation Language (DML) statements are highly standardized SQL statements that
manipulate database data.

DML statements are essentially the same, regardless of the database that you use. The Driver for
JDBC is DML-based. It maps Identity Manager events expressed as XDS XML to standardized
DML statements.

The following example shows several DML statements:
SELECT * FROM usr;
INSERT INTO usr(lname) VALUES('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;

1.3.3 Data Definition Language
Data Definition Language (DDL) statements manipulate database objects such as tables, indexes,
and user accounts.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
DDL statements are proprietary and differ substantially between databases. Even though the Driver
for JDBC is DML-based, you can embed DDL statements in XDS events. For additional
information, refer to Chapter 13, “Embedded SQL Statements in XDS Events,” on page 153,

The following examples show several DDL statements:
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout this guide are for the Oracle database.

1.3.4 View
A view is a logical table.

When queried by using a SELECT statement, the view is constituted by executing the SQL query
supplied when the view was defined. Views are a useful abstraction mechanism for representing
multiple tables of arbitrary structure as a single table or logical database class.
CREATE VIEW view_usr
(
 pk_idu,
 fname,
 lname
)
AS
SELECT idu, fname, lname from usr;

1.3.5 Identity Columns/Sequences
Identity columns and sequences are used to generate unique primary key values. Identity Manager
can associate with these values, among other things.

An identity column is a self-incrementing column used to uniquely identify a row in a table. Identity
column values are automatically filled in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. However, if it is used by a single
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:
CREATE SEQUENCE seq_idu
 START WITH 1
 INCREMENT BY 1
 NOMINVALUE
 NOMAXVALUE
 ORDER;
Introducing the Identity Manager Driver for JDBC 19

20 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1.3.6 Transaction
A transaction is an atomic database operation that consists of one or more statements.

When a transaction is complete, all statements in the transaction are committed. When a transaction
is interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction.

The following example illustrates a manual transaction:
SET AUTOCOMMIT OFF
INSERT INTO usr(lname) VALUES('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;
COMMIT; -- explicit commit

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. An auto-committed
statements is autonomous of any other statement.

The following example illustrates an automatic transaction:
SET AUTOCOMMIT ON
INSERT INTO emp(lname) VALUES('Doe');
-- implicit commit

1.3.7 Stored Procedures or Functions
A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functions to retrieve primary key values from
rows inserted into tables, to create associations. Stored procedures or functions can also be invoked
from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usually return values through
parameters. Functions usually return values through a scalar return value or result set.

The following example illustrates a stored procedure definition that returns the next value of a
sequence object:
CREATE SEQUENCE seq_idu
 START WITH 1
 INCREMENT BY 1
 NOMINVALUE
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 NOMAXVALUE
 ORDER;
CREATE
PROCEDURE sp_idu(io_idu IN OUT INTEGER)
IS
BEGIN
 IF (io_idu IS NULL) THEN
 SELECT seq_idu.nextval INTO io_idu FROM DUAL;
END IF;
END sp_idu;

1.3.8 Trigger
A database trigger is programmatic logic associated with a table, which executes under certain
conditions. A trigger is said to fire when its execution criteria are met.

Triggers are often useful for creating side effects in a database. In the context of the Driver for
JDBC, triggers are useful to capture event publications. The following is an example of a database
trigger on the usr table.
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);
-- t = trigger; i = insert
CREATE TRIGGER t_usr_i
 AFTER INSERT ON usr
 FOR EACH ROW

BEGIN
 UPDATE usr SET fname = 'John';
END;

When a statement is executed against a table with triggers, a trigger fires if the statement satisfies
the conditions specified in the trigger. For example, using the above table, suppose the following
insert statement is executed:
INSERT INTO usr(lname) VALUES('Doe')

Trigger t_emp_i fires after the insert statement is executed, and the following update statement is
also executed:
UPDATE usr SET fname = 'John'

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the INSERT and UPDATE statements are committed or rolled
back together.

1.3.9 Instead-Of-Trigger
An instead-of-trigger is programmatic logic associated with a view, which executes under certain
conditions.
Introducing the Identity Manager Driver for JDBC 21

22 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Instead-of-triggers are useful for making views writable or subscribeable. They are often used to
define what it means to INSERT, UPDATE, and DELETE from a view. The following is an example
of an instead-of-trigger on the usr table.
CREATE TABLE usr
(
 idu INTEGER,
 fname VARCHAR2(64),
 lname VARCHAR2(64)
);

CREATE VIEW view_usr
(
 pk_idu,
 fname,
 lname
)
AS
SELECT idu, fname, lname from usr;
-- t = trigger; i = insert
CREATE TRIGGER t_view_usr_i
 INSTEAD OF INSERT ON usr
BEGIN
 INSERT INTO usr(idu, fname, lname)
 VALUES(:NEW.pk_idu, :NEW.fname, :NEW.lname);
END;

When a statement is executed against a view with instead-of-triggers, an instead-of-trigger executes
if the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of-triggers
always execute before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed instead of the
original insert statement:
INSERT INTO view_usr(pk_idu, fname, lname)
 VALUES(1, ‘John', ‘Doe')

Rather than executing the original statement, instead-of-trigger t_view_usr_i fires and executes
the following statement:
INSERT INTO usr(idu, fname, lname)
 VALUES(:NEW.pk_idu, :NEW.fname, :NEW.lname);

In this example, the statements happen to be equivalent.

1.4 Driver Features
Section 1.4.1, “Local and Remote Platforms,” on page 23
Section 1.4.2, “Role-Based Entitlements,” on page 23
Section 1.4.3, “Password Synchronization,” on page 23
Section 1.4.4, “Data Synchronization Models,” on page 23
Section 1.4.5, “Triggerless vs. Triggered Publication,” on page 26
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
1.4.1 Local and Remote Platforms
The driver runs on all Identity Manager-enabled platforms, including Windows* NT*/2000,
NetWare®, Solaris*, Linux*, and AIX*. The JDBC driver runs in any Identity Manager 3.5.1
installation or Remote Loader installation. See “System Requirements for Identity Manager ” in the
Identity Manager 3.5.1 Installation Guide.

For information on supported databases, see “Database Interoperability” on page 177.

For information on supported third-party JDBC drivers, see “Third-Party JDBC Driver
Interoperability” on page 189.

1.4.2 Role-Based Entitlements
The JDBC driver does not support entitlements.

1.4.3 Password Synchronization
The JDBC driver supports password set and check on the Subscriber channel. The driver does not
support bi-directional password synchronization.

1.4.4 Data Synchronization Models
The JDBC driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

The following sections describe how direct and indirect synchronization work on both the
Subscriber and Publisher channels.

Indirect Synchronization

Indirect synchronization uses intermediate staging tables to synchronize data between the Identity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and
intermediate staging tables.

Model Association Description

Direct Usually associated with views Views provide the abstraction mechanism that best
facilitates integration with existing customer tables.

Indirect Usually associated with tables Customer tables probably don’t match the structure
required by the driver. Therefore, it’s usually
necessary to create intermediate staging tables that
do match the structure that the driver requires.
Although the structures might match, it is highly
unlikely.
Introducing the Identity Manager Driver for JDBC 23

24 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Subscriber Channel

Figure 1-2 Indirect Synchronization on the Subscriber Channel

The Subscriber channel updates the intermediate staging tables in the synchronization schema. The
synchronization triggers then update customer tables elsewhere in the database.

Publisher Channel

Figure 1-3 Indirect Synchronization on the Publisher Channel

When customer tables are updated, synchronization triggers update the intermediate staging tables.
Publication triggers then insert one or more rows into the event log table. The Publisher channel
then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the Identity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Direct Synchronization

Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. You can use tables if they conform to the structure that the Driver for JDBC requires.

Database

Synchronization
Schema

Synchronization
Trigger(s)

Subscriber

Customer
Table(s)

Intermediate
Tables(s)

Database

Synchronization
Schema

Event
Log

Customer
Table(s)

Synchronization
Trigger(s)

Publisher

Intermediate
Tables(s)

Publication
Trigger(s)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The following diagrams illustrate how direct synchronization works on the Subscriber and Publisher
channels. In the following scenarios, you can have one or more customer views or tables.

Subscriber Channel

Figure 1-4 Direct Synchronization on the Subscriber Channel

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

NOTE: Direct synchronization without a view is possible only if customer tables match the
structure that the Driver for JDBC requires. For additional information, see Section 10.3, “Indirect
Synchronization,” on page 127.

Publisher Channel

Figure 1-5 Direct Synchronization on the Publisher Channel

When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Database

Customer
Table(s)

Subscriber

Synchronization
Schema

View(s)

Database

Event
Log

Customer
Table(s)

Publication
Publisher

View(s)

Synchronization
Schema
Introducing the Identity Manager Driver for JDBC 25

26 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

1.4.5 Triggerless vs. Triggered Publication
Triggers are no longer required to log publication events. In situations where triggers cannot be used
to capture granular events, the Publisher channel can derive database changes by inspecting database
data.

Triggerless publication is particularly useful when support contracts forbid the use of triggers on
database application tables or for rapid prototyping.

Triggerless publication is less efficient than triggered publication. With triggered publication, what
changed is already known. With triggerless publication, change calculation must occur before
events can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that by the end of a polling cycle, objects in the database and the Identity Vault are in
sync.

Triggerless publication, unlike triggered publication, does not provide historical data such as old
values. It provides information on the current state of an object, not the previous state.

Triggerless publication does have the advantage of being much simpler because it reduces database-
side dependencies. Writing database triggers can be complicated and requires extensive knowledge
of database-specific SQL syntaxes.

The following figure illustrates direct triggerless publication:

Figure 1-6 Direct Triggerless Synchronization

The following figure illustrates indirect triggerless publication:

Database

Synchronization
Schema

Customer
Table(s)

Publisher View(s)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Figure 1-7 Indirect Triggerless Synchronization

If you move the driver without moving the state files, the driver must build-up new state files by
resynchronizing. For information on this situation, see “State Directory” on page 63.

Database

Synchronization
Schema

Customer
Table(s)

Synchronization
Trigger(s)

Publisher Intermediate
Tables(s)
Introducing the Identity Manager Driver for JDBC 27

28 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

2
novdocx (en) 11 D

ecem
ber 2007
2Installing the Driver for JDBC

This section assumes that you have already installed the Metadirectory engine (and, most likely,
other drivers) on the server and need to install only the JDBC driver. See “Installing Identity
Manager” in the Identity Manager 3.5.1 Installation Guide.

Typically, an Identity Manager installation installs all drivers, including the JDBC driver, at the
same time that the Metadirectory engine is installed. If the JDBC driver wasn’t installed at that time,
you can install the driver separately. The schema won’t be extend during this driver install because
the Identity Manager installation already extended it when the Metadirectory engine was installed.

IMPORTANT: Novell recommends installing or uninstalling driver configurations and database
scripts as a unit. To prevent unintentional mismatching, database scripts and driver configurations
contain headers with a version number, the target database name, and the database version.

Section 2.1, “Before You Install,” on page 29
Section 2.2, “Installing the Driver Separately,” on page 31
Section 2.3, “Setting Up a Remote Loader,” on page 32
Section 2.4, “Installing and Configuring Database Objects,” on page 32
Section 2.5, “Test Scripts,” on page 38
Section 2.6, “Troubleshooting,” on page 39

For information on uninstalling the driver, see Chapter 3, “Uninstalling the IDM Driver for JDBC,”
on page 41

2.1 Before You Install
Section 2.1.1, “Driver Prerequisites,” on page 29
Section 2.1.2, “Known Issues,” on page 29
Section 2.1.3, “Limitations,” on page 30
Section 2.1.4, “Placing Jar Files,” on page 31

2.1.1 Driver Prerequisites
The Identity Manager Driver for JDBC 3.5.1 requires the following:

Novell® Identity Manager 3.5.1 installed on the server or an Identity Manager 3.5.1 Remote
Loader
Java Virtual Machine (JVM*) 1.4 or later
A supported third-party JDBC driver

2.1.2 Known Issues
Identity Vault Time and Timestamp syntaxes are inadequate for expressing the range and
granularity of their database counterparts.
Installing the Driver for JDBC 29

30 Identity Man

novdocx (en) 11 D
ecem

ber 2007
This is a publication problem because database time-related types typically have a wider range
and greater degree of granularity (typically nanoseconds). The converse is not true. For more
information, see “Time Syntax” on page 61.
The Driver for JDBC is unable to parse proprietary database time stamp formats.

Some databases, such as Sybase* and DB2*, have proprietary time stamp formats that the
java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html) class
can’t parse.

When synchronizing time stamp columns from these databases, the Driver for JDBC, by
default, assumes time stamp values placed in the event log table are in ODBC canonical format
(that is, yyyy-mm-dd hh:mm:ss.fffffffff).

The recommended method for enabling the Driver for JDBC to handle proprietary database
time stamp formats is to implement a custom DBTimestampTranslator class. This
interface is documented in the Javadoc Tool that ships with the Driver for JDBC. Using this
approach avoids the problem of reformatting time stamps in the database before they are
inserted into the event log table or reformatted them in style sheets. The Driver for JDBC ships
with default implementations for the native DB2 time stamp format and the Sybase style 109
time stamp format.
Statements executed against the database server might block indefinitely.
Typically, blocking is caused by a database resource being exclusively locked. Because the
locking mechanisms and locking SQL vary by database, the general solution to this problem is
to implement a custom DBLockStatementGenerator class. For additional information,
see “Lock Statement Generator Class” on page 76. The driver for JDBC ships with a default
implementation for Oracle.
Many factors can cause blocking. To mitigate the likelihood of blocking, we recommend that
you do not set the Transaction Isolation Level parameter to a level greater than read
committed.
The JDBC interface defines a method java.sql.Statement.setQueryTimeout(int):void (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) that allows a statement to time out
after a specified number of seconds. Unfortunately, implementations of this method between
third-party JDBC drivers range from not being implemented to having bugs. For this reason,
this method was deemed unsuitable as a general-purpose solution.

2.1.3 Limitations
The Driver for JDBC does not support the use of delimited (quoted) database identifiers (for
example, “names with spaces”).
JDBC 2 data types are not supported, with the exception of Large Object data types (LOBs)
such as CLOB and BLOB.
JDBC 3 data types are not supported.
PostgreSQL does not support <check-object-password> events. Authentication is
controlled by manually inserting entries into the pg_hba.conf file.
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

novdocx (en) 11 D
ecem

ber 2007
2.1.4 Placing Jar Files
The following tables identify the paths to place JDBC driver jar files on an Identity Manager or
Remote Loader server assuming default installation paths.

Identity Manager File Paths

The following table identifies where to place JDBC driver jar files on an Identity Management
server, by platform.

Table 2-1 Locations for jar Files: Identity Manager Server

Remote Loader File Paths

The following table identifies where to place JDBC driver jar files on a Remote Loader server, by
platform.

Table 2-2 Locations for jar Files: Remote Loader

2.2 Installing the Driver Separately
This section assumes that you have already installed the Metadirectory engine (and, most likely,
other drivers) on the server and need to install only the JDBC driver. For instructions on installing
Identity Manager, see “Installing Identity Manager” in the Identity Manager 3.5.1 Installation
Guide.

Typically, an Identity Manager installation installs all drivers, including the JDBC driver, at the
same time that the Metadirectory engine is installed. If the JDBC driver wasn’t installed at that time,
you can install the driver separately. The schema won’t be extend during this driver install because
the Identity Manager installation already extended it when the Metadirectory engine was installed.

The installation process installs the driver on the server where Identity Manager is installed or on a
server where you will use the Remote Loader to run the driver. It also installs the driver information
and policies on the iManager server.

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\NDS\lib

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\RemoteLoader\lib
Installing the Driver for JDBC 31

32 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 2-3 Where to Find Install Instructions

2.3 Setting Up a Remote Loader
Using a Remote Loader is optional. It isn’t required unless you want the JDBC driver to run in a
connected system.

1 If a Remote Loader isn’t already installed, install one.

See “Deciding Whether to Use the Remote Loader” in the Novell Identity Manager 3.5.1
Administration Guide.

2 Copy the appropriate third-party JDBC driver jar files onto the Remote Loader server.
2a For information on third-party JDBC driver filenames and where to get them, refer to

“Supported Third-Party JDBC Drivers” on page 191.
2b For information on file installation paths, refer to “Placing Jar Files” on page 31.

3 Configure the remote driver.
In the Remote Driver Configuration parameters, set the Driver parameter to
com.novell.nds.dirxml.driver.jdbc.JDBCDriverShim.

4 Configure other remote loader parameters. See “Deciding Whether to Use the Remote Loader”
in the Novell Identity Manager 3.5.1 Administration Guide.

2.4 Installing and Configuring Database Objects
Install and configure database objects (for example, tables, triggers, and indexes) for
synchronization with the sample driver configuration. If you don’t configure database objects, the
sample configuration file won’t work.

2.4.1 SQL Script Conventions
The following table lists default locations for SQL scripts:

Table 2-4 Default Locations for SQL Scripts

Platform Where to Find Install Instructions

Linux See “Installing Identity Manager through the GUI Interface on UNIX/Linux
Platforms” in the Identity Manager 3.5.1 Installation Guide

NetWare See “Installing Identity Manager on NetWare” in the Identity Manager 3.5.1
Installation Guide

Windows See “Installing Identity Manager on Windows” in the Identity Manager 3.5.1
Installation Guide.

Platform Default Location

Windows c:\novell\NDS\jdbc\sql\database-abbreviation

UNIX or Linux /usr/lib/dirxml/rules/jdbc/database-abbreviation
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
For example, when installed on a SuSE Linux Enterprise Server with eDirectory, the DB2 scripts are
found in /usr/lib/dirxml/rules/jdbc/db2/*.

All SQL scripts use the same conventions, regardless of the database.

The maximum size of a DB2 identifier is 18 characters. This least common denominator length
defines the upper bound of database identifier length across all SQL scripts. Because of this
restricted length, abbreviations are used. The following table summarizes identifier abbreviations
and their meaning:

Table 2-5 Identifier Abbreviations and Meanings

1 The more common abbreviation is sp_. This prefix is reserved for system-stored procedures on
Microsoft* SQL Server. Also, this prefix forces lookup of a procedure first in the master database
before evaluating any qualifiers (for example, database or owner). To maximize procedure lookup
efficiency, this prefix has been deliberately avoided.

The following table indicates identifier naming conventions for indexes, triggers, stored procedures,
functions, and constraints:

Table 2-6 Identifier Naming Conventions

Abbreviation Interpretation

proc_1 stored procedure/function

idx_ index

trg_ trigger

_i on insert trigger

_u on update trigger

_d on delete trigger

chk_ check constraint

pk_ view primary key constraint

fk_ view foreign key constraint

mv_ view multi-valued column

sv_ view single-valued column (implicit default)

Database Object Naming Convention Examples

stored procedure/
function

proc_procedure-or-function-name proc_idu

index idx_unqualified-table-name_sequence-number idx_indirectlog
_1

trigger tgr_unqualified-table-name_triggering-statement-
type_sequence-number

tgr_usr_i_1

primary key constraint pk_unqualified-table-name_column-name pk_usr_idu
Installing the Driver for JDBC 33

34 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Other conventions:

All database identifiers are lowercase.

This is the most commonly used case convention between databases.
String field lengths are 64 characters.
Fields of this length can hold most eDirectoryTM attribute values. You might want to refine field
lengths to enhance storage efficiency.
For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such as BIGINT as opposed to NUMERIC).
The record_id column in event log tables has the maximum numeric precision permitted
by each database to avoid overflow.
Identity columns and sequence objects do not cache values. Some databases throw away
cached values when a rollback occurs. This action can cause large gaps in identity column or
sequence values.

2.4.2 Installing IBM DB2 Universal Database (UDB)

IMPORTANT: For IBM* DB2, you must manually create operating system user accounts before
running the provided SQL scripts.

Because the process to create user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, repeat only Steps 2 through 5.

The directory context for DB2 is install-dir\jdbc\sql\db2_udb\install

1 Create user accounts for users idm, indirect and direct.

Use novell as the password in User Manager for Domains.

Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Adjust the file path to idm_db2.jar in the 1_install.sql installation script. The file path to
idm_db2.jar should reflect the location of this file on your client machine.

3 Execute the 1_install.sql script from the Command Line Processor (CLP.)
For example:
db2 -f 1_install.sql

foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu

check constraint chk_unqualified-table-name_column-name chk_usr_idu

Database Object Naming Convention Examples
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
IMPORTANT: The scripts won’t execute in the Command Center interface beyond version 7.
The scripts use the ‘\' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 For versions 8 or later, execute the 2_install_8.sql script.
For example:
db2 -f 2_install_8.sql

2.4.3 Installing Informix Dynamic Server (IDS)

IMPORTANT: For Informix* Dynamic Server, you must manually create an operating system user
account before running the provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, you should repeat only Steps 2 through 4.

The directory context for Informix SQL scripts is install-
dir\jdbc\sql\informix_ids\install.

1 In Windows NT, create a user account for user idm.

Use novell as the password in User Manager for Domains.

Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Start a client such as SQL Editor or DBAccess.
3 Log in to your server as the informix user or another user with DBA (database

administrator) privileges.
By default, the password for the informix user is informix.

NOTE: If you execute scripts as a user other than informix, change all references to
informix in the scripts prior to execution.

4 Open and execute 1_install_9.sql from either the ansi (transactional, ANSI-
compliant), log (transactional, non-ANSI-compliant), or no_log (non-transactional, non-
ANSI-compliant) subdirectory, depending upon which type of database you want to create.

5 For version 10 or later, open and execute 2_install_10.sql from either the ansi
(transactional, ANSI-compliant), log (transactional, non-ANSI-compliant), or no_log (non-
transactional, non-ANSI-compliant) subdirectory, depending upon which type of database you
want to create.
Installing the Driver for JDBC 35

36 Identity Man

novdocx (en) 11 D
ecem

ber 2007
2.4.4 Installing Microsoft SQL Server
The directory context for Microsoft SQL Server scripts is install-
dir\jdbc\sql\mssql\install.

1 Start a client such as Query Analyzer (7, 2000) or Microsoft SQL Server Management Studio
(2005).

2 Log in to your database server as the sa user.
By default, the sa user has no password.

3 Execute the installation script.
For version 7, execute 1_install_7.sql.
For version 2000 (8), execute 1_install_2k.sql.
For version 2005 (9), execute 1_install_2005.sql.

NOTE: The execute hotkey in Query Analyzer is F5.

2.4.5 Installing MySQL
The directory context for MySQL* SQL scripts is install-
dir\jdbc\sql\mysql\install.

1 From a MySQL client, such as mysql, log in as root user or another user with administrative
privileges.

For example, from the command line, execute

mysql -u root -p

By default, the root user has no password.
2 Execute the installation script 1_install_innodb.sql or 1_install_myisam.sql,

depending upon which table type you wish to use. For MySQL 3 or 4, use the scripts in
subdirectory 3or4. For version 5 or later, use the scripts in subdirectory 5.
For example:
mysql> \. c:\1_install_innodb.sql

TIP: Don’t use a semicolon to terminate this statement.

2.4.6 Installing Oracle
The directory context for Oracle SQL scripts is install-
dir\jdbc\sql\oracle\install.

1 From an Oracle client, such as SQL Plus, log in as the SYSTEM user.

By default, the password for SYSTEM is MANAGER.

NOTE: If you execute scripts as a user other than SYSTEM with password MANAGER, change
all references to SYSTEM in the scripts prior to execution.

2 Execute the installation script 1_install.sql.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
For example:
SQL> @c:\1_install.sql

2.4.7 Installing PostgreSQL 7
The directory context for PostgreSQL scripts is install-
dir\jdbc\sql\postgres\install. The directory context for executing Postgres commands
is postgres-install-dir/pgsql/bin.

1 Create the database idm.

For example, from the UNIX* command line, execute the command createdb:
./createdb idm

2 Install the plpgsql procedural language to database idm.
For example, from the UNIX command line, execute the command createlang:
./createlang plpgsql idm

3 From a Postgres client such as psql, log on as user postgres to the idm database.
For example, from the UNIX command line, execute the command psql:
./psql -d idm postgres

By default, the Postgres user has no password.
4 From inside psql, execute the script 1_install_7.sql.

For example:
idm=# \i 1_install_7.sql

5 Update the pg_hba.conf file.
For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as
necessary:
TYPE DATABASE USER IP-ADDRESS IP-MASK
METHOD# allow driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0
password

6 Restart the Postgres server to effect changes made to the pg_hba.conf file.

2.4.8 Installing PostgreSQL 8
The directory context for PostgreSQL scripts is install-
dir\jdbc\sql\postgres\install. The directory context for executing Postgres commands
is postgres-install-dir/pgsql/bin.

1 From a Postgres client such as psql, log in as user postgres to the idm database.

For example, from the UNIX command line, execute the command psql:
./psql -d idm postgres

By default, the Postgres user has no password.
2 From inside psql, execute the script 1_install_8.sql.

For example:
idm=# \i 1_install_8.sql

3 Update the pg_hba.conf file.
Installing the Driver for JDBC 37

38 Identity Man

novdocx (en) 11 D
ecem

ber 2007
As of version 8, this can be done through pgAdminIII. After you start, go to Tools > Server
Configuration > pg_hba.conf. In the pgAdminIII pg_hba.conf editor, the IP-ADDRESS
and IP-MASK columns in the file are combined into a single field: IP-Address. Place both the
IP-ADDRESS and IP-MASK values in that field, separated by a single whitespace character.
For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as
necessary:
TYPE DATABASE USER IP-ADDRESS IP-MASK
METHOD# allow driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0
password

4 Restart the Postgres server to effect changes made to the pg_hba.conf file.
If you are using pgAdminIII, from the pg_hba.conf editor press the disk icon (save file) in the
toolbar. When propted, press Yes.

2.4.9 Installing Sybase Adaptive Server Enterprise (ASE)

IMPORTANT: Ensure that you have JDBC metadata support installed on the database server. This
is usually an issue for versions earlier than 12.5 only.

The directory context for Sybase SQL scripts is install-
dir\jdbc\sql\sybase_ase\install.

1 From a Sybase client, such as isql, log in as the sa user and execute the 1_install.sql
installation script.

For example, from the command line, execute:
isql -U sa -P -i 1_install.sql

By default, the sa account has no password.

2.5 Test Scripts
Test scripts for each database are located in the following directories:

Table 2-7 Location of Database Scripts

Database Test SQL Scripts Location

IBM DB2 Universal Database install-dir\jdbc\sql\db2_udb\test

Informix Dynamic Server install-dir\jdbc\sql\informix_ids\log\test
install-dir\jdbc\sql\informix_ids\no_log\test

Informix ANSI test scripts are located in the log\test
subdirectory.

Microsoft SQL Server install-dir\jdbc\sql\mssql\test

MySQL install-dir\jdbc\sql\mysql\test

Oracle install-dir\jdbc\sql\oracle\test
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
We recommend that you try the test scripts before starting the sample driver.

2.6 Troubleshooting
See Section 17.1, “Recognizing Publication Events,” on page 215.
See Section 17.2, “Executing Test Scripts,” on page 215.

PostgreSQL install-dir\jdbc\sql\postgres\test

Sybase Adaptive Server Enterprise install-dir\jdbc\sql\sybase_ase\test

Database Test SQL Scripts Location
Installing the Driver for JDBC 39

40 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

3
novdocx (en) 11 D

ecem
ber 2007
3Uninstalling the IDM Driver for
JDBC

Section 3.1, “Deleting Identity Manager Driver Objects,” on page 41
Section 3.2, “Running the Product Uninstaller,” on page 41
Section 3.3, “Executing Database Uninstallation Scripts,” on page 41

IMPORTANT: Novell® recommends that you install and uninstall preconfigured drivers and
database scripts as a unit. To prevent unintentional mismatching, database scripts and preconfigured
drivers contain headers with a version number, the target database name, and the database version.

3.1 Deleting Identity Manager Driver Objects
When deleting Novell Identity Vault objects, you must delete all child objects before you can delete
a parent object. For example, you must delete all rules and style sheets on the Publisher channel
before you can delete the Publisher object. Similarly, you must delete both the Publisher and
Subscriber objects before you can delete the Driver object.

To remove a driver object from an Identity Vault:

1 In Novell iManager, click Identity Manager > Identity Manager Overview.
2 Select a driver set.
3 From the Identity Manager Overview page, click Delete Driver.
4 Select the driver that you want to delete, then click OK.

3.2 Running the Product Uninstaller
Uninstallation procedures vary by platform.

To uninstall the Identity Manager Driver for JDBC on Windows, use Add or Remove Programs in
the Control Panel.

3.3 Executing Database Uninstallation Scripts
This section provides helps you execute database uninstallation SQL scripts.

Section 3.3.1, “IBM DB2 Universal Database (UDB) Uninstallation,” on page 42
Section 3.3.2, “Informix Dynamic Server (IDS) Uninstallation,” on page 42
Section 3.3.3, “Microsoft SQL Server Uninstallation,” on page 42
Section 3.3.4, “MySQL Uninstallation,” on page 43
Section 3.3.5, “Oracle Uninstallation,” on page 43
Section 3.3.6, “PostgreSQL Uninstallation,” on page 43
Section 3.3.7, “Sybase Adaptive Server Enterprise (ASE) Uninstallation,” on page 44
Uninstalling the IDM Driver for JDBC 41

42 Identity Man

novdocx (en) 11 D
ecem

ber 2007
3.3.1 IBM DB2 Universal Database (UDB) Uninstallation
The directory context for DB2 is install-dir\jdbc\sql\db2_udbl\install.

1 Drop the idm, indirect and direct operating system user accounts.
2 If you haven’t already done so, change the name of the administrator account name and

password in the installation scripts.
3 Using the Command Line Processor (CLP), execute script uninstall.sql.

For example:
db2 -f uninstall.sql

IMPORTANT: This script won’t execute in the Command Center interface beyond version 7.
It uses the ‘\' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 Delete the idm_db2.jar file.

3.3.2 Informix Dynamic Server (IDS) Uninstallation
The directory context for Informix SQL scripts is install-
dir\jdbc\sql\informix_ids\install.

1 Drop the idm operating system user account.
2 Start a client such as SQL Editor.
3 Log on to your server as user informix or another user with DBA (database administrator)

privileges.
By default, the password for informix is informix.
If you execute scripts as a user other than informix, change all references to informix in the
install scripts prior to execution.

4 If you aren’t using the informix account with the default password, change the name of the
DBA account name and password in the installation scripts if you haven’t already done so.

5 Open and execute uninstall.sql from the ansi (transactional, ANSI-compliant), log
(transactional, non-ANSI-compliant), or no_log (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you installed.

3.3.3 Microsoft SQL Server Uninstallation
The directory context for Microsoft SQL Server scripts is install-
dir\jdbc\sql\mssql\install.

1 Start a client such as Query Analyzer.
2 Log on to your database server as user sa.

By default, the sa user has no password.
3 Open and execute the first installation script uninstall.sql.

The execute hotkey in Query Analyzer is F5.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
3.3.4 MySQL Uninstallation
The directory context for MySQL SQL scripts is install-
dir\jdbc\sql\mysql\install.

1 From a MySQL client, such as mysql, log on as user root or another user with administrative
privileges.

For example, from the command line execute
mysql -u root -p

By default, the root user has no password.
2 Execute the uninstallation script uninstall.sql.

For example:
mysql> \. c:\uninstall.sql

Don’t use a semicolon to terminate this statement.

3.3.5 Oracle Uninstallation
The directory context for Oracle SQL scripts is install-dir\jdbc\sql\oracle\install.

1 From an Oracle client, such as SQL Plus, log on as user SYSTEM.

By default, the password for SYSTEM is MANAGER.

If you execute scripts as a user other than SYSTEM with password MANAGER, change all
references to SYSTEM in the scripts prior to execution.

2 Execute the uninstallation script uninstall.sql.
For example:
SQL> @c:\uninstall.sql

3.3.6 PostgreSQL Uninstallation
The directory context for PostgreSQL scripts is install-
dir\jdbc\sql\postgres\install. The directory context for executing Postgres
commands is postgres-install-dir/pgsql/bin.

1 From a Postgres client such as psql, log on as user postgres to the idm database.

For example, from the UNIXC command line, execute
./psql -d idm postgres

By default, the Postgres user has no password.
2 From inside psql, execute the script uninstall.sql.

For example:
idm=# \i uninstall.sql

3 Drop the database idm.
For example, from the UNIX command line, execute
./dropdb idm

4 Remove or comment out entries for the idm user from the pg_hba.conf file.
Uninstalling the IDM Driver for JDBC 43

44 Identity Man

novdocx (en) 11 D
ecem

ber 2007
For example:
#host idm idm 255.255.255.255 255.255.255.0

5 Restart the Postgres server to effect changes made to the pg_hba.conf file.

3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation
The directory context for Sybase SQL scripts is install-
dir\jdbc\sql\sybase_ase\install.

1 From a Sybase client, such as isql, log on as user sa.
2 Execute the installation script uninstall.sql.

For example, from the command line, execute
isql -U sa -P -i uninstall.sql

By default, the sa account has no password.
ager 3.5.1 Driver for JDBC: Implementation Guide

4
novdocx (en) 11 D

ecem
ber 2007
4Upgrading the JDBC Driver

If you are upgrading from Identity Manager 3.5.0 to Identity Manager 3.5.1, skip this section. The
following information does not apply.

Identity Manager 3.5 introduced a new architecture for how policies reference one another. To take
advantage of this architecture, the driver configuration file provided for earlier versions of the JDBC
driver must be upgraded. For more information on the new architecture, see “Upgrading Identity
Manager Policies” in Understanding Policies for Identity Manager 3.5.1.

You can upgrade the Identity Manager Driver for JDBC at the same time that you install Identity
Manager, or you can upgrade after Identity Manager is installed.

Section 4.1, “Upgrading While Installing Identity Manager 3.5.1,” on page 45
Section 4.2, “Upgrading after Identity Manager Is Installed,” on page 46

4.1 Upgrading While Installing Identity Manager
3.5.1
During an Identity Manager 3.5.1 installation, you can install the Driver for JDBC (along with other
Identity Manager drivers) at the same time that Identity Manager 3.5.1 is installed. You can upgrade
from DirXML 1.1a, Identity Manager 2, or Identity Manager 3 to Identity Manager 3.5.1.

The Identity Manager Driver for JDBC 3.5.1 won’t run on Identity Manager earlier than Identity
Manager 3.0.

The Identity Manager Driver for JDBC 2.1 won’t run on Identity Manager earlier than Identity
Manager 3.0. To use the Driver for JDBC 2.1, you must upgrade to Identity Manager 3.x.

The Identity Manager Driver for JDBC 2.0 runs on Identity Manager 2.

To upgrade from the Identity Manager Driver for JDBC 1.5 or later to 3.5.1, install the Driver for
JDBC 3.5.1. This task replaces only binaries.

You can upgrade from DirXML 1.1a or Identity Manager 2 to Identity Manager 3.

The following tables summarize upgrade paths:

Table 4-1 Upgrading to the Identity Manager Driver for JDBC 3.5.1

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version

Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.0

Driver for JDBC 1.5 or later None Driver for JDBC 2.0
Upgrading the JDBC Driver 45

46 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 4-2 Upgrading to the Identity Manager Driver for JDBC 2.1 or later

For Identity Manager Driver for JDBC versions earlier than 1.5, you must first upgrade to version
1.5. Refer to the DirXML Driver 1.5 for JDBC Implementation Guide (http://www.novell.com/
documentation/lg/dirxmldrivers/index.html). Be sure to use the 2.1 Association Utility. It
supersedes all previous versions.

4.1.1 Backward Incompatibilities
The driver now requires a minimum of two database connections for bidirectional
synchronization. For additional information, refer to “Use Minimal Number of Connections?”
on page 69.
The driver now returns schema qualifiers (when available) for logical database class names
(parent table or view names). This change doesn’t affect existing configurations unless class
names are remapped in Schema Mapping policies. If class names are remapped, all references
to class names in existing policy need to be schema-qualified.
Slightly alter existing configurations that use views. Set the parameter Enable Meta-Identifier
Support to Boolean False. See “Enable Meta-Identifier Support?” on page 77.
Slightly alter existing configurations that reference the
com.novell.nds.dirxml.driver.jdbc.util.MappingPolicy class. Methods in this class no longer
edit the source document. Instead, they return node sets that must be copied into the destination
document. The example .xml driver configuration file includes examples of how to do this.
Slightly alter existing configurations deployed against DB2/AS400 or other legacy databases
that do not implement or support column position. Add and set the Sort Column Names By
parameter. To sort column names by string collation order, see “Sort Column Names By” on
page 80. The default behavior has been changed to sort column names by hexadecimal value.

4.2 Upgrading after Identity Manager Is Installed
If Identity Manager 3.5.1 is already installed, you can use either Designer for Identity Manager or
iManager to upgrade the JDBC driver.

4.2.1 Upgrading the Driver by Using Designer
1 Make sure that you have updated your driver with all the patches for the version you are

currently running.

We recommend this step for all drivers, to help minimize upgrade issues.
2 Back up the driver.

 See Chapter 18, “Backing Up the JDBC Driver,” on page 223.
3 Install Designer version 2.1or later, then launch Designer.

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version

Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.1

Driver for JDBC 1.5 or later None Driver for JDBC 3.5.1
ager 3.5.1 Driver for JDBC: Implementation Guide

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

novdocx (en) 11 D
ecem

ber 2007
If you had a project open in Designer when you upgraded Designer, proceed to Step 4. If you
didn’t have a project open in Designer when you upgraded Designer, skip to Step 5.

4 If you had a project open when upgrading Designer, read the warning message, then click OK.

Designer closes the project to preform the upgrade.
5 To open and convert the project, double-click System Model in the Project view.

6 Read the tasks listed in the Project Converter message, then click Next.

7 Specify the name of the backup project name, then click Next.
Upgrading the JDBC Driver 47

48 Identity Man

novdocx (en) 11 D
ecem

ber 2007
8 Read the project conversion summary, then click Convert.

9 Read the project conversion result summary, then click Open Project.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
To view the log file that is generated, click View Log.

4.2.2 Upgrading the Driver by Using iManager
1 Make sure that you have updated your driver with all the patches for the version you are

currently running.

To help minimize upgrade issues, we recommend that you complete this step on all drivers.
2 Back up the driver.

See Chapter 18, “Backing Up the JDBC Driver,” on page 223.
3 Verify that Identity Manager 3.5.1 has been installed and that you have the current plug-ins

installed.
4 Launch iManager.
5 Click Identity Manager > Identity Manager Overview.
6 Click Search to find the Driver Set object, then click the driver that you want to upgrade.
7 Read the message that is displayed, then click OK.

IMPORTANT: The example configuration file for the updated driver changed for the Identity
Manager 3.0 release. If your current configuration meets your requirements, you don’t need to
import this example configuration. If you do import the new sample configuration, you will see an
Upgrading the JDBC Driver 49

50 Identity Man

novdocx (en) 11 D
ecem

ber 2007
additional driver for Delimited Text with a new name, a new Identity Vault container specified in
the placement rule, and new rule names.
ager 3.5.1 Driver for JDBC: Implementation Guide

5
novdocx (en) 11 D

ecem
ber 2007
5Importing an Example JDBC
Configuration File

The Identity Manager Driver for JDBC includes an example configuration file that you can use as a
starting point for creating the Driver object. When you import this file, Designer for Identity
Manager or iManager creates and configures the objects and policies needed to make the driver
work properly.

Section 5.1, “Using Designer to Import,” on page 51
Section 5.2, “Using iManager to Import,” on page 51
Section 5.3, “JDBC Driver Settings,” on page 52

5.1 Using Designer to Import
The example .xml configuration file creates and configures the Identity Manager objects needed
for the sample driver to work properly. The configuration file also includes example policies that
you can customize.

The following procedure explains one of several ways to import the example configuration file:

1 Open a project in Designer.
2 In the Modeler, right-click the Driver Set object, then select New > Driver.
3 From the drop-down list, select IDM Driver for JDBC 3.5.1, then click Run.
4 Configure the driver by filling in the fields.

Specify information specific to your environment. See Table 5-1 on page 52.
5 After specifying parameters, click Finish to import the driver.
6 Test the driver.
7 Deploy the driver into the Identity Vault.

See “Deploying a Driver to an Identity Vault” in the Designer 2.1 for Identity Manager 3.5.1
guide.

5.2 Using iManager to Import
Identity Manager provides an example configuration file. You installed this file when you installed
the Identity Manager Web components on an iManager server. Think of the example configuration
file as a template that you import and customize or configure for your environment.

1 In iManager, select Identity Manager Utilities > New Driver.
2 Select a driver set, then click Next.
Importing an Example JDBC Configuration File 51

52 Identity Man

novdocx (en) 11 D
ecem

ber 2007
If you place this driver in a new driver set, you must specify a driver set name, context, and
associated server.

3 Select JDBC-IDM3_5-v1.xml, then click Next.
4 Configure the driver by filling in the configuration parameters.

 For information on the settings, see Table 5-1 on page 52.
5 Define security equivalences by using a User object that has the rights that the driver needs to

have on the server
The Admin user object is most often used for this task. However, you might want to create a
DriversUser (for example) and assign security equivalence to that user. Whatever rights that the
driver needs to have on the server, the DriversUser object must have the same security rights.

6 Identify all objects that represent administrative roles and exclude them from replication.
Exclude the security-equivalence object (for example, DriversUser) that you specified in Step
2. If you delete the security-equivalence object, you have removed the rights from the driver.
Therefore, the driver can’t make changes to Identity Manager.

7 Click Finish.

Configuration File Conventions

Database usernames are the surname of a user concatenated with the corresponding numeric
primary key value. For example, John Doe’s username could be Doe1.
Initial passwords are the surname of a user. For example, John Doe’s password would be Doe.

Sybase passwords must be at least 6 characters long. When shorter than 6 characters, last
names are padded with the character “p.” For example, John Doe’s password would be
Doeppp. The padding character can be adjusted in the Subscriber Command Transformation
policies.

5.3 JDBC Driver Settings
Table 5-1 JDBC Driver Settings

Setting Description

Driver name The name that you want to display in the driver set.

Target database That database that the driver writes to.

Driver is local/remote Specifies whether the driver runs locally or
remotely on a Remote Loader.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Synchronization model Specifies whether the driver uses views to
synchronize directly to existing tables of arbitrary
structure or synchronize to intermediate staging
tables of a particular structure.

Third-party JDBC implementation The third-party implementation that the driver uses.

Data flow Specifies whether the authoritative source of data
is the database, Identity Manager, or bi-directional
(both the database and Identity Manager).

Database host IP address The IP address of the database host.

Database port Specifies the port that the driver uses to
communicate with the database. If you don’t
provide a port number, the Driver Configuration
Wizard provides a default port number for the
database that you selected at install time.

User container DN The Distinguished Name (complete context) of the
container where the database users are published.

Group container DN The Distinguished Name (complete context) of the
container where the database groups are
published.

Publication mode Specifies whether publication is triggered (default)
or triggerless

Setting Description
Importing an Example JDBC Configuration File 53

54 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

6
novdocx (en) 11 D

ecem
ber 2007
6Configuring the JDBC Driver

Section 6.1, “Smart Configuration,” on page 55
Section 6.2, “Configuration Parameters,” on page 57
Section 6.3, “Driver Parameters,” on page 59
Section 6.4, “Subscription Parameters,” on page 81
Section 6.5, “Publication Parameters,” on page 89
Section 6.6, “Trace Levels,” on page 98
Section 6.7, “Configuring Third-Party JDBC Drivers,” on page 99

6.1 Smart Configuration
The JDBC driver can recognize the supported set of third-party JDBC drivers and databases. Also,
the driver can dynamically and automatically configure the majority of driver compatibility
parameters. These features alleviate the need for the end user to understand and explicitly set such
parameters.

These features are implemented via the following four types of XML descriptor files, which
describe a third-party JDBC driver or database to the JDBC driver.

Third-party JDBC driver
Third-party JDBC driver import
Database
Database import

In addition to pre-defined descriptor files, you can create custom descriptor files for a database or
third-party JDBC driver.

Specifying Custom Descriptor Files

You can force the driver to use a custom descriptor file for a database or third-party JDBC driver.
To specify a custom database descriptor file, see “Database Descriptor Filename” on page 72. To
specify a custom third-party driver descriptor file, see “JDBC Driver Descriptor Filename” on
page 71. This is useful when multiple descriptor files exist for the same database or third-party
JDBC driver. For the custom descriptor file to take effect, set the driver parameter as the jdbc-
driver-descriptor.

Reserved Filenames for Descriptor Files

Descriptor filenames that ship with the driver begin with the underscore character (_). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the underscore
character.
Configuring the JDBC Driver 55

56 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor files to share content. This functionality
reduces the size of nonimport descriptor files, minimizes the need for repetition of content, and
increases maintainability. Import files cannot be imported across major types. That is, JDBC driver
descriptors cannot import database imports, and database descriptors cannot import JDBC driver
imports.

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For example,
if a custom third-party JDBC driver descriptor file named custom.xml tries to import a reserved
third-party JDBC driver descriptor named _reserved.xml, an error is issued. These limitations
accomplish the following:

Ensure that no dependencies exist between reserved and custom import files
Allow extension of existing reserved descriptor files in later versions of the driver

Descriptor File Locations

Descriptor files must be located in a jar file whose name begins with the prefix “jdbc” (case-
insensitive) and resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor jar file:

Table 6-1 Where to Place Descriptors

Reserved descriptor files are located in the JDBCConfig.jar file. To ensure that these reserved
files are not overwritten when the Driver for JDBC is updated, place custom descriptors in a
different jar file.

Precedence

Parameters explicitly specified through a management console, such as iManager, always have
precedence over parameters specified through descriptor files. Descriptor file parameters only take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file always have
precedence over that specified in descriptor import files. If a parameter or other information is
duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver

Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver/import

Database com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db

Database import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db/import
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Between import files, precedence is determined by import order. Import files declared earlier in the
import list take precedence over those that follow.

Custom Descriptor Best Practices

Do not begin custom descriptor files name with the underscore (_) character.
Place custom descriptor files in a jar file other than JDBCConfig.jar, and begin the
filename with the prefix “jdbc” (case-insensitive).
Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

Descriptor File DTDs

The following appendixes contain DTDs for all descriptor file types. These DTDs can help you
construct custom descriptor files.

Table 6-2 Where to Find Descriptor DTDs

6.2 Configuration Parameters
Section 6.2.1, “Viewing Driver Parameters,” on page 57
Section 6.2.2, “Deprecated Parameters,” on page 57
Section 6.2.3, “Authentication Parameters,” on page 58

6.2.1 Viewing Driver Parameters
1 In iManager, click Identity Manager > Identity Manager Overview.
2 Locate the driver set containing the driver, then click the driver’s icon.
3 From the Identity Manager Driver Overview, click the driver object.

iManager displays the driver’s configuration parameters.

6.2.2 Deprecated Parameters
The following parameters have been deprecated since version 1.6:

Descriptor Type Appendix

Third-party JDBC driver Appendix F, “Third-Party JDBC Driver Descriptor DTD,” on page 241

Third-party JDBC driver
import

Appendix G, “Third-Party JDBC Driver Descriptor Import DTD,” on
page 243

Database Appendix H, “Database Descriptor DTD,” on page 245

Database import Appendix I, “Database Descriptor Import DTD,” on page 247
Configuring the JDBC Driver 57

58 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-3 Deprecated Parameters

6.2.3 Authentication Parameters
After you import the driver, provide authentication information for the target database.

Authentication ID

An Authentication ID is the name of the driver’s database user/login account.The installation SQL
script for each database provides information on the database privileges required for this account to
authenticate to a supported database. The scripts are located in the install-dir\tools\sql\abbreviated-
database-name\install install-dir\tools\sql\abbreviated-database-name\install directory.

This value can be referenced in the Connection Properties parameter value via the token
{$username}. See “Connection Properties” on page 70.

The default value for the sample configuration is idm.

Authentication Context

The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ between third-party JDBC drivers. However,
they have some similarities in content. Each URL, whatever the format, usually includes an IP
address or DNS name, port number, and a database identifier. For the exact syntax and the content
requirements of your driver, consult your third-party driver documentation.

For a list of JDBC URL syntaxes for supported third-party drivers, see “JDBC URL Syntaxes” on
page 192.

IMPORTANT: Changing anything in this value other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration is novell.

This value can be referenced in the Connection Properties parameter value via the token
{$password}. See “Connection Properties” on page 70.

Tag Name Justification

connection-tester-class The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

connection-test-stmt The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
6.3 Driver Parameters
The following table summarizes all driver-level parameters and their properties:

Table 6-4 Driver Parameters and Properties

Display Name Tag Name Sample Value Default Value Required

Third-Party JDBC
Driver Class Name

jdbc-class oracle.jdbc.driver.OracleDri
ver

(none) yes

Time Syntax time-syntax 1 (integer) 1 (integer) no

Synchronization Filter sync-filter schema (include by
schema membership)

(none) no

Schema Name sync-schema indirect (none) yes1

Include Filter
Expression

include-table-filter IDM_.* (none) no

Exclude Filter
Expression

exclude-table-filter BIN\$.{22}==\$0 (none) no

Table/View Names sync-tables usr (none) yes1

Connection Initialization
Statements

connection-init USE idm (none) no

Use Minimal Number of
Connections?

use-single-connection 0 (no) (dynamic3) no

Connection Properties connection-properties USER={$username};
PASSWORD={$password}

(dynamic3) no

State directory state-dir . (current directory) . (current
directory)

no

JDBC Driver Descriptor
Filename

jdbc-driver-descriptor ora_client_thin.xml (none) no

Database Descriptor
Filename

database-descriptor ora_10g.xml (none) no

Use Manual
Transactions?

use-manual-
transactions

1 (yes) (dynamic2) no

Transaction Isolation
Level

transaction-isolation-
level

read committed (dynamic3) no

Reuse Statements? reuse-statements 1 (reuse) (dynamic3) no

Number of Returned
Result Sets

handle-stmt-results one (dynamic3) no

Enable Statement-
Level Locking?

enable-locking 1 (yes) 0 (no) no

Lock Statement
Generator Class

lock-generator-class com.novell.nds.dirxml.drive
r.jdbc.db.lock.OraLockGen
erator

(dynamic3) no
Configuring the JDBC Driver 59

60 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1 One of these mutually-exclusive parameters must be present if the Synchronization Filter
parameter is not present. See “Synchronization Filter” on page 64.
2 This default is derived dynamically at runtime from descriptor files and database metadata.
3 This default is derived dynamically from descriptor files at runtime.

Driver parameters fall into the following subcategories:

Section 6.3.1, “Uncategorized Parameters,” on page 60
Section 6.3.2, “Database Scoping Parameters,” on page 64
Section 6.3.3, “Connectivity Parameters,” on page 69
Section 6.3.4, “Compatibility Parameters,” on page 71

6.3.1 Uncategorized Parameters
“Third-Party JDBC Driver Class Name” on page 60
“Time Syntax” on page 61
“State Directory” on page 63

Third-Party JDBC Driver Class Name

This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Enable Referential
Attribute Support?

enable-refs 1 (yes) 1 (yes) no

Enable Meta-Identifier
Support?

enable-meta-identifiers 1 (yes) 1 (yes) no

Force Username Case force-username-case upper (to uppercase) (none) no

Left Outer Join
Operator

left-outer-join-operator (+) (dynamic3) no

Retrieve Minimal
Metadata

minimal-metadata 0 (no) (dynamic3) no

Function Return
Method

function-return-method result set (dynamic3) no

Supports Schemas in
Metadata Retrieval?

supports-schemas-in-
metadata-retrieval

1 (yes) (dynamic3) no

Sort Column Names By column-position-
comparator

com.novell.nds.dirxml.drive
r.jdbc.util.config.comp.Strin
gByteComparator
(hexadecimal value)

(dynamic3) no

Display Name Tag Name Sample Value Default Value Required
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-5 Third-Party JDBC Driver Class Name: Properties

For a list of supported third-party JDBC driver classnames, see “JDBC Driver Class Names” on
page 192.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be any of the following options:

“Return Database Time, Date, and Timestamp Values as 32-Bit Integers” on page 61
“Return Database Time, Date, and Timestamp Values as Canonical Strings” on page 61
“Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String” on page 62

Return Database Time, Date, and Timestamp Values as 32-Bit Integers

This is the default.

eDirectory Time and Timestamp syntaxes are composed of unsigned, 32-bit integers that express the
number of whole seconds that have elapsed since 12:00 a.m., January 1st, 1970 UTC. The maximum
range of this data type is approximately 136 years. When interpreted as unsigned integers (as
originally intended), these syntaxes are capable of expressing dates and times to the second in the
range of 1970 to 2106. When interpreted as a signed integer, these syntaxes are capable of
expressing dates and times to the second in the range of 1901 to 2038.

This option has two problems:

Identity Vault Time and Timestamp syntaxes cannot express as large a date range as database
Date or Timestamp syntaxes.
Identity Vault Time and Timestamp syntaxes are granular to the second. Database Timestamp
syntaxes are often granular to the nanosecond.

The second and third options overcome these two limitations.

NOTE: Map the database Time, Date, and Timestamp values to eDirectory attributes of type Time
or Timestamp.

Return Database Time, Date, and Timestamp Values as Canonical Strings

The following table shows abstract database data types and their corresponding canonical string
representations:

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Sample Value oracle.jdbc.driver.OracleDriver

Default Value (none)
Configuring the JDBC Driver 61

62 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-6 Database Types and Canonical String Representations

1 C = century, Y = year, M = month D = day, H = hour, M= minute, S = second, N = nano

These fixed-length formats collate in chronological order on any platform in any locale. Even
though the precision of nanoseconds varies by database, the length of Timestamps does not.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Numeric String.

Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String

The following table shows abstract database data types and their corresponding Java String
representations:

Table 6-7 Database Types and Java String Formats

1 y= year, m= month, d= day, h= hour, m= minute, s= second, f= nano

These fixed-length formats collate in chronological order on any platform in any locale. The
precision of nanoseconds, and hence the length of Timestamps, varies by database.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Case Ignore/Case
Exact String.

The following table lists the properties of the Time Syntax parameter:

Table 6-8 Time Syntax: Properties

JDBC Data Type Canonical String Format1

java.sql.Time HHMMSS

java.sql.Date CCYYMMDD

ava.sql.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

JDBC Data Type Java String Format1

java.sql.Time hh:mm:ss

java.sql.Date yyyy-mm-dd

java.sql.Timestamp yyyy-mm-dd hh:mm:ss.fffffffff

Property Value

Tag Name time-syntax

Required? no

Default Value 1 (integer)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
State Directory

The State Directory parameter specifies where a driver instance should store state data. State data is
currently used for triggerless publication. See “Triggerless Publication Parameters” on page 95.
State data might be used to store additional state information in the future.

Each driver instance has two state files. State filenames follow the formats jdbc_driver-instance-
guid.db and jdbc_driver-instance-guid.lg. For example, jdbc_bd2a3dd5-d571-4171-a195-
28869577b87e.db and jdbc_bd2a3dd5-d571-4171-a195-28869577b87e.lg are state filenames.

State files are named to be unique. These names are not intuitive. The names begin with jdbc_ and
end in .lg or .db. The rest of the filename is a GUID value that must be looked up by using a
directory browser that can display it.

Defunct state files (those belonging to deleted drivers) in the state directory are deleted each time a
driver instance with the same state directory is started.

Changes That Can Force Triggerless Publisher Resynchronization

If you delete state files, the triggerless publisher will build new state files by resynchronizing. If you
move the JDBC driver without moving the state files, the triggerless publisher builds new state files
by resynchronizing. Changing to and from the Remote Loader is a move. Therefore, if you move the
JDBC driver using triggerless publication and want to avoid a full resync, also move all jdbc_*.lg
and jdbc_*.db files in the state directory.

If more than two files exist in the specified state directory, you must look up the GUID to know
which files belong to the driver instance being moved. To identify a driver instance’s state files, you
can use DSTrace or DSBrowse. For convenience, the IDM engine traces each driver's GUID in
DSTrace on startup.You can use Dsbrowse to find the GUID.

If no value is provided for the state directory parameter, or the value is '.', the state directory is the
current directory. The current directory depends upon the following:

The platform that the driver is running on
Whether the driver is running locally or remotely

When a process is started, a default directory in the file system is assigned to it. The default
directory is the current directory "." If you don't supply a value, the default State Directory is the
current directory (the one that the process is running in).

Table 6-9 Default Directories

Legal Values 1 (integer)
2 (canonical string)
3 (java string)

Schema-Dependent? True

Platform or Environment Default Directory

Windows, for the Remote Loader novell\remoteloader

Property Value
Configuring the JDBC Driver 63

64 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The current directory might be different for a custom installation.

No data is lost when resynchronization occurs, although additional data might remain. For example,
because deletes are not captured, users that were deleted in the database during the move will not be
disabled/deleted (depending upon policy).

Moving the driver is not to be undertaken whimsically. As a rule of thumb, don't move the driver
unless you must do so.

Properties

The following table lists the properties of the State Directory parameter:

Table 6-10 State Directory: Properties

6.3.2 Database Scoping Parameters
“Synchronization Filter” on page 64
“Schema Name” on page 66
“Include Filter Expression” on page 67
“Exclude Filter Expression” on page 67
“Table/View Names” on page 68

Synchronization Filter

The Synchronization Filter parameter determines which database objects, such as tables and views,
are members of the synchronization schema (the set of tables/views visible to the driver at runtime).
With the addition of this parameter, the driver can now run in two modes: schema-aware or schema-
unaware.

Schema-Unaware Mode. When the Synchronization Filter parameter is present and set to empty
(exclude all tables/views), the driver is schema-unaware. It does not retrieve table/view metadata on
startup. Therefore, no metadata methods are required. See Appendix D, “java.sql.DatabaseMetaData
Methods,” on page 233.

Windows, for Identity Manager (local; not on the
Remote Loader)

c:\novell\nds\dibfiles

NetWare (local) _netware

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent

Sample Value c:\novell\nds\DIBFiles

Default Value . (current directory)

Platform or Environment Default Directory
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
When schema-unaware, the synchronization schema can be empty. Both the Schema Name and
Sync Tables/Views parameters are completely ignored. Neither is required. Both can be absent,
present, valued or valueless. See “Schema Name” on page 66 and “Table/View Names” on page 68.

In schema-unaware mode, the driver acts as a pass-through agent for embedded SQL. In this state,
standard XDS events (for example, Add, Modify, and Delete) are ignored. See Chapter 13,
“Embedded SQL Statements in XDS Events,” on page 153. Also, triggered or triggerless
publication no longer work.

Schema-Aware Mode. When the Synchronization Filter parameter is not present or set to a value
other than empty (exclude all tables/views), the driver is schema-aware. It retrieves table/view
metadata on a limited number of tables/view to facilitate data synchronization. You can cache
metadata on all tables/views owned by a single database user (include by schema membership), or
cache metadata on an explicit list of table/view names (include by table/view name). When schema-
aware, the driver retrieves database table/view metadata on startup. For a list of required metadata
methods, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.

When schema-aware, parameter Schema Name or Table/View Names must be present and have a
value. Because these two parameters are mutually exclusive, only one parameter can have a value.
See “Schema Name” on page 66 and “Table/View Names” on page 68.

The following table lists parameters that require the driver to be schema-aware. When the driver is
schema-unaware, these parameters do not have any effect on driver behavior.

Table 6-11 Schema-Dependent Parameters

Parameter

Lock Statement Generator Class

Enable Referential Attribute Support?

Enable Meta-Identifier Support?

Left Outer Join Operator

Retrieve Minimal Metadata

Supports Schemas in Metadata Retrieval?

Sort Column Names By

Disable Statement-Level Locking

Check Update Counts?

Add Default Values on Insert?

Generation/Retrieval Method (Table-Global)

Retrieval Timing (Table-Global)

Retrieval Timing

Disable Publisher?

Disable Statement-Level Locking?

Publication Mode
Configuring the JDBC Driver 65

66 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following table lists the properties of this parameter:

Table 6-12 Synchronization Filter: Properties

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database
schema is analogous to the name of the owner of the tables or views being synchronized. For
example, to synchronize two tables, usr and grp, each belonging to database user idm, you enter
idm as this parameter’s value.

When using this parameter instead of Table/View Names, names of database objects are implicitly
schema-qualified by the driver. As such, parameters referencing stored procedure, function, or table
names do not need to be schema-qualified unless they reside in a schema other than the one
specified here. In particular, Method and Timing (Table-Local) and Event Log Table Name are
affected. See “Table/View Names” on page 68, “Method and Timing (Table-Local)” on page 85,
and “Event Log Table Name” on page 93.

The following table lists the properties of this parameter:

Enable Future Event Processing?

Event Log Table Name

Delete Processed Rows?

Allow Loopback?

Startup Option

Polling Interval (In Seconds)

Publication Time of Day

Post Polling Statements

Batch Size

Property Value

Tag Name sync-filter

Required? no

Case-Sensitive? no

Sample Value indirect

Legal Values empty (exclude all tables/views)
schema (include by schema membership)
list (include by table/view name)

Default Value: (none)

Parameter
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-13 Schema Name: Properties

1 When the Schema Name parameter is used without the Synchronization Filter parameter, the
Table/View Names parameter must be left empty or omitted from a configuration. See
“Synchronization Filter” on page 64 and “Table/View Names” on page 68.

IMPORTANT: Changing the value of the Schema Name parameter forces a resync of all objects
when triggerless publication is used.

Include Filter Expression

The Include Filter Expression parameter is only operative when the Schema Name parameter is
used. See “Schema Name” on page 66.

The following table lists the properties of this parameter:

Table 6-14 Include Filter Expression: Properties

Exclude Filter Expression

This parameter is only operative when the Schema Name parameter is used. See “Schema Name” on
page 66.

The following table lists the properties of this parameter:

Property Value

Tag Name sync-schema

Required? yes1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 181.

Sample Value indirect

Default Value: (none)

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_*. (all table/view names starting with “idm_”)

Default Value (none)

Legal Values (any legal Java regular expression)
Configuring the JDBC Driver 67

68 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-15 Exclude Filter Expression: Properties

Table/View Names

The Table/View Names parameter allows you to create a logical database schema by listing the
names of the logical database classes to synchronize. Logical database class names are the names of
parent tables and views. It is an error to list child table names.

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such as MySQL, or when a database schema contains a large number of tables or
views of which only a few are of interest. Reducing the number of table/view definitions cached by
the driver can shorten startup time as well as reduce runtime memory utilization.

When using this parameter instead of Schema Name, you likely need to schema-qualify other
parameters that reference stored procedure, function, or table names. In particular, the Method and
Timing (Table-Local) and Event Log Table Name parameters are affected. See “Schema Name” on
page 66, “Method and Timing (Table-Local)” on page 85 and “Event Log Table Name” on page 93.

The following table lists the properties of this parameter:

Table 6-16 Table/View Names: Properties

1When this parameter is used without the Synchronization Filter parameter, the Schema Name
parameter must be left empty or omitted from a configuration. See “Synchronization Filter” on
page 64 and “Schema Name” on page 66.

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin*. (all table/view names starting with “bin”)

Default Value (none)

Legal Values (any legal Java regular expression)

Property Value

Tag Name sync-tables

Required? yes1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on
page 181.

Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
IMPORTANT: Changing anything in the Table/View Name parameter other than URL properties
forces a resynchronization of all objects when triggerless publication is used.

6.3.3 Connectivity Parameters
“Use Minimal Number of Connections?” on page 69
“Connection Initialization Statements” on page 69
“Connection Properties” on page 70

Use Minimal Number of Connections?

The Use Minimal Number of Connections? parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, and two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate
query-back operations.

When this parameter is set to Boolean True, the number of required database connections is reduced
to two. One connection is shared between the Subscriber and Publisher channels. It is used to
process subscription and publication query-back events. The other is used to query for publication
events.

In previous versions, the driver was able to support bidirectional synchronization by using a single
connection. The publication algorithm was redesigned to increase performance, enable support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Table 6-17 Use Minimal Number of Connections?: Properties

1This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean False.

NOTE: Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifies what SQL statements, if any, should
be executed immediately after connecting to the target database. Connection initialization

Property Value

Tag Name use-single-connection

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
Configuring the JDBC Driver 69

70 Identity Man

novdocx (en) 11 D
ecem

ber 2007
statements are useful for changing database contexts and setting session properties. These
statements are executed each time the driver, irrespective of channel, connects or reconnects to the
target database.

The following table lists the properties of this parameter:

Table 6-18 Connection Initialization Statements: Properties

Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful
for specifying properties that cannot be set via the JDBC URL specified in the Authentication
Context parameter. See “Authentication Context” on page 58.

The primary purpose of this parameter is to enable encrypted transport for third-party JDBC drivers.
For a list of relevant connection properties, see “Sybase Adaptive Server Enterprise JConnect JDBC
Driver” on page 201 and “Oracle Thin Client JDBC Driver” on page 197.

Connection properties are specified as key-value pairs. The key is specified as the value to the left of
the “=” character. The value is the value to the right of the “=” character. You can specify multiple
key-value pairs, but each pair must be delimited by the “;” character.

When you use the Connection Properties parameter, authentication information can be passed via
the JDBC URL specified in the Authentication Context parameter or here. See “Authentication
Context” on page 58.

If specified as connection properties, value tokens can be used as placeholders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “Authentication ID” on page 58 and “Application Password”
on page 58. For username, the token is {$username}. For password, the token is
{$password}.

The following table lists the properties of this parameter:

Table 6-19 Connection Properties: Properties

Property Value

Tag Name connection-init

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 181.

Delimiters semicolon

Sample Value USE idm; SET CHAINED OFF

Default Value (none)

Schema-Dependent False

Property Value

Tag Name connection-properties
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
6.3.4 Compatibility Parameters
“JDBC Driver Descriptor Filename” on page 71
“Database Descriptor Filename” on page 72
“Use Manual Transactions?” on page 72
“Transaction Isolation Level” on page 73
“Reuse Statements?” on page 74
“Number of Returned Result Sets” on page 75
“Enable Statement-Level Locking?” on page 75
“Lock Statement Generator Class” on page 76
“Enable Referential Attribute Support?” on page 76
“Enable Meta-Identifier Support?” on page 77
“Force Username Case” on page 77
“Left Outer Join Operator” on page 78
“Retrieve Minimal Metadata” on page 78
“Function Return Method” on page 79
“Supports Schemas in Metadata Retrieval?” on page 79
“Sort Column Names By” on page 80

JDBC Driver Descriptor Filename

The JDBCDriver Descriptor Filename parameter specifies the third-party JDBC descriptor file to
use. Descriptor file names must not be prefixed with the underscore character (for example,
_mysql_jdriver.xml) because such filenames are reserved. Place descriptor files in a jar file
beginning with the case-insensitive prefix “jdbc” (for example, JDBCCustomConfig.jar) and
in the jar file’s com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver
directory.

The following table lists the properties of this parameter:

Required? no

Case-Sensitive? third-party JDBC driver-dependent

Delimiters semicolon

Sample Value user={$username}; password={$password};
oracle.jdbc.defaultNChar=true

Default Value (none)

Schema-Dependent False

Property Value
Configuring the JDBC Driver 71

72 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-20 JDBC Driver Descriptor Filename: Properties

Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not use
the underscore character in prefixes to Descriptor filenames (for example, _mysql.xml). Such
names are reserved. Place Descriptor files in a jar file beginning with the case-insensitive prefix
“jdbc” (for example, JDBCCustomConfig.jar). Also, place Descriptor files in the jar file’s
com/novell/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Table 6-21 Database Descriptor Filename: Properties

Use Manual Transactions?

The Use Manual Transactions? parameter specifies whether to use manual or user-defined
transactions.

This parameter is primarily used to enable interoperability with MySQL MyISAM table types,
which do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml

Default Value (none)

Schema-Dependent False

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml

Default Value (none)

Schema-Dependent False
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-22 Use Manual Transactions?: Properties

1This default is derived dynamically from descriptor files and database metadata at runtime.

NOTE: To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Level

The Transaction Isolation Level parameter sets the transaction isolation level for connections that
the driver uses. Six values exist:

unsupported

none

read uncommitted

read committed

repeatable read

serializable

Five of the values correspond to the public constants defined in the java.sql Interface Connection
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

Because some third-party drivers do not support setting a connection’s transaction isolation level to
none, the driver also supports the additional non-standardized value of unsupported.
PostgreSQL online documentation (http://www.postgresql.org/docs/current/static/transaction-
iso.html) has one of the better, concise primers on what each isolation level actually means.

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported
transaction isolation levels for supported databases, see “Supported Transaction Isolation Levels” on
page 181.

We recommend using a transaction isolation level of read committed because it is the
minimum isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Property Value

Tag Name use-manual-transactions

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
Configuring the JDBC Driver 73

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

74 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-23 Transaction Isolation Level: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
read committed.

Reuse Statements?

The Reuse Statements? parameter specifies whether one or more java.sql.Statement items are active
at a time on a given connection. See java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/
java/sql/Statement.html).

This parameter is primarily used to enable interoperability with Microsoft SQL Server 2000 Driver
for JDBC.

When set to Boolean True, the driver allocates a Java SQL Statement once and then reuses it. When
set to Boolean False, the driver allocates/deallocates statement objects each time they are used,
ensuring that no more than one statement is active at a time on a given connection.

The following table lists the properties of this parameter:

Table 6-24 Reuse Statements?: Properties

Property Value

Tag Name transaction-isolation-level

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values unsupported
none
read uncommitted
read committed
repeatable read
serializable

Schema-Dependent False

Property Value

Tag Name reuse-statements

Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

novdocx (en) 11 D
ecem

ber 2007
1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

NOTE: Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sql.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditions in “Oracle Thin Client JDBC
Driver” on page 197 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Table 6-25 Number of Returned Result Sets: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
multiple, many, or yes.

Enable Statement-Level Locking?

The Enable Statement-Level Locking? parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Table 6-26 Enable Statement-Level Locking?: Properties

Property Value

Tag Name handle-stmt-results

Required? no

Sample Value one

Default Value (dynamic1)

Legal Values none, no (none)
single, one (one)
multiple, many, yes (multiple)

Schema-Dependent False

Property Value

Tag Name enable-locking

Required? no

Default Value 0 (no)
Configuring the JDBC Driver 75

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

76 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which DBLockStatementGenerator
implementation to use to generate the SQL statements necessary to explicitly lock database
resources for a pending SQL statement. Information on the DBLockStatementGenerator interface is
in the Java documents that ship with the driver.

The following table lists the properties of this parameter:

Table 6-27 Lock Statement Generator Class: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.db.lock.DBLockGenerator.

Enable Referential Attribute Support?

The Enable Referential Attribute Support? parameter toggles whether the driver recognizes foreign
key constraints between logical database classes. These are used to denote containment. Foreign key
constraints between parent and child tables within a logical database class are unaffected.

When set to Boolean True, foreign key columns are interpreted as referential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter is to ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 6-28 Enable Referential Attribute Support?: Properties

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name lock-generator-class

Required? no

Sample Value com.novell.nds.dirxml.driver.jdbc.db.lock.OraLockGenerator

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name enable-refs

Property Value
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Enable Meta-Identifier Support?

The Enable Meta-Identifier Support? parameter toggles whether the driver interprets view column
name prefixes such as “pk_” and “fk_” strictly as metadata. When interpreted as metadata, such
prefixes are not considered part of the view column name.

For example, when meta-identifier support is enabled, column “pk_idu” has an effective column
name of “idu,” prohibiting the existence of another column with the same effective name in the
same view. When meta-identifier support is disabled, column “pk_idu” has the effective column
name of “pk_idu,” allowing the existence of another column named “idu.” Furthermore, when meta-
identifier support is enable, a view with a primary key named “pk_idu” would conflict with a table
having a primary key column named “idu.” When meta-identifier support is disabled, they would
not conflict.

When set to Boolean True, view column prefixes are interpreted as metadata. When set to Boolean
False, view column name prefixes are interpreted as part of the column name proper.

The primary purpose of this parameter is to ensure backward compatibility with the 1.5 version of
the driver. For 1.5 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 6-29 Enable Meta-Identifier Support?: Properties

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to authenticate
to the target database.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 194.

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name enable-meta-identifiers

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value
Configuring the JDBC Driver 77

78 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following table lists the properties of this parameter:

Table 6-30 Force Username Case: Properties

Left Outer Join Operator

The Left Outer Join Operator parameter specifies the left outer join operator used in the triggerless
publication query. It might be used for other purposes in the future.

The following table lists the properties of this parameter:

Table 6-31 Left Outer Join Operator: Properties

1This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
LEFT OUTER JOIN.

Retrieve Minimal Metadata

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optional metadata methods. For a list of required and optional
metadata methods, refer to Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.
Optional metadata methods are required for multivalue and referential attribute synchronization.

Property Value

Tag Name force-username-case

Required? no

Default Value (don’t force)

Legal Values lower (to lowercase)
mixed (to mixed case)
upper (to uppercase)

Schema-Dependent False

Property Value

Tag Name left-outer-join-operator

Required? no

Default Value (dynamic1)

Legal Values *=
(+)
LEFT OUTER JOIN

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-32 Retrieve Minimal Metadata: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean False.

NOTE: Setting this value to Boolean True improves startup time and third-party JDBC driver
compatibility at the expense of functionality.

Function Return Method

The Function Return Method parameter specifies how data is retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC driver.
See “Informix JDBC Driver” on page 194.

When set to result set, function results are retrieved through a result set. When set to return
value, the function result is retrieved as a single, scalar return value.

Table 6-33 Function Return Method: Properties

1 This default is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

The Supports Schemas in Metadata Retrieval? parameter specifies whether schema names should be
used when retrieving database metadata.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 194.

Property Value

Tag Name minimal-metadata

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name function-return-method

Required? no

Default Value (dynamic1)

Legal Values result set
return value (scalar return value)

Schema-Dependent False
Configuring the JDBC Driver 79

80 Identity Man

novdocx (en) 11 D
ecem

ber 2007
When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Table 6-34 Supports Schemas in Metadata Retrieval?: Properties

1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

Sort Column Names By

The Sort Column Names By parameter specifies how column position is to be determined for legacy
databases that do not support sorting by column names.

The primary purpose of this parameter is to enable interoperability with legacy databases, such as
DB2/AS400.

Sorting columns names by hexadecimal value ensures that if a driver instance is relocated to a
different server, it continues to function without modification. Sorting column names by platform or
locale string collation order is more intuitive, but might require configuration changes if a driver
instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might have
to be renamed.

It is also possible to specify any fully-qualified Java class name as long as the following occur:

The Java class name implements the java.util.Comparator (http://java.sun.com/j2se/1.5.0/docs/
api/java/util/Comparator.html) interface.
The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/java/
lang/String.html) arguments.
The class is in the runtime classpath.

Table 6-35 Sort Column Names By: Properties

Property Value

Tag Name supports-schemas-in-metadata-retrieval

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False

Property Value

Tag Name column-position-comparator

Required? no

Default Value (dynamic1)
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

novdocx (en) 11 D
ecem

ber 2007
1 This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

6.4 Subscription Parameters
The following table summarizes Subscriber-level parameters and their properties:

Table 6-36 Subscriber-Level Parameters and Properties

1 This default is derived dynamically from descriptor files at runtime.

Subscription parameters are in two subcategories:

Section 6.4.1, “Uncategorized Parameters,” on page 82
Section 6.4.2, “Primary Key Parameters,” on page 84

Legal Values com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator
(hexadecimal value)
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator (string collation
order)
(any java.util.Comparator that accepts java.lang.String arguments)

Schema-
Dependent

True

Display Name Tag Name Sample Value Default Value Required

Disable Subscriber? disable 1 (yes) 0 (no) no

Generation/Retrieval
Method (Table-Global)

key-gen-method auto none
(subscription
event)

Retrieval Timing (Table-
Global)

key-gen-timing after (after row insertion) before (before
row insertion)

no

Method and Timing
(Table-Local)

key-gen usr("?=indirect.proc_idu()",
before)

(none) no

Disable Statement-Level
Locking?

disable-locking 1 (yes) 0 (no) no

Check Update Counts? check-update-
count

0 (no) 1 (yes) no

Add Default Values on
Insert?

add-default-
values-on-view-
insert

0 (no) (dynamic1) no

Property Value
Configuring the JDBC Driver 81

82 Identity Man

novdocx (en) 11 D
ecem

ber 2007
6.4.1 Uncategorized Parameters
“Disable Subscriber?” on page 82
“Disable Statement-Level Locking?” on page 82
“Check Update Counts?” on page 83
“Add Default Values on Insert?” on page 83

Disable Subscriber?

The Disable Subscriber? parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the parameter
is set to Boolean False, the Subscriber channel is active.

Table 6-37 Disable Subscriber?: Properties

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources are
explicitly locked on this channel before each SQL statement is executed. This parameter is active
only if Enable Statement-Level Locking? is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 6-38 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent False

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Check Update Counts?

The Check Update Counts? parameter specifies whether the Subscriber channel checks to see if a
table was actually updated when INSERT, UPDATE, and DELETE statements executed against a
table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is thrown.
When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False

When using Microsoft SQL Server, use the default value, because errors in trigger logic (that might
roll back a transaction) are not propagated back to the Subscriber channel.

Table 6-39 Check Update Counts?: Properties

Add Default Values on Insert?

The Add Default Values on Insert? parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server 2000.
This database requires that view columns constrained NOT NULL have a non-NULL value in an
INSERT statement.

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views, and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Table 6-40 Add Default Values on Insert?: Properties

Property Value

Tag Name check-update-count

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name add-default-values-on-view-insert

Required? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
Configuring the JDBC Driver 83

84 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1 This default is derived dynamically from descriptor files at runtime.

6.4.2 Primary Key Parameters
“Generation/Retrieval Method (Table-Global)” on page 84
“Retrieval Timing (Table-Global)” on page 85
“Method and Timing (Table-Local)” on page 85

When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key values to create Identity Manager associations. These parameters specify how and when
the Subscriber channel obtains the primary key values necessary to construct association values.
How primary key values are obtained is the primary key generation/retrieval method. The retrieval
timing indicates when primary key values are retrieved.

The following table identifies the supported methods and timings:

Table 6-41 Supported Methods and Timings

1 The Subscriber channel automatically overrides this timing to before.
2 The Subscriber channel automatically overrides this timing to after.

Generation/Retrieval Method (Table-Global)

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key values are
generated or retrieved for all parent tables and views. The Method and Timing parameter overrides
this parameter on a per-table/view basis. See “Method and Timing (Table-Local)” on page 85.

When this parameter is set to none, primary key values are assumed to already exist in the
subscription event. When this parameter is set to driver, primary key values are generated by one
of the following:

Using a SELECT (MAX()+1) statement if retrieval timing is set to before
Using a SELECT MAX() statement if retrieval timing is set to after

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

When this parameter is set to auto, primary key values are retrieved via the
java.sql.Statement.getGeneratedKeys():java.sql.ResultSet method. The
MySQL Connector/J JDBC driver is the only supported third-party JDBC driver that currently
implements this method. See “MySQL Connector/J JDBC Driver” on page 196.

Method Timing: before (row insertion) Timing: after (row insertion)

None (subscription event) X 01

Driver (Subscriber-generated) X X

Auto (auto-generated/identity column) 02 X

(stored procedure/function) X X
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-42 Generation/Retrieval Method (Table-Global): Properties

Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The parameter Method and Timing (Table-Local)
overrides this parameter. See “Method and Timing (Table-Local)” on page 85.

When this parameter is set to before, primary key values are retrieved before insertion. When this
parameter is set to after, primary key values are retrieved after insertion.

Table 6-43 Retrieval Timing (Table-Global): Properties

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to a table or view name. The syntax for this parameter mirrors
a procedural programming language method call with multiple arguments (such as, method-
name(argument1, argument2)).

When using the Table/View Names parameter, you probably need to explicitly schema-qualify any
tables, views, stored procedures or functions referenced in this parameter’s value. When you use the
Schema Name parameter, tables, views, stored procedures, or functions referenced in this
parameter’s value are implicitly schema-qualified with that schema name. If tables, views, stored
procedures, or functions referenced in this parameter’s value are located in a different schema other
than the implicit schema, they must be schema-qualified.

Property Value

Tag Name key-gen-method

Required? no

Default Value none (subscription event)

Legal Values none (subscription event)
driver (Subscriber-generated)
auto (auto-generated/identity column)

Schema-Dependent True

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)

Legal Values before (before row insertion)
after (after row insertion)

Schema-Dependent True
Configuring the JDBC Driver 85

86 Identity Man

novdocx (en) 11 D
ecem

ber 2007
BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for this parameter’s value is the following:
<key-gen> ::= <table-or-view-name> "(" <generation-retrieval-method>,

 <retrieval-timing> ")"
{[<delimiter>] <key-gen>}

<generation-retrieval-method> ::= none | driver | auto |
 """ <procedure-signature> """ |
 """ <function-signature> """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-
 identifier>

<delimiter> ::= ";" | "," | <white-space>

<procedure-signature> ::= <schema-qualifier> "." <stored-routine-
 name>"("<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>

<schema-qualifier> ::= <legal-undelimited-database-username-
identifier>

<stored-routine-name> ::= <legal-undelimited-database-stored-routine
 -identifier>

<argument-list> ::= <column-name>{"," <column-name>}

<column-name> ::= <column-from-table-or-view-name-previously-
specified>

Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are None, Driver, Auto, and Stored Procedure/
Function:

None
By default, the Subscriber channel assumes that the Identity Vault is the authoritative source of
primary key values and that the requisite values are already present in a given <add> event. If this
is the case, no primary values need to be generated because they already exist. They only need to be
retrieved from the current <add> event. This method is desirable when an eDirectory attribute, such
as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Assuming the existence of a table named usr and a view named view_usr where the Identity
Vault is the authoritative source of primary key values, this parameter’s value would look something
like the following:

usr(none); view_usr(none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.
ager 3.5.1 Driver for JDBC: Implementation Guide

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

novdocx (en) 11 D
ecem

ber 2007
Driver
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

When prototyping or in the initial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or function is written. You can also
use this method against databases that do not support stored procedures or functions. When you use
this method in a production environment, however, all SQL statements generated by an <add>
event should be contained in a serializable transaction. For additional information, refer to
“Transaction Isolation Level” on page 73.

Instead of making all transactions serializable, you can also set individual transaction isolation
levels by using embedded SQL attributes. For additional information, refer to Section 13.6,
“Transaction Isolation Level,” on page 160.

For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

A simple SELECT(MAX+1)statement for before timing
A SELECT MAX()statement for after timing

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

Assuming the existence of a table named usr and a view named view_usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr(driver); view_usr(driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Auto
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method
java.sql.Statement.getGeneratedKeys():java.sql.ResultSet. The MySQL
Connector/J JDBC driver is the only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/J JDBC Driver” on page 196.

Assuming the existence of a table named usr and a view named view_usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr(auto); view_usr(auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Stored-Procedure/Function:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.
Configuring the JDBC Driver 87

88 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Assuming

The existence of a table named usr with a primary key column named idu
A view named view_usr with a primary key values named pk_idu
The existence of a database function func_last_usr_idu and stored procedure
sp_last_view_usr_pk_idu that both return the last generated primary key value for
their respective table/view

this parameter’s value would look something like the following:

usr("?=func_last_usr_idu()");
view_usr("sp_last_view_usr_pk_idu(pk_idu)")

In the previous examples, a parameter is passed to the stored procedure. Parameters can also be
passed to functions, but this is not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as IN
OUT parameters. Non-key columns must be passed as IN parameters.

For both stored procedures and functions, parameter order, number and data type must correspond to
the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Retrieval Timing

The Retrieval Timing parameter specifies when primary key values are retrieved.

An <add> event always results in at least one INSERT statement against a parent table or view.
This portion of this parameter specifies when primary key values are to be retrieved relative to the
initial INSERT statement.

Before
This is the default setting. When this setting is specified, primary key values are retrieved before the
initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except
auto. Retrieval timing is required for the none method.

After
When this setting is specified, primary key values are retrieved after the initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except
none. Retrieval timing is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:

usr(none, before); view_usr(none, before)

usr(driver, before); view_usr(driver, after)

usr(auto, after); view_usr(auto, after)

usr("?=func_last_usr_idu()", before);
view_usr("sp_last_view_usr_pk_idu(pk_idu)", after)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The following table lists the properties of this parameter:

Table 6-44 Retrieval Timing: Properties

6.5 Publication Parameters
The following table summarizes publisher-level parameters and their properties:

Table 6-45 Publisher-Level Parameters and Properties

Property Value

Tag Name key-gen

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 181.

Sample Value usr("?=proc_idu()", before)

Default Value (none)

Legal Values (any string adhering to the BNF)

Schema-Dependent True

Display Name Tag Name Sample Value Default Value Required

Disable Publisher? disable 1 (yes) 0 (no) no

Disable Statement-Level
Locking?

disable-locking 1 (yes) 0 (no) no

Publication Mode publication-mode 2 (triggerless) 1 (triggered) no

Event Log Table Name log-table indirect_process (none) yes1

Delete Processed
Rows?

delete-from-log 0 (no) 1 (yes) no

Allow Loopback? allow-loopback 1 (yes) 0 (no) no

Enable Future Event
Processing?

handle-future-events 1 (yes) 0 (no) no

Startup Option startup-option no

Polling Interval (In
Seconds)

polling-interval 60 10 no2

Publication Time of Day time-of-day 15:30:00 (none) no2

Post Polling Statements post-poll-stmt DELETE FROM
direct.direct_process

(none) no

Batch Size batch-size 16 1 no

Heartbeat Interval (In
Minutes)

pub-heartbeat-interval 10 0 no
Configuring the JDBC Driver 89

90 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1 Required for triggered publication mode.
2 These parameters are mutually exclusive.

Publication parameters fall into four major subcategories:

Section 6.5.1, “Uncategorized Parameters,” on page 90
Section 6.5.2, “Triggered Publication Parameters,” on page 93
Section 6.5.3, “Triggerless Publication Parameters,” on page 95
Section 6.5.4, “Polling Parameters,” on page 95

6.5.1 Uncategorized Parameters
“Disable Publisher?” on page 90
“Disable Statement-Level Locking?” on page 90
“Publication Mode” on page 91
“Enable Future Event Processing?” on page 91

Disable Publisher?

The Disable Publisher? parameter specifies whether the Publisher channel is disabled. When
disabled, the Publisher channel does not query for database events. Unlike with the Disable
Subscriber? parameter, you can still issue database queries on the Publisher channel to facilitate
alternative publication algorithms.

When this parameter is set to Boolean True, the Publisher channel is disabled. When this parameter
is set to Boolean False, the Publisher channel is active.

Table 6-46 Disable Publisher?: Properties

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources should be
explicitly locked on this channel before each SQL statement is executed. This parameter is only
active if the Enable Statement-Level Locking? parameter is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 6-47 Disable Statement-Level Locking?: Properties

Publication Mode

The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel dredges all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

Table 6-48 Publication Mode: Properties

Enable Future Event Processing?

For triggered publication, Enable Future Event Processing? specifies whether rows in the event log
table are ordered and processed by insertion order (the record_id column) or chronologically
(the event_time column).

When this parameter is set to Boolean False, rows in the event log table are published by order of
insertion. When this parameter is set to Boolean True, rows in the event log table are published
chronologically.

For triggerless publication, Enable Future Event Processing specifies whether database local time is
published with each event. This additional information can be used to force a retry of future-dated
events. In order for this to work, a column specifying when an event should be processed must be
part of each logical database class utilizing this feature and placed in the Publisher filter as a
notification-only attribute.

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name publication-mode

Required? no

Default Value 1 (triggered)

Legal Values 1 (triggered)
2 (triggerless)

Schema-Dependent True
Configuring the JDBC Driver 91

92 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Database local time is published as an attribute on each XDS event (for example, add, modify,
delete). The attribute name is jdbc:database-local-time, where the jdbc namespace
prefix is bound to urn:dirxml:jdbc. The format is the Java string representation of a
java.sql.Timestamp: yyyy-mm-dd hh:mm:ss.fffffffff. Depending upon the value of the
Time Syntax parameter, the value indicating when an event should be processed can be published as
an integer, as a canonical string, or as a Java string. See “Time Syntax” on page 61.

Regardless of the publication syntax, this value can be parsed and compared to the database local
time value. The following table maps the time syntax to the appropriate parse method.

Table 6-49 Mapping Time Syntax to Parse Methods

After both time values are in a common Timstamp object representation, they can be compared by
using the following methods:

com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.before(java.sql.Timestamp,
java.sql.Timestamp):boolean
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil.after(java.sql.Timestamp,
java.sql.Timestamp):boolean

An example policy is provided in Appendix J, “Policy Example: Triggerless Future Event
Processing,” on page 249.

When this parameter is set to Boolean True, local database time is published with each event. When
this parameter is set to Boolean False, this information is omitted.

The following table lists the properties of this parameter:

Table 6-50 Enable Future Event Processing?: Properties

Time Syntax Parse Method

integer java.sql.Timestamp(long) (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html)

canonical string com.novell.nds.dirxml.driver.jdbc.db.DSTime(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)

java string java.sql.Timestamp.valueOf(java.lang.String):java.sql.Timestamp (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

Property Value

Tag Name handle-future-events

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

novdocx (en) 11 D
ecem

ber 2007
6.5.2 Triggered Publication Parameters
The Driver for JDBC can use any of four triggered publication parameters.

“Event Log Table Name” on page 93
“Delete Processed Rows?” on page 93
“Allow Loopback?” on page 94

Event Log Table Name

The Event Log Table Name parameter specifies the name of the event log table where publication
events are stored.

The table specified here must conform to the definition of Chapter 12, “The Event Log Table,” on
page 143.

When using “Table/View Names” on page 68, you’ll probably need to explicitly schema-qualify
this table name. When you use “Schema Name” on page 66, this table name is implicitly schema-
qualified with that schema name. If this table is located in a schema other than the implicit schema,
it must be schema-qualified.

The following table lists the properties of this parameter:

Table 6-51 Event Log Table Name: Properties

1 This parameter is required if “Publication Mode” on page 91 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows? parameter specifies whether processed rows are deleted from the event
log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is set
to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rows into a history table. Do one of the following:

Call a clean-up stored procedure via the parameter “Post Polling Statements” on page 97.

Property Value

Tag Name log-table

Required? no1

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 181.

Sample Value eventlog

Default Value (none)

Schema-Dependent True
Configuring the JDBC Driver 93

94 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Place a before-delete trigger on the event log table to intercept delete events executed against
the event log table and to move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Table 6-52 Delete Processed Rows?: Properties

NOTE: Setting this parameter to Boolean False degrades publication performance unless processed
rows are periodically removed from the event log table.

Allow Loopback?

The Allow Loopback? parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter is
set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Table 6-53 Allow Loopback?: Properties

NOTE: Setting this parameter to Boolean True might degrade performance because extraneous
events might be published.

Property Value

Tag Name delete-from-log

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True

Property Value

Tag Name allow-loopback

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)
0, no, false (no)

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
6.5.3 Triggerless Publication Parameters
The Startup Option parameter specifies what happens when a triggerless publisher starts.

Startup Option

Table 6-54 Startup Option: Settings and Results

The following table lists the properties of this parameter:

Table 6-55 Startup Option: Properties

IMPORTANT: The following configuration changes can force a full resynchronization:

Changing anything in the Authentication Context parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.
Changing the value of the Schema Name parameter or the Table/View Names parameter forces
a resynchronization of all objects when triggerless publication is used.
Changing the State Directory parameter value.
Moving or deleting state files. See “Changes That Can Force Triggerless Publisher
Resynchronization” on page 63.
Changing table/view structure in the database (in particular, changing the position or type of
key columns).

6.5.4 Polling Parameters
“Polling Interval (In Seconds)” on page 96
“Publication Time of Day” on page 96

Setting Result

1 All objects are assumed to have changed and are republished.

2 Past and present changes are ignored.

3 All past and present changes are published.

Property Value

Tag Name startup-option

Required? no

Default Value 1 (process all changes)

Legal Values 1 (resync all objects)
2 (process future changes only)
3 (process all changes)

Schema-Dependent True
Configuring the JDBC Driver 95

96 Identity Man

novdocx (en) 11 D
ecem

ber 2007
“Post Polling Statements” on page 97
“Batch Size” on page 97
“Heartbeat Interval (In Minutes)” on page 98

Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse
between polling cycles.

The following table lists the properties of this parameter:

Table 6-56 Polling Interval (In Seconds): Properties

NOTE: We recommend that you set this value to no less than 10 seconds.

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time is
understood to mean server local time (the time on the server where the driver is running).

The following table lists the properties of this parameter:

Table 6-57 Publication Time of Day: Properties

NOTE: This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval
(In Seconds)” on page 96.

Property Value

Tag Name polling-interval

Required? no

Default Value 10 (seconds)

Legal Values 1-604800 (1 week)

Schema-Dependent True

Property Value

Tag Name time-of-day

Required? no

Sample Value 13:00:00 (1PM)

Default Value (none)

Legal Values hh:mm:ss (h = hour, m = minute, s = second)

Schema-Dependent True
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end of
each active polling cycle. An active polling cycle is one where some publication activity has
occurred.

The primary purpose of this parameter is to allow cleanup of the event log table following
publication activity.

You probably need to explicitly schema-qualify any database objects (for example, tables, stored
procedures, and functions) referenced in these statements.

The following table lists the properties of this parameter:

Table 6-58 Post Polling Statements: Properties

Batch Size

The Batch Size parameter specifies how many events are sent in a single publication document.

Basically, the larger the batch, the better the performance.

Larger batches necessitate fewer trips across the network in both directions.
More events in a single document require fewer trips from the Publisher channel to the Identity
Manager engine (assuming that query-back events are not being used).
Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).
Larger batches require fewer commits to state files in the local file system.
Commits can also be costly.

This parameter defines an upper bound. The Publisher channel might override the specified value
under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of
overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver
shutdown.

The following table lists the properties of this parameter:

Property Value

Tag Name post-poll-stmt

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on
page 181.

Delimiters semicolon

Sample Value DELETE FROM direct.direct_process

Default Value (none)

Legal Values (any set of legal SQL statements)

Schema-Dependent True
Configuring the JDBC Driver 97

98 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 6-59 Batch Size: Properties

Heartbeat Interval (In Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can be inactive before it sends a heartbeat document. In practice, more than the number of minutes
specified can elapse. That is, this parameter defines a lower bound. The Publisher channel sends a
heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Table 6-60 Heartbeat Interval (In Minutes): Properties

6.6 Trace Levels
To see debugging output from the driver, add a DirXML-DriverTraceLevel attribute value from 1 to
7 on the driver set containing the driver instance. This attribute is commonly confused with the
DirXML-XSL TraceLevel attribute. For more information on driver set trace levels, refer to
“Viewing Identity Manager Processes” in the Novell Identity Manager 3.5.1 Administration Guide.

The driver supports the following seven trace levels:

Table 6-61 Supported Trace Levels

Property Value

Tag Name batch-size

Required? no

Default Value 1

Legal Values 1 to 128

Schema-Dependent True

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0 to 2,147,483,647 (java.lang.Integer.MAX_VALUE)

Schema-Dependent False

Level Description

1 Minimal tracing

2 Database properties
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Levels 6 and 7 are particularly useful for debugging third-party drivers.

6.7 Configuring Third-Party JDBC Drivers
The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

Use the latest version of the driver.
Third-party driver behavior might be configurable.
In many cases, incompatibility issues can be resolved by adjusting the driver’s JDBC URL
properties.
When you work with international characters, you often must explicitly specify to third-party
drivers the character encoding that the database uses.
Do this by appending a property string to the end of the driver’s JDBC URL.
Properties usually consist of a property keyword and character encoding value (for example,
jdbc:odbc:mssql;charSet=Big5). The property keyword might vary among third-
party drivers.
The possible character encoding values are defined by Sun. For more information, refer to
Sun’s Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/
encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when you use an unsupported third-party driver during initial configuration.

Table 6-62 Recommended Settings for Third-Party JDBC Drivers

3 Connection status, SQL statements, event log records

4 Verbose output

5 Database resource allocation/deallocation; state file contents

6 JDBC API (invoked methods, passed arguments, returned values, etc.)

7 Third-party driver

Parameter Name Compatibility Value

Synchronization filter empty

Reuse statements? 0 (no)

Use manual transactions? 0 (no)

Use minimal number of connections? yes

Retrieve minimal metadata? 1 (yes)

Number of returned result sets one

Level Description
Configuring the JDBC Driver 99

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

100 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

7
novdocx (en) 11 D

ecem
ber 2007
7Activating the JDBC Driver

Activate the driver within 90 days of installation. Otherwise, the driver won’t work.

For information on activation, see “Activating Novell Identity Manager Products” in the Identity
Manager 3.5.1 Installation Guide.
Activating the JDBC Driver 101

102 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

8
novdocx (en) 11 D

ecem
ber 2007
8Managing the JDBC Driver

Section 8.1, “Starting, Stopping, or Restarting the JDBC Driver,” on page 103
Section 8.2, “Migrating and Resynchronizing Data,” on page 103
Section 8.3, “Using the DirXML Command Line Utility,” on page 104
Section 8.4, “Viewing Driver Versioning Information,” on page 104
Section 8.5, “Reassociating a Driver Set Object with a Server Object,” on page 109
Section 8.6, “Changing the Driver Configuration,” on page 110
Section 8.7, “Storing Driver Passwords Securely with Named Passwords,” on page 110
Section 8.8, “Adding a Driver Heartbeat,” on page 117

8.1 Starting, Stopping, or Restarting the JDBC
Driver
To start the JDBC driver in Designer for Identity Manager:

1 Open a project in the Modeler, then right-click the driver line.
2 Select Live > Start Driver, Stop Driver, or Restart Driver.

To start the JDBC driver in iManager:

1 If you changed default data locations during configuration, ensure that the new locations exist
before you start the driver.

2 Click Identity Manager > Identity Manager Overview.
3 Browse to the driver set where the driver exists, then click Search.
4 Click the driver status indicator in the upper right corner of the driver icon, then click Start

driver, Stop driver, or Restart driver.
If a change log is available, the driver processes all the changes in the change log. To force an
initial synchronization, see “Migrating and Resynchronizing Data” on page 103.

8.2 Migrating and Resynchronizing Data
Identity Manager synchronizes data as it changes. If you want to synchronize all data immediately,
you can choose from the following options:

Migrate Data from the Identity Vault: Allows you to select containers or objects you want
to migrate from an Identity Vault to an JDBC server. When you migrate an object, the
Metadirectory engine applies all of the Matching, Placement, and Create policies, as well as the
Subscriber filter, to the object.
Migrate Data into the Identity Vault: Allows you to define the criteria that Identity
Manager uses to migrate objects from an JDBC server into an Identity Vault. When you
migrate an object, the Metadirectory engine applies all of the Matching, Placement, and Create
policies, as well as the Publisher filter, to the object. Objects are migrated into the Identity
Vault by using the order you specify in the Class list.
Managing the JDBC Driver 103

104 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Synchronize: Identity Manager looks in the Subscriber class filter and processes all objects
for those classes. Associated objects are merged. Unassociated objects are processed as Add
events.

To use one of the options:

1 In iManager, click Identity Manager > Identity Manager Overview.
2 Browse to and select the driver set where the driver exists, then click Search.
3 Click the driver icon.
4 Click the appropriate migration button.

For more information, see Chapter 9, “Synchronizing Objects,” on page 119.

8.3 Using the DirXML Command Line Utility
The DirXML Command Line utility provides command line access to manage the driver. This
utility is not a replacement for iManager or Designer. The primary use of this utility is to allow you
to create platform-specific scripts to manage the driver.

For example, you could create a shell script on Linux to check the status of the driver. See
Appendix M, “The DirXML Command Line Utility,” on page 257 for information about the
DirXML Command Line utility. For daily tasks, use iManager or Designer.

8.4 Viewing Driver Versioning Information
The Versioning Discovery tool only exists in iManager.

Section 8.4.1, “Viewing a Hierarchical Display of Versioning Information,” on page 104
Section 8.4.2, “Viewing the Versioning Information As a Text File,” on page 106
Section 8.4.3, “Saving Versioning Information,” on page 108

8.4.1 Viewing a Hierarchical Display of Versioning Information
1 To find your Driver Set object in iManager, click Identity Manager > Identity Manager

Overview, then click Search.
2 In the Identity Manager Overview, click Information.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
You can also select Identity Manager Utilities > Versions Discovery, browse to and select the
Driver Set object, then click OK.

3 View a top-level or unexpanded display of versioning information.

The unexpanded hierarchical view displays the following:
The eDirectoryTM tree that you are authenticated to
The Driver Set object that you selected
Servers that are associated with the Driver Set object
If the Driver Set object is associated with two or more servers, you can view Identity
Manager information on each server.
Drivers

4 View versioning information related to servers by expanding the server icon.
Managing the JDBC Driver 105

106 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The expanded view of a top-level server icon displays the following:
Last log time
Version of Identity Manager that is running on the server

5 View versioning information related to drivers by expanding the driver icon.

The expanded view of a top-level driver icon displays the following:
The driver name
The driver module (for example,
com.novell.nds.dirxml.driver.delimitedtext.DelimitedTextDriver)

The expanded view of a server under a driver icon displays the following:
The driver ID
The version of the instance of the driver running on that server

8.4.2 Viewing the Versioning Information As a Text File
Identity Manager publishes versioning information to a file. You can view this information in text
format. The textual representation is the same information contained in the hierarchical view.

1 To find your Driver Set object in iManager, click Identity Manager > Identity Manager
Overview, then click Search.

2 In the Identity Manager Overview, click Information.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
You can also select Identity Manager Utilities > Versioning Discovery, browse to and select
the Driver Set object, then click Information.

3 In the Versioning Discovery Tool dialog box, click View.

The information is displayed as a text file in the Report Viewer window.
Managing the JDBC Driver 107

108 Identity Man

novdocx (en) 11 D
ecem

ber 2007
8.4.3 Saving Versioning Information
You can save versioning information to a text file on your local or network drive.

1 To find the Driver Set object in iManager, click Identity Manager > Identity Manager
Overview, then click Search.

2 In the Identity Manager Overview, click Information.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
You can also select Identity Manager Utilities > Versions Discovery, browse to and select the
Driver Set object, then click Information.

3 In the Versioning Discovery Tool dialog box, click Save As.

4 In the File Download dialog box, click Save.
5 Navigate to the desired directory, type a filename, then click Save.

Identity Manager saves the data to a text file.

8.5 Reassociating a Driver Set Object with a
Server Object
The driver set object should always be associated with a server object. If the driver set is not
associated with a server object, none of the drivers in the driver set can start.
Managing the JDBC Driver 109

110 Identity Man

novdocx (en) 11 D
ecem

ber 2007
If the link between the driver set object and the server object becomes invalid, you see one of the
following conditions:

When upgrading eDirectory your Identity Manager server, you get the error
UniqueSPIException error -783.
No server is listed next to the driver set in the Identity Manager Overview window.
A server is listed next to the driver set in the Identity Manager Overview window, but the name
is garbled text.

To resolve this issue, disassociate the driver set object and the server object, then reassociate them.

1 In iManager click Identity Manager > Identity Manager Overview, then click Search to find
the Driver Set object that the driver should be associated with.

2 Click the Remove server icon, then click OK.
3 Click the Add server icon, then browse to and select the Server object.
4 Click OK.

8.6 Changing the Driver Configuration
If you need to change the driver configuration, Identity Manager allows you to make the change
through Designer or iManager.

To change the driver configuration in Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties.

To change the driver configuration in iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties.

For a listing of all of the configuration fields, see Appendix N, “Properties of the JDBC Driver,” on
page 271.

8.7 Storing Driver Passwords Securely with
Named Passwords
Identity Manager allows you to store multiple passwords securely for a particular driver. This
functionality is referred to as Named Passwords. Each different password is accessed by a key, or
name.

You can also use the Named Passwords feature to store other pieces of information securely, such as
a user name.

To use a named password in a driver policy, you refer to it by the name of the password, instead of
using the actual password, and the Metadirectory engine sends the password to the driver. The
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
method described in this section for storing and retrieving named passwords can be used with any
driver without making changes to the driver shim.

Section 8.7.1, “Using Designer to Configure Named Passwords,” on page 111
Section 8.7.2, “Using iManager to Configure Named Passwords,” on page 111
Section 8.7.3, “Using Named Passwords in Driver Policies,” on page 113
Section 8.7.4, “Configuring Named Passwords by Using the DirXML Command Line Utility,”
on page 114

8.7.1 Using Designer to Configure Named Passwords
1 Right-click the Driver object, then select Properties.
2 Select Named Password, then click New.

3 Specify the Name of the named password.
4 Specify the Display name of the named password.
5 Specify the named password, then re-enter the password.
6 Click OK twice.

8.7.2 Using iManager to Configure Named Passwords
1 Click Identity Manager > Identity Manager Overview.
2 Click Search to search for the driver set that is associated with the driver.
3 In the Identity Manager Overview, click the upper right corner of the driver icon, then click

Edit properties.
4 On the Identity Manager tab, click Named Passwords.

The Named Passwords page appears, listing the current named passwords for this driver. If you
have not set up any named passwords, the list is empty.
Managing the JDBC Driver 111

112 Identity Man

novdocx (en) 11 D
ecem

ber 2007
5 To add a named password, click Add, complete the fields, then click OK.

6 Specify a name, display name, and a password, then click OK twice.
You can use this feature to store other kinds of information securely, such as a username.

7 Click OK to restart the driver and have the changes take effect.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
To remove a Named Password, select the password name, then click Remove. The password is
removed without prompting you to confirm the action.

8.7.3 Using Named Passwords in Driver Policies
“Making a Call to a Named Password” on page 113
“Referencing a Named Password” on page 113

Making a Call to a Named Password

Policy Builder allows you to make a call to a named password. Create a new rule and select Named
Password as the condition, then set an action, depending upon if the Named Password is available or
not available.

1 In Designer, launch Policy Builder, right-click, then click New > Rule.
2 Specify the name of the rule, then click Next.
3 Select the condition structure, then click Next.
4 Select named password for the Condition.
5 Browse to and select the named password that is stored on the driver.

In this example, the named password is userinfo.
6 Select whether the Operator is available or not available.
7 Select an action for the Do field.

In this example, the action is veto.

The example indicates that if the userinfo named password is not available, then the event is vetoed.

Figure 8-1 A Policy Using Named Passwords

Referencing a Named Password

The following example shows how a named password can be referenced in a driver policy on the
Subscriber channel in XSLT:
<xsl:value-of
select=”query:getNamedPassword($srcQueryProcessor,'mynamedpassword')”
xmlns:query=”http://www.novell.com/java/
com.novell.nds.dirxml.driver.XdsQueryProcessor/>
Managing the JDBC Driver 113

114 Identity Man

novdocx (en) 11 D
ecem

ber 2007
8.7.4 Configuring Named Passwords by Using the DirXML
Command Line Utility

“Creating a Named Password in the DirXML Command Line Utility” on page 114
“Removing a Named Password by Using the DirXML Command Line Utility” on page 115

Creating a Named Password in the DirXML Command Line Utility

1 Run the DirXML Command Line utility.

For information, see Appendix M, “The DirXML Command Line Utility,” on page 257.
2 Enter your username and password.

The following list of options appears.
DirXML commands
 1: Start driver
 2: Stop driver
 3: Driver operations...
 4: Driver set operations...
 5: Log events operations...
 6: Get DirXML version
 7: Job operations...
99: Quit
Enter choice:

3 Enter 3 for driver operations.
A numbered list of drivers appears.

4 Enter the number for the driver you want to add a named password to.
The following list of options appears.
Select a driver operation for:
driver_name
 1: Start driver
 2: Stop driver
 3: Get driver state
 4: Get driver start option
 5: Set driver start option
 6: Resync driver
 7: Migrate from application into DirXML
 8: Submit XDS command document to driver
 9: Submit XDS event document to driver
10: Queue event for driver
11: Check object password
12: Initialize new driver object
13: Passwords operations
14: Cache operations
99: Exit
Enter choice:

5 Enter 13 for password operations.
The following list of options appears.
Select a password operation
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 1: Set shim password
 2: Reset shim password
 3: Set Remote Loader password
 4: Clear Remote Loader password
 5: Set named password
 6: Clear named password(s)
 7: List named passwords
 8: Get passwords state
99: Exit
Enter choice:

6 Enter 5 to set a new named password.
The following prompt appears:
Enter password name:

7 Enter the name by which you want to refer to the named password.
8 Enter the actual password that you want to secure at the following prompt:
Enter password:

The characters you type for the password are not displayed.
9 Confirm the password by entering it again at the following prompt:
Confirm password:

10 After you enter and confirm the password, you are returned to the password operations menu.
11 After completing this procedure, you can use the 99 option twice to exit the menu and quit the

DirXML Command Line Utility.

Removing a Named Password by Using the DirXML Command Line Utility

This option is useful if you no longer need named passwords that you previously created.

1 Run the DirXML Command Line utility.

For information, see Appendix M, “The DirXML Command Line Utility,” on page 257.
2 Enter your username and password.

The following list of options appears.
DirXML commands
 1: Start driver
 2: Stop driver
 3: Driver operations...
 4: Driver set operations...
 5: Log events operations...
 6: Get DirXML version
 7: Job operations
99: Quit
Enter choice:

3 Enter 3 for driver operations.
A numbered list of drivers appears.

4 Enter the number for the driver you want to remove named passwords from.
The following list of options appears.
Managing the JDBC Driver 115

116 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Select a driver operation for:
driver_name
 1: Start driver
 2: Stop driver
 3: Get driver state
 4: Get driver start option
 5: Set driver start option
 6: Resync driver
 7: Migrate from application into DirXML
 8: Submit XDS command document to driver
 9: Submit XDS event document to driver
10: Queue event for driver
11: Check object password
12: Initialize new driver object
13: Passwords operations
14: Cache operations
99: Exit
Enter choice:

5 Enter 13 for password operations.
The following list of options appears.
Select a password operation
 1: Set shim password
 2: Reset shim password
 3: Set Remote Loader password
 4: Clear Remote Loader password
 5: Set named password
 6: Clear named password(s)
 7: List named passwords
 8: Get passwords state
99: Exit
Enter choice:

6 (Optional) Enter 7 to see the list of existing named passwords.
The list of existing named passwords is displayed.
This step can help you make sure you are removing the correct password.

7 Enter 6 to remove one or more named passwords.
8 Enter No to remove a single named password at the following prompt:
Do you want to clear all named passwords? (yes/no):

9 Enter the name of the named password you want to remove at the following prompt:
Enter password name:

After you enter the name of the named password you want to remove, you are returned to the
password operations menu:
Select a password operation
 1: Set shim password
 2: Reset shim password
 3: Set Remote Loader password
 4: Clear Remote Loader password
 5: Set named password
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 6: Clear named password(s)
 7: List named passwords
 8: Get passwords state
99: Exit
Enter choice:

10 (Optional) Enter 7 to see the list of existing named passwords.
This step lets you verify that you have removed the correct password.

11 After completing this procedure, you can use the 99 option twice to exit the menu and quit the
DirXML Command Line utility.

8.8 Adding a Driver Heartbeat
The driver heartbeat is a feature of the Identity Manager drivers that ship with Identity Manager 2
and later. Its use is optional. The driver heartbeat is configured by using a driver parameter with a
time interval specified. If a heartbeat parameter exists and has an interval value other than 0, the
driver sends a heartbeat document to the Metadirectory engine if no communication occurs on the
Publisher channel for the specified interval of time.

The intent of the driver heartbeat is to give you a trigger to allow you to initiate an action at regular
intervals, if the driver does not communicate on the Publisher channel as often as you want the
action to occur. To take advantage of the heartbeat, you must customize your driver configuration or
other tools. The Metadirectory engine accepts the heartbeat document but does not take any action
because of it.

For most drivers, a driver parameter for heartbeat is not used in the sample configurations, but you
can add it.

A custom driver that is not provided with Identity Manager can also provide a heartbeat document,
if the driver developer has written the driver to support it.

To configure the heartbeat:

1 In iManager, click Identity Manager > Identity Manager Overview.
2 Browse to and select your driver set object, then click Search.
3 In the Identity Manager Overview, click the upper right corner of the driver icon, then click

Edit properties.
4 On the Identity Manager tab, click Driver Configuration, scroll to Publisher Settings, then

locate Heartbeat interval (in minutes).
If a driver parameter already exists for heartbeat, you can change the interval and save the
changes. Configuration is then complete.
The value of the interval cannot be less than 1. A value of 0 means that the feature is turned off.

5 (Conditional) If a driver parameter does not exist for heartbeat, click Edit XML.
6 (Condtional) Add a driver parameter entry similar to the following example, as a child of
<publisher-options>.
<pub-heartbeat-interval display-name="Heart Beat">10</pub-
heartbeat-interval>

TIP: If the driver does not produce a heartbeat document after being restarted, check the
placement of the driver parameter in the XML.
Managing the JDBC Driver 117

118 Identity Man

novdocx (en) 11 D
ecem

ber 2007
7 Save the changes, then make sure the driver is stopped and restarted.

After you add the driver parameter, you can edit the time interval by using the graphical view.
Another option is to create a reference to a global configuration value (GCV) for the time interval.
Like other global configuration values, the driver heartbeat can be set at the driver set level instead
of on each individual Driver object. If a driver does not have a particular GCV, and the Driver Set
object does have it, the driver inherits the value from the Driver Set object.
ager 3.5.1 Driver for JDBC: Implementation Guide

9
novdocx (en) 11 D

ecem
ber 2007
9Synchronizing Objects

This section explains driver and object synchronization in DirXML® 1.1a, Identity Manager 2.0,
and Identity Manager 3.x. Driver synchronization was not available for DirXML 1.0 and DirXML
1.1.

After the driver is created, instead of waiting for objects to be modified or created, the data between
the two connected systems can be sent through the synchronization process.

Section 9.1, “What Is Synchronization?,” on page 119
Section 9.2, “When Does Synchronization Occur?,” on page 119
Section 9.3, “How Does the Metadirectory Engine Decide Which Object to Synchronize?,” on
page 120
Section 9.4, “How Synchronization Works,” on page 121

9.1 What Is Synchronization?
The actions commonly referred to as “synchronization” in Identity Manager refer to several
different but related actions:

Synchronization (or merging) of attribute values of an object in the Identity Vault with the
corresponding attribute values of an associated object in a connected system.
Migration of all Identity Vault objects and classes that are included in the filter on the
Subscriber channel.
Generation of the list of objects to submit to the driver’s Subscriber channel for
synchronization or migration in response to a user request (a manual synchronization).
Generation of the list of objects to submit to the driver’s Subscriber channel for
synchronization or migration in response to enabling a formerly disabled driver, or in response
to a cache error.

9.2 When Does Synchronization Occur?
The Metadirectory engine synchronizes objects or merges them in the following circumstances:

A <sync> event element is submitted on the Subscriber or Publisher channel.
A <sync> event element is submitted on the Subscriber channel in the following
circumstances:

The state of the object’s association value is set to “manual” or “migrate.” (This causes an
eDirectoryTM event, which in turn causes the Identity Manager caching system to queue an
object synchronization command in the affected driver’s cache.)
An object synchronization command is read from the driver’s cache.

A <sync> event element is submitted on the Publisher channel in the following
circumstances:

A driver submits a <sync> event element. No known driver currently does this.
Synchronizing Objects 119

120 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The Metadirectory engine submits a <sync> event element for each object found as the
result of a migrate-into-NDS query. The engine submits these <sync> events by using
the Subscriber thread, but processes them by using the Publisher channel filter and
policies.

An <add> event (real or synthetic) is submitted on a channel, and the channel Matching policy
finds a matching object in the target system.
An <add> event with an association is submitted on the Subscriber channel. This normally
occurs only in exceptional cases, such as the bulk load of objects into eDirectory with
DirXML-Associations attribute values.
An <add> event is submitted on the Publisher channel, and an object is found in eDirectory
that already has the association value reported with the <add> event.

The Metadirectory engine generates synchronization requests for zero or more objects in the
following cases:

The user issues a manual driver synchronization request. This corresponds to the Resync button
in the Driver Set property page in ConsoleOne®, or to the Synchronize button on the iManager
Identity Manager Driver Overview page.
The Metadirectory engine encounters an error with the driver’s cache and cannot recover from
the cache error. The driver’s cache is deleted, and the engine generates object synchronization
commands as detailed in Section 9.3, “How Does the Metadirectory Engine Decide Which
Object to Synchronize?,” on page 120.

9.3 How Does the Metadirectory Engine Decide
Which Object to Synchronize?
The Metadirectory engine processes both manually initiated and automatically initiated
synchronization requests in the same manner. The only difference in the processing of manually
initiated versus automatically initiated driver synchronization requests is the starting filter time used
to filter objects being considered for synchronization.

The starting filter time is used to filter objects that have modification or creation times that are older
than the starting time specified in the synchronization request.

For automatically initiated driver synchronization, the starting filter time is obtained from the time
stamps of cached eDirectory events. In particular, the starting filter time is the earliest time for the
cached events that haven’t yet been successfully processed by the driver’s Subscriber channel.

For manually initiated driver synchronization, the default starting filter time is the earliest time in
the eDirectory database. In Identity Manager 2 and Identity Manager 3, an explicit starting filter
time can also be set. DirXML 1.1a has no facility to set the starting filter time value for
synchronization when manually initiating driver synchronization.

The Metadirectory engine creates a list of objects to be synchronized on the Subscriber channel in
the following manner:

1. It finds all objects that:
Have an entry modification time stamp greater than or equal to the starting filter time
and
Exist in the filter on the Subscriber channel.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
2. It finds all objects that have an entry creation time stamp greater than or equal to the starting
filter time.

3. It adds a synchronize object command to the following:
The driver cache for each unique object found that has an entry modification time stamp
greater than or equal to the starting filter time
All objects and classes that are in the Subscriber filter channel in the driver being
synchronized

9.4 How Synchronization Works
After the Metadirectory engine determines that an object is to be synchronized, the following
processes occur:

1. Each system (the Identity Vault and the connected system) is queried for all attribute values in
the appropriate filters.

eDirectory is queried for all values in the Subscriber filter, and for values that are marked
for synchronization in Identity Manager 2.x and Identity Manager 3.x.
The connected system is queried for all values in the Publisher filter, and for values that
are marked for synchronization in Identity Manager 2.x and Identity Manager 3.x.

2. The returned attribute values are compared, and modification lists are prepared for the Identity
Vault and the connected system according to Table 9-1 on page 122, Table 9-2 on page 124,
and Table 9-3 on page 125.
In the tables the following pseudo-equations are used:

“Left = Right” indicates that the left side receives all values from the right side.
“Left = Right[1]” indicates that the left side receives one value from the right side. If there
is more than one value, it is indeterminate.
“Left += Right” indicates that the left side adds the right side values to the left side’s
existing values.
“Left = Left + Right” indicates that the left sides receives the union of the values of the left
and right sides.

Identity Manager has three different combinations of selected items in the filter, and each one
creates a different output.

Section 9.4.1, “Scenario One,” on page 121
Section 9.4.2, “Scenario Two,” on page 123
Section 9.4.3, “Scenario Three,” on page 124

9.4.1 Scenario One
The attribute is set to Synchronize on the Publisher and Subscriber channels, and the merge authority
is set to Default.
Synchronizing Objects 121

122 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Figure 9-1 Scenario One

The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario One. The table shows
different outputs depending upon the following:

Whether the attribute comes from the Identity Vault or the Application
If the attribute is single-valued or multi-valued, and if the attribute is empty or non-empty.
If the attribute is empty or non-empty

Table 9-1 Output of Scenario One

Identity Vault
single-valued
empty

Identity Vault
single-valued
non-empty

Identity Vault
multi-valued
empty

Identity Vault
multi-valued
non-empty

Application
single-valued
empty

No change App = Identity Vault No change App = Identity
Vault[1]

Application
single-valued
non-empty

Identity Vault = App App = Identity Vault Identity Vault = App Identity Vault + =
App

Application
multi-valued
empty

No change App = Identity Vault No change App = Identity Vault
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
9.4.2 Scenario Two
The attribute is set to Synchronize only on the Subscriber channel, or it is set to Synchronize on both
the Subscriber and Publisher channels. The merge authority is set to Identity Vault.

Figure 9-2 Scenario Two

The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario Two. The table shows
different outputs depending upon the following:

Whether the attribute comes from the Identity Vault or the Application
If the attribute is single-valued or multi-valued
If the attribute is empty or non-empty

Application
multi-valued
non-empty

Identity Vault =
App[1]

App + = Identity
Vault

Identity Vault = App App = App +
Identity Vault

Identity Vault = App
+ Identity Vault

Identity Vault
single-valued
empty

Identity Vault
single-valued
non-empty

Identity Vault
multi-valued
empty

Identity Vault
multi-valued
non-empty
Synchronizing Objects 123

124 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 9-2 Output of Scenario Two

9.4.3 Scenario Three
The attribute is set to Synchronize on the Publisher channel, or the merge authority is set to
Application.

Figure 9-3 Scenario Three

Identity Vault
single-valued
empty

Identity Vault
single-valued
non-empty

Identity Vault
multi-valued
empty

Identity Vault
multi-valued
non-empty

Application
single-valued
empty

No change App = Identity Vault No change App = Identity
Vault[1]

Application
single-valued
empty

App = empty App = Identity Vault Identity Vault = App App = Identity
Vault[1]

Application
multi-valued
empty

No change App = Identity Vault No change App = Identity Vault

Application
multi-valued
non-empty

App = empty App = Identity Vault App = empty App = Identity Vault
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario Three. The table shows
different outputs depending upon the following:

Whether the attribute comes from the Identity Vault or the Application
If the attribute is single-valued or multi-valued
If the attribute is empty or non-empty

Table 9-3 Output of Scenario Three

Identity Vault
single-valued
empty

Identity Vault
single-valued
non-empty

Identity Vault
multi-valued
empty

Identity Vault
multi-valued
non-empty

Application
single-valued
empty

No change Identity Vault =
empty

No change Identity Vault =
empty

Application
single-valued
non-empty

Identity Vault = App Identity Vault = App Identity Vault = App Identity Vault =
App

Application
multi-valued
empty

No change Identity Vault =
empty

No change Identity Vault =
empty

Application
multi-valued non-
empty

Identity Vault =
App[1]

Identity Vault =
App[1]

Identity Vault = App Identity Vault = App
Synchronizing Objects 125

126 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

10
novdocx (en) 11 D

ecem
ber 2007
10Schema Mapping

Section 10.1, “High-Level View,” on page 127
Section 10.2, “Logical Database Classes,” on page 127
Section 10.3, “Indirect Synchronization,” on page 127
Section 10.4, “Direct Synchronization,” on page 135
Section 10.5, “Synchronizing Primary Key Columns,” on page 138
Section 10.6, “Synchronizing Multiple Classes,” on page 138
Section 10.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on page 139

10.1 High-Level View
The following table shows a high-level view of how the driver maps Novell® Identity Vault objects
to database objects.

Table 10-1 Mapping Identity Vault Objects to Database Objects

10.2 Logical Database Classes
A logical database class is the set of tables or the view used to represent an eDirectoryTM class in a
database. A logical database class can consist of a single view or one parent table and zero or more
child tables.

The name of a logical database class is the name of the parent table or view.

10.3 Indirect Synchronization
In an indirect synchronization model, the driver maps the following:

Identity Vault Object Database Object

Tree Schema

Class Table/View

Attribute Column

Association Primary Key
Schema Mapping 127

128 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 10-2 Mappings in Indirect Synchronization

Section 10.3.1, “Mapping eDirectory Classes to Logical Database Classes,” on page 128
Section 10.3.2, “Parent Tables,” on page 130
Section 10.3.3, “Parent Table Columns,” on page 130
Section 10.3.4, “Child Tables,” on page 131
Section 10.3.5, “Referential Attributes,” on page 132
Section 10.3.6, “Single-Value Referential Attributes,” on page 132
Section 10.3.7, “Multivalue Referential Attributes,” on page 133

10.3.1 Mapping eDirectory Classes to Logical Database
Classes
In the following example, the logical database class usr consists of the following:

One parent table usr
Two child tables: usr_phone and usr_faxno.

Logical class usr is mapped to the eDirectory class User.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 lname CHAR(64),
 pwdminlen NUMBER(4),
 pwdexptime DATE,
 disabled NUMBER(1),
 username VARCHAR2(64),
 loginame VARCHAR2(64),
 photo LONG RAW,
 manager INTEGER,
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
 CONSTRAINT fk_usr_manager FOREIGN KEY (manager)

Identity Vault Object Database Object

Classes Tables

Attributes Columns

1 Class 1 parent table

and

0 or more child tables

Single-value attribute Parent table column

Multivalue attribute Parent table column (holding delimited values)

or

Child table column (preferred)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_phone
(
 idu INTEGER NOT NULL,
 phoneno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_phone_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_fax
(
 idu INTEGER NOT NULL,
 faxno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_fax_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Surname</nds-name>
 <app-name>lname</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Expiration Time</nds-name>
 <app-name>pwdexptime</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>jpegPhoto</nds-name>
 <app-name>photo</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>manager</nds-name>
 <app-name>manager</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Password Minimum Length</nds-name>
 <app-name>pwdminlen</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Facsimile Telephone Number</nds-name>
 <app-name>usr_fax.faxno</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>usr_phone.phoneno</app-name>
Schema Mapping 129

130 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Login Disabled</nds-name>
 <app-name>disabled</app-name>
 </attr-name>
 </attr-name-map>
</rule>

10.3.2 Parent Tables
Parent tables are tables with an explicit primary key constraint that contains one or more columns. In
a parent table, an explicit primary key constraint is required so that the driver knows which fields to
include in an association value.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)

The following table contains sample data for table indirect.usr.

The resulting association for this row is

idu=1,table=usr,schema=indirect

NOTE: The case of database identifiers in association values is determined dynamically from
database metadata at runtime.

10.3.3 Parent Table Columns
Parent table columns can contain only one value. As such, they are ideal for mapping single-value
eDirectory attributes, such as mapping the single-value eDirectory attribute Password Minimum
Length to the single-value parent table column pwdminlen.

Parent table columns are implicitly prefixed with the schema name and name of the parent table. It is
not necessary to explicitly table-prefix parent table columns. For example,
indirect.usr.fname is equivalent to fname for schema mapping purposes.
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Given Name</nds-name>
 <app-name>fname</app-name>
 </attr-name>

idu fname lname

1 John Doe
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 </attr-name-map>
</rule>

Large binary and string data types should usually be mapped to parent table columns. To map to a
child table column, data types must be comparable in SQL statements. Large data types usually
cannot be compared in SQL statements.

Large binary and string data types can be mapped to child table columns if the following occur:

Each <remove-value> event on these types is transformed in a policy into a <remove-
all-values> element
An <add-value> element follows each <remove-value> event

10.3.4 Child Tables
A child table is a table that has a foreign key constraint on its parent table’s primary key, linking the
two tables together. The columns that comprise the child table’s foreign key can have different
names than the columns in the parent table’s primary key.

The following example shows the relationship between parent table usr and child tables
usr_phone and usr_faxno:
CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.usr_phone
(
 idu INTEGER NOT NULL,
 phoneno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_phone_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)
CREATE TABLE indirect.usr_fax
(
 idu INTEGER NOT NULL,
 faxno VARCHAR2(64) NOT NULL,
 CONSTRAINT fk_fax_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu)
)

NOTE: In a child table, constrain all columns NOT NULL.

The first constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table usr_phone is idu. The only purpose of this column is to relate
tables usr_phone and usr. Because constrained columns do not contain any useful information,
omit them from publication triggers and Schema Mapping policies.

The unconstrained column is the column of interest. It represents a single, multivalue attribute. In
the above example, the unconstrained columns are phoneno and faxno. Because unconstrained
columns can hold multiple values, they are ideal for mapping multivalue eDirectory attributes (for
Schema Mapping 131

132 Identity Man

novdocx (en) 11 D
ecem

ber 2007
example, mapping the multivalue eDirectory attribute Telephone Number to
usrphone.phoneno).

The following table contains sample data for indirect.usr_phone.

Table 10-3 Sample Data

Like parent table columns, child table columns are implicitly schema-prefixed. Unlike parent table
columns, however, a child table column name must be explicitly prefixed with the child table name
(for example, usr_phone.phoneno). Otherwise, the driver implicitly interprets column
phoneno (the parent table column) as usr.phoneno, not the child table column
usr_phone.phoneno.
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Facsimile Telephone Number</nds-name>
 <app-name>usr_fax.faxno</app-name>
 </attr-name>
 <attr-name class-name="User">
 <nds-name>Telephone Number</nds-name>
 <app-name>usr_phone.phoneno</app-name>
 </attr-name>
 </attr-name-map>
</rule>

NOTE: Map each multivalue eDirectory attribute to a different child table.

10.3.5 Referential Attributes
You can represent referential containment in the database by using foreign key constraints.
Referential attributes are columns within a logical database class that refer to the primary key
columns of parent tables in the same logical database class or those of other logical database classes.

10.3.6 Single-Value Referential Attributes
You can relate two parent tables through a single-value parent table column. This column must have
a foreign key constraint pointing to the other parent table’s primary key. The following example
relates a single parent table usr to itself:
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,

idu phoneno

1 111-1111

1 222-2222
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 -- ...
 manager INTEGER,
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
 CONSTRAINT fk_usr_manager FOREIGN KEY (manager)

REFERENCES indirect.usr(idu)
)

NOTE: Single-valued referential columns should be nullable.

<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>manager</nds-name>
 <app-name>manager</app-name>
 </attr-name>
 </attr-name-map>
</rule>

The interpretation of the above example is that each user can have only one manager who himself is
a user.

10.3.7 Multivalue Referential Attributes
You can relate two parent tables through a common child table. This child table must have a column
constrained by a foreign key pointing to the other parent table’s primary key. The following example
relates two parent tables usr and grp through a common child table member.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
 idg INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.grp_member
(
 idg INTEGER NOT NULL,
 idu INTEGER NOT NULL,
 CONSTRAINT fk_member_idg FOREIGN KEY (idg) REFERENCES
indirect.grp(idg), CONSTRAINT fk_member_idu FOREIGN KEY (idu)
REFERENCES indirect.usr(idu)
)

NOTE: Constrain all columns in a child table NOT NULL.
Schema Mapping 133

134 Identity Man

novdocx (en) 11 D
ecem

ber 2007
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>indirect.grp</app-name>
 </class-name>
 <class-name>
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="Group">
 <nds-name>Member</nds-name>
 <app-name>grp_member.idu</app-name>
 </attr-name>
 </attr-name-map>
</rule>

The first constrained column in a child table determines which logical database class the child table
grp_member belongs to. In the above example, grp_member is considered to be part of logical
database class grp. grp_member is said to be a proper child of grp. The second constrained
column in a child table is the multivalue referential attribute.

In the following example, the order of the constrained columns has been reversed so that
grp_member is part of class usr. To more accurately reflect the relationship, table grp_member
has been renamed to usr_mbr_of.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
 idg INTEGER NOT NULL,
 -- ...
 CONSTRAINT pk_grp_idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.usr_mbr_of
(
 idu INTEGER NOT NULL,
 idg INTEGER NOT NULL,
 CONSTRAINT fk_mbr_of_idu FOREIGN KEY (idu)

REFERENCES indirect.usr(idu) ON DELETE CASCADE,
CONSTRAINT fk_mbr_of_idg FOREIGN KEY (idg)

REFERENCES indirect.grp(idg) ON DELETE CASCADE
)
<rule name="Schema Mapping Rule">
 <attr-name-map>
 <class-name>
 <nds-name>Group</nds-name>
 <app-name>indirect.grp</app-name>
 </class-name>
 <class-name>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 <nds-name>User</nds-name>
 <app-name>indirect.usr</app-name>
 </class-name>
 <attr-name class-name="User">
 <nds-name>Group Membership</nds-name>
 <app-name>usr_mbr_of.idg</app-name>
 </attr-name>
 </attr-name-map>
</rule>

In databases that have no awareness of column position (such as DB2/AS400), order is determined
by sorting column names by string or hexadecimal value. For additional information, see “Sort
Column Names By” on page 80.

In general, it is necessary to synchronize only bidirectional, multivalue, referential attributes as part
of one class or the other, not both. If you want to synchronize referential attributes for both classes,
construct two child tables, one for each class. For example, if you want to synchronize eDirectory
attributes Group Membership and Member, you need two child tables.

In practice, when you synchronize User and Group classes, we recommend that you synchronize the
Group Membership attribute of class User instead of the Member attribute of class Group.
Synchronizing the group memberships of a user is usually more efficient than synchronizing all
members of a group.

10.4 Direct Synchronization
In a direct synchronization model, the driver maps the following:

Table 10-4 Mappings in Direct Synchronization

The update capabilities of views vary between databases. Most databases allow views to be updated
when they are comprised of a single base table. (That is, they do not join multiple tables.) If views
are strictly read-only, they cannot be used for subscription. Some databases allow update logic to be
defined on views in instead-of-triggers, which allow a view to join multiple base tables and still be
updateable.

For a list of databases that support instead-of-triggers, see “Database Features” on page 178.
Instead-of-trigger logic can be simulated, regardless of database capability using embedded SQL.
See Section 13.4, “Virtual Triggers,” on page 158.

Section 10.4.1, “View Column Meta-Identifiers,” on page 136
Section 10.4.2, “Primary Key Columns,” on page 138

Identity Vault Object Database Object

Classes Views

Attributes View Columns

Class View

Single-value attribute View Column

Multivalue attribute View Column
Schema Mapping 135

136 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Section 10.4.3, “Schema Mapping,” on page 138

10.4.1 View Column Meta-Identifiers
A view is a logical table. Unlike tables, views do not physically exist in the database. As such, views
usually cannot have traditional primary key/foreign key constraints. To simulate these constructs,
the driver for JDBC embeds constraints and other metadata in view column names. The difference
between these constraints and traditional ones is that the former are not enforced at the database
level. They are an application-level construct.

For example, to identify to the driver which fields to use when constructing association values, place
a primary key constraint on a parent table. The corollary to this for a view is to prefix one or more
column names with pk_ (case-insensitive).

The following table lists the constraint prefixes that can be embedded in view column names.

Table 10-5 Constraint Prefixes

The following example views contain all of these constraint prefixes:
CREATE VIEW direct.view_usr
(
 pk_idu, -- primary key column; implicitly single-valued
 sv_fname, -- single-valued column
 mv_phoneno, -- multi-valued column
 fk__idu__manager, -- self-referential foreign key column; refers

-- to primary key column idu in view_usr;
-- implicitly single-valued

 fk_mv__idg__mbr_of -- extra-referential foreign key column; refers
-- to primary key column idg in view_grp;
-- multi-valued

)
AS
-- ...
CREATE VIEW direct.view_grp
(
 pk_idg, -- primary key column; implicitly single-valued
 fk_mv__idu__mbr -- extra-referential foreign key column; refers
 -- to primary key column idu in view_usr;
 -- multi-valued
)
AS
-- ...

Constraint Prefixes (case-insensitive) Interpretation

pk_ primary key

fk_ foreign key

sv_ single-value

mv_ multivalue
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for view column meta-identifiers:
<view-column-name> ::= [<meta-info>] <column-name>

<column-name> ::= <legal-unquoted-database-identifier>
<meta-info> ::= <referential> | <non-referential>

<non-referential> ::= [<single-value> | <multiple-value>]

<single-value> ::= "sv_"

<multiple-value> ::= "mv_"

<referential> ::= <primary-key> | <foreign-key>

<primary-key> ::= "pk_" [<single-value>] [<column-group-id>]
 [<referenced-column-name>]
<column-group-id> ::= <non-negative-integer> "_"

<referenced-column-name> ::= "_" <column-name> "__"

<foreign-key> ::= "fk_" [<non-referential>] [<column-group-id>]
 <referenced-column-name>

Normalized Forms

By default, all view column names are single-valued. Therefore, explicitly specifying the sv_
prefix in a view column name is redundant. For example, sv_fname and fname are equivalent
forms of the same column name.

Also, primary key column names implicitly refer to themselves. Therefore, it is redundant to specify
the referenced column name. For example, pk_idu is equivalent to pk__idu__idu.

The Driver for JDBC uses two normalized forms of view meta-identifiers:

Database native form

Database native form is the column name as declared in the database. This form is usually
much more verbose than schema mapping form, and contains all necessary meta information.
Schema mapping form
Schema mapping form is returned when the driver returns the application schema. This form is
much more concise than database native form because much of the meta information included
in database native form is represented in XDS XML and not in the identifier.
The referential prefixes pk_ and fk_ are the only meta information preserved in schema
mapping form. This limitation ensures backward compatibility.

The following table provides examples of each form:
Schema Mapping 137

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

138 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 10-6 Example Normalized Forms of View Meta-Identifiers

Equivalent Forms

A view column name without meta information is called its “effective” name, which is similar to a
directory objects’ “effective” rights. ‘For the driver, view column name equivalency is determined
without respect to meta information by default. For example, pk_idu is equivalent to idu, and
fk_mv__idg__mbr_of is equivalent to mbr_of. Any variant form of a view meta column
identifier can be passed to the driver at runtime. For backward compatibility reasons, meta
information can be treated as part of the effective view column name. See “Enable Meta-Identifier
Support?” on page 77.

10.4.2 Primary Key Columns
Primary key column names must be unique among all views in the synchronization schema.

10.4.3 Schema Mapping
Schema mapping conventions for views and view columns are equivalent to that used for parent
tables and parent table columns.

10.5 Synchronizing Primary Key Columns
When the database is the authoritative source of primary key columns, generally omit the columns
from the Publisher and Subscriber filters, Schema Mapping policies, and publication triggers.

When the Identity Vault is the authoritative source of primary key columns, include the columns in
the Subscriber filter and Schema Mapping policies, but omit the columns from the Publisher filter
and publication triggers. Also, GUID rather than CN is recommended for use as a primary key. CN
is a multivalue attribute and can change. GUID has a single value and is static.

10.6 Synchronizing Multiple Classes
When synchronizing multiple eDirectory classes, synchronize each class to a different parent table
or view. Each logical database class must have a unique primary key column name. The Publisher
channel uses this common column name to identify all rows in the event log table pertaining to a
single logical database class. For example, both the logical database classes usr and grp have a
unique primary key column name.
CREATE TABLE usr
(
 idu INTEGER NOT NULL,
 lname VARCHAR2(64) NOT NULL,

Database Native Form Schema Mapping Form

pk_idu pk_idu

sv_fname fname

mv_phoneno phoneno

fk_mv__idg__mbr_of fk_mbr_of
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 --...
 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);
CREATE TABLE grp
(
 idg INTEGER NOT NULL,
 --...
 CONSTRAINT pk_grp_idg PRIMARY KEY(idg)
);

10.7 Mapping Multivalue Attributes to Single-
Value Database Fields
By default, the driver assumes that all eDirectory attributes mapped to parent table columns or view
columns have a single value. Because the driver is unaware of the eDirectory schema, it has no way
of knowing whether an eDirectory attribute has a single value or has multiple values. Accordingly,
multivalue and single-value attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-value
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value is stored in the database. The algorithm is adequate if
the attribute in question has a single value.

If the attribute has multiple values, the algorithm has some undesirable consequences. When a value
is deleted from a multivalue attribute, the database field it is mapped to is set to NULL and remains
NULL until another value is added. The preferred solution to this undesirable behavior is to extend
the eDirectory schema so that only single-value attributes are mapping to parent table or view
columns.

Other solutions include the following:

For indirect synchronization, map each multivalue attribute to its own child table.
For both direct or indirect synchronization, use a policy to delimit multiple values before
inserting them into a table or view column.
Implement a first or last value per replica policy in style sheets by using methods provided in
the com.novell.nds.indirect.driver.jdbc.util.MappingPolicy class.
Under a first-value-per-replica (FPR) policy, the first attribute value on the eDirectory replica
is always synchronized. Under a last-value-per-replica (LPR) policy, the last attribute value on
a replica is always synchronized.

By using global configuration values, you can configure the sample driver configuration to use
either FPR or LPR mapping policies. Multivalue to single-value attribute mapping policies are
contained in the Subscriber Command Transformation policy container. The sample driver
configuration maps the multivalue eDirectory attributes Given Name and Surname to the
single-value columns fname and lname respectively.
Schema Mapping 139

140 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

11
novdocx (en) 11 D

ecem
ber 2007
11Mapping XDS Events to SQL
Statements

Section 11.1, “Mapping XDS Events for Indirect Synchronization,” on page 141

11.1 Mapping XDS Events for Indirect
Synchronization
The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for indirect synchronization:

Table 11-1 Mapping XDS Events for Indirect Synchronization

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for direct synchronization:

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy

1 parent table insert statement for all single value <add-attr> elements

0 or 1 stored procedure/function calls to retrieve primary key values
before or after the parent table insert statement

1 child table insert statement for each multivalue <add-attr> element

<modify> 1 parent table update statement for each single value <add-value> or
<remove-value> element

1 child table insert statement for each multivalue <add-value> element

1 child table delete statement for each <remove-value> element

<delete> 1 parent table delete statement

1 delete statement for each child table

<query> 1 parent table select statement

1 select statement for each child table

<move>
<rename>
<modify-password>
<check-object-password>

0 statements unless bound to embedded SQL statements
Mapping XDS Events to SQL Statements 141

142 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 11-2 Mapping XDS Events for Direct Synchronization

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy

1 view insert statement for all single value <add-attr> element

0 or 1 stored procedure/function call to retrieve primary key values before
or after the view insert statement

1 view insert statement for each multivalue <add-attr> element

<modify> 1 view update statement for each single value <add-value> or <remove-
value> element

1 view insert statement for each multivalue <add-value> element

1 view delete statement for each <remove-value> element

<delete> 1 view delete statement

<query> 1 view select statement

<move>
<rename>
<modify-password>
<check-object-password>

0 statements unless bound to embedded SQL statements
ager 3.5.1 Driver for JDBC: Implementation Guide

12
novdocx (en) 11 D

ecem
ber 2007
12The Event Log Table

The event log table stores publication events. This section discusses the structure and capabilities of
the event log table.

You can customize the name of the event log table and its columns to avoid conflicts with reserved
database keywords. The order, number, and data types of its columns, however, are fixed. In
databases that are unaware of column position, order is determined by the Sort Column Names By
parameter. See “Sort Column Names By” on page 80.

Events in this table can be ordered either by order of insertion (the record_id column) or
chronologically (the event_time column). Ordering events chronologically allows event
processing to be delayed. To order publication events chronologically, set the Enable Future Event
Processing parameter to Boolean True. See “Enable Future Event Processing?” on page 91.

Section 12.1, “Event Log Columns,” on page 143
Section 12.2, “Event Types,” on page 145

12.1 Event Log Columns
This section describes columns in the event log table. Columns are ordered by position.

1. record_id

The record_id column is used to uniquely identify rows in the event log table and order
publication events. This column must contain sequential, ascending, positive, unique integer
values. Gaps between record_id values no longer prematurely end a polling cycle.

2. table_key

Format values for this column exactly the same in all triggers for a logical database class. The
BNF or Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html) of this parameter is defined below:
<table-key> ::= <unique-row-identifier> {"+"

<unique-row-identifier>}

<unique-row-identifier> ::= <primary-key-column-name> "=" <value>

For example, for the usr table referenced throughout this chapter, this column’s value might
be idu=1.
For the view_usr view referenced throughout this chapter, this column’s value might be
pk_empno=1.
For a hypothetical compound primary key (one containing multiple columns), this column’s
value might be pkey1=value1+pkey2=value2.

NOTE: If primary key values placed in the table_key field contains any of the special
characters {, ; ' + " = \ < >}, where ’{’ and ’}’ contain the set of special characters, delimit the
value with double quotes. You’ll also need to escape the double quote character " as \" and the
literal escape character \ character as \\ when contained inside a pair of double quotes.
The Event Log Table 143

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

144 Identity Man

novdocx (en) 11 D
ecem

ber 2007
For a hypothetical primary key containing special characters, this column’s value might be
pkey=", ; ' + \" = \\ < >". (Note the double quotes and escaped characters.)

NOTE: Differences in padding or formatting might result in out-of-order event processing. For
performance reasons, remove any unnecessary white space from numeric values. For example,
"idu=1" is preferred over "idu= 1". (Note the space in “idu= 1”.)

3. status

The status column indicates the state of a given row. The following table lists permitted
values:

Table 12-1 Permitted Values for Status Columns

To be processed, all rows inserted into the event log table must have a status value of N. The
remainder of the status characters are used solely by the Publisher channel to designate
processed rows. All other characters are reserved for future use.

NOTE: Status values are case sensitive.

4. event_type

Values in this column must be between 1 and 8. All other numbers are reserved for future use.
The following table describes each event type:

Table 12-2 Event Types

Character Value Interpretation

N new

S success

W warning

E error

F fatal

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)

4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
For additional information on this field, see Section 12.2, “Event Types,” on page 145.
5. event_time

This column serves as an alternative ordering column to record_id. It contains the effective
date of the event. It must not be NULL. For this column to become the ordering column, set the
Enable Future Event Processing parameter to Boolean True. See “Enable Future Event
Processing?” on page 91.

6. perpetrator

This column identifies the database user who instigated the event. A NULL value is interpreted
as a user other than the driver user. As such, rows with a NULL value or value not equal to the
driver’s database username are published. Rows with a value equal to the driver’s database
username are not published unless the Allow Loopback Publisher parameter is set to Boolean
True. See “Allow Loopback?” on page 94.

7. table_name

The name of the table or view where the event occurred.
8. column_name

The name of the column that was changed. This column is used only for per-field (1-3, 7-8)
event types. Nevertheless, it must always be present in the event log table. If it is missing, the
Publisher channel cannot start.

9. old_value

The field’s old value. This column is used only for per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

10. new_value

The field’s new value. This column is used only by per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

12.2 Event Types
The following table describes each event type:

Table 12-3 Event Types

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)

4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)
The Event Log Table 145

146 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Event types are in four major categories. Some categories overlap. The following table describes
each category and indicates which event types are members:

Table 12-4 Event Categories and Types

In general, a combination of event types from each category yields the best trade-off in terms of
space, time, implementation complexity, and peformance.

Per-field event types are more granular, require more space, and are more complex to implement
than per-row event types. Per-row events are less granular, require less space, and are easier to
implement than per-field event types.

Query-back event types use less space but require more time to process than non-query-back event
types. Non-query-back event types use more space but require less time to process than query-back
event types.

Query-back event types trump their non-query-back conterparts. Non-query-back events are
ignored if a query-back event is logged for the same field or object. For example, if an event of type
2 (update-field, non-query-back) and 8 (update-field, query-back) are logged on the same field, the
type 2 event is ignored in favor of the type 8 event.

Furthermore, query-back row event types trump query-back field event types. For example, if an
event type 8 (update field, query-back) and a event type 6 (update row query-back) are logged on the
same object, the type 8 event is ignored in favor of the type 6 event.

Query-back events are ignored by the Publisher if the database object no longer exists. They are
dependent upon the database object still being around at processing time. Therefore, logged query-
back adds and modifies (event types 5, 6, 7, 8) have no effect once the database object they refer to
is deleted.

The following table shows the basic correlation between publication event types and the XDS XML
generated by the Publisher channel.

Event Category Event Types

Per-field (attribute) 1, 2, 3, 7, 8

Per-row (object) 4, 5, 6

Non-query-back 1, 2, 3, 4

Query-back 5, 6, 7, 8

Per-field, non-query-back 1, 2, 3

Per-field, query-back 7, 8

Per-row, non-query-back 4

Per-row, query-back 5, 6
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 12-5 Basic Correlation of Publication Event Types

The following example illustrates XML that the Publisher channel generates for events logged on
the usr table for each possible event type.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 photo LONGRAW,
 --...
 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);

The following table shows the initial contents of usr after a new row has been inserted:

Table 12-6 An Inserted Row in the usr Table

The following table shows the current contents of usr after the row has been updated:

Table 12-7 An Updated Row in the usr Table

Insert Field

The table below shows the contents of the event log table after a new row is inserted into table usr.
The value for column photo has been Base64-encoded. The Base64-encoded equivalent of
0xAAAA is qqo=.

Table 12-8 Event Log Table: Type 1

Event Type Resulting XDS

insert <add>

update <modify>

delete <delete>

idu fname lname photo

1 Jack Frost 0xAAAA

idu fname lname photo

1 John Doe 0xBBBB

event_type table table_key column_name old_value new_value

1 usr idu=1 fname NULL Jack

1 usr idu=1 lname NULL Frost

1 usr idu=1 photo NULL qqo=
The Event Log Table 147

148 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The Publisher channel generates the following XML:
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">Jack</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Frost</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">qqo=</value>
 </add-attr>
</add>

Update Field

The following table shows the contents of the event log table after the row in table usr has been
updated. The values for column photo has been Base64-encoded. The Base64-encoded equivalent
of 0xBBBB is u7s=.

Table 12-9 Event Log Table: Type 2

The Publisher channel generates the following XML:
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-value>
 <value type="string">Jack</value>
 </remove-value>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-value>
 <value type="string">Frost</value>
 </remove-value>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-value>

event_type table table_key column_name old_value new_value

2 usr idu=1 fname Jack John

2 usr idu=1 lname Frost Doe

2 usr idu=1 photo qqo= u7s=
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 <value type="octet">qqo=</value>
 </remove-value>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Update Field (Remove-All-Values)

The following table shows the contents of the event log table after the row in table usr has been
updated. The value for column photo has been Base64-encoded.

Table 12-10 Event Log Table: Type 3

The Publisher channel generates the following XML:
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Delete Row

The table below shows the contents of the event log table after the row in table usr has been
deleted.

event_type table table_key column_name old_value new_value

3 usr idu=1 fname Jack John

3 usr idu=1 lname Frost Doe

3 usr idu=1 photo qqo= u7s=
The Event Log Table 149

150 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table 12-11 Event Log Table: Type 4

The Publisher channel generates the following XML:
<delete class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
</delete>

Insert Row (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr.

Table 12-12 Event Log Table: Type 5

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">
 <value type="octet">u7s=</value>
 </add-attr>
</add>

Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table usr has been
updated.

Table 12-13 Event Log Table: Type 6

event_type table table_key column_name old_value new_value

4 usr idu=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

5 usr idu=1 NULL NULL NULL

event_type table table_key column_name old_value new_value

6 usr idu=1 NULL NULL NULL
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

Insert Field (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr. Old and new values are omitted because they are not used.

Table 12-14 Event Log Table: Type 7

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<add class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <add-attr attr-name="fname">
 <value type="string">John</value>
 </add-attr>
 <add-attr attr-name="lname">
 <value type="string">Doe</value>
 </add-attr>
 <add-attr attr-name="photo">

event_typ
e table table_key column_name old_value new_value

7 usr idu=1 fname NULL NULL

7 usr idu=1 lname NULL NULL

7 usr idu=1 photo NULL NULL
The Event Log Table 151

152 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 <value type="octet">u7s=</value>
 </add-attr>
</add>

Update Field (Query-Back)

The following table shows the contents of the event log table after the row in table usr has been
updated. Old and new values are omitted because they are not used.

Table 12-15 Event Log Table: Type 8

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.
<modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect
 </association>
 <modify-attr attr-name="fname">
 <remove-all-values/>
 <add-value>
 <value type="string">John</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="lname">
 <remove-all-values/>
 <add-value>
 <value type="string">Doe</value>
 </add-value>
 </modify-attr>
 <modify-attr attr-name="photo">
 <remove-all-values/>
 <add-value>
 <value type="octet">u7s=</value>
 </add-value>
 </modify-attr>
</modify>

event_type table table_key column_name old_value new_value

8 usr idu=1 fname NULL NULL

8 usr idu=1 lname NULL NULL

8 usr idu=1 photo NULL NULL
ager 3.5.1 Driver for JDBC: Implementation Guide

13
novdocx (en) 11 D

ecem
ber 2007
13Embedded SQL Statements in
XDS Events

Embedded SQL allows you to embed SQL statements in XDS-formatted XML documents. You can
use embedded SQL statements along with XDS events or use them standalone. When embedded
SQL statements are used standalone, embedded SQL processing does not require that the driver
know anything about tables/view in the target database. As such, the driver can run in schema-
unaware mode. See “Synchronization Filter” on page 64. When using embedded SQL standalone,
you must establish associations manually. The driver won’t establish them for you.

When used in conjunction with XDS events, embedded SQL can act as a virtual database trigger. In
the same way that you can install database triggers on a table and cause side effects in a database
when certain SQL statements are executed, embedded SQL can cause side effects in a database in
response to certain XDS events.

All examples in this section reference the following indirect.usr table.
CREATE TABLE indirect.usr
(
 idu INTEGER NOT NULL,
 fname VARCHAR2(64),
 lname VARCHAR2(64),

 CONSTRAINT pk_usr_idu PRIMARY KEY(idu)
);

Section 13.1, “Common Uses of Embedded SQL,” on page 154
Section 13.2, “Embedded SQL Basics,” on page 154
Section 13.3, “Token Substitution,” on page 155
Section 13.4, “Virtual Triggers,” on page 158
Section 13.5, “Manual vs. Automatic Transactions,” on page 159
Section 13.6, “Transaction Isolation Level,” on page 160
Section 13.7, “Statement Type,” on page 161
Section 13.8, “SQL Queries,” on page 162
Section 13.9, “Data Definition Language (DDL) Statements,” on page 163
Section 13.10, “Logical Operations,” on page 164
Section 13.11, “Implementing Password Set with Embedded SQL,” on page 164
Section 13.12, “Implementing Modify Password with Embedded SQL,” on page 165
Section 13.13, “Implementing Check Object Password,” on page 165
Section 13.14, “Calling Stored Procedures and Functions,” on page 166
Section 13.15, “Best Practices,” on page 174
Embedded SQL Statements in XDS Events 153

154 Identity Man

novdocx (en) 11 D
ecem

ber 2007
13.1 Common Uses of Embedded SQL
You can accomplish the following by embedding SQL in XDS events:

Create database users or roles.
Manage user passwords
You can set, check or modify user passwords.
Manage database user or role privileges.

For examples of each, consult the User DDL Command Transformation style sheet on the
Subscriber channel in the example driver configuration.

13.2 Embedded SQL Basics
Section 13.2.1, “Elements,” on page 154
Section 13.2.2, “Namespaces,” on page 154
Section 13.2.3, “Embedded SQL Example,” on page 155

13.2.1 Elements
SQL is embedded in XDS events through the <jdbc:statement> and <jdbc:sql> elements.
The <jdbc:statement> element can contain one or more <jdbc:sql> elements.

13.2.2 Namespaces
The namespace prefix jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml:jdbc when referenced outside of an XML document.

You must use namespace-prefixed embedded SQL elements and attributes. Otherwise, the driver
will not recognize them. In all examples in this section, the prefix used is jdbc. In practice, the
prefix can be whatever you want it to be, as long as it is bound to the namespace value
urn:dirxml:jdbc.

The following XML example illustrates how to use and properly namespace-prefix embedded SQL
elements. In the following example, the namespace declaration and namespace prefixes are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
 </jdbc:sql>
 </jdbc:statement>
</input>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
13.2.3 Embedded SQL Example
The following XML example illustrates how to use the <jdbc:statement> and <jdbc:sql>
elements and their interpretation. In the following example, embedded SQL elements are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
 </jdbc:sql>
 </jdbc:statement>
</input>

Because the Subscriber channel resolves <add> events to one or more INSERT statements, the
XML shown above resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(lname)VALUES('Doe');
COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John';
COMMIT; --explicit commit

13.3 Token Substitution
Rather than require you to parse field values from an association, the Subscriber channel supports
token substitution in embedded SQL statements. In the following examples, tokens and the values
they reference are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr">
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

Token placeholders must adhere to the XSLT attribute value template syntax {$field-name}. Also,
the referenced association element must precede the <jdbc:statement> element in the XDS
document, or must be present as a child of the <jdbc:statement> element. Alternatively,
instead of copying the association element as child of the <jdbc:statement> element, you
could copy the src-entry-id of the element containing the association element onto the
<jdbc:statement> element. Both approaches are bolded in the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr">
Embedded SQL Statements in XDS Events 155

156 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement>
 <association>idu=1,table=usr,schema=indirect</association>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>

</input>
<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify class-name="usr" src-entry-id="0">
 <association>idu=1,table=usr,schema=indirect</association>
 <modify-attr name="lname">
 <add-value>
 <value>DoeRaeMe</value>
 </add-value>
 </modify-attr>
 </modify>
 <jdbc:statement src-entry-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

The {$field-name} token must refer to one of the naming RDN attribute names in the association
value. The above examples have only one naming attribute: idu.

An <add> event is the only event where an association element is not required to precede
embedded SQL statements with tokens because the association has not been created yet.
Additionally, any embedded SQL statements using tokens must follow, not precede, the <add>
event. For example:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

To prevent tracing of sensitive information, you can use the {$$password} token to refer to the
contents of the immediately preceding <password> element within the same document. In the
following example, the password token and the value it refers to are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <password>some password</password>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
 </jdbc:statement>
</input>

Furthermore, you can also refer to the driver’s database authentication password specified by the
Application Password parameter as {$$$driver-password} . See “Application Password” on
page 58. Named password substitution is not yet supported.

Just as with association elements, the referenced password element must precede the
<jdbc:statement> element in the XDS document or must be present as a child of the
<jdbc:statement> element. Alternatively, instead of copying the password element as child of
the <jdbc:statement> element, you could copy the src-entry-id of the element
containing the password element onto the <jdbc:statement> element. Both approaches are bolded in
the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <password>some password</password>
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <password>some password</password>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
 </jdbc:statement>
</input>

<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" src-entry-id="0">
 <password>some password</password>
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement src-entry-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY
 {$$password}</jdbc:sql>
Embedded SQL Statements in XDS Events 157

158 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 </jdbc:statement>
</input>

13.4 Virtual Triggers
In the same way that database triggers can fire before or after a triggering statement, embedded SQL
can be positioned before or after the triggering XDS event. The following examples show how you
can embed SQL before or after an XDS event.

Virtual Before Trigger
<input xmlns:jdbc"urn:dirxml:jdbc">
 <jdbc:statement>
 <association>idu=1,table=usr,schema=indirect</association>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
 idu = {$idu}</jdbc:SQL>

</jdbc:statement>
<modify class-name="usr">

<association>idu=1,table=usr,schema=indirect</association>
<modify-attr name="lname">

<remove-all-values/>
<add-value>

<value>Doe</value>
</add-value>

</modify-attr>
</modify>

</input>

This XML resolves to:
SET AUTOCOMMIT OFF
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit

Virtual After Trigger
<input xmlns:jdbc"urn:dirxml:jdbc">

<modify class-name="usr">
<association>idu=1,table=usr,schema=indirect</association>
<modify-attr name="lname">

<remove-all-values/>
<add-value>

<value>Doe</value>
</add-value>

 </modify-attr>
</modify>
<jdbc:statement>

<jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
 idu = {$idu}</jdbc:sql>

</jdbc:statement>
</input>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
This XML resolves to:
SET AUTOCOMMIT OFF
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit

13.5 Manual vs. Automatic Transactions
You can manually group embedded SQL and XDS events by using two custom attributes:

jdbc:transaction-type

jdbc:transaction-id

jdbc:transaction-type

This attribute has two values: manual and auto. By default, most XDS events of interest (<add>,
<modify>, and <delete>) are implicitly set to the manual transaction type. The manual setting
enables XDS events to resolve to a transaction consisting of one or more SQL statement.

By default, embedded SQL events are set to auto transaction type because some SQL statements,
such as DDL statements, cannot usually be included in a manual transaction. In the following
example, the attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-type="auto">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT ON
INSERT INTO indirect.usr(lname) VALUES(’Doe’);
-- implicit commit
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
-- implicit commit

jdbc:transaction-id

The Subscriber channel ignores this attribute unless the element’s jdbc:transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example of
a manual transaction. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-id="0">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
Embedded SQL Statements in XDS Events 159

160 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’ WHERE
 idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(lname) VALUES('Doe’);
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

13.6 Transaction Isolation Level
In addition to grouping statements, you can use transactions to preserve the integrity of data in a
database. Transactions can lock data to prevent concurrent access or modification. The isolation
level of a transaction determines how locks are set. Usually, the default isolation level that the driver
uses is sufficient and should not be altered.

The custom attribute jdbc:isolation-level allows you to adjust the isolation transaction
level if necessary. The java.sql.Connection parameter defines five possible values in the interface.
See java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

none

read uncommitted

read committed

repeatable read

serializable

The driver’s default transaction isolation level is read committed unless overridden by a
descriptor file. In manual transactions, place the jdbc:isolation-level attribute on the first
element in the transaction. This attribute is ignored on subsequent elements. In the following
example. the attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:transaction-id="0"
 jdbc:isolation-level="serializable">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:transaction-type="manual"
 jdbc:transaction-id="0">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

novdocx (en) 11 D
ecem

ber 2007
INSERT INTO indirect.usr(lname) VALUES(’Doe’);
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

13.7 Statement Type
The Subscriber channel executes embedded SQL statements, but it doesn’t understand them. The
JDBC 1 interface defines several methods for executing different types of SQL statements. The
following table contains these methods:

Table 13-1 Methods for Executing SQL Statements

The simplest solution is to map all SQL statements to the
java.sql.Statement.execute(String sql):boolean method. By default, the
Subscriber channel uses this method.

Some third-party drivers, particularly Oracle’s JDBC drivers, incorrectly implement the methods
used to determine the number of result sets that this method generates. Consequently, the driver can
get caught in an infinite loop leading to high CPU utilization. To circumvent this problem, you can
use the jdbc:type attribute on any <jdbc:statement> element to map the SQL statements
contained in it to the following methods instead of the default method:

java.sql.Statement.executeQuery(String
query):java.sql.ResultSet

java.sql.Statement.executeUpdate(String update):int

The jdbc:type attribute has two values: update and query. For INSERT, UPDATE, or
DELETE statements, set the value to update. For SELECT statements, set the value to query. In
the absence of this attribute, the driver maps all SQL statements to the default method. If placed on
any element other than <jdbc:statement>, this attribute is ignored.

Recommendations:

Place the jdbc:type=”query” attribute value on all SELECT statements.
Place the jdbc:type=”update” attribute value on all INSERT, UPDATE, and DELETE
statements.
Place no attribute value on stored procedure/function calls.

Statement Type Method Executed

SELECT java.sql.Statement.executeQuery(String query):java.sql.ResultSet

INSERT java.sql.Statement.executeUpdate(String update):int

UPDATE java.sql.Statement.executeUpdate(String update):int

DELETE java.sql.Statement.executeUpdate(String update):int

CALL or EXECUTE
SELECT
INSERT
UPDATE
DELETE

java.sql.Statement.execute(String sql):boolean
Embedded SQL Statements in XDS Events 161

162 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following XML shows an example of the jdbc:type attribute. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement jdbc:type="update">
 <jdbc:sql>UPDATE indirect.usr SET fname = ’John’
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

13.8 SQL Queries
To fully support the query capabilities of a database and avoid the difficulty of translating native
SQL queries into an XDS format, the driver supports native SQL query processing. You can embed
select statements in XDS documents in exactly the same way as any other SQL statement.

For example, assume that the table usr has the following contents:

Table 13-2 Example Contents

The XML document below results in an output document containing a single result set.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:statement jdbc:type="query">
 <jdbc:sql>SELECT * FROM indirect.usr</jdbc:sql>
 </jdbc:statement>
</input>
<output xmlns:jdbc="urn:dirxml:jdbc">
 <jdbc:result-set jdbc:number-of-rows="1">
 <jdbc:row jdbc:number="1">
 <jdbc:column jdbc:name="idu"
 jdbc:position="1"
 jdbc:type="java.sql.Types.BIGINT
 <jdbc:value>l</jdbc:value>
 </jdbc:column>

<jdbc:column jdbc:name="fname"
 jdbc:position="2"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>John</jdbc:value>
 </jdbc:column>
 <jdbc:column jdbc:name="lname"
 jdbc:position="3"
 jdbc:type="java.sql.Types.VARCHAR>
 <jdbc:value>Doe</jdbc:value>
 </jdbc:column>
 </jdbc:row>

idu fname lname

1 John Doe
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 </jdbc:result-set>
 <status level="success"/>
</output>

SQL queries always produce a single <jdbc:result-set> element whether or not the result set
contains any rows. If the result set is empty, the jdbc:number-of-rows attribute is set to zero.

You can embed more than one query in a document. SQL queries don’t require that the referenced
tables/views in the synchronization schema be visible to the driver. However, XDS queries do.

13.9 Data Definition Language (DDL) Statements
Generally, it is not possible to run a Data Definition Language (DDL) statement in a database trigger
because most databases do not allow mixed DML and DDL transactions. Although virtual triggers
do not overcome this transactional limitation, they do allow DDL statements to be executed as a side
effect of an XDS event.

For example:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY novell</jdbc:sql>
 </jdbc:statement>
</input>

This XML resolves to:
SET AUTOCOMMIT OFF
INSERT INTO indirect.usr(fname, lname) VALUES(’John’, ’Doe’);
COMMIT; -- explicit commit
SET AUTOCOMMIT ON
CREATE USER jdoe IDENTIFIED BY novell;
-- implicit commit

Using the jdbc:transaction-id and jdbc:transaction-type attributes to group DML
and DDL statements into a single transaction causes the transaction to be rolled back on most
databases. Because DDL statements are generally executed as separate transactions, it is possible
that the insert statement in the above example might succeed and the create user statement might
roll back.

It is not possible, however, that the insert statement fail and the create user statement
succeed. The driver stops executing chained transactions at the point where the first transaction is
rolled back.
Embedded SQL Statements in XDS Events 163

164 Identity Man

novdocx (en) 11 D
ecem

ber 2007
13.10 Logical Operations
Because it is not generally possible to mix DML and DDL statements in a single transaction, a
single event can consist of one or more transactions. You can use the jdbc:op-id and
jdbc:op-type to group multiple transactions together into a single logical operation. When so
grouped, all members of the operation are handled as a single unit with regard to status. If one
member has an error, all members return the same status level. Similarly, all members share the
same status type.
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$idu}</password>
 </add>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>

The jdbc:op-type attribute is ignored on all elements except the first element in a logical
operation.

13.11 Implementing Password Set with
Embedded SQL
Initially setting a password is usually accomplished by creating a database user account. Assuming
that an <add> event is generated on the Subscriber channel, the following is an example of the
output generated by XSLT style sheets that implement password set as a side effect of an XDS
<add> event:
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr" jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 <password>Doe{$idu}</password>
 </add>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The <add> event is logically bound to the CREATE USER DDL statement by the jdbc:op-id
and jdbc:op-type attributes.

The User DDL Command Transformation style sheet in the example .xml configuration file
contains sample XSLT templates that bind user account creation DDL statements to <add> events
for all databases that support them.

13.12 Implementing Modify Password with
Embedded SQL
Modifying a password is usually accomplished by altering an existing database user account.
Assuming that a <modify-password> event is generated on the Subscriber channel, the
following is an example of the output generated by XSLT style sheets that implement modify-
password:

NOTE: Some databases, such as Sybase Adaptive Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
supply the login name instead of hte user name.

<input xmlns:jdbc="urn:dirxml:jdbc">
 <modify-password jdbc:op-id="0"
 jdbc:op-type="password-set-operation">
 <password>new password</password>
 </modify-password>
 <jdbc:statement jdbc:op-id="0">
 <jdbc:sql>ALTER USER jdoe IDENTIFIED BY {$$password}
 </jdbc:sql>
 </jdbc:statement>
</input>

The <modify-password> event is logically bound to the ALTER USER DDL statement by the
jdbc:op-id and jdbc:op-type attributes.

The User DDL Command Transformation style sheet in the example .xml configuration contains
sample XSLT templates that bind password maintenance DDL statements to <modify-
password> events for all databases that support them.

13.13 Implementing Check Object Password
Unlike password set, check object password does not require embedded SQL statements or
attributes. Only a user account name is required. This could be obtained from an association value
(assuming that associations are being maintained manually), a directory attribute, or a database field.
If stored in the directory or database, a query must be issued to retrieve the value.

The example .xml configuration file stores database user account names in database fields.

NOTE: Some databases, such as Sybase Adpative Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
store two names, not just one.

To implement check object password, append a dest-dn attribute value to the <check-
object-password> event. In the following example, the dest-dn attribute is bolded:
Embedded SQL Statements in XDS Events 165

166 Identity Man

novdocx (en) 11 D
ecem

ber 2007
<input xmlns:jdbc="urn:dirxml:jdbc">
 <check-object-password dest-dn="jdoe">
 <password>whatever</password>
 </check-object-password>
</input>

13.14 Calling Stored Procedures and Functions
The Identity Manager Driver for JDBC 3.5.1 enables you to use stored procedures. The ability to use
the <jdbc:call-procedure> and <jdbc:call-function> elements to call stored
procedures from a policy has been tested against only Oracle and is supported only on that platform.

Section 13.14.1, “Using Embedded SQL to Call Stored Procedures or Functions,” on page 166
Section 13.14.2, “Using the jdbc:call-procedure Element,” on page 167
Section 13.14.3, “Using the jdbc:call-function Element,” on page 170

13.14.1 Using Embedded SQL to Call Stored Procedures or
Functions
You can call stored procedures or functions in one of two ways:

Call the procedure or function by using a Statement object.
Call the procedure by using a Callable Statement object.

Example 1: Calling a Stored Procedure by Using a Statement
 <!-- call syntax is Oracle -->
 <jdbc:statement>
 <jdbc:sql>CALL schema.procedure-name</jdbc:sql/>
 </jdbc:statement>

Example 2: Calling a Stored Procedure as a CallableStatement
 <!-- call syntax is vendor agnostic -->
 <jdbc:statement>

 <jdbc:call-procedure jdbc:name="schema.procedure-name"/>
 </jdbc:statement>

Example 3: Calling a Function by Using a Statement
 <!-- call syntax is Informix -->
 <jdbc:statement>

 <jdbc:sql>EXECUTE FUNCTION schema.function-name</jdbc:sql/>
 </jdbc:statement>

Example 4: Calling a Function as a CallableStatement
 <!-- call syntax is vendor agnostic -->
 <jdbc:statement>
 <jdbc:call-function jdbc:name="schema.function-name"/>
 </jdbc:statement>
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
The principle advantage of using the CallableStatement interface is that you do not need to know the
proprietary call syntaxes of each database vendor or JDBC implementation. Other advantages
include the following:

It's much easier to build procedure or function calls in the Policy Builder.
You can differentiate between Null and empty string parameter values.
You can call functions on all database platforms.
Oracle, for instance, doesn't support calling functions by using a statement.
 You can retrieve Out parameter values from stored procedure calls.

13.14.2 Using the jdbc:call-procedure Element
Stored procedures do not necessarily require parameters. Only a name is required. If a database
supports schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't
provided, how names are resolved depends upon your third-party JDBC implementation and might
change, depending upon driver configuration settings.

NOTE: The jdbc:call-procedure element must be wrapped in a jdbc:statement element.

“Specifying a Procedure Name” on page 167
“Passing In or In Out Parameter Values” on page 167
“Handling Out or In Out Parameters” on page 168
“Example Complex Stored Procedure Calls” on page 169

Specifying a Procedure Name

<jdbc:call-procedure jdbc:name="schema.procedure-name"/>

Passing In or In Out Parameter Values

The number of jdbc:param elements specified must match the number of param elements declared in
the procedure. Only jdbc:param elements corresponding to In or In Out procedure parameters can
have values. Out parameters (those that can't be passed values) must be represented by an empty
jdbc:param element.

Calling a Procedure with No Parameters
 <jdbc:statement>
 <jdbc:call-procedure jdbc:name="schema.procedure-name"/>
 </jdbc:statement>

Calling a Procedure with a Null Parameter
 <jdbc:call-procedure jdbc:name="schema.procedure-name">
 <!-- no value element = pass null -->
 <jdbc:param/>
 </jdbc:call-procedure>

Calling a Procedure with an Empty String Parameter
 <jdbc:call-procedure jdbc:name="schema.procedure-name">
 <!-- empty value element = pass empty string -->
Embedded SQL Statements in XDS Events 167

168 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 <jdbc:param>
 <jdbc:value/>
 </jdbc:param>
 <jdbc:param>

NOTE: Literals can be passed only to procedure parameters declared as In or In Out. Passed literals
must be type-compatible with declared procedure parameters.

Calling a Procedure with a Literal Value
 <jdbc:call-procedure jdbc:name="schema.procedure-name">
 <!-- non-empty value element = pass literal -->
 <jdbc:param>
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <jdbc:param>

Calling a Procedure with an Out Parameter

Assuming that a procedure has two parameters, the first Out and the second In, you invoke the
procedure as follows:
 <jdbc:call-procedure jdbc:name="schema.procedure-name">
 <!-- the OUT param place -->
 <jdbc:param/>
 <!-- the IN param -->
 <jdbc:param>
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <jdbc:param>

Handling Out or In Out Parameters

Stored procedures with Out or In Out parameters can return values. These values are returned by the
driver and are accessible to policies. Out or In Out parameters values are returned at the same
position as their corresponding declared parameter.

Also, to facilitate correlation of procedure calls and output parameter values, Out parameters contain
the same event-ID value as the procedure call that generated them. This is particularly useful when
multiple calls are made in the same document.

Null or No Return Value

Assuming that a procedure has a single Out or In parameter, the following output is generated:
 <output>
 <!-- no value element = OUT param returned null or IN param -->
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
 <jdbc:param/>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
 </output>

Empty String Return Value

Assuming that a procedure has a single Out or In Out parameter, the following output is generated:
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 <output>
 <!-- empty value element = returned empty string -->
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
 <jdbc:param>
 <jdbc:value/>
 </jdbc:param>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
 </output>

Literal Return Value

Assuming that a procedure has a single Out or In Out parameter, the following output is generated:
 <output>
 <!-- no-empty value element = returned literal value -->
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
 <jdbc:param>
 <jdbc:value>literal<jdbc:value>
 </jdbc:param>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
 </output>

Example Complex Stored Procedure Calls

“Procedure Declaration” on page 169
“Procedure Call from Policy” on page 169
“Procedure Output to Policy” on page 170

Procedure Declaration

NOTE: This procedure uses Oracle PSQL syntax.

CREATE PROCEDURE indirect.p1(i1 IN VARCHAR2, io2 IN OUT VARCHAR2, o3
OUT INTEGER, i4 IN VARCHAR2)
AS
BEGIN
 SELECT 'literal' INTO io2 FROM DUAL;
 SELECT 1 INTO o3 FROM DUAL;
END p1;

Procedure Call from Policy
<input>
 <jdbc:statement event-id="0">
 <jdbc:call-procedure jdbc:name="indirect.p1">
 <!-- i1 IN VARCHAR2 -->
 <jdbc:param>
 <!-- pass empty string -->
 <jdbc:value/>
 </jdbc:param>
 !-- io2 IN OUT VARCHAR2 -->
 <jdbc:param>
 <!-- pass literal -->
Embedded SQL Statements in XDS Events 169

170 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <!-- o3 OUT INTEGER -->
 <!-- param placeholder -->
 <jdbc:param/>
 <!-- o4 IN VARCHAR2 -->
 <!-- pass null -->
 <jdbc:param/>
 </jdbc:call-procedure>
 </jdbc:statement>
</input>

Procedure Output to Policy
<output>
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
 <jdbc:param/>
 <jdbc:param jdbc:name="IO2"
 jdbc:param-type="INOUT"
 jdbc:position="2"
 jdbc:sql-type="java.sql.Types.VARCHAR">
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <jdbc:param jdbc:name="O3"
 jdbc:param-type="OUT"
 jdbc:position="3"
 jdbc:sql-type="java.sql.Types.DECIMAL">
 <jdbc:value>1</jdbc:value>
 </jdbc:param>
 <jdbc:param/>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
</output>

13.14.3 Using the jdbc:call-function Element
Functions do not necessarily require parameters. Only a name is required. If a database supports
schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't provided,
how names are resolved depends upon your third-party JDBC implementation and might change
depending upon driver configuration settings.

NOTE: The jdbc:call-function element must be wrapped in a jdbc:statement element.

“Specifying a Function Name” on page 171
“Passing In Parameter Values” on page 171
“Calling a Function with No Parameter” on page 171
“Calling a Function with a Null Parameter” on page 171
“Calling a Function with an Empty String Parameter” on page 171
“Calling a Function with a Literal Value” on page 171
“Handling Function Results” on page 171
“Example Complex Function Calls” on page 173
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Specifying a Function Name
 <jdbc:call-function jdbc:name="schema.function-name"/>

Passing In Parameter Values

The number of jdbc:param elements specified must match the number of params declared in the
function.

Calling a Function with No Parameter
 <jdbc:call-function jdbc:name="schema.function-name"/>

Calling a Function with a Null Parameter
 <jdbc:call-function jdbc:name="schema.function-name">
 <!-- no value element = null -->
 <jdbc:param/>
 </jdbc:call-procedure>

Calling a Function with an Empty String Parameter
 <jdbc:call-function jdbc:name="schema.function-name">
 <!-- empty value element = pass empty string -->
 <jdbc:param>
 <jdbc:value/>
 </jdbc:param>
 <jdbc:param>

NOTE: Literals can be passed to function parameters declared as In. Passed literals must be type-
compatible with declared function parameters.

Calling a Function with a Literal Value
 <jdbc:call-function jdbc:name="schema.function-name">
 <!-- non-empty value element = pass literal -->
 <jdbc:param>
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <jdbc:param>

Handling Function Results

Unlike stored procedures, functions do not support Out or In Out parameters. They can, however,
return a single, scalar value (such as an integer or string) or return a result set. Also, to facilitate
correlation of function calls and results, results contain the same event-id value as the function call
that generated them. This is particularly useful when multiple calls are made in the same document.

Scalar Return Value

Scalar return values are returned using the same syntax as stored procedure Out parameters. The
scalar return value is always returned in the first parameter position.
<output>
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
 <jdbc:param jdbc:name="return value"
Embedded SQL Statements in XDS Events 171

172 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 jdbc:param-type="OUT"
 jdbc:position="1"
 jdbc:sql-type="java.sql.Types.VARCHAR">
 <jdbc:value>1</jdbc:value>
 </jdbc:param>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
</output

Empty Set

Assuming that a function returns no results set or an empty result set, the following output is
generated:
<output>
 <jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
 <status event-id="0" level="success"/>
</output>

Non-Empty Results Set

Assuming a function returns a non-empty result set, output similar to the following is generated:
<output>
 <jdbc:result-set event-id="0" jdbc:number-of-rows="1">
 <jdbc:row jdbc:number="1">
 <jdbc:column jdbc:name="SYSDATE"
 jdbc:position="1
 jdbc:type="java.sql.Types.TIMESTAMP">
 <jdbc:value>2007-01-03 14:52:20.0</jdbc:value>
 </jdbc:column>
 </jdbc:row>
 </jdbc:result-set>
 <status event-id="0" level="success"/>
</output>

Multiple Result Sets

Multiple result sets are returned in the order returned by the function. They all share a common
event-id value.
<output>
 <jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
 <jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
 <status event-id="0" level="success"/>
</output>

Oracle Results Set

Oracle's JDBC implementation uses a proprietary mechanism to return a single result set from a
function. To return a result set from an Oracle function, you need to explicitly set the jdbc:return-
type value to OracleTypes.CURSOR on the jdbc:call-function element.

Returning Result Sets as Out Parameters

See the special attribute “jdbc:return-format” on page 173.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Special Attributes

jdbc:return-format

This attribute can be placed on the jdbc:call-function element to format the first row of a returned
results set as stored procedure Out parameters of the result.

NOTE: This works only when the jdbc:return-type attribute isn't used.

<input>
 <jdbc:statement>
 <jdbc:call-function jdbc:name="schema.function-name"
 jdbc:return-format="return value">
 </jdbc:call-function>
 </jdbc:statement>
</input>

jdbc:return-type

This attribute can be placed on the jdbc:call-function element to allow Oracle functions to return a
result set.
<input>
 <jdbc:statement>
 <jdbc:call-function jdbc:name="schema.function"
 jdbc:return-type="OracleTypes.CURSOR">
 </jdbc:call-function>
 </jdbc:statement>
</input>

Example Complex Function Calls

“Function Declaration” on page 173
“Function Call from a Policy” on page 173
“Function Results to a Policy” on page 174

Function Declaration

NOTE: This declaration is for Oracle PSQL syntax.

CREATE OR REPLACE FUNCTION indirect.f1(i1 IN VARCHAR2, i2 IN INTEGER)
 RETURN VARCHAR2
AS
 o_idu VARCHAR2(32);
BEGIN
 SELECT 'literal' INTO o_idu FROM DUAL;
 RETURN o_idu;
END f1;

Function Call from a Policy
<input>
 <jdbc:statement>
 <jdbc:call-function jdbc:name="indirect.f1">
 <jdbc:param>
Embedded SQL Statements in XDS Events 173

174 Identity Man

novdocx (en) 11 D
ecem

ber 2007
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 <jdbc:param>
 <jdbc:value>1</jdbc:value>
 </jdbc:param>
 </jdbc:call-function>
 </jdbc:statement>
</input>

Function Results to a Policy
<output>
 <jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
 <jdbc:param jdbc:name="return value"
 jdbc:param-type="OUT"
 jdbc:position="1"
 jdbc:sql-type="java.sql.Types.VARCHAR">
 <jdbc:value>literal</jdbc:value>
 </jdbc:param>
 </jdbc:out-parameters>
 <status event-id="0" level="success"/>
</output>

13.15 Best Practices
For performance reasons, it is better to call a single stored procedure/function that contains multiple
SQL statements than to embed multiple statements in an XDS document.

In the following examples, the single stored procedure or function is preferred.

Single Stored Procedure
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="fname">
 <value>John</value>
 </add-attr>
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>CALL PROCEDURE set_name('John', 'Doe')</jdbc:sql>
 </jdbc:statement>
</input>

Multiple Embedded Statements
<input xmlns:jdbc="urn:dirxml:jdbc">
 <add class-name="usr">
 <add-attr name="lname">
 <value>Doe</value>
 </add-attr>
 </add>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET fname = 'John'
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
 <jdbc:statement>
 <jdbc:sql>UPDATE indirect.usr SET lname = 'Doe'
 WHERE idu = {$idu}</jdbc:sql>
 </jdbc:statement>
</input>

The syntax used to call stored procedures or functions varies by database. For additional
information, see “Syntaxes for Calling Stored Procedures and Functions” on page 180.
Embedded SQL Statements in XDS Events 175

176 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

14
novdocx (en) 11 D

ecem
ber 2007
14Supported Databases

Section 14.1, “Database Interoperability,” on page 177
Section 14.2, “Supported Databases,” on page 177
Section 14.3, “Database Characteristics,” on page 178

14.1 Database Interoperability
The Identity Manager Driver for JDBC is designed to interoperate with a specific set of JDBC driver
implementations, instead of a specific set of databases. Consequently, the list of supported databases
is primarily driven by the capabilities of supported third-party JDBC drivers. A secondary factor is
testing resources.

14.2 Supported Databases
The following databases or database versions have been tested and are recommended for use with
this product:

Table 14-1 Supported Databases

Database Minor Version

IBM DB2 Universal Database (UDB) 7 7.2 or later

IBM DB2 Universal Database (UDB) 8 8.1 or later

Informix Dynamic Server (IDS) 9 9.40 or later

Informix Dynamic Server (IDS) 10 10.0 or later

Microsoft SQL Server 7 7.5, Service Pack 4 or later

Microsoft SQL Server 2000 (8) Service Pack 3a or later

Microsoft SQL Server 2005 (9) Service Pack 1 or later

MySQL 3 3.23.58 or later

MySQL 4 4.1 or later

MySQL 5 5.0.20 or later

Oracle 8i Release 3 (8.1.7) or later

Oracle 9i Release 2 (9.2.0.1) or later

Oracle 10g Release 1 (10.0.2.1) or later

PostgreSQL 7 7.4.6 or later

Sybase Adaptive Server Enterprise (ASE) 12 12.5 or later
Supported Databases 177

178 Identity Man

novdocx (en) 11 D
ecem

ber 2007
You can use the Driver for JDBC with other databases or database versions. However, Novell® does
not support them. To interoperate with the Driver for JDBC, a database must meet the following
requirements:

Support the SQL-92 entry level grammar.
Be JDBC-accessible.

14.3 Database Characteristics
Section 14.3.1, “Database Features,” on page 178
Section 14.3.2, “Current Time Stamp Statements,” on page 179
Section 14.3.3, “Syntaxes for Calling Stored Procedures and Functions,” on page 180
Section 14.3.4, “Left Outer Join Operators,” on page 180
Section 14.3.5, “Undelimited Identifier Case Sensitivity,” on page 181
Section 14.3.6, “Supported Transaction Isolation Levels,” on page 181
Section 14.3.7, “Commit Keywords,” on page 182
Section 14.3.8, “IBM DB2 Universal Database (UDB),” on page 182
Section 14.3.9, “Informix Dynamic Server (IDS),” on page 183
Section 14.3.10, “Microsoft SQL Server,” on page 184
Section 14.3.11, “MySQL,” on page 184
Section 14.3.12, “Oracle,” on page 185
Section 14.3.13, “PostgreSQL,” on page 186
Section 14.3.14, “Sybase Adaptive Server Enterprise (ASE),” on page 186

14.3.1 Database Features

Table 14-2 Database Features

Database Schemas Views Identity
Columns Sequences Stored

Procedures Functions Triggers
Instead-
Of-
Triggers

IBM DB2
UDB 7

X X X 0 X1 X1 X 0

IBM DB2
UDB 8

X X X 0 X1 X1 X X

Informix IDS
9

X X X2 0 X3 X X 0

Informix IDS
10

X X X2 0 X3 X X X

MS SQL 7 X X X 0 X 0 X 0

MS SQL
2000, 2005

X X X 0 X X X X
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
1 DB2 natively supports stored procedures or functions written in Java. To write procedures by using
the native SQL procedural language, install a C compiler on the database server.
2 The Informix identity column keyword is SERIAL8.
3 Informix stored procedures cannot return values through OUT parameters.
4 The MySQL identity column keyword is AUTO_INCREMENT.
5 You can use a Postgres sequence object to provide default values for primary key columns,
effectively simulating an identity column.

Postgres has a native construct called rules. This construct can be used to effectively simulate
triggers and instead-of-triggers. It also supports the use of triggers or instead-of-triggers written in a
variety of procedural programming languages.

14.3.2 Current Time Stamp Statements
The following table lists SQL statements used to retrieve the current date and time by database:

Table 14-3 Time Stamp Statements

MySQL 4 0 0 X4 0 0 0 0 0

MySQL 5 X X X4 0 X X X 0

Oracle 8i, 9i,
10g

X X 0 X X X X X

Postgres 7 X X X5 X X X X6 X6

Sybase ASE
12

X X X 0 X 0 X 0

Database Current Time Stamp Statement ANSI-
Compliant

IBM DB2
UDB

SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1
FETCH FIRST 1 ROW ONLY

No

Informix IDS SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
INFORMIX.SYSTABLES

No

MSSQL SELECT (CURRENT_TIMESTAMP) Yes

MySQL SELECT (CURRENT_TIMESTAMP) Yes

Oracle SELECT (SYSDATE) FROM SYS.DUAL No

PostgreSQL SELECT (CURRENT_TIMESTAMP) Yes

Sybase ASE SELECT GETDATE() No

Database Schemas Views Identity
Columns Sequences Stored

Procedures Functions Triggers
Instead-
Of-
Triggers
Supported Databases 179

180 Identity Man

novdocx (en) 11 D
ecem

ber 2007
14.3.3 Syntaxes for Calling Stored Procedures and Functions
The following table lists the syntaxes for calling a stored procedure or function by database vendor.
There’s also a vendor-neutral JDBC escape syntax (see JDBC Escape Synax (http://edocs.bea.com/
wls/docs81/jdbc_drivers/sqlescape.html)). Whenever possible, it is more secure to call a stored
procedure or function by using the jdbc:call-function or jdbc:call-procedure syntax. Ssee
Section 13.14, “Calling Stored Procedures and Functions,” on page 166.) Other syntaxes should be
used only when specifying procedure or function calls in driver parameters (for example, “Post
Polling Statements” on page 97 and “Connection Initialization Statements” on page 69).

Table 14-4 Calling a Stored Procedure or Function

1 Oracle’s JDBC implementation does not support calling functions as a string.

14.3.4 Left Outer Join Operators
The following table lists outer join operators by database.

Table 14-5 Outer Join Operators

Database Stored Procedure/Function JDBC Call Syntax

IBM DB2 UDB {call schema-name.procedure-name(parameter-list)}

Informix IDS EXECUTE [PROCEDURE | FUNCTION] schema-name.routine-name(parameter-list)

MSSQL EXECUTE schema-name.procedure-name(parameter-list)

MySQL [TODO]

Oracle1 CALL schema-name.procedure-name(parameter-list)

PostgreSQL SELECT schema-name.procedure-name(parameter-list)

Sybase ASE EXECUTE schema-name.procedure-name(parameter-list)

Database Left Outer Join Operator ANSI-Compliant

IBM DB2 UDB LEFT OUTER JOIN Yes

Informix IDS LEFT OUTER JOIN Yes

MSSQL 7.5,
2000

*= No

MSSQL 2005 LEFT OUTER JOIN Yes

MySQL LEFT OUTER JOIN Yes

Oracle (+) [TODO] No

PostgreSQL LEFT OUTER JOIN Yes

Sybase ASE *= No
ager 3.5.1 Driver for JDBC: Implementation Guide

http://edocs.bea.com/wls/docs81/jdbc_drivers/sqlescape.html

novdocx (en) 11 D
ecem

ber 2007
NOTE: Oracle supports the ANSI-compliant left outer join operator LEFT OUTER JOIN as of
version 10g.

14.3.5 Undelimited Identifier Case Sensitivity

Table 14-6 Case Sensitivity for Undelimited Identifiers

14.3.6 Supported Transaction Isolation Levels

Table 14-7 Supported Transaction Isolation Levels

Database Case-Sensitive?

IBM DB2 UDB No

Informix IDS No

MSSQL No

MySQL Yes

Oracle No

PostgreSQL No

Sybase ASE Yes

Database No
ne

Read
Uncommit
ted

Read
Commit
ted

Repeata
ble
Read

Serializa
ble URL

IBM DB2 UDB 0 X X1 X X Setting JDBC Transaction
Isolation Levels (http://
publib.boulder.ibm.com/
infocenter/db2help/
index.jsp?topic=/
com.ibm.db2.udb.doc/ad/
tjvjdiso.htm)

MySQL (InnoDB Table
Type)

0 X X X1 X InnoDB Transaction Isolation
Levels (http://dev.mysql.com/
doc/mysql/en/innodb-
transaction-isolation.html)

Oracle 0 0 X1 0 X JDBC Transaction Optimization
(http://www.oracle.com/
technology/oramag/oracle/02-
jul/o42special_jdbc.html)

PostgreSQL 0 02 X1 02 X Transaction Isolation (http://
www.postgresql.org/docs/
current/static/transaction-
iso.html)
Supported Databases 181

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

182 Identity Man

novdocx (en) 11 D
ecem

ber 2007
1 This is the default isolation level for this database.
2 Can be set, but it is aliased to a supported isolation level.

14.3.7 Commit Keywords
The following table identifies the commit keywords for supported databases:

Table 14-8 Commit Keywords

1 For logging and ANSI-compliant databases. Non-logging databases do not support transactions.

14.3.8 IBM DB2 Universal Database (UDB)
The following table lists properties for this database.

Table 14-9 Properties for IBM DB2 UDB

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly override these settings.

Database Commit Keyword

IBM DB2 UDB COMMIT

Informix IDS COMMIT WORK1

MSSQL GO

MySQL COMMIT

Oracle COMMIT

PostgreSQL COMMIT

Sybase ASE GO

Property Value

Current Timestamp
Statement

SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH
FIRST 1 ROW ONLY

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join
Operator

LEFT OUTER JOIN
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 14-10 Dynamically Configured IBM DB2 Universal Database Settings

Known Issues

The timestamp format is proprietary.

See “Known Issues” on page 187.

14.3.9 Informix Dynamic Server (IDS)
The following table lists properties for this database.

Table 14-11 Settings for Informix Dynamic Server

1 For logging and ANSI-compliant databases. Nonlogging databases do not support transactions.

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-12 Dynamically Configured Informix Dynamic Server Settings

Known Issues

NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (the number
of digits to the right of the decimal point) is explicitly set to 0 when the table is created. By
default, the scale is set to 255.

Display Name Tag Name Value

Current Timestamp
Statement:

current-timestamp-
stmt

SELECT (CURRENT TIMESTAMP) FROM
SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY

Timestamp Translator
class:

time-translator-class com.novell.nds.dirxml.driver.jdbc.db.DB2Timestamp

Property Value

Current Timestamp
Statement

SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
INFORMIX.SYSTABLES

Case-Sensitive? No

Commit Keyword COMMIT WORK1

Left Outer Join
Operator

LEFT OUTER JOIN

Display Name Tag Name Value

Current Timestamp
Statement:

current-timestamp-
stmt

SELECT FIRST 1 (CURRENT YEAR TO
FRACTION(5)) FROM INFORMIX.SYSTABLES
Supported Databases 183

184 Identity Man

novdocx (en) 11 D
ecem

ber 2007
DBAs cannot grant privileges to objects they don’t own.

14.3.10 Microsoft SQL Server
The following table lists properties for this database:

Table 14-13 Settings for Microsoft SQL Server

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-14 Dynamically Configured Microsoft SQL Server Settings

14.3.11 MySQL
The following table lists properties for this database.

Table 14-15 Settings for MySQL

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? No

Commit Keyword GO

Left Outer Join Operator (7,
2000)

*=

Left Outer Join Operator (2005) LEFT OUTER JOIN

Display Name Tag Name Value

Add default values on insert? add-default-values-on-view-insert true

Left outer-join operator (7,
2000):

left-outer-join-operator *=

Left outer-join operator
(2005):

left-outer-join-operator LEFT OUTER JOIN

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? Yes

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Dynamic Defaults

The following table lists database compatibility parameters that are dynamically configured at
runtime for this database.

Table 14-16 Dynamically Configured MySQL Settings

Known Issues

TIMESTAMP columns, when updated after being initially set to 0 or NULL, are always set to
the current date and time. To compensate for this behavior, we recommend that you map
Identity Vault Time and Timestamp syntaxes to DATETIME columns.

14.3.12 Oracle
The following table lists properties for this database:

Table 14-17 Settings for Oracle

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-18 Dynamically Configured Oracle Settings

NOTE: The default exclusion filter is intended to omit from the synchronization schema dropped
tables that are visible in Oracle 10g.

Display Name Tag Name Value

Supports schemas in metadata
retrieval?

supports-schemas-in-metadata-retrieval false

Property Value

Current Timestamp Statement SELECT (SYSDATE) FROM SYS.DUAL

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator (+)

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator (+)

Exclude filter expression exclude-table-filter BIN\$.{22}==\$0

Lock statement generator
class

lock-generator-class com.novell.nds.dirxml.driver.jdbc.db.lock
.OraLockGenerator
Supported Databases 185

186 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Limitations

LONG, LONG RAW and BLOB columns cannot be referenced in a trigger.

You can’t reference columns of these types by using the :NEW qualifier in a trigger, including
instead-of-triggers.

14.3.13 PostgreSQL
The following table lists properties for this database:

Table 14-19 Settings for PostgreSQL

Known Issues

PostgreSQL does not support <check-object-password> events. You control
authentication by manually inserting entries into the pg_hba.conf file.

14.3.14 Sybase Adaptive Server Enterprise (ASE)
The following table lists properties for this database:

Table 14-20 Settings for Sybase ASE

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Property Value

Current Timestamp Statement SELECT (CURRENT_TIMESTAMP)

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Property Value

Current Timestamp Statement SELECT GETDATE()

Case-Sensitive? Yes

Commit Keyword GO

Left Outer Join Operator *=
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 14-21 Dynamically Configured Sybase ASE Settings

Known Issues

Padding and truncation of binary values.

To ensure ANSI-compliant padding and truncation behavior for binary values, make sure that
binary column types (other than IMAGE) meet the following criteria:

They are exactly the size of the eDirectoryTM attribute that maps to them.
They are constrained NOT NULL.
They are added to the Publisher and Subscriber Creation policies.

If they are constrained NULL, trailing zeros, which are significant to eDirectory, are truncated.
If binary columns exceed the size of their respective eDirectory attributes, extra 0s are
appended to the value.

The recommended solution is to use only the IMAGE data type when synchronizing binary
values.
DATETIME fractions of a second are rounded.

Sybase Timestamps are at best accurate to 1/300th of a second (approximately.003 seconds).
The database server rounds to the nearest 1/300th of a second as opposed to the nearest 1/1000th
of a second (.001 seconds or 1 millisecond).
Timestamp formats are proprietary.

Display Name Tag Name Value

Current timestamp
statement

current-timestamp-stmt SELECT GETDATE()

Left outer-join operator left-outer-join-operator *=

Timestamp Translator
class

time-translator-class com.novell.nds.dirxml.driver.jdbc.db.SybaseTi
mestamp
Supported Databases 187

188 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

15
novdocx (en) 11 D

ecem
ber 2007
15Third-Party JDBC Drivers

Section 15.1, “Third-Party JDBC Driver Interoperability,” on page 189
Section 15.2, “JDBC Driver Types,” on page 189
Section 15.3, “Third-Party Jar File Placement,” on page 190
Section 15.4, “Supported Third-Party JDBC Drivers,” on page 191
Section 15.5, “Supported-But-Discouraged Third-Party JDBC Drivers,” on page 202
Section 15.6, “Deprecated Third-Party JDBC Drivers,” on page 207
Section 15.7, “Other Third-Party JDBC Drivers,” on page 208
Section 15.8, “Security Issues,” on page 210

15.1 Third-Party JDBC Driver Interoperability
The Identity Manager Driver for JDBC is designed to interoperate with a specific set of third-party
JDBC drivers, instead of a specific set of databases. In fact, the third-party JDBC driver, not the
database, is the primary determinant of whether the Driver for JDBC works against any given
database. As a general rule, if the Driver for JDBC interoperates well with a given third-party JDBC
driver, it interoperates well with databases and database versions that the third-party driver supports.

We strongly recommend that you use the third-party JDBC drivers supplied by major enterprise
database vendors whenever possible, such as those listed in Section 15.4, “Supported Third-Party
JDBC Drivers,” on page 191. They are usually free, mature, and known to interoperate well with the
Driver for JDBC and the databases they target. You can use other third-party drivers, but Novell®
does not support them.

In general, most third-party drivers are backward compatible. However, even if they are generally
backward compatible, they are generally not forward compatible. Anytime a database server is
upgraded, the third-party driver used with this product should probably be updated as well.

Also, as a general rule, we recommend that you use the latest version of a third-party driver, unless
otherwise noted.

15.2 JDBC Driver Types
Type 1

A third-party JDBC driver that is partially Java and communicates indirectly with a database server
through a native ODBC driver.

Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a JDBC-ODBC bridge driver for
experimental use and for situations when no other type of third-party JDBC driver is available.

Type 2

A third-party JDBC driver that is part Java and communicates indirectly with a database server
through its native client APIs.
Third-Party JDBC Drivers 189

190 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Type 3

A third-party JDBC driver that is pure Java and communicates indirectly with a database server
through a middleware server.

Type 4

A third-party JDBC driver that is pure Java and communicates directly with a database server.

15.2.1 Which Type To Use?
Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type 1
and 4 drivers.

Because Identity Manager uses a directory as its datastore, and because databases are usually
significantly faster than directories, performance isn’t a primary concern. Stability, however, is an
issue. For this reason, we recommend that you use a type 3 or 4 third-party JDBC driver whenever
possible.

IMPORTANT: If you choose to use a type 1 or type 2 driver (one containing native code) with the
Driver for JDBC, use the Remote Loader to ensure the integrity of the directory process.

15.3 Third-Party Jar File Placement
The following tables identify the paths where third-party JDBC driver jar files should be placed on
an Identity Manager or Remote Loader server assuming default installation paths.

15.3.1 Identity Manager File Paths
The following table identifies where to place third-party JDBC driver jar files on an Identity
Management server, by platform.

Table 15-1 Locations for jar Files: Identity Manager Server

15.3.2 Remote Loader File Paths
The following table identifies where to place third-party JDBC driver jar files on a Remote Loader
server, by platform.

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\NDS\lib
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 15-2 Locations for jar Files: Remote Loader

15.4 Supported Third-Party JDBC Drivers
This section discusses supported drivers. Their use is encouraged.

Section 15.4.1, “Third-Party JDBC Driver Features,” on page 191
Section 15.4.2, “JDBC URL Syntaxes,” on page 192
Section 15.4.3, “JDBC Driver Class Names,” on page 192
Section 15.4.4, “IBM DB2 Universal Database Type 4 JDBC Driver,” on page 193
Section 15.4.5, “Informix JDBC Driver,” on page 194
Section 15.4.6, “jTDS JDBC Driver,” on page 195
Section 15.4.7, “MySQL Connector/J JDBC Driver,” on page 196
Section 15.4.8, “Oracle Thin Client JDBC Driver,” on page 197
Section 15.4.9, “Oracle OCI JDBC Driver,” on page 199
Section 15.4.10, “PostgreSQL JDBC Driver,” on page 201
Section 15.4.11, “Sybase Adaptive Server Enterprise JConnect JDBC Driver,” on page 201

15.4.1 Third-Party JDBC Driver Features
The following table summarizes third-party JDBC driver features:

Table 15-3 Third-Party JDBC Driver Features

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\RemoteLoader\lib

Driver Supports Encrypted Transport? Supports Retrieval of Auto-Generated
Keys?

IBM DB2 UDB Type 4 No No

Informix No No

Informix No No

MySQL Connector/J Yes Yes

jTDS Yes Yes

Oracle Thin Client Yes No

Oracle OCI Yes No

PostgreSQL Yes* No

Sybase jConnect Yes No
Third-Party JDBC Drivers 191

192 Identity Man

novdocx (en) 11 D
ecem

ber 2007
* For JDBC 3 (Java 1.4) versions and later.

15.4.2 JDBC URL Syntaxes
The following table lists URL syntaxes for supported third-party JDBC drivers:

Table 15-4 URL Syntaxes

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 58.

15.4.3 JDBC Driver Class Names
The following table lists the fully-qualified Java class names of supported third-party JDBC drivers:

Table 15-5 Class Names of Third-Party JDBC Drivers

Third-Party JDBC Driver JDBC URL Syntax

IBM DB2 UDB Type 4, Universal jdbc:db2://ip-address:50000/database-name

Informix jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

jTDS jdbc:jtds:sqlserver://ip-address/database-name

MySQL Connector/J jdbc:mysql://ip-address:3306/database-name

Oracle OCI jdbc:oracle:oci8:@tns-name

Oracle Thin Client jdbc:oracle:thin:@ip-address:1521:sid

PostgreSQL jdbc:postgresql://ip-address:5432/database-name

Sybase jConnect jdbc:sybase:Tds:ip-address:2048/database-name

Third-party JDBC Driver Class Name

IBM DB2 UDB Type 4, Universal com.ibm.db2.jcc.DB2Driver

Informix com.informix.jdbc.IfxDriver

jTDS net.sourceforge.jtds.jdbc.Driver

MySQL Connector/J org.gjt.mm.mysql.Driver

Oracle OCI oracle.jdbc.driver.OracleDriver

Oracle Thin Client oracle.jdbc.driver.OracleDriver

PostgreSQL org.postgresql.Driver

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver

Sybase jConnect 6.05 com.sybase.jdbc3.jdbc.SybDriver
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
This information is used in conjunction with the JDBC Driver Class Name parameter. For
information on this parameter, see “Third-Party JDBC Driver Class Name” on page 60.

15.4.4 IBM DB2 Universal Database Type 4 JDBC Driver

Table 15-6 IBM DB2 Driver: Type 4

NOTE: Unlike the type 3 driver, the type 4 driver has only a minimal set of defined error codes.
This absence inhibits the Driver for JDBC’s ability to distinguish between connectivity, retry,
authentication, and fatal error conditions.

Compatibility

The IBM DB2 driver is backward compatible. However, it doesn’t work with database version 7.
Database server updates are frequent. Driver updates are infrequent.

Security

The IBM DB2 driver supports a variety of authentication security mechanisms but does not support
encrypted transport.

Known Issues

It’s very difficult to diagnose and remedy Java-related errors on the database server.

Supported Database Versions 8.x

Class Name com.ibm.db2.jcc.DB2Driver

Type 4

URL Syntax jdbc:db2://ip-address:50000/database-name

Download Instructions Download as part of the latest FixPack (recommended).

IBM Support & Downloads (http://www.ibm.com/support/us/)

or

Copy the file from the database server.

file:///database-installation-directory/java

Filename db2jcc.jar, db2jcc_license_cu.jar, db2jcc_javax.jar
(optional)

Documentation URLs DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2help)

DB2 Universal JDBC Driver (http://publib.boulder.ibm.com/infocenter/
db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm)

Security under the DB2 Universal JDBC Driver (http://
publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/cjvjcsec.htm)
Third-Party JDBC Drivers 193

http://www.ibm.com/support/us/
http://publib.boulder.ibm.com/infocenter/db2help
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/cjvjcsec.htm

194 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Numerous error conditions and error codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing these can prove time
intensive and frustrating. A log file (db2diag.log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

15.4.5 Informix JDBC Driver

Table 15-7 Informix JDBC Driver

Compatibility

The Informix driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Informix driver does not support encrypted transport.

Required Parameter Settings for ANSI-Compliant Databases

The following table lists driver parameters that must be explicitly set for the Driver for JDBC to
interoperate with the Informix driver against ANSI-compliant databases.

Table 15-8 Driver Settings for ANSI-Compliant Databases

Supported Database Versions Dynamic Server 7.x, 9.x, 10.x

Class Name com.informix.jdbc.IfxDriver

Type 4

URL Syntax jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

Download Instructions Download URL (http://www-306.ibm.com/software/data/informix/
tools/jdbc)

Filenames (7, 9) ifxjdbc.jar, ifxjdbcx.jar (optional)

Filenames (10) jdbc.jar, jdbcx.jar (optional)

Documentation URLs Informix Information Center (http://publib.boulder.ibm.com/infocenter/
ids9help/index.jsp)

Informix JDBC Driver (http://www-306.ibm.com/software/data/
informix/pubs/library/jdbc_2.html)

Display Name Tag Name Value

Supports schemas in metadata retrieval? supports-schemas-in-metadata-retrieval

See “Supports Schemas in Metadata
Retrieval?” on page 79.

false
ager 3.5.1 Driver for JDBC: Implementation Guide

http://www-306.ibm.com/software/data/informix/tools/jdbc
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www-306.ibm.com/software/data/informix/pubs/library/jdbc_2.html

novdocx (en) 11 D
ecem

ber 2007
Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not override these settings.

Table 15-9 Informix JDBC Settings Not to Override

Known Issues

Schema names cannot be used to retrieve metadata against an ANSI-compliant database. Set
the driver compatibility parameter “Supports Schemas in Metadata Retrieval?” on page 79 to
Boolean False.

The database objects available for metadata retrieval are those visible to the database user who
authenticated to the database. Schema qualifiers cannot be used to identify database objects.
Therefore, to avoid naming collisions (such as, owner1.table1, owner2.table1), give the
database authentication user only SELECT privileges on objects being synchronized.
When used against ANSI-compliant databases, usernames must be in uppercase. Set the driver
compatibility parameter “Force Username Case” on page 77 to upper.

15.4.6 jTDS JDBC Driver

Table 15-10 jTDS Driver Settings

Limitations

Novell recommends that you use the Microsoft 2000 JDBC driver when Subscribing to views.

Force username case: force-username-case

See “Force Username Case” on page 77.

upper

Display Name Tag Name Value

Function return method: function-return-method

See “Function Return Method”
on page 79.

result set

Supported Database Versions: Microsoft SQL Server 6.5, 7, 2000 (8), 2005 (9)

Class Name net.sourceforge.jtds.jdbc.Driver

Type 4 (2 if NTLM or SSO authentication is enabled)

URL Syntax jdbc:jtds:sqlserver://ip-address/database-name

Download Instructions The jTDS Project (http://jtds.sourceforge.net/)

Filenames jtds-<version>.jar

Display Name Tag Name Value
Third-Party JDBC Drivers 195

http://jtds.sourceforge.net/

196 Identity Man

novdocx (en) 11 D
ecem

ber 2007
IMPORTANT: The jTDS JDBC driver does not support views or stored procedures.

Compatibility

The jTDS driver works with all versions of Microsoft SQL Server. It also supports all versions of
Sybase ASE, but it hasn’t been tested by Novell against that database server yet. Driver updates are
infrequent.

Security

The jTDS driver supports encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the domain URL property for the jTDS driver.

Table 15-11 Values for the domain URL Property

The following table lists values for the SSL URL property for the jTDS driver.

Table 15-12 Values for the ssl URL Property

15.4.7 MySQL Connector/J JDBC Driver

Table 15-13 Settings for the MySQL Connector/J JDBC Driver

Legal Value Description

<any-domain-name> When a domain name is specified, either NTLM or SSO authentication can
be used. NTLM authentication is selected when a username and
password are supplied. SSO authentication is selected when a username
and password are not supplied.

<no-value> JDBC authentication is used.

Legal Value Description

off SSL is not used. This is the default.

request SSL is used if the server supports it.

require SSL is required. An exception is thrown if the server doesn’t support it.

authenticate SSL is required. An exception is thrown if the server doesn’t support it. In
addition, the server’s certificate must be signed by a trusted certificate
authority.

Supported Database Versions 3.x, 4.x
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Also see “Generation/Retrieval Method (Table-Global)” on page 84.

Compatibility

The Connector/J driver is backward compatible. Database server updates are frequent. Driver
updates are infrequent.

Security

The Connector/J driver supports JSSE (Java Secure Sockets Extension) SSL-encrypted transport.

Required Parameter Settings for MyISAM Tables

The following table lists driver parameters that you must set so that the Driver for JDBC can
interoperate with the Connector/J driver against MyISAM tables.

Table 15-14 Settings for MyISAM Tables

15.4.8 Oracle Thin Client JDBC Driver

Table 15-15 Oracle Thin Client Settings

Class Name org.gjt.mm.mysql.Driver

Type 4

URL Syntax jdbc:mysql://ip-address:3306/database-name

Download Instructions Download and extract. The jar file is located in the extract-dir/mysql-
connector-java-version directory.

MySQL Connector/J (http://www.mysql.com/products/connector/j/)

Filename mysql-connector-java-version-bin.jar

Documentation URLs MySQL Connector/J Documentation (http://dev.mysql.com/doc/
refman/5.0/en/java-connector.html)

Connecting Over SSL (http://dev.mysql.com/doc/refman/5.0/en/cj-
using-ssl.html)

Display Name Tag Name Value

Use manual transactions? use-manual-transactions false

Supported Database Versions 8i, 9i, 10g

Class Name oracle.jdbc.driver.OracleDriver

Type 4

URL Syntax jdbc:oracle:thin:@ip-address:1521:sid
Third-Party JDBC Drivers 197

http://www.mysql.com/products/connector/j/
http://dev.mysql.com/doc/refman/5.0/en/java-connector.html
http://dev.mysql.com/doc/refman/5.0/en/cj-using-ssl.html

198 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Compatibility

The Thin Client driver is backward compatible. Database server updates and driver updates are
infrequent.

Oracle releases thin client drivers for various JVMs. Even though all of them work with this product,
we recommend that you use the 1.4 version.

Security

The Thin Client driver supports Oracle Advanced Security encrypted transport.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 15-16 Oracle Thin Client Settings Not to Override

Connection Properties

The following table lists important connection properties for this driver.

Table 15-17 Oracle Thin Client: Connection Properties

Download Instructions Register for free and download.

Oracle Technology Network (http://otn.oracle.com/software/tech/java/
sqlj_jdbc/content.html)

Filenames ojdbc14.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

Documentation URLs Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

JDBC FAQ (http://www.oracle.com/technology/tech/java/sqlj_jdbc/
htdocs/jdbc_faq.htm)

Display Name Tag Name Value

Number of returned result sets: handle-stmt-results single

Property Significance

includeSynonyms If the value of this property is true, synonym
column metadata is available.

ORACLE.NET.ENCRYPTION_CLIENT Defines the level of security that the client
wants to negotiate with the server.

ORACLE.NET.ENCRYPTION_TYPES_CLIENT Defines the encryption algorithm to be used.
ager 3.5.1 Driver for JDBC: Implementation Guide

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm

novdocx (en) 11 D
ecem

ber 2007
Known Issues

High CPU utilization triggered by execution of embedded SQL statements:

The most common problem experienced with this driver is high CPU utilitization. As a result,
this driver always indicates that more results are available from calls to method
java.sql.Statement.execute(String stmt), which can lead to an infinite loop
condition. This condition occurs only if all the following happen:

A value other than single, no or one in the driver compatibility parameter “Number of
Returned Result Sets” on page 75 is being executed.
An embedded SQL statement is being executed.
The type of statement is not explicitly specified.

To avoid the conditions that produce high CPU utilization:
Do not explicitly set this parameter. Defer to the dynamic default value.
Always place a jdbc:type attribute on embedded <jdbc:statement> elements.

NOTE: The jdbc namespace prefix must map to urn:dirxml:jdbc.

Can’t retrieve synonym column metadata:
The connection property includeSynonyms must be set to true.
Can’t see synonym table primary key constraint:
The only known solution to this problem is to use a view.

15.4.9 Oracle OCI JDBC Driver

Table 15-18 Oracle OCI JDBC Driver Settings

ORACLE.NET.CRYPTO_CHECKSUM_CLIENT Defines the level of security that it wants to
negotiate with the server for data integrity.

ORACLE.NET.CRYPTO_CHEKSUM_TYPES_CLIENT Defines the data integrity algorithm to be used.

Supported Database Versions 8i, 9i, 10g

Class Name oracle.jdbc.driver.OracleDriver

Type 2

URL Syntax jdbc:oracle:oci8:@tns-name

Property Significance
Third-Party JDBC Drivers 199

200 Identity Man

novdocx (en) 11 D
ecem

ber 2007
You can install SQLNet by doing either of the following:

Use the Instant Client (which bypasses unneeded components of the full version).
Download the full package from Oracle.

If the database is running on the same server as Identity Manager, you don’t need to install SQLNet
because SQLNet comes as standard on the database server.

The Oracle OCI driver is essentially the same as the Thin Client driver. See Section 15.4.8, “Oracle
Thin Client JDBC Driver,” on page 197. The OCI client differs in the following ways:

The OCI Client supports clustering, failover, and high availability.
The OCI Client has additional security options.

For information on setting up the Oracle OCI Client, see Appendix K, “Setting Up an OCI Client on
Linux,” on page 251.

Download Instructions The SQLNet infrastructure is the main requirement for OCI. SQLNet
can run on any platform that Oracle supports, not just Linux.

For Linux, register for free and download the following:

 The Oracle Instant Client (instantclient-basic-
linux32-10.2.0.1-20050713.zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

The Oracle SQL*Plus binary (instantclient-sqlplus-
linux32-10.2.0.1-20050713.zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

Filenames ojdbc14.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

Documentation URLs Oracle Call Interface (http://www.oracle.com/technology/tech/oci/
index.html)

OCI FAQ (http://www.oracle.com/technology/tech/oci/htdocs/
oci_faq.html)

Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

Instant Client (http://www.oracle.com/technology/tech/oci/
instantclient/index.html)

Instant Client (http://download-west.oracle.com/docs/cd/B12037_01/
java.101/b10979/instclient.htm#CHDGDIGG)
ager 3.5.1 Driver for JDBC: Implementation Guide

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.oracle.com/technology/tech/oci/index.html
http://www.oracle.com/technology/tech/oci/htdocs/oci_faq.html
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/oci/instantclient/index.html
http://download-west.oracle.com/docs/cd/B12037_01/java.101/b10979/instclient.htm#CHDGDIGG

novdocx (en) 11 D
ecem

ber 2007
15.4.10 PostgreSQL JDBC Driver

Table 15-19 PostgreSQL JDBC Driver Settings

NOTE: The filename of the PostgreSQL varies by database version.

Compatibility

The latest builds of the PostgreSQL driver are backward compatible through server version 7.2.
Database server updates and driver updates are frequent.

Security

The PostgreSQL driver supports SSL-encrypted transport for JDBC 3 driver versions.

15.4.11 Sybase Adaptive Server Enterprise JConnect JDBC
Driver

Table 15-20 Settings for the Sybase Adaptive Server Enterprise Driver

* For JDBC 3 (Java 1.4) versions and later.

Supported Database Versions 6.x, 7.x, 8.x

Class Name org.postgresql.Driver

Type 4

URL Syntax jdbc:postgresql://ip-address:5432/database-name

Download Instructions JDBC Driver Download (http://jdbc.postgresql.org/download.html)

Documentation URLs JDBC Driver Documentation (http://jdbc.postgresql.org/
documentation/docs.html)

Using SSL (http://jdbc.postgresql.org/documentation/80/ssl.html)

Supported Database Versions Adaptive Server* Enterprise 11.x, 12.x

Class Name com.sybase.jdbc2.jdbc.SybDriver (for jconn2.jar)
com.sybase.jdbc3.jdbc.SybDriver (for jconn3.jar)

Type 4

URL Syntax jdbc:sybase:Tds:ip-address:2048/database-name

Download Instructions Sybase Downloads (http://www.sybase.com/downloads)

Filenames jconn2.jar or jconn3.jar

Documentation URLs jConnect Documentation (http://sybooks.sybase.com/onlinebooks/
group-jc/jcg0600e/prjdbc)
Third-Party JDBC Drivers 201

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/documentation/docs.html
http://jdbc.postgresql.org/documentation/80/ssl.html
http://www.sybase.com/downloads
http://sybooks.sybase.com/onlinebooks/group-jc/jcg0600e/prjdbc

202 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Compatibility

The Adaptive Server driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Adaptive Server driver supports SSL-encrypted transport. To enable SSL encryption, you must
specify a custom socket implementation via the SYBSOCKET_FACTORY connection property.
For additional information on how to set connection properties, see “Connection Properties” on
page 70.

Connection Properties

The SYBSOCKET_FACTORY property can be used to specify the class name of a custom socket
implementation that supports encrypted transport.

15.5 Supported-But-Discouraged Third-Party
JDBC Drivers
This section identifies drivers that are supported but whose use is discouraged.

Section 15.5.1, “Third-Party JDBC Driver Features,” on page 202
Section 15.5.2, “JDBC URL Syntaxes,” on page 202
Section 15.5.3, “JDBC Driver Class Names,” on page 203
Section 15.5.4, “IBM DB2 Universal Database Type 3 JDBC Driver,” on page 203
Section 15.5.5, “Microsoft SQL Server 2000 Driver for JDBC,” on page 204
Section 15.5.6, “Microsoft SQL Server 2005 JDBC Driver,” on page 206

15.5.1 Third-Party JDBC Driver Features
The following table summarizes third-party JDBC driver features:

Table 15-21 Third-Party JDBC Driver Features

* For JDBC 3 (Java 1.4) versions and later.

15.5.2 JDBC URL Syntaxes
The following table lists URL syntaxes for supported third-party JDBC drivers:

Driver Supports Encrypted Transport? Supports Retrieval of Auto-Generated
Keys?

IBM DB2 UDB Type 3 No No

Microsoft 2000 No No

Microsoft 2005 Yes Yes
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table 15-22 URL Syntaxes

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 58.

15.5.3 JDBC Driver Class Names
The following table lists the fully-qualified Java class names of supported third-party JDBC drivers:

Table 15-23 Class Names of Third-Party JDBC Drivers

This information is used in conjunction with the JDBC Driver Class Name parameter. For
information on this parameter, see “Third-Party JDBC Driver Class Name” on page 60.

15.5.4 IBM DB2 Universal Database Type 3 JDBC Driver

Table 15-24 IBM DB2 Driver: Type 3

Third-Party JDBC Driver JDBC URL Syntax

IBM DB2 UDB Type 3 jdbc:db2://ip-address:6789/database-name

Microsoft SQL Server 7, 2000 jdbc:microsoft:sqlserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

Microsoft SQL Server 2005 jdbc:sqlserver://ip-address-or-dns-
name:1433;databaseName=database-name

Third-party JDBC Driver Class Name

IBM DB2 UDB Type 3 COM.ibm.db2.jdbc.net.DB2Driver

Microsoft 2000 com.microsoft.jdbc.sqlserver.SQLServerDriver

Microsoft 2005 com.microsoft.sqlserver.jdbc.SQLServerDriver

Supported Database Versions: 7.x

Class Name: COM.ibm.db2.jdbc.net.DB2Driver

Type 3

URL Syntax: jdbc:db2://ip-address:6789/database-name

Download Instructions: Copy the file from the database server.

file:///database-installation-directory/java

Filename: db2java.zip
Third-Party JDBC Drivers 203

204 Identity Man

novdocx (en) 11 D
ecem

ber 2007
IMPORTANT: The type 3 driver was deprecated as of DB2 UDB version 8.

Compatibility

The IBM DB2 driver can best be characterized as version-hypersensitive. It is not compatible across
major or minor versions of DB2, including FixPacks. For this reason, we recommend that you use
the file installed on the database server.

IMPORTANT: The IBM DB2 driver must be updated on the Identity Manager or Remote Loader
server every time the target database is updated, even if only at the FixPack level.

Security

The IBM DB2 driver does not support encrypted transport.

Known Issues

A version mismatch usually results in connectivity-related failures.

The most common problem experienced with the IBM DB2 driver is because of a driver/
database version mismatch. The symptom of a version mismatch is connectivity-related
failures such as "CLI0601E Invalid statement handle or statement is closed." To remedy the
problem, overwrite the db2java.zip file on the Identity Manager or Remote Loader server
with the version installed on the database server.
It’s very difficult to diagnose and remedy Java-related errors on the database server.
Numerous error conditions and error-codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing them can prove time
intensive and frustrating. A log file (db2diag.log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

15.5.5 Microsoft SQL Server 2000 Driver for JDBC

Table 15-25 Microsoft SQL Server 2000 Driver Settings

Documentation URLs: DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2v7luw)

JDBC Programming (http://publib.boulder.ibm.com/infocenter/
db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/
db2a0159.htm)

Supported Database Versions: 2000 (8)

Class Name com.microsoft.jdbc.sqlserver.SQLServerDriver

Type 4

URL Syntax jdbc:sqlserver://ip-address-or-dns-
name:1433;databaseName=database-name
ager 3.5.1 Driver for JDBC: Implementation Guide

http://publib.boulder.ibm.com/infocenter/db2v7luw
http://publib.boulder.ibm.com/infocenter/db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/db2a0159.htm

novdocx (en) 11 D
ecem

ber 2007
NOTE: The filename, URL syntax and classname differ (often subtly) from those of the 2005
driver.

Compatibility

The SQL Server 2000 driver only works with SQL Server 2000. is backward compatible. However,
it doesn’t work with database version 7. Database server and driver updates are infrequent.

Security

The SQL Server 2000 driver does not support encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the SelectMethod URL property for the SQL Server 2000 driver.

Table 15-26 Values for the SelectMethod URL Property

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 15-27 SQL Server 2000 Settings Not to Override

Known Issues

Can’t start manual transaction because of cloned connections.

An implementation anomaly that doesn’t allow concurrent statements to be active on the same
connection causes the most common problem experienced with the SQL Server 2000 driver.
Unlike other third-party implementations, the SQL Server 2000 driver can have only one

Download Instructions Microsoft JDBC Downloads (http://www.microsoft.com/downloads/
results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&fr
eetext=jdbc&DisplayLang=en&DisplayEnglishAlso=)

Filenames msbase.jar, mssqlserver.jar, msutil.jar

Legal Value Description

direct The default value. Doesn’t allow for multiple active statements on a single
connection

cursor Allows for multiple active statements on a single connection

Display Name Tag Name Value

Reuse Statements? reuse-statements false
Third-Party JDBC Drivers 205

http://www.microsoft.com/downloads/results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&freetext=jdbc&DisplayLang=en&DisplayEnglishAlso=

206 Identity Man

novdocx (en) 11 D
ecem

ber 2007
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) object
active at a time on a given connection.

If you attempt to use more than one statement object, the following error is issued: “Can’t start
manual transaction mode because there are cloned connections.” This error can occur only if
the driver compatibility parameter “Reuse Statements?” on page 74 is set to Boolean True. As a
best practice, never explicitly set this parameter. Instead, defer to the dynamic default value.

An alternative is to place the delimited property ;SelectMethod=cursor at the end of the
URL string. For additional information on this issue, consult the following support articles:

Document 30096 (http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/
30096?OpenDocument) by DataDirect Technologies*
Article 313181 (http://support.microsoft.com/default.aspx?scid=kb%3Ben-
us%3B313181) by Microsoft

Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.
Earlier versions of the SQL Server 2000 driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)
because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.
Later versions of the SQL Server 2000 driver return a standard type java.sql.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the SQL Server 2000 driver. This change effectively breaks backward
compatibility.
The best solution to this problem is to continue using the earlier version of the SQL Server
2000 driver. If you must upgrade, remove all invalidated associations and reassociate all
previously-associated objects.

15.5.6 Microsoft SQL Server 2005 JDBC Driver

Table 15-28 Microsoft SQL Server 2005 Driver Settings

Supported Database Versions: 2005 (9)

Class Name com.microsoft.sqlserver.jdbc.SQLServerDriver

Type 4 (2 if integrated security is enabled)

URL Syntax jdbc:sqlserver://ip-address-or-dns-
name:1433;databaseName=database-name

Download Instructions Microsoft SQL Server 2005 JDBC Driver (http://msdn2.microsoft.com/
en-us/data/aa937724.aspx)

Filenames sqljdbc.jar
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/30096?OpenDocument
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://msdn2.microsoft.com/en-us/data/aa937724.aspx

novdocx (en) 11 D
ecem

ber 2007
NOTE: The filename, URL syntax, and classname differ (often subtly) from those of the 2000
driver.

Compatibility

The SQL Server 2005 driver works with only SQL Server 2005. Database server and driver updates
are infrequent.

Security

The SQL Server 2005 driver does not support encrypted transport.

URL Properties

Delimit URL properties by using a semicolon (;).

The following table lists values for the integratedSecurity URL property for the SQL Server 2005
driver.

Table 15-29 Values for the integratedSecurity URL Property

15.6 Deprecated Third-Party JDBC Drivers
This section contains a list of third-party JDBC drivers that are no longer supported.

Section 15.6.1, “BEA Weblogic jDriver for Microsoft SQL Server,” on page 207

15.6.1 BEA Weblogic jDriver for Microsoft SQL Server

Table 15-30 BEA Weblogic jDriver

Legal Value Description

false The default value. JDBC authentication is used.

true Windows process-level authentication is used.

Supported Database Version: Microsoft SQL Server 6.5, 7.x, 8.x (2000)

Class Name weblogic.jdbc.mssqlserver4.Driver

Type 4

URL Syntax jdbc:weblogic:mssqlserver4:database-name@ip-address:1433

Download Instructions Register for free and download the latest version of Weblogic server.
Run the installer. The weblogic.jar file is installed in the
install-dir/server/lib directory.

BEA Download Center (http://commerce.bea.com/
showallversions.jsp?family=WLS)

Filename weblogic.jar
Third-Party JDBC Drivers 207

http://commerce.bea.com/showallversions.jsp?family=WLS

208 Identity Man

novdocx (en) 11 D
ecem

ber 2007
NOTE: The BEA Weblogic driver is included in the supported third-party driver listing to provide
JDBC access to Microsoft SQL server 7. Microsoft’s driver supports only version 8 (2000).

Compatibility

The BEA Weblogic driver is backward-compatible. Database server and driver updates are
infrequent.

Security

The BEA Weblogic driver does not support encrypted transport.

Known Issues

The BEA Weblogic driver is not free. It must be purchased and properly licensed.
Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.
Earlier versions of the BEA Weblogic driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)
because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.
Later versions of the BEA Weblogic driver return a standard type java.sql.CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the BEA Weblogic driver. This change effectively breaks backward compatibility.
The best solution to this problem is to continue using the earlier version of the BEA Weblogic
driver. If you must upgrade, you must remove all invalidated associations and reassociate all
previously-associated objects.
The BEA Weblogic driver throws a java.lang.IllegalMonitorStateException (http://
java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html) when method
java.sql.Connection.getConnection(String url, String username,
String password) is called on AIX.

15.7 Other Third-Party JDBC Drivers
This section lists unsupported drivers of interest and discusses how to assess the feasibility of using
unsupported third-party JDBC drivers with this product.

Section 15.7.1, “IBM Toolbox for Java/JTOpen,” on page 209
Section 15.7.2, “Minimum Third-Party JDBC Driver Requirements,” on page 209
Section 15.7.3, “Considerations When Using Other Third-Party JDBC Drivers,” on page 209

Documentation URLs jDriver Documentation (http://e-docs.bea.com/wls/docs81/
mssqlserver4/)
ager 3.5.1 Driver for JDBC: Implementation Guide

http://e-docs.bea.com/wls/docs81/mssqlserver4/
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html

novdocx (en) 11 D
ecem

ber 2007
15.7.1 IBM Toolbox for Java/JTOpen

Table 15-31 Settings for IBM Toolbox for Java/JTOpen

If you use the IBM Toolbox for Java/JTOpen driver, you must manually enter values for the JDBC
Driver Class Name and Authentication Context parameters. The settings are not automatically
populated. See “Third-Party JDBC Driver Class Name” on page 60 and “Authentication Context”
on page 58.

15.7.2 Minimum Third-Party JDBC Driver Requirements
The Driver for JDBC might not interoperate with all third-party JDBC drivers. If you use an
unsupported third-party JDBC driver, it must meet the following requirements:

Support required metadata methods

For a current list of the required and optional java.sql.DatabaseMetaData method calls that the
Driver for JDBC makes, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.
Support other required JDBC methods
For a list of required JDBC methods that the Driver for JDBC uses, refer to Appendix E,
“JDBC Interface Methods,” on page 235. You can use this list in collaboration with third-party
driver documentation to identify potential incompatibilities.

15.7.3 Considerations When Using Other Third-Party JDBC
Drivers

Because the Driver for JDBC is directly dependent upon third-party JDBC driver
implementations, bugs in those implementations might cause this product to malfunction.

Database IBM Toolbox for Java/JTOpen

iSeries Toolbox for Java (alias)

AS/400 Toolbox for Java (alias)

Class Name com.ibm.as400.access.AS400JDBCDriver

Type 4

URL Syntax jdbc:as400://ip-address/database-name

Download Instructions Download URLs for JTOpen

JTOpen (http://jt400.sourceforge.net)

Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/
eserver/iseries/toolbox/downloads.html)

Filenames jt400.jar

Documentation URLs Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/eserver/
iseries/toolbox/)
Third-Party JDBC Drivers 209

http://jt400.sourceforge.net
http://www-03.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www-03.ibm.com/servers/eserver/iseries/toolbox/

210 Identity Man

novdocx (en) 11 D
ecem

ber 2007
To assist you in debugging third-party JDBC drivers, the Driver for JDBC supports the
following:

Tracing at the JDBC API level (level 6)
Third-party JDBC driver (level 7) tracing

Stored procedure or function support is a likely point of failure.
You’ll probably need to write a custom driver descriptor file.
Specifically, you’ll need to categorize error codes and SQL states for the third-party driver that
you are using.

15.8 Security Issues
To ensure that a secure connection exists between the Identity Manager Driver for JDBC and a
third-party driver, we recommend the following:

Run the Driver for JDBC remotely on the database server.
Use SSL to encrypt communications between the Identity Manager server and the database
server.

If you cannot run the Driver for JDBC remotely, you might want to use a type 2 or type 3 JDBC
driver. These driver types often facilitate a greater degree of security through middleware servers or
client APIs unavailable to other JDBC driver types. Some type 4 drivers support encrypted
transport, but encryption is the exception rather than the rule.
ager 3.5.1 Driver for JDBC: Implementation Guide

16
novdocx (en) 11 D

ecem
ber 2007
16The Association Utility

The Association Utility normalizes associations of objects associated under the 1.0 or later versions
of the Driver for JDBC. It also provides several other features that simplify driver administration.

This version of the utility is compatible with the 1.0 and later versions of the Driver for JDBC, and
supersedes all previous versions.

Section 16.1, “Independent Operations,” on page 211
Section 16.2, “Before You Begin,” on page 212
Section 16.3, “Using the Association Utility,” on page 213
Section 16.4, “Editing Associations,” on page 213

16.1 Independent Operations
The Association Utility supports seven independent operations:

Table 16-1 Independent Operations

Operation Description Read-Write
Functionality

1 List objects associated with a driver (default). Read-only

2 List objects that have multiple associations to a driver. Read-only

3 List objects that have invalid associations to a driver.

An association is invalid if:

It is malformed.

For example, the association is missing the schema RDN,
missing the table RDN, or the schema keyword is misspelled.

It contains database identifiers that do not map to identifiers in
the target database.

For example, an association includes a mapping to a table that
does not exist.

It maps to no row or multiple rows.

An association is broken if it doesn’t map to a row. Also,
associations aren’t unique if they map to more than one row.

Read-only

4 List objects that need to be normalized.

A normalized association is valid, correctly ordered, and uses the
correct case. Normal case is uppercase for case-insensitive
databases and mixed case for case-sensitive databases.

Read-only

5 Normalize object associations listed during operation 4. Write
The Association Utility 211

212 Identity Man

novdocx (en) 11 D
ecem

ber 2007
16.2 Before You Begin
Modifying associations can potentially cause problems. If associations are corrupted, Identity
Manager ceases to function. Therefore, use write operations only when necessary. To avoid
unintentionally corrupting an association, the Association Utility creates an undo ldiff file for all
write operations.

Review the following cautions before using the utility:

The Association Utility, like the driver, assumes database identifiers are undelimited (unquoted
and contain no special characters).
Update all object associations related to a driver together.

IMPORTANT: It is extremely important that you update, at the same time, all object
associations related to a driver.

To see all of the objects associated with a particular driver, run the Association Utility on the
Identity Manager server associated with a particular driver instance.
The LDAP search base must contain all of the objects associated with a particular driver.

NOTE: To ensure complete containment, we recommend that you use your tree’s root
container as the search base.

Make sure that the JDBC URL of the target database supplied to this utility is the same as the
URL that the driver uses. Pointing this utility at a case-insensitive database when the database
is actually case-sensitive might result in associations being normalized to the wrong case.
Because the Association Utility runs locally, it uses an unsecured connection. Therefore, the
Identity Vault LDAP server must be temporarily configured to accept clear text passwords.
Depending upon the third-party JDBC driver you are using, the database connection
established by this utility might be insecure.

NOTE: We recommend changing the driver’s authentication password on the database after
you run this utility.

6 List object associations to be modified.

Allows for global replacement of schema, table, and column names
based on search criteria.

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 213.

Read-only

7 Modify object associations listed during operation 6.

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 213.

Write

Operation Description Read-Write
Functionality
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
16.3 Using the Association Utility
Run the Association Utility once for each instance of the driver installed on an Identity Manager
server. In the install-dir\jdbc\util directory, a batch file association.bat or shell
script association.sh (depending upon your platform) starts the utility.

A properties file containing association utility parameters is provided for each supported database.
These files are in the install-dir\jdbc\util directory.

1This utility does not work with Informix ANSI-compliant databases.

NOTE: For more information on how to run the utility from the command line, refer to run.bat in
the install-dir\tools\util directory.

1 Stop the driver.
2 Run the Association Utility to identify and remove extraneous associations (operations 2 and

3).
No object associated by this product should have multiple associations. Manually remove
extraneous associations on a per object basis. Operation 3 might help you identify which of the
multiple associations is actually valid. After you know this, you can probably discard the
extraneous associations.

3 Run the Association Utility to identify and fix invalid associations (operation 3 and possibly
operations 6 and 7).
As a general rule, if the problem is isolated, manually edit each invalid association. If the
problem is repetitive and affects a large number of associations, consider using operations 6
and 7. This utility can replace bad identifiers on a global basis, but cannot insert or remove
them where they do not already exist.

4 Run the Association Utility to normalize associations (operations 4 and 5).

16.4 Editing Associations
The Association Utility requires two parameters (oldRDN and newRDN) for operations 6 and 7,
which search and replace.

Database Properties Filename

IBM DB2 Universal Database properties_db2.txt

Informix Dynamic Server properties_ifx_ansi.txt1
properties_ifx_log.txt
properties_ifx_no_log.txt

Microsoft SQL Server properties_ms.txt

MySQL properties_my.txt

Oracle properties_ora.txt

PostgreSQL properties_pg.txt

Sybase Adaptive Server Enterprise properties_syb.txt
The Association Utility 213

214 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The first value (for example, schema) in the parameter is the search criterion. The second value (for
example, old) is the replacement value. Under certain scenarios, you can use the wildcard character
* to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

Option Description Example

Replace the schema name Replace schema old with schema new.
Wildcards are supported on the right side
only.

oldRDN: schema=old
newRDN: schema=new

Replace the table name Replace table old with table new.
Wildcards are not supported.

oldRDN: table=old
newRDN: table=new

Replace the column name Replace column old with column new.
Wildcards are required on the right side,
but they aren’t supported on the left side.

oldRDN: old=*
newRDN: new=*
ager 3.5.1 Driver for JDBC: Implementation Guide

17
novdocx (en) 11 D

ecem
ber 2007
17Troubleshooting the JDBC Driver

Section 17.1, “Recognizing Publication Events,” on page 215
Section 17.2, “Executing Test Scripts,” on page 215
Section 17.3, “Troubleshooting Driver Processes,” on page 215

17.1 Recognizing Publication Events
Publication events might not be recognized by the Publisher channel unless you explicitly commit
changes. For the commit keywords of supported databases, see Section 14.3.7, “Commit
Keywords,” on page 182.

17.2 Executing Test Scripts
The test scripts should be executed by a user other than the driver’s idm database user account. If
you execute them as the idm user, events are ignored by the driver’s Publisher channel, unless
publication loopback is allowed. For additional information on allowing or disallowing publication
loopback, refer to “Allow Loopback?” on page 94.

17.3 Troubleshooting Driver Processes
Viewing driver processes is necessary to analyze unexpected behavior. To view the driver
processing events, use DSTrace. You should only use it during testing and troubleshooting the
driver. Running DSTrace while the drivers are in production increases the utilization on the Identity
Manager server and can cause events to process very slowly.

17.3.1 Viewing Driver Processes
To see the driver processes in DSTrace, values are added to the Driver Set object and the Driver
object. You can do this in Designer or iManager.

“Adding Trace Levels in Designer” on page 215
“Adding Trace Levels in iManager” on page 217
“Capturing Driver Processes to a File” on page 218

Adding Trace Levels in Designer

You can add trace levels to the Driver Set object or to each Driver object.

“Driver Set” on page 215
“Driver” on page 216

Driver Set

1 In an open project in Designer, select the Driver Set object in the Outline view.
Troubleshooting the JDBC Driver 215

216 Identity Man

novdocx (en) 11 D
ecem

ber 2007
2 Right-click, select Properties, then click 5. Trace.
3 Set the parameters for tracing, then click OK.

If you set the trace level on the Driver Set object, all drivers appear in the DSTrace logs.

Driver

1 In an open project in Designer, select the Driver object in the Outline view.
2 Right-click, select Properties, then click 8. Trace.
3 Set the parameters for tracing, then click OK.

Parameter Description

Driver trace level As the Driver object trace level increases, the amount of information
displayed in DSTrace increases.

Trace level 1 shows errors, but not the cause of the errors. To see
password synchronization information, set the trace level to 5.

XSL trace level DSTrace displays XSL events. Set this trace level only when
troubleshooting XSL style sheets. If you do not want to see XSL
information, set the level to zero.

Java debug port Allows developers to attach a Java* debugger.

Java trace file When a value is set in this field, all Java information for the Driver Set
object is written to a file. The value for this field is the path for that file.

As long as the file is specified, Java information is written to this file. If
you do not need to debug Java, leave this field blank.

Trace file size limit Allows you to set a limit for the Java trace file. If you set the file size to
Unlimited, the file grows in size until no disk space remains.

Parameter Description

Trace level As the Driver object trace level increases, the amount of information
displayed in DSTrace increases.

Trace level 1 shows errors, but not the cause of the errors. To see
password synchronization information, set the trace level to 5.

if you select Use setting from Driver Set, the value is taken from the Driver
Set object.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
If you set the parameters only on the Driver object, only information for that driver appears in
the DSTrace log.

Adding Trace Levels in iManager

You can add trace levels to the Driver Set object or to each Driver object.

“Driver Set” on page 217
“Driver” on page 218

Driver Set

1 In iManager, select Identity Manager > Identity Manager Overview.
2 Browse to the Driver Set object, then click Search.
3 Click the driver set name.

4 Select the Misc tab for the Driver Set object.
5 Set the parameters for tracing, then click OK.

Trace file Specify a filename and location for where the Identity Manager information
is written for the selected driver.

if you select Use setting from Driver Set, the value is taken from the Driver
Set object.

Trace file size limit Allows you to set a limit for the Java trace file. If you set the file size to
Unlimited, the file grows in size until no disk space remains.

If you select Use setting from Driver Set, the value is taken from the Driver
Set object.

Trace name The driver trace messages are prepended with the value entered instead
of the driver name. Use this option if the driver name is very long.

Parameter Description
Troubleshooting the JDBC Driver 217

218 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Driver

1 In iManager, select Identity Manager > Identity Manager Overview.
2 Browse to the Driver Set object where the Driver object resides, then click Search.
3 Click the upper right corner of the Driver object, then click Edit properties.
4 Select the Misc tab for the Driver object.
5 Set the parameters for tracing, then click OK.

NOTE: The option Use setting from Driver Set does not exist in iManager.

Capturing Driver Processes to a File

You can save driver processes to a file by using the parameter on the Driver object or by using
DSTrace. The parameter on the Driver object is the Trace file parameter, under the MISC tab.

The driver processes that are captured through DSTrace are the processes that occur on the Identity
Manager engine. If you use the Remote Loader, you need to capture a trace on the Remote Loader at
the same time as you are capturing the trace on the Identity Manager engine.

The following methods help you capture and save Identity Manager processes through DSTrace on
different platforms.

“NetWare” on page 218
“Windows” on page 219
“UNIX” on page 219
“iMonitor” on page 219
“Remote Loader” on page 220

NetWare

Use dstrace.nlm to display trace messages on the system console or trace messages to a file
(sys:\system\dstrace.log). Use dstrace.nlm to display the trace messages to a screen
labeled DSTrace Console.

1 Enter dstrace.nlm at the server console to load dstrace.nlm into memory.
2 Enter dstrace screen on at the server console to allow trace messages to appear on the
DSTrace Console screen.

3 Enter dstrace file on at the server console to capture trace messages sent to the
DSTrace Console to the dstrace.log file.

4 (Optional) Enter dstrace -all at the server console to make it easier to read the trace log.
5 Enter dstrace +dxml dstrace +dvrs at the server console to display Identity Manager

events.
6 Enter dstrace +tags dstrace +time at the server console to display message tags and

time stamps.
7 Toggle to the DSTrace Console screen and watch for the event to pass.
8 Toggle back to the server console.
9 Enter dstrace file off at the server console.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
This stops capturing trace messages to the log file. It also stops logging information into the
file.

10 Open the dstrace.log in a text editor and search for the event or the object you modified.

Windows

1 Open the Control Panel, select NDS Services > dstrace.dlm, then click Start to display the
NDS Server Trace utility window.

2 Click Edit > Options, then click Clear All to clear all of the default flags.
3 Select DirXML and DirXML Drivers.
4 Click OK.
5 Click File > New.
6 Specify the filename and location where you want the DSTrace information saved, then click

Open.
7 Wait for the event to occur.
8 Click File > Close.

This stops the information from being written to the log file.
9 Open the file in a text editor and search for the event or the object you modified.

UNIX

1 Enter ndstrace to start the ndstrace utility.
2 Enter set ndstrace=nodebug to turn off all trace flags currently set.
3 Enter set ndstrace on to display trace messages to the console.
4 Enter set ndstrace file on to capture trace messages to the ndstrace.log file in

the directory where eDirectory is installed. By default it is /var/nds.
5 Enter set ndstrace=+dxml to display the Identity Manager events.
6 Enter set ndstrace=+dvrs to display the Identity Manager driver events.
7 Wait for the event to occur.
8 Enter set ndstrace file off to stop logging information to the file.
9 Enter exit to quite the ndstrace utility.

10 Open the file in a text editor. Search for the event or the object that was modified.

iMonitor

iMonitor allows you to get DSTrace information from a Web browser. It does not matter where
Identity Manager is running. The following files run iMonitor:

ndsimon.nlm runs on NetWare®.
ndsimon.dlm runs on Windows.
ndsimonitor runs on UNIX*.

1 Access iMonitor from http://server_ip:8008/nds.

Port 8008 is the default.
2 Specify a username and password with administrative rights, then click Login.
Troubleshooting the JDBC Driver 219

220 Identity Man

novdocx (en) 11 D
ecem

ber 2007
3 Select Trace Configuration on the left side.
4 Click Clear All.
5 Select DirXML and DirXML Drivers.
6 Click Trace On.
7 Select Trace History on the left side.
8 Click the document with the Modification Time of Current to see a live trace.
9 Change the Refresh Interval if you want to see information more often.

10 Select Trace Configuration on the left side, then click Trace Off to turn the tracing off.
11 Select Trace History to view the trace history.

The files are distinguished by their time stamp.

If you need a copy of the HTML file, the default location is:

NetWare: sys:\system\ndsimon\dstrace*.htm
Windows: Drive_letter:\novell\nds\ndsimon\dstrace*.htm
UNIX: /var/nds/dstrace/*.htm

Remote Loader

You can capture the events that occur on the machine running the Remote Loader service.

1 Launch the Remote Loader Console by clicking the icon.
2 Select the driver instance, then click Edit.
3 Set the Trace Level to 3 or above.
4 Specify a location and file for the trace file.
5 Specify the amount of disk space that the file is allowed.
6 Click OK twice to save the changes.

You can also enable tracing from the command line by using the following switches. For more
information, see “Configuring the Remote Loader ” in the Novell Identity Manager 3.5.1
Administration Guide.

Table 17-1 Command Line Tracing Switches

Option Short Name Parameter Description

-trace -t integer Specifies the trace level. This is used only when hosting
an application shim. Trace levels correspond to those
used on the Identity Manager server.

Example: -trace 3 or -t3

-tracefile -tf filename Specify a file to write trace messages to. Trace messages
are written to the file if the trace level is greater than zero.
Trace messages are written to the file even if the trace
window is not open.

Example: -tracefile c:\temp\trace.txt or -tf
c:\temp\trace.txt
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
-tracefilemax -tfm size Specifies the approximate maximum size that trace file
data can occupy on disk. If you specify this option, Identity
Manager creates a trace file with the name specified by
using the tracefile option and up to 9 additional “roll-over”
files. The roll-over files are named by using the base of
the main trace filename plus “_n”, where n is 1 through 9.

The size parameter is the number of bytes. Specify the
size by using the suffixes K, M, or G for kilobytes,
megabytes, or gigabytes.

If the trace file data is larger than the specified maximum
when the Remote Loader is started, the trace file data
remains larger than the specified maximum until roll-over
is completed through all 10 files.

Example: -tracefilemax 1000M or -tfm 1000M

Option Short Name Parameter Description
Troubleshooting the JDBC Driver 221

222 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

18
novdocx (en) 11 D

ecem
ber 2007
18Backing Up the JDBC Driver

You can use Designer for Identity Manager or iManager to create an XML file of the driver. The file
contains all of the information that you entered into the driver during configuration. If the driver
becomes corrupted, you can restore the configuration information by importing the exported file.

IMPORTANT: If the driver has been deleted, all of the associations on the objects are purged.
When you import the XML file, the migration process creates new associations.

Not all server-specific information stored on the driver is contained in the XML file. Make sure that
this information is documented through the Document Generation process in Designer. See
“Documenting Projects” in the Designer 2.1 for Identity Manager 3.5.1 guide.

Section 18.1, “Exporting the Driver in Designer,” on page 223
Section 18.2, “Exporting the Driver in iManager,” on page 223

18.1 Exporting the Driver in Designer
1 Open a project in Designer, then right-click the Driver object.
2 Select Export to Configuration File.
3 Specify a unique name for the configuration file, browse to location where it should be saved,

then click Save.
4 Click OK in the Export Configuration Results window.

18.2 Exporting the Driver in iManager
1 In iManager, select Identity Manager > Identity Manager Overview.
2 Browse to and select the Driver Set object, then click Search.
3 Click the driver icon.
4 Select Export in the Identity Manager Driver Overview window.
5 Browse to and select the Driver object that you want to export, then click Next.
6 Select Export all policies, linked to the configuration or not or select Only export policies that

are linked to the configuration, depending upon the information you want to have stored in the
XML file.

7 Click Next.
8 Click Save As, then click Save.
9 Browse and select a location to save the XML file, then click Save.

10 Click Finish.
Backing Up the JDBC Driver 223

224 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

A
novdocx (en) 11 D

ecem
ber 2007
ABest Practices

The following section lists important best practices for using the Driver for JDBC. You can find
additional information in Chapter 6, “Configuring the JDBC Driver,” on page 55.

Security/Performance:

For performance and security reasons, run the driver remotely on the database server whenever
possible. Be sure to enable SSL encryption between the Identity Vault and the Remote Loader
service.
You should enable SSL encryption for third-party drivers whenever the Driver for JDBC is not
running remotely on the database server. For information on the security capabilities of
supported third-party drivers, see “Third-Party JDBC Drivers” on page 189.
In a production environment, turn off tracing.

Other:

For direct synchronization, prefix one or more view column names with “pk_” (case-
insensitive).
For both direct and indirect synchronization, use different primary key column names between
logical database classes.
Delimit (double-quote) primary key values placed in the event log table_key field if they
contain the following characters:

, ; ' + = \ " < >

This caution is usually an issue only if the primary key column is a binary type.
When an Identity Vault is the authoritative source of primary key values, GUID rather than CN
is recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.
Omit from publication triggers foreign key columns that link child and parent tables.
If primary key columns are static (they do not change), do not include them in publication
triggers.
Place the jdbc:type="query" attribute value on all embedded SELECT statements. Place
the jdbc:type="update" attribute value on all embedded INSERT, UPDATE and
DELETE statements.
Best Practices 225

226 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

B
novdocx (en) 11 D

ecem
ber 2007
BFAQ

Section B.1, “Can’t See Tables or Views,” on page 227
Section B.2, “Synchronizing with Tables,” on page 227
Section B.3, “Processing Rows in the Event Log Table,” on page 228
Section B.4, “Managing Database User Accounts,” on page 228
Section B.5, “Synchronizing Large Data Types,” on page 228
Section B.6, “Slow Publication,” on page 228
Section B.7, “Synchronizing Multiple Classes,” on page 229
Section B.8, “Encrypted Transport,” on page 229
Section B.9, “Mapping Multivalue Attributes,” on page 229
Section B.10, “Synchronizing Garbage Strings,” on page 229
Section B.11, “Running Multiple Driver for JDBC Instances,” on page 229

B.1 Can’t See Tables or Views
Question: Why can’t the driver see my tables or views?

Answer: The driver is capable of synchronizing only tables that have explicit primary key
constraints and views that contain one or more columns prefixed with “pk_” (case-insensitive). The
driver uses these constraints to determine which fields to use when constructing associations. As
such, the driver ignores any unconstrained tables.

If you are trying to synchronize with tables or views that lack the necessary constraints, either add
them or synchronize to intermediate tables with the required constraints.

Another possibility is that the driver lacks the necessary database privileges to see the tables.
Usually, visibility is determined by the presence or absence of the SELECT privilege.

B.2 Synchronizing with Tables
Question: How do I synchronize with tables located in multiple schemas?

Answer: Do one of the following:

Alias the tables into the synchronization schema.
Synchronize to intermediate tables in the synchronization schema and move the data across
schema boundaries.
Use a view.
Create a virtual schema by using the Table/View Names parameter.
See “Table/View Names” on page 68.
FAQ 227

228 Identity Man

novdocx (en) 11 D
ecem

ber 2007
B.3 Processing Rows in the Event Log Table
Question: Why isn’t the driver processing rows in the Event Log Table?

Answer: Do the following:

1 Check the perpetrator field of the rows in question and make sure that the value is set to
something other than the driver’s database username.

The Publisher channel checks the perpetrator field to detect loopback events if the
Publisher channel Allow Loopback parameter is set to Boolean False (the default). See “Allow
Loopback?” on page 94.

When the Allow Loopback parameter is set to Boolean False, the Publisher channel ignores all
records where the perpetrator field value is equal to the driver’s database username. The
driver’s database username is specified by using the Authentication ID parameter. See
“Authentication ID” on page 58.

2 Ensure that the record’s status field is set to N (new).
Records with status fields set to something other than N will not be processed.

3 Make sure to explicitly commit changes.
Changes are often tentative until explicitly committed.

B.4 Managing Database User Accounts
Question: Can the driver manage database user accounts?

Answer: Yes. You can manage database accounts by using embedded SQL. For more information,
see Chapter 13, “Embedded SQL Statements in XDS Events,” on page 153.

B.5 Synchronizing Large Data Types
Question: Can the driver synchronize large binary and string data types?

Answer: Yes. Large binary and string data types can be subscribed and published. Publish large
binary and string data types by using query-back event types. For additional information, see
Section 12.2, “Event Types,” on page 145.

B.6 Slow Publication
Question: Why is publication slow?

Answer: If the event log table contains a large number of rows, index the table. Example indexes
are provided in all database installation scripts. By using trace level 3, you can view the statements
that the driver uses to maintain the event log.

You can further refine indexes in the installation scripts to enhance publication performance.
Placing indexes in a different tablespace or physical disk than the event log table also enhances
publication performance.

Furthermore, in a production environment, set the Delete Processed Rows parameter to Boolean
False, unless processed rows are being periodically moved to another table. See “Delete Processed
Rows?” on page 93.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
B.7 Synchronizing Multiple Classes
Question: Can the driver synchronize multiple classes?

Answer: Yes. However, primary key column names must be unique between logical database
classes. For example, if class1 is mapped to table1 with primary key column name key1, and class2
is mapped to table2 with primary key column name key2, then the name of key1 cannot equal key2.

This requirement can always be satisfied, no matter which synchronization model is employed.

B.8 Encrypted Transport
Question: Does the driver support encrypted transport?

Answer: No. How the driver communicates with a given database depends upon the third-party
driver being used. Some third-party drivers support encrypted transport, while others do not. Even if
encrypted transport is supported, no standardized way exists to enable encryption between third-
party JDBC drivers.

The general solution for this problem is to remotely run the Driver for JDBC and your third-party
driver. This method allows both the Driver for JDBC and the third-party driver to run locally on the
database server. Then all data traveling across the network between the Metadirectory engine and
the Driver for JDBC are SSL encrypted.

Another possibility is to use a type 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide encrypted transport mechanisms.

B.9 Mapping Multivalue Attributes
Question: How do I map multivalue attributes to single-value database fields?

Answer: See Section 10.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on
page 139.

B.10 Synchronizing Garbage Strings
Question: Why is the driver synchronizing garbage strings?

Answer: The database and the third-party driver are probably using incompatible character
encoding. Adjust the character encoding that your third-party driver uses.

For more information, refer to Character Encoding Values (http://java.sun.com/j2se/1.5.0/docs/
guide/intl/encoding.doc.html), defined by Sun.

B.11 Running Multiple Driver for JDBC Instances
Question: How do I run multiple Driver for JDBC instances in the same driver set? The instances
require different versions of the same third-party JBDC driver (for example, the Oracle JDBC driver
or the IBM DB2 Type 3 JDBC driver).

Answer: Use the Remote Loader to load each Driver for JDBC instance in a separate Java Virtual
Machine (JVM). When run locally in the same JVM, different versions of the same third-party
classes collide.
FAQ 229

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

230 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

C
novdocx (en) 11 D

ecem
ber 2007
CSupported Data Types

The driver for JDBC can synchronize all JDBC 1 data types and a small subset of JDBC 2 data
types. How JDBC data types map to a database’s native data types depends on the third-party driver.

The following list includes the supported JDBC 1 java.sql.Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

Numeric Types:
java.sql.Types.BIGINT

java.sql.Types.BIT

java.sql.Types.DECIMAL

java.sql.Types.DOUBLE

java.sql.Types.NUMERIC

java.sql.Types.REAL

java.sql.Types.FLOAT

java.sql.Types.INTEGER

java.sql.Types.SMALLINT

java.sql.Types.TINYINT

String Types:
java.sql.Types.CHAR

java.sql.Types.LONGCHAR

java.sql.Types.VARCHAR

Time Types:
java.sql.Types.DATE

java.sql.Types.TIME

java.sql.Types.TIMESTAMP

Binary Types:
java.sql.Types.BINARY

java.sql.Types.VARBINARY

java.sql.Types.LONGVARBINARY

The following list includes the supported JDBC 2 java.sql.Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

Large Object (LOB) Types:
java.sql.Types.CLOB

java.sql.Types.BLOB
Supported Data Types 231

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

232 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

D
novdocx (en) 11 D

ecem
ber 2007
Djava.sql.DatabaseMetaData
Methods

This section lists the required and optional java.sql.DatabaseMetaData (http://java.sun.com/j2se/
1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods.

The following JDBC 1 methods are required only if the Synchronization Filter parameter is set to
something other than Exclude all tables/views:

getColumns(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String columnNamePattern):java.sql.ResultSet
getPrimaryKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet
getTables(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String[] types):java.sql.ResultSet
storesLowerCaseIdentifiers():boolean
storesMixedCaseIdentifiers():boolean
storesUpperCaseIdentifiers():boolean

Optional JDBC 1 methods:

dataDefinitionCausesTransactionCommit():boolean
dataDefinitionIgnoredInTransactions():boolean
getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern):java.sql.ResultSet
getDatabaseProductName():java.lang.String
getDatabaseProductVersion():java.lang.String
getDriverMajorVersion():int
getDriverMinorVersion():int
getDriverName():java.lang.String
getDriverVersion():java.lang.String
getExportedKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet
getMaxStatements():int
getMaxConnections():int
getMaxColumnsInSelect():int
getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern):java.sql.ResultSet
getSchemas():java.sql.ResultSet
getTableTypes():java.sql.ResultSet
getUserName():java.lang.String
java.sql.DatabaseMetaData Methods 233

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

234 Identity Man

novdocx (en) 11 D
ecem

ber 2007
supportsColumnAliasing():bolean
supportsDataDefinitionAndDataManiuplationTransactions():boolean
supportsDataManipulationTransactionsOnly():boolean
supportsLimitedOuterJoins():boolean
supportsMultipleTransactions():boolean
supportsSchemasInDataManipulation():boolean
supportsSchemasInProcedureCalls():boolean
supportsTransactionIsolationLevel(int level):boolean
supportsTransactions():boolean

Optional JDBC 2 methods:

supportsBatchUpdates():boolean

Optional JDBC 3 methods:

supportsGetGeneratedKeys():boolean
ager 3.5.1 Driver for JDBC: Implementation Guide

E
novdocx (en) 11 D

ecem
ber 2007
EJDBC Interface Methods

This section lists the JDBC interface methods (other than java.sql.DatabaseMetaData (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods) that the driver for
JDBC uses. Methods are organized by class.

Often, third-party JDBC driver vendors list defects or known issues by method. You can use the
following methods in collaboration with third-party JDBC driver documentation to troubleshoot or
anticipate potential interoperability problems.

java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html)
java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
CallableStatement.html)
java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html)
java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
PreparedStatement.html)
java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html)
java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSetMetaData.html)
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html)
java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

The following table lists java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
DriverManager.html) methods that the Driver for JDBC uses:

Table E-1 java.sql.DriverManager Methods

1One method or the other.

The following table lists java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/CallableStatement.html) methods that the Driver for JDBC uses:

Table E-2 java.sql.CallableStatement Methods

Method Signature JDBC Version Required?

getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes1

getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes1

setLogStream(java.io.PrintStream out):void 1 no

Method Signature JDBC Version Required?

getBigDecimal(int parameterIndex, int scale):java.math.BigDecimal 1 yes
JDBC Interface Methods 235

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html

236 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following table lists java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Connection.html) methods that the driver for JDBC uses:

getBoolean(int parameterIndex):boolean 1 yes

getBoolean(String parameterName):boolean 3 no

getByte(int parameterIndex):byte 1 yes

getByte(String parameterName):byte 3 no

getBytes(int parameterIndex):byte[] 1 yes

getBytes(String parameterName):byte[] 3 no

getDate(int parameterIndex):java.sql.Date 1 yes

getDate(String parameterName):java.sql.Date 3 no

getDouble(int parameterIndex):double 1 yes

getDouble(String parameterName):double 3 no

getFloat(int parameterIndex):float 1 yes

getFloat(String parameterName):float 3 no

getInt(int parameterIndex):int 1 yes

int getInt(String parameterName) 3 no

getLong(int parameterIndex):long 1 yes

getLong(String parameterName):long 3 no

getShort(int parameterIndex):short 1 yes

getShort(String parameterName):short 3 no

getString(int parameterIndex):String 1 yes

getString(String parameterName):String 3 no

getTime(int parameterIndex):java.sql.Time 1 yes

getTime(String parameterName):java.sql.Time 3 no

getTimestamp(int parameterIndex):java.sql.Timestamp 1 yes

getTimestamp(String parameterName):java.sql.Timestamp 3 no

registerOutParameter(int parameterIndex, int sqlType):void 1 yes

wasNull():boolean 1 yes

Method Signature JDBC Version Required?
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

novdocx (en) 11 D
ecem

ber 2007
Table E-3 java.sql.Connection Methods

The following table lists java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/PreparedStatement.html) methods that the Driver for JDBC uses:

Table E-4 java.sql.PreparedStatement Methods

Method Signature JDBC Version Required?

close():void 1 yes

commit():void 1 no

createStatement():java.sql.Statement 1 yes

getAutoCommit():boolean 1 no

getMetaData():java.sql.DatabaseMetaData 1 yes

getTransactionIsolation():int 1 no

getWarnings():java.sql.SQLWarning 1 no

isClosed():boolean 1 no

prepareCall(String sql):java.sql.CallableStatement 1 no

prepareStatement(String sql):java.sql.PreparedStatement 1 yes

rollback():void 1 no

setAutoCommit(boolean autoCommit):void 1 no

setTransactionIsolation(int level):void 1 no

Method Signature JDBC Version Required?

clearParameters() :void 1 no

execute():boolean 1 yes

executeQuery():java.sql.ResultSet 1 yes

executeUpdate():int 1 yes

setBigDecimal(int parameterIndex, java.math.BigDecimal x):void 1 yes

setBoolean(int parameterIndex, boolean x):void 1 yes

setByte(int parameterIndex, byte x):void 1 yes

setBytes(int parameterIndex, byte x[]):void 1 yes

setDate(int parameterIndex, java.sql.Date x):void 1 yes

setDouble(int parameterIndex, double x):void 1 yes

setFloat(int parameterIndex, float x):void 1 yes

setInt(int parameterIndex, int x):void 1 yes

setLong(int parameterIndex, long x):void 1 yes
JDBC Interface Methods 237

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

238 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following table lists java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSet.html) methods that the Driver for JDBC uses:

Table E-5 java.sql.ResultSet Methods

setNull(int parameterIndex, int sqlType):void 1 yes

setShort(int parameterIndex, short x):void 1 yes

setString(int parameterIndex, String x):void 1 yes

setTime(int parameterIndex, java.sql.Time x):void 1 yes

setTimestamp(int parameterIndex, java.sql.Timestamp x):void 1 yes

Method Signature JDBC Version Required?

close():void 1 yes

getBigDecimal(int columnIndex, int scale):java.math.BigDecimal 1 yes

getBigDecimal(String columnName, int scale):java.math.BigDecimal 1 yes

getBinaryStream(int columnIndex):java.io.InputStream 1 yes

getBinaryStream(String columnName)java.io.InputStream 1 yes

getBoolean(int columnIndex):boolean 1 yes

getBoolean(String columnName):boolean 1 yes

getByte(int columnIndex):byte 1 yes

getByte(String columnName):byte 1 yes

getBytes(int columnIndex):byte[] 1 yes

getBytes(String columnName):byte[] 1 yes

getDate(int columnIndex):java.sql.Date 1 yes

getDate(String columnName)java.sql.Date 1 yes

getFloat(int columnIndex):float 1 yes

getFloat(String columnName):float 1 yes

getInt(int columnIndex):int 1 yes

getInt(String columnName):int 1 yes

getLong(int columnIndex):long 1 yes

getLong(String columnName):long 1 yes

getMetaData():java.sql.ResultSetMetaData 1 no

getShort(int columnIndex):short 1 yes

getShort(String columnName):short 1 yes

Method Signature JDBC Version Required?
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

novdocx (en) 11 D
ecem

ber 2007
The following table lists java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/ResultSetMetaData.html) methods that the Driver for JDBC uses:

Table E-6 java.sql.ResultSetMetaData Methods

The following table lists java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Statement.html) methods that the Driver for JDBC uses:

Table E-7 java.sql.Statement Methods

getString(int columnIndex):String 1 yes

getString(String columnName):String 1 yes

getTime(int columnIndex):java.sql.Time 1 yes

getTime(String columnName):java.sql.Time 1 yes

getTimestamp(int columnIndex):java.sql.Timestamp 1 yes

getTimestamp(String columnName):java.sql.Timestamp 1 yes

getWarnings():java.sql.SQLWarning 1 no

Method Signature JDBC Version Required?

getColumnCount():int 1 yes

getColumnName(int column):String 1 no

getColumnType(int column):int 1 no

Method Signature JDBC Version Required?

addBatch(java.lang.String sql):void 2 no

clearBatch():void 2 no

clearWarnings():void 1 no

close():void 1 yes

execute(java.lang.String sql):boolean 1 yes

executeBatch():int[] 2 no

executeUpdate(String sql):int 1 yes

executeQuery(String sql):java.sql.ResultSet 1 yes

getGeneratedKeys():java.sql.ResultSet 3 no

getMoreResults():boolean 1 no

getResultSet():java.sql.ResultSet 1 yes

getUpdateCount():int 1 no

Method Signature JDBC Version Required?
JDBC Interface Methods 239

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

240 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The following table lists java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html) methods that the Driver for JDBC uses:

Table E-8 java.sql.Timestamp Methods

getWarnings():java.sql.SQLWarning 1 no

Method Signature JDBC Version Required?

getNanos():int 1 yes

getTime():long 1 yes

setNanos(int n):void 1 yes

setTime(long time):void 1 yes

toString ():String 1 yes

Method Signature JDBC Version Required?
ager 3.5.1 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

F
novdocx (en) 11 D

ecem
ber 2007
FThird-Party JDBC Driver
Descriptor DTD

This section contains the DTD for third-party JDBC descriptor files.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch
metadata | rollback)*>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT authentication (regular-expression | sql-state | error-code
| sql-state-class | error-code-range | actions)*>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>\
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (regular-expression | sql-state | error-code |
sql-state-class | error-code-range | actions)*>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code
 description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range
 description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (regular-expression | sql-state | error-code | sql
state-class | error-code-range | actions)*>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT identity (name?, target-database?, jdbc-type?, jdbc-class?)>
<!ELEMENT import (#PCDATA)>
<!ELEMENT imports (import*)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-class (#PCDATA)>
<!ELEMENT jdbc-driver (imports?, identity, (metadata-override |
connection-properties | sql-type-map | options | errors)*)>
<!ELEMENT jdbc-type (#PCDATA)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>\
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in
Third-Party JDBC Driver Descriptor DTD 241

242 Identity Man

novdocx (en) 11 D
ecem

ber 2007
metadata-retrieval | time-translator-class | column-position
comparator | use-manual-transactions | minimal-metadata | transaction
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT property (key, value)>
<!ELEMENT regular-expression (value)>
<!ELEMENT retry (regular-expression | sql-state | error-code | sql
state-class | error-code-range | actions)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT rollback EMPTY>
<!ELEMENT sql-state (value)>
<!ATTLIST sql-state
 description CDATA #IMPLIED
>
<!ELEMENT sql-state-class (value)>
<!ATTLIST sql-state-class
 description CDATA #IMPLIED
>
<!ELEMENT sql-type-map (type*)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT supports-schemas-in-procedure-calls (#PCDATA)>
<!ELEMENT target-database (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT type (from, to)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
<!ELEMENT value (#PCDATA)>
ager 3.5.1 Driver for JDBC: Implementation Guide

G
novdocx (en) 11 D

ecem
ber 2007
GThird-Party JDBC Driver
Descriptor Import DTD

This section contains the DTD for third-party JDBC descriptor import files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch-
metadata | rollback)*>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT authentication (regular-expression | sql-state | error-code
| sql-state-class | error-code-range | actions)*>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (regular-expression | sql-state | error-code |
sql-state-class | error-code-range | actions)*>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code
 description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range
 description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (regular-expression | sql-state | error-code | sql-
state-class | error-code-range | actions)*>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-driver (metadata-override | connection-properties |
sql-type-map | options | errors)*>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>\
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT property (key, value)>
Third-Party JDBC Driver Descriptor Import DTD 243

244 Identity Man

novdocx (en) 11 D
ecem

ber 2007
<!ELEMENT regular-expression (value)>
<!ELEMENT retry (regular-expression | sql-state | error-code | sql-
state-class | error-code-range | actions)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT rollback EMPTY>
<!ELEMENT sql-state (value)>
<!ATTLIST sql-state
 description CDATA #IMPLIED
>
<!ELEMENT sql-state-class (value)>
<!ATTLIST sql-state-class
 description CDATA #IMPLIED
>
<!ELEMENT sql-type-map (type*)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT supports-schemas-in-procedure-calls (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT type (from, to)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
<!ELEMENT value (#PCDATA)>
ager 3.5.1 Driver for JDBC: Implementation Guide

H
novdocx (en) 11 D

ecem
ber 2007
HDatabase Descriptor DTD

This section contains the DTD for database descriptor files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT database (imports?, identity, options?)>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT identity (name?, regex-name?, regex-version?)>
<!ELEMENT import (#PCDATA)>
<!ELEMENT imports (import*)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT regex-name (#PCDATA)>
<!ELEMENT regex-version (#PCDATA)>
<!ELEMENT reuse-statements (#PCDATA)>\
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
Database Descriptor DTD 245

246 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

I
novdocx (en) 11 D

ecem
ber 2007
IDatabase Descriptor Import DTD

This section contains the DTD for database descriptor import files.
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT add-default-values-on-view-insert (#PCDATA)>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT database (options?)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results)*>
<!ELEMENT reuse-statements (#PCDATA)>
<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA)>
<!ELEMENT transaction-isolation-level (#PCDATA)>
<!ELEMENT use-manual-transactions (#PCDATA)>
<!ELEMENT use-single-connection (#PCDATA)>
Database Descriptor Import DTD 247

248 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

J
novdocx (en) 11 D

ecem
ber 2007
JPolicy Example: Triggerless
Future Event Processing

The following example assumes that a “commence” attribute exists and does the following:

Holds the timestamp value of when an event should be processed
 Contains an integer or java string timestamp value. See “Time Syntax” on page 61.

<policy xmlns:Timestamp="http://www.novell.com/nxsl/java/
java.sql.Timestamp"

xmlns:TimestampUtil="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil"

xmlns:jdbc="urn:dirxml:jdbc">
<rule>
<description>Get commencement date from datasource.</description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="commence">
<arg-string>

<token-src-attr class-name="User"
name="commence"/>

</arg-string>
</do-set-local-variable>

</actions>
</rule>
<rule>

<description>Break if commencement date unavailable.</
description>

<conditions>
<and>

<if-local-variable name="commence" op="equal"/>
</and>

</conditions>
<actions>

<do-break/>
</actions>

</rule>
<rule>
<description>Parse times.</description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="dbTime">
Policy Example: Triggerless Future Event Processing 249

250 Identity Man

novdocx (en) 11 D
ecem

ber 2007
<arg-object>
<token-xpath

expression="Timestamp:valueOf(@jdbc:database-local-time)"/>
</arg-object>

</do-set-local-variable>
<do-set-local-variable name="eventTime">

<arg-object>
<token-xpath

expression="Timestamp:valueOf($commence)"/>
</arg-object>

</do-set-local-variable>
</actions>

</rule>
<rule>

<description>Is commencement date after database time?</
description>

<conditions>
<and>

<if-xpath op="true">.</if-xpath>
</and>

</conditions>
<actions>

<do-set-local-variable name="after">
<arg-string>

<token-xpath
expression="TimestampUtil:after($eventTime, $dbTime)"/>

</arg-string>
</do-set-local-variable>

</actions>
</rule>
<rule>
<description>Retry if future event.</description>

<conditions>
<and>

<if-local-variable name="after" op="equal">true</if-
local-variable>

</and>
</conditions>
<actions>

<do-status level="retry">
<arg-string>

<token-text xml:space="preserve">Future event
detected.</token-text>

</arg-string>
</do-status>

</actions>
</rule>
</policy>
ager 3.5.1 Driver for JDBC: Implementation Guide

K
novdocx (en) 11 D

ecem
ber 2007
KSetting Up an OCI Client on Linux

Section K.1, “Downloading the Instant Client,” on page 251
Section K.2, “Setting Up the OCI Client,” on page 251
Section K.3, “Configuring the OCI Driver,” on page 252

K.1 Downloading the Instant Client
1 Download the Oracle Instant Client (instantclient-basic-linux32-10.2.0.1-
20050713.zip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

2 Download the Oracle SQL*Plus binary (instantclient-sqlplus-linux32-
10.2.0.1-20050713.zip).
The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

K.2 Setting Up the OCI Client
Set up the Oracle Instant Client on the machine where the JDBC driver is running (not on the
machine where Oracle is running).

1 Log into Linux as root, and create the following structure:

/oracle
/oracle/client
/oracle/client/bin
/oracle/client/lib
/oracle/client/network/admin

2 Unzip all files from instantclient-basic-linux32-10.2.0.1-20050713.zip
to /oracle/client/lib.

3 Unzip all files from instantclient-sqlplus-linux32-10.2.0.1-
20050713.zip to /oracle/client/bin.

4 Copy libsqlplus.so from /oracle/client/bin to /oracle/client/lib.
5 Copy libsqlplusic.so from /oracle/client/bin to /oracle/client/lib.
6 Using chmod, ensure that the file sqlplus in /oracle/client/bin is executable.
7 Copy a valid tnsnames.ora into /oracle/client/network/admin.

If you don’t have a tnsnames.ora file, use the Oracle configuration tool to create one.
Make sure that the tnsnames.ora filename is in lowercase.

8 Modify the profile.local file by adding the following lines:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/oracle/client/lib
export TNS_ADMIN=/oracle/client/network/admin
export PATH=$PATH:/oracle/client/lib
Setting Up an OCI Client on Linux 251

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html

252 Identity Man

novdocx (en) 11 D
ecem

ber 2007
The profile.local file is in the /etc folder. If the file doesn’t exist, create one. The file
can consist of only the three export lines.
The profile.local file extends the LD_LIBRARY_PATH, sets TNS_ADMIN, and
extends the PATH. This file is read when the server boots.

9 Ensure that the exports in the profile.local file are always valid.
10 Copy the classes12.jar and ojdbc14.jar to the IDM classes directory.

These .jar files are supplied with the Instant Client.
The IDM classes directory is the directory where your driver is located.

11 Start SQL*Plus with the following example command (assuming that the directory is /
oracle/client/bin):
./sqlplus username/password@sid

K.3 Configuring the OCI Driver
To configure the driver, customize the driver’s URL syntax. See Table 15-18 on page 199.

An example URL syntax is jdbc:oracle:oci8:@ORACLE10. In this example, ORACLE10 is the
connection string in the tnsnames.ora file.

Figure K-1 Example tnsnames.ora File
ager 3.5.1 Driver for JDBC: Implementation Guide

L
novdocx (en) 11 D

ecem
ber 2007
LSybase Chain Modes and the
Identity Manager Driver for JDBC

Sybase can execute stored procedures in two distinct modes: chained and unchained. Depending
upon the configuration of the Identity Manager Driver for JDBC and stored procedures in a
database, various problems can arise. This section can help you understand and resolve those
problems.

Section L.1, “Error Codes,” on page 253
Section L.2, “Procedures and Modes,” on page 254

L.1 Error Codes
“Error 226: SET CHAINED command not allowed within multi-statement transaction” on
page 253
“Error 7112: Stored procedure 'x' may be run only in chained transaction mode” on page 253
“Error 7113: Stored procedure 'x' may be run only in unchained transaction mode” on page 254

Error 226: SET CHAINED command not allowed within multi-statement transaction

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 226 and an SQL state of ZZZZZ.

Cause: This exception is usually caused by a defect in older versions of jConnect*.

Solution: Download and upgrade to the latest version. Downloads are available at the
jConnect for JDBC Web page (http://www.sybase.com/products/
informationmanagement/softwaredeveloperkit/jconnect).

Error 7112: Stored procedure 'x' may be run only in chained transaction mode

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 7712 and an SQL state of ZZZZZ.

Cause: The stored procedure was created in chained mode, or later altered to run in
chained mode, but the driver is currently running in unchained mode. The
probable cause is that the Use Manual Transactions? parameter is set to False.
Another possibility is that the transaction type has been overridden to auto in a
policy.

Solution: Do one of the following:

Use stored procedure sp_procxmode to change the stored procedure's
mode to unchained or anymode (preferred).
Change the driver's Use Manual Transactions? parameter to True, or
change the policy transaction type to manual.
Sybase Chain Modes and the Identity Manager Driver for JDBC 253

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

254 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Error 7113: Stored procedure 'x' may be run only in unchained transaction mode

Effect: Throws the exception com.sybase.jdbc2.jdbc.SybSQLException with error
code 7713 and an SQL state of ZZZZZ.

Cause: The stored procedure was created in unchained mode, or later altered to run in
unchained mode, but the driver is currently running in chained mode. The
probable cause is that the Use Manual Transactions? parameter is set to True.
Another possibility is that the transaction type has been overridden to manual
in policy.

Solution: Do one of the following:

Use stored procedure sp_procxmode to change the stored procedure's
mode to chained or anymode (preferred).
Change the driver's “Use Manual Transactions?” on page 72 parameter to
False, or change the policy transaction type to auto.

NOTE: If you set use-manual-transactions to False, all transactions will
consist of a maximum of one statement.

L.2 Procedures and Modes
Section L.2.1, “Using Stored Procedure sp_proxmode,” on page 254
Section L.2.2, “Chained and Unchained Modes,” on page 254
Section L.2.3, “Managing Transactions in a Policy,” on page 255
Section L.2.4, “Useful Links,” on page 255

L.2.1 Using Stored Procedure sp_proxmode
The preferred way to avoid errors 7112 and 7113 is to alter all stored procedures invoked directly or
indirectly by the driver (via triggers, for example) to run in both chained and unchained mode. To
alter a procedure, invoke the sp_procxmode procedure with two arguments:.

The procedure name
The mode

The following example illustrates how to invoke the sp_procxmode procedure from the isql
command line:

client:sp_procxmode my_procedure, anymode
go

Of course, not all customers are willing to alter stored procedure modes. Altering a procedure's
mode might alter its runtime behavior, which could alter the behavior of other applications that
invoke the procedure.

L.2.2 Chained and Unchained Modes
Unchained mode is Sybase's native way of executing SQL. A second mode, chained mode, was later
added to make the database compatible with SQL standards.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table L-1 Modes and Compatibility

Sybase provides a third-party JDBC driver called jConnect. The default mode of jConnect is
unchained. Whenever the method Connection.setAutoCommit(boolean autoCommit):void is
invoked, jConnect switches modes. See java.sql Interface Connection (http://java.sun.com/j2se/
1.4.2/docs/api/java/sql/Connection.html).

Table L-2 Methods and Switches

If the Use Manual Transactions? parameter is set to False, the driver invokes
Connection.setAutoCommit(true). That is, the driver enters unchained mode. This is the normal
processing mode for SELECT statements and SQL embedded in a policy where the transaction type
is set to auto. See Section 13.5, “Manual vs. Automatic Transactions,” on page 159. When the
driver is in this state, any chained stored procedures invoked directly or indirectly by the driver yield
the 7112 error.

If the Use Manual Transactions? parameter is set to True, the driver invokes
Connection.setAutoCommit(false). That is, the driver enters chained mode. This is the normal
processing mode for all statements except SELECT statements and SQL embedded in a policy
where the transaction type is set to manual. See Manual vs. Automatic Transactions (http://
www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt). When the driver is in this state, any unchained stored procedures
invoked directly or indirectly by the driver yield the 7113 error.

L.2.3 Managing Transactions in a Policy
For information on managing transactions in a policy, see Manual vs.Automatic Transactions (http:/
/www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt).

L.2.4 Useful Links
Transaction modes and stored procedures (http://manuals.sybase.com/onlinebooks/group-as/
asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X) in the Transact-SQL
User's Guide
Selecting the transaction mode and isolation level (http://manuals.sybase.com/onlinebooks/
group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001) in the Transact-SQL
User's Guide

Mode Compatibility

Chained SQL-compatible mode

Unchained Sybase native mode

Method Effect

Connection.setAutoCommit(true) Switches to unchained mode

Connection.setAutoCommit(false) Switches to chained mode
Sybase Chain Modes and the Identity Manager Driver for JDBC 255

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001

256 Identity Man

novdocx (en) 11 D
ecem

ber 2007
ager 3.5.1 Driver for JDBC: Implementation Guide

M
novdocx (en) 11 D

ecem
ber 2007
MThe DirXML Command Line Utility

The DirXML® Command Line utility allows you to use a command line interface to manage the
driver. You can create scripts that have the commands to manage the driver.

The utility and scripts are installed on all platforms during the Identity Manager installation. The
utility is installed to the following locations:

Windows: \Novell\Nds\dxcmd.bat
NetWare®: sys:\system\dxcmd.ncf
UNIX: /usr/bin/dxcmd

Either of the following methods enable you to use the DirXML Command Line utility:

Section M.1, “Interactive Mode,” on page 257
Section M.2, “Command Line Mode,” on page 266

M.1 Interactive Mode
The interactive mode provides a text interface to control and use the DirXML Command Line
utility.

1 At the console, enter dxcmd.
2 Enter the name of a user with sufficient rights to the Identity Manager objects, such as

admin.novell.
3 Enter the user’s password.

4 Enter the number of the command that you want to perform.
Table M-1 on page 258 contains the list of options and what functionality is available.

5 To quit the utility, enter 99.

NOTE: If you are running eDirectoryTM 8.8 on UNIX or Linux*, you must specify the -host and -
port parameters. For example, dxcmd -host 10.0.0.1 -port 524. If the parameters are
not specified, a jclient error occurs.
novell.jclient.JCException: connect (to address) 111 UNKNOWN ERROR
The DirXML Command Line Utility 257

258 Identity Man

novdocx (en) 11 D
ecem

ber 2007
By default, eDirectory 8.8 is not listening to localhost. The DirXML Command Line utility needs to
resolve the server IP address or hostname and the port to be able to authenticate.

Table M-1 Interactive Mode Options

Figure M-1 Driver Options

Option Description

1: Start Driver Starts the driver. If more than one driver exists, each driver is listed with
a number. Enter the number of the driver to start the driver.

2: Stop Driver Stops the driver. If more than one driver exists, each driver is listed with
a number. Enter the number of the driver to stop the driver.

3: Driver operations Lists the operations available for the driver. If more than one driver
exists, each driver is listed with a number. Enter the number of the driver
to see the operations available. See Table M-2 on page 259 for a list of
operations.

4: Driver set operations Lists the operations available for the driver set.

1: Associate driver set with server

2: Disassociate driver set from server

99: Exit

5: Log events operations Lists the operations available for logging events through Novell® Audit.
See Table M-5 on page 263 for a description of these options.

6: Get DirXML version Lists the installed version of Identity Manager.

7: Job operations Manages jobs created for Identity Manager.

99: Quit Exits the DirXML Command Line utility
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Table M-2 Driver Options

Options Description

1: Start driver Starts the driver.

2: Stop driver Stops the driver.

3: Get driver state Lists the state of the driver.

0 - Driver is stopped

1 - Driver is starting

2 - Driver is running

3 - Driver is stopping

4: Get driver start option Lists the current driver start option.

1 - Disabled

2 - Manual

3 - Auto

5: Set driver start option Changes the start option of the driver.

1 - Disabled

2 - Manual

3 - Auto

99 - Exit

6: Resync driver Forces a resynchronization of the driver. It prompts
for a time delay: Do you want to specify a minimum
time for resync? (yes/no).

If you enter Yes, specify the date and time you want
the resynchronization to occur: Enter a date/time
(format 9/27/05 3:27 PM).

If you enter No, the resynchronization occurs
immediately.

7: Migrate from application into DirXML Processes an XML document that contains a query
command: Enter filename of XDS query document:

Create the XML document that contains a query
command by using the Novell nds.dtd (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
ndsdtd/query.html).

Examples:

NetWare: sys:\files\query.xml

Windows: c:\files\query.xml

Linux: /files/query.xml
The DirXML Command Line Utility 259

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html

260 Identity Man

novdocx (en) 11 D
ecem

ber 2007
8: Submit XDS command document to driver Processes an XDS command document:

Enter filename of XDS command document:

Examples:

NetWare: sys:\files\user.xml

Windows: c:\files\user.xml

Linux: /files/user.xml

Enter name of file for response:

Examples:

NetWare: sys:\files\user.log

Windows: c:\files\user.log

Linux: /files/user.log

9: Submit XDS event document to driver Processes an XDS event document:

Enter filename of XDS event document:

Examples:

NetWare: sys:\files\add.xml

Windows: c:\files\add.xml

Linux: /files/add.xml

10: Queue event for driver Adds an event to the driver queue

Enter filename of XDS event document:

Examples:

NetWare: sys:\files\add.xml

Windows: c:\files\add.xml

Linux: /files/add.xml

11: Check object password Validates that an object’s password in the
connected system is associated with a driver. It
matches the object’s eDirectory password
(Distribution Password, used with Universal
Password).

Enter user name:

12: Initialize new driver object Performs an internal initialization of data on a new
Driver object. This is only for testing purposes.

13: Password operations Nine Password options are available. See Table M-
3 on page 261 for a description of these options.

14: Cache operations Five Cache operations exist. See Table M-4 on
page 262 for a descriptions of these options.

Options Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Figure M-2 Password Operations

Table M-3 Password Operations

99: Exit Exits the driver options.

Operation Description

1: Set shim password Sets the application password. This is the
password of the user account you are using to
authenticate into the connected system with.

2: Clear shim password Clears the application password.

3: Set Remote Loader password The Remote Loader password is used to control
access to the Remote Loader instance.

Enter the Remote Loader password, then confirm
the password by typing it again.

4: Clear Remote Loader password Clears the Remote Loader password so no Remote
Loader password is set on the Driver object.

5: Set named password Allows you to store a password or other pieces of
security information on the driver. See Section 8.7,
“Storing Driver Passwords Securely with Named
Passwords,” on page 110 for more information.

Lists four prompts:

Enter password name:

Enter password description:

Enter password:

Confirm password:

Options Description
The DirXML Command Line Utility 261

262 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Figure M-3 Cache Operations

Table M-4 Cache Operations

6: Clear named passwords Clears a specified named password or all named
passwords that are stored on the Driver object: Do
you want to clear all named passwords? (yes/no).

If you enter Yes, all Named Passwords are cleared.
If you enter No, you are prompted to specify the
password name that you want to clear.

7: List named passwords Lists all named passwords that are stored on the
Driver object. It lists the password name and the
password description.

8: Get password state Lists if a password is set for:

Driver Object password

Application password

Remote loader password

The dxcmd utility enables you to set the Application
password and the Remote Loader password. You
cannot set the Driver Object password with this
utility. It displays whether the password has been
set.

99: Exit Exits the current menu and takes you back to the
Driver options.

Operation Description

1: Get driver cache limit Displays the current cache limit that is set for the
driver.

2: Set driver cache limit Sets the driver cache limit in kilobytes. A value of 0
is unlimited.

Operation Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Figure M-4 Log Event Operations

Table M-5 Log Events Operations

3: View cached transactions A text file is created with the events that are stored
in cache. You can select the number of
transactions to view.

Enter option token (default=0):

Enter maximum transactions records to return
(default=1):

Enter name of file for response:

4: Delete cached transactions Deletes the transactions stored in cache.

Enter position token (default=0):

Enter event-id value of first transaction record
to delete (optional):

Enter number of transaction records to delete
(default=1):

99: Exit Exits the current menu and takes you back to the
Driver options.

Operation Description

1: Set driver set log events Allows you to log driver set events through Novell
Audit. You can select 49 items to log. See Table M-
6 on page 264 for a list of these options.

Type the number of the item you want to log. After
the items are selected, enter 99 to accept the
selections.

2: Reset driver set log events Resets all log event options.

3: Set driver log events Allows you to log driver events through Novell
Audit. You can select 49 items to log. See Table M-
6 on page 264 for a list of these options.

Type the number of the item you want to log. After
the items are selected, enter 99 to accept the
selections.

Operation Description
The DirXML Command Line Utility 263

264 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table M-6 Driver Set and Driver Log Events

4: Reset driver log events Resets all of the log event options.

99: Exit Exits the log events operations menu.

Options

1: Status success

2: Status retry

3: Status warning

4: Status error

5: Status fatal

6: Status other

7: Query elements

8: Add elements

9: Remove elements

10: Modify elements

11: Rename elements

12: Move elements

13: Add-association elements

14: Remove-association elements

15: Query-schema elements

16: Check-password elements

17: Check-object-password elements

18: Modify-password elements

19: Sync elements

20: Pre-transformed XDS document from shim

21: Post input transformation XDS document

22: Post output transformation XDS document

23: Post event transformation XDS document

24: Post placement transformation XDS document

25: Post create transformation XDS document

26: Post mapping transformation <inbound> XDS document

27: Post mapping transformation <outbound> XDS document

Operation Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
28: Post matching transformation XDS document

29: Post command transformation XDS document

30: Post-filtered XDS document <Publisher>

31: User agent XDS command document

32: Driver resync request

33: Driver migrate from application

34: Driver start

35: Driver stop

36: Password sync

37: Password request

38: Engine error

39: Engine warning

40: Add attribute

41: Clear attribute

42: Add value

43: Remove value

44: Merge entire

45: Get named password

46: Reset Attributes

47: Add Value - Add Entry

48: Set SSO Credential

49: Clear SSO Credential

50: Set SSO Passphrase

51: User defined IDs

99: Accept checked items

Options
The DirXML Command Line Utility 265

266 Identity Man

novdocx (en) 11 D
ecem

ber 2007
Table M-7 Job Scheduler Operations

M.2 Command Line Mode
The command line mode allows you to use script or batch files. Table M-8 on page 266 lists the
different options that are available.

To use the command line options, decide which items you want to use and string them together.

Example: dxcmd -user admin.headquarters -host 10.0.0.1 -password
n0vell -start test.driverset.headquarters

This example command starts the driver.

Table M-8 Command Line Options

Options Description

1: Get available job definitions Allows you to select an existing job.

Enter the job number:

Do you want to filter the job definitions by
containment? Enter Yes or No

Enter name of the file for response:

Examples:

NetWare: sys:\files\user.log

Windows: c:\files\user.log

Linux: /files/user.log

2: Operations on specific job object Allows you to perform operations for a specific job.

Option Description

Configuration

-user <user name> Specify the name of a user with administrative
rights to the drivers you want to test.

-host <name or IP address> Specify the IP address of the server where the
driver is installed.

-password <user password> Specify the password of the user specified above.

-port <port number> Specify a port number, if the default port is not
used.

-q <quiet mode> Displays very little information when a command is
executed.

-v <verbose mode> Displays detailed information when a command is
executed.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
-s <stdout> Writes the results of the dxcmd command to
stdout.

-? <show this message> Displays the help menu.

-help <show this message> Displays the help menu.

Actions

-start <driver dn> Starts the driver.

-stop <driver dn> Stops the driver.

-getstate <driver dn> Shows the state of the driver as running or stopped.

-getstartoption <driver dn> Shows the startup option of the driver.

-setstartoption <driver dn> <disabled|manual|auto>
<resync|noresync>

Sets how the driver starts if the server is rebooted.
Sets whether the objects are to be resynchronized
when the driver restarts.

-getcachelimit <driver dn> Lists the cache limit set for the driver.

-setcachelimit <driver dn> <0 or positive integer> Sets the cache limit for the driver.

-migrateapp <driver dn> <filename> Processes an XML document that contains a query
command.

Create the XML document that contains a query
command by using the Novell nds.dtd (http://
www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/
policy_dtd/data/
dtdndsoverview.html#dtdndsoverview).

-setshimpassword <driver dn> <password> Sets the application password. This is the
password of the user account you are using to
authenticate into the connected system with.

-clearshimpassword <driver dn> <password> Clears the application password.

-setremoteloaderpassword <driver dn>
<password>

Sets the Remote Loader password.

The Remote Loader password is used to control
access to the Remote Loader instance.

<clearremoteloaderpassword <driver dn> Clears the Remote Loader password.

Option Description
The DirXML Command Line Utility 267

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview

268 Identity Man

novdocx (en) 11 D
ecem

ber 2007
-sendcommand <driver dn> <input filename>
<output filename>

Processes an XDS command document.

Specify the XDS command document as the input
file.

Examples:

NetWare: sys:\files\user.xml

Windows: c:\files\user.xml

Linux: /files/user.log

Specify the output filename to see the results.

Examples:

NetWare: sys:\files\user.log

Windows: c:\files\user.log

Linux: /files/user.log

-sendevent <driver dn> <input filename> Submits a document to the driver’s Subscriber
channel, bypassing the driver cache. The
document is processed ahead of anything that
might be in the cache at the time of the submission.
It also means that the submission fails if the driver
is not running.

-queueevent <driver dn> <input filename> Submits a document to the driver’s Subscriber
channel by queuing the document in the driver
cache. The document is processed after anything
that might be in the cache at the time of the
submission. The submission won’t fail if the driver
isn’t running.

-setlogevents <dn> <integer ...> Sets Novell Audit log events on the driver. The
integer is the option of the item to log. See Table M-
6 on page 264 for the list of the integers to enter.

-clearlogevents <dn> Clears all Novell Audit log events that are set on the
driver.

-setdriverset <driver set dn> Associates a driver set with the server.

-cleardriverset Clears the driver set association from the server.

-getversion Shows the version of Identity Manager that is
installed.

-initdriver object <dn> Performs an internal initialization of data on a new
Driver object. This is only for testing purposes.

-setnamedpassword <driver dn> <name>
<password> [description]

Sets named passwords on the driver object. You
specify the name, the password, and the
description of the named password.

-clearnamedpassword <driver dn> <name> Clears a specified named password.

-startjob <job dn> Starts the specified job.

Option Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
If a command is executed successfully, it returns a zero. If the command returns anything other than
zero, it is an error. For example, 0 means success, and -641 means invalid operation. -641 is an
eDirectory error code. Table M-9 on page 269 contains other values for specific command line
options.

Table M-9 Command Line Option Values

-abortjob <job dn> Aborts the specified job.

-getjobrunningstate <job dn> Returns the specified job’s running state.

-getjobenabledstate <job dn> Returns the specified job’s enabled state.

-getjobnextruntime <job dn> Returns the specified job’s next run time.

-updatejob <job dn> Updates the specified job.

-clearallnamedpaswords <driver dn> Clears all named passwords set on a specific
driver.

Command Line Option Values

-getstate 0- stopped

1- starting

2- running

3- shutting down

11- get schema

Anything else that is returned is an error.

-getstartoption 0- disabled

1- manual

2- auto

Anything else that is returned is an error.

-getcachelimit 0- unlimited

Anything else that is returned is an error.

-getjobrunningstate 0- stopped

1- running

Anything else that is returned is an error.

-getjobenabledstate 0- disabled

1- enabled

2- configuration error

Anything else that is returned is an error.

Option Description
The DirXML Command Line Utility 269

270 Identity Man

novdocx (en) 11 D
ecem

ber 2007
-getjobnextruntime Returns the next scheduled time for the job in
eDirectory time format (number of seconds since
00:00:00 Jan 1, 1970 UTC).

Command Line Option Values
ager 3.5.1 Driver for JDBC: Implementation Guide

N
novdocx (en) 11 D

ecem
ber 2007
NProperties of the JDBC Driver

This section is a reference for all fields on the driver’s property pages as displayed in iManager and
Designer. Sometimes fields display differently in iManager than in Designer.

The information is presented from the viewpoint of iManager. If a field is different in Designer for
Identity Manager, it is marked with a Designer icon.

The following figure illustrates property pages in iManager:

Figure N-1 Properties Pages in iManager

Section N.1, “Driver Configuration,” on page 271
Section N.2, “Global Configuration Values,” on page 276
Section N.3, “Named Passwords,” on page 278
Section N.4, “Engine Control Values,” on page 278
Section N.5, “Log Level,” on page 280
Section N.6, “Driver Image,” on page 281
Section N.7, “Security Equals,” on page 281
Section N.8, “Filter,” on page 282
Section N.9, “Edit Filter XML,” on page 282
Section N.10, “Misc,” on page 283
Section N.11, “Excluded Users,” on page 283
Section N.12, “Driver Manifest,” on page 284
Section N.13, “Driver Cache Inspector,” on page 284
Section N.14, “Driver Inspector,” on page 285
Section N.15, “Server Variables,” on page 285

N.1 Driver Configuration
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration.
Properties of the JDBC Driver 271

272 Identity Man

novdocx (en) 11 D
ecem

ber 2007
In Designer:

1 Open a project in the Modeler, then right-click the driver line.
2 Click Properties > Driver Configuration.

Section N.1.1, “Driver Module,” on page 272
Section N.1.2, “Driver Object Password,” on page 273
Section N.1.3, “Authentication,” on page 273
Section N.1.4, “Startup Option,” on page 274
Section N.1.5, “Driver Parameters,” on page 275

N.1.1 Driver Module
The driver module changes the driver from running locally to running remotely or the reverse.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration > Driver Module.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Select the Driver Module tab.

Option Description

Java Used to specify the name of the Java class that
is instantiated for the shim component of the
driver. This class can be located in the classes
directory as a class file, or in the lib directory as
a .jar file. If this option is selected, the driver is
running locally.

Native Used to specify the name of the .dll file that is
instantiated for the application shim component
of the driver. If this option is selected, the driver
is running locally.

Connect to Remote Loader Used when the driver is connecting remotely to
the connected system.

Remote Loader Client Configuration for
Documentation

Includes information on the Remote Loader
client configuration when Designer generates
documentation on the driver.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
N.1.2 Driver Object Password
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration > Driver Object Password > Set Password.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then click Properties > Driver Configuration.
3 Click Driver Module > Connect to Remote Loader > Set Password.

N.1.3 Authentication
The authentication section stores the information required to authenticate to the connected system.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration > Authentication.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Click Authentication.

Option Description

Driver Object Password Use this option to set a password for the driver
object. If you are using the Remote Loader, you
must enter a password on this page. Otherwise,
the remote driver does not run. The Remote
Loader uses this password to authenticate itself
to the remote driver shim.

Option Description

Authentication information for
server

Displays or specifies the IP address or server name that the driver is
associated with

Authentication DN

or

Authentication ID

Specifies the DN of the account that the driver will use for
authentication.

Example: Administrator
Properties of the JDBC Driver 273

274 Identity Man

novdocx (en) 11 D
ecem

ber 2007
N.1.4 Startup Option
The Startup Option allows you to set the driver state when the Identity Manager server is started.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration > Startup Option.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Click Startup Option.

Authentication Context

or

Connection Information

Specify the IP address or name of the server the application shim
should communicate with.

Remote Loader Connection
Parameters

or

Host name

Port

KMO

Other parameters

Used only if the driver is connecting to the application through the
Remote Loader. The parameter to enter is
hostname=xxx.xxx.xxx.xxx port=xxxx
kmo=certificatename, when the host name is the IP address of
the application server running the Remote Loader server and the
port is the port the Remote Loader is listening on. The default port
for the Remote Loader is 8090.

The kmo entry is optional. It is used only when an SSL connection
exists between the Remote Loader and the Metadirectory engine.

Example: hostname=10.0.0.1 port=8090
kmo=IDMCertificate

Driver Cache Limit
(kilobytes)

or

Cache limit (KB)

Specify the maximum event cache file size (in KB). If it is set to zero,
the file size is unlimited.

Click Unlimited to set the file size to unlimited in Designer.

Application Password

or

Set Password

Specify the password for the user object listed in the Authentication
ID field.

Remote Loader Password

or

Set Password

Used only if the driver is connecting to the application through the
Remote Loader. The password is used to control access to the
Remote Loader instance. It must be the same password specified
during the configuration of the Remote Loader on the connected
system.

Option Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
N.1.5 Driver Parameters
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Configuration > Driver Parameters.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Click Driver Parameters.

Option Description

Auto start The driver starts every time the Identity Manager server is started.

Manual The driver does not start when the Identity Manager server is started. The
driver must be started through Designer or iManager.

Disabled The driver has a cache file that stores all of the events. When the driver is
set to Disabled, this file is deleted and no new events are stored in the file
until the driver state is changed to Manual or Auto Start.

Do not automatically
synchronize the driver

This option applies only if the driver is deployed and was previously
disabled. If this is not selected, the driver re-synchronizes the next time it is
started.

Parameter Description

Driver parameters for server Species of displays the name or IP address of the server that the
driver is associated with.

Edit XML Opens an editor so that you can edit the configuration file.

Driver Options

Third-party JDBC driver class
name

Verify that the version of the jar or zip file that contains this
class is compatible with the target database.

Show database scoping
parameters

Controls how much of the database is visible to the JDBC driver.

Table/view names The names of the tables or views to synchronize. For details,
click the information icon.

Time syntax Returns time-related data types as integers, canonical strings, or
Java strings. For details, click the information icon.

State directory The path of the folder where you want the JDBC driver to store
state information. Changing the value while using triggerless
publication can force all objects to be resynchronized.

Show connectivity parameters? Hides or displays connectivity-related parameters.
Properties of the JDBC Driver 275

276 Identity Man

novdocx (en) 11 D
ecem

ber 2007
N.2 Global Configuration Values
Global configuration values (GCVs) enable you to specify settings for the Identity Manager features
such as password synchronization and driver heartbeat, as well as settings that are specific to the
function of an individual driver configuration. Some GCVs are provided with the drivers, but you
can also add your own.

Show compatibility parameters? Hides or displays parameters that can enhance compatibility with
third-party JDBC databases.

Subscriber Options

Disable subscriber? Specifies whether the driver ignores events that flow from Identity
Manager to the database.

Show primary key parameters? Hides or displays parameters that control how and when primary
key values are generated.

Disable statement-level locking? Specifies whether database resources are locked on a channel.

Check update counts? Specifies whether the Subscriber channel checks to see if rows
were updated after insert, update, or delete statements were
executed against a table.

Publisher Options

Disable publisher? Specifies whether the Publisher channel ignores events that flow
from the database to the Identity Vault.

Publication mode Specifies whether the driver uses triggered or triggerless
publication.

Event log table name Names the table where publication events are stored.

Delete processed rows? Specifies whether processed rows are deleted from the event log
table. Performance decreases when processed rows remain in
the table.

Optimize updates? Specifies whether the Publisher channel optimizes update events
before sending them to the engine. To optimize all update events,
select Yes.

Allow loopback? Specifies whether events that the Subscriber channel initiates
loopback on the Publisher channel.

Disable statement-level locking? Specifies whether database resources are locked on this
channel.

Enable future event processing? Specifies whether events in the event log table are processed
according to their effective date or order of insertion, or whether
the database local time is published with each event.

Show polling-related
parameters?

Specifies whether to show parameters that control polling
behavior.

Heartbeat interval (in minutes) Specifies the number of minutes that the Publisher channel waits
between events before sending a heartbeat document.

Parameter Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
IMPORTANT: Password synchronization settings are GCVs, but it’s best to edit them in the
graphical interface provided on the Server Variables page for the driver, instead of the GCV page.
The Server Variables page that shows Password Synchronization settings is accessible as a tab as
with other driver parameters, or by clicking Password Management > Password Synchronization,
searching for the driver, and clicking the driver name. The page contains online help for each
Password Synchronization setting.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Global Config Values.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Global Configuration Values.

Table N-1 Global Configuration Values > Password Configuration

Option Description

Application accepts
passwords from Identity
Manager

If True, allows passwords to flow from the Identity Manager data store to the
connected system.

Identity Manager accepts
passwords from
application

If True, allows passwords to flow from the connected system to Identity
Manager.

Publish passwords to NDS
password

Use the password from the connected system to set the non-reversible
NDS® password in eDirectory.

Publish passwords to
Distribution Password

Use the password from the connected system to set the NMASTM
Distribution Password used for Identity Manager password synchronization.

Require password policy
validation before
publishing passwords

If True, applies NMAS password policies during publish password
operations. The password is not written to the data store if it does not
comply.

Reset user’s external
system password to the
Identity Manager
password on failure

If True, on a publish Distribution Password failure, attempt to reset the
password in the connected system by using the Distribution Password from
the Identity Manager data store.

Notify the user of
password synchronization
failure via e-mail

If True, notify the user by e-mail of any password synchronization failures.

Connected System or
Driver Name

The name of the connected system, application, or Identity Manager driver.
The e-mail notification templates use this value.
Properties of the JDBC Driver 277

278 Identity Man

novdocx (en) 11 D
ecem

ber 2007
N.3 Named Passwords
Identity Manager enables you to store multiple passwords securely for a particular driver. This
functionality is referred to as Named Passwords. Each different password is accessed by a key, or
name.

You can also use the Named Passwords feature to store other pieces of information securely, such as
a user name. To configured Named Passwords, see Section 8.7, “Storing Driver Passwords Securely
with Named Passwords,” on page 110.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Named Passwords.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Named Passwords.

N.4 Engine Control Values
The engine control values are a means through which certain default behaviors of the Metadirectory
engine can be changed. The values can only be accessed if a server is associated with the Driver Set
object.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Engine Control Values.

In Designer:

1 In the Modeler, right-click a driver line.
2 Select Properties > Engine Control Values.
3 Click the tooltip icon to the right of the Engine Controls for Server field. If a server is

associated with the Identity Vault, the Engine Control Values display in the large pane.

Table N-2 Engine Control Values

Option Description

Subscriber channel retry
interval in seconds

The Subscriber channel retry interval controls how frequently the
Metadirectory engine retries the processing of a cached transaction after
the application shim's Subscriber object returns a retry status.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Qualified form for DN-syntax
attribute values

The qualified specification for DN-syntax attribute values controls whether
values for DN-syntax attribute values are presented in unqualified slash
form or qualified slash form. A True setting means the values are
presented in qualified form.

Qualified form from rename
events

The qualified form for rename events controls whether the new-name
portion of rename events coming from the Identity Vault are presented to
the Subscriber channel with type qualifiers. For example, CN=. A True
setting means the names are presented in qualified form.

Maximum eDirectory
replication wait time in
seconds

This setting controls the maximum time that the Metadirectory engine
waits for a particular change to replicate between the local replica and a
remote replica. This only affects operations where the Metadirectory
engine is required to contact a remote eDirectory server in the same tree
to perform an operation and might need to wait until some change has
replicated to or from the remote server before the operation can be
completed (for example, object moves when the Identity Manager server
does not hold the master replica of the moved object; file system rights
operations for Users created from a template.)

Use non-compliant
backwards-compatible
mode for XSLT

This control sets the XSLT processor used by the Metadirectory engine to
a backwards-compatible mode. The backward-compatible mode causes
the XSLT processor to use one or more behaviors that are not XPath 1.0
and XSLT 1.0 standards-compliant. This is done in the interest of
backward compatibility with existing DirXML® style sheets that depend on
the non-standard behaviors.

For example, the behavior of the XPath “!=” operator when one operand is
a node-set and the other operand is other than a node-set is incorrect in
DirXML releases up to and including Identity Manager 2.0. This behavior
has been corrected; however, the corrected behavior is disabled by
default through this control in favor of backward compatibility with existing
DirXML style sheets.

Maximum application
objects to migrate at once

This control is used to limit the number of application objects that the
Metadirectory engine requests from an application during a single query
that is performed as part of a Migrate Objects from Application operation.

If java.lang.OutOfMemoryError errors are encountered during a Migrate
from Application operation, this number should be set lower than the
default. The default is 50.

NOTE: This control does not limit the number of application objects that
can be migrated; it merely limits the batch size.

Set creatorsName on
objects created in Identity
Vault

This control is used by the Identity Manager engine to determine if the
creatorsName attribute should be set to the DN of this driver on all objects
created in the Identity Vault by this driver.

Setting the creatorsName attribute allows for easily identifying objects
created by this driver, but also carries a performance penalty. If not set,
the creatorsName attribute defaults to the DN of the NCPTM Server object
that is hosting the driver.

Option Description
Properties of the JDBC Driver 279

280 Identity Man

novdocx (en) 11 D
ecem

ber 2007
N.5 Log Level
Each driver set and each driver has a log level field where you can define the level of errors that
should be tracked. The level you indicate here determines which messages are available to the logs.
By default, the log level is set to track error messages. (This also includes fatal messages.) To track
additional message types, change the log level.

Novell® recommends that you use Novell Audit instead of setting the log levels. See the Identity
Manager 3.5.1 Logging and Reporting guide.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Log Level.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Log Level.

Write pending associations This control determines whether the Identity Manager engine writes a
pending association on an object during Subscriber channel processing.

Writing a pending association confers little or no benefit but does incur a
performance penalty. Nevertheless, the option exists to turn it on for
backward compatibility.

Use password event values This control determines the source of the value reported for the
nspmDistributionPassword attribute for Subscriber channel Add and
Modify events.

Setting the control to False means that the current value of the
nspmDistributionPassword is obtained and reported as the value of the
attribute event. This means that only the current password value is
available. This is the default behavior.

Setting the control to True means that the value recorded with the
eDirectory event is decrypted and is reported as the value of the attribute
event. This means that both the old password value (if it exists) and the
replacement password value at the time of the event are available. This is
useful for synchronizing passwords to certain applications that require the
old password to enable setting a new password.

Enable password
synchronization status
reporting

This control determines whether the Identity Manager engine reports the
status of Subscriber channel password change events.

Reporting the status of Subscriber channel password change events
allows applications such as the Identity Manager User Application to
monitor the synchronization progress of a password change that should
be synchronized to the connected application.

Option Description
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
N.6 Driver Image
Allows you to change the image associated with the driver. You can browse and select a different
image from the default image.

The image associated with a driver is used by the Identity Manager Overview plug-in when showing
the graphical representation of your Identity Manager configuration. Although storing an image is
optional, it makes the overview display more intuitive.

NOTE: The driver image is maintained when a driver configuration is exported.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Image.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > iManager Icon.

N.7 Security Equals
Use the Security page to view or change the list of objects that the driver is explicitly security
equivalent to. This object effectively has all rights of the listed objects.

If you add or delete an object in the list, the system automatically adds or deletes this object in that
object's “Security Equal to Me” property. You don't need to add the [Public] trustee or the parent

Option Description

Use log settings from the DriverSet If this is selected, the driver logs events as the options
are set on the Driver Set object.

Log errors Logs just errors

Log errors and warnings Logs errors and warnings

Log specific events Logs the events that are selected. Click the icon to
see a list of the events.

Only update the last log time Updates the last log time.

Logging off Turns logging off for the driver.

Turn off logging to DriverSet, Subscriber
and Publisher logs

If selected, turns all logging off for this driver on the
Driver Set object, Subscriber channel, and the Publisher
channel.

Maximum number of entries in the log
(50-500)

Number of entries in the log. The default value is 50.
Properties of the JDBC Driver 281

282 Identity Man

novdocx (en) 11 D
ecem

ber 2007
containers of this object to the list, because this object is already implicitly security equivalent to
them.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Security Equals.

Designer does not list the users the driver is security equals to.

N.8 Filter
Launches the Filter editor. You can edit the Filter from this tab.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Filter.

In Designer:

1 In an open project, click the Outline tab (Outline view).
2 Select the driver you want to manage the filter for, then click the plus sign to the left.
3 Double-click the Filter icon to launch the Filter Editor.

N.9 Edit Filter XML
Allows you to edit the filter directly in XML instead of using the Filter Editor.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Filter.

In Designer:

1 In an open project, click the Outline tab (Outline view).
2 Select the driver you want to manage the filter for, then click the plus sign to the left.
3 Double-click the Filter icon to launch the Filter Editor, then click XML Source at the bottom of

the Filter Editor.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
N.10 Misc
Allows you to add a trace level to your driver. With the trace level set, DSTrace displays the Identity
Manager events as the Metadirectory engine processes the events. The trace level affects only the
driver it is set for. Use the trace level for troubleshooting issues with the driver when the driver is
deployed. DSTrace displays the output of the specified trace level.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Misc.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Trace.

N.11 Excluded Users
Use this page to create a list of users or resources that are not replicated to the application. Novell
recommends that you add all objects that represent an administrative role to this list (for example,
the Admin object).

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Excluded Users.

Designer does not list the excluded users.

Option Description

Trace level Increases the amount of information displayed in DSTrace. Trace
level 1 shows errors, but not the cause of the errors. If you want to
see password synchronization information, set the trace level to 5.

Trace file When a value is set in this field, all Java information for the driver is
written to the file. The value for this field is the path for that file.

As long as the file is specified, Java information is written to this file. If
you do not need to debug Java, leave this field blank.

Trace file size limit Allows you to set a limit for the Java trace file. If you set the file size
to Unlimited, the file grows in size until there is no disk space left.

Trace name Driver trace messages are prepended with the value entered in this
field.

Use setting from Driver
Set

This option is only available in Designer. It allows the driver to use
the same setting that is set on the Driver Set object.
Properties of the JDBC Driver 283

284 Identity Man

novdocx (en) 11 D
ecem

ber 2007
N.12 Driver Manifest
The driver manifest is like a resumé for the driver. It states what the driver supports, and includes a
few configuration settings. The driver manifest is created by default when the Driver object is
imported. A network administrator usually does not need to edit the driver manifest.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Driver Manifest.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Manifest.

N.13 Driver Cache Inspector
Figure N-2 The Link to the Driver Cache Inspector

The Driver Cache Inspector page uses a table format to display information about the cache file that
stores events while the driver is stopped.

Driver: A link to run the Driver Overview on the driver that is associated with this cache file.
Driver Set: A link to run the Driver Set Overview on the driver set that holds the driver.
Driver’s cache on: Lists the server object that contains this instance of the cache file.
Start/Stop Driver icons: Displays the current state of the driver and allows you to start or stop
the driver.
Edit icon: Enables you to edit the properties of the currently selected Server object.
Delete: Deletes the selected items from the cache file.
Refresh: Enables you to re-read the cache file and refresh the displayed information.
Show: Limits the number of items to be displayed. The options are:

25 per page
50 per page
100 per page
Other: Enables you to specify a desired number.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Actions: Enables you to perform actions on the entries in the cache file. Click Actions to
expand the menu, which includes:

Expand All: Expands all of the entries displayed in the cache file.
Collapse All: Collapses all of the entries displayed in the cache file.
Go To: Enables you to access a specified entry in the cache file. Specify the entry
number, then click OK.
Cache Summary: Summarizes all events stored in the cache file.

N.14 Driver Inspector
The Driver Inspector page displays information about objects associated with the driver. Designer
does not have this option.

Driver: A link to run the Driver Overview on the driver that is being inspected.
Driver Set: A link to run the Driver Set Overview of the driver set that holds the driver.
Delete: Deletes the associations of the selected objects.
Refresh: Enables you to re-read all of the objects associated with the driver and refresh the
displayed information.
Actions: Enables you to perform actions on the objects associated with the driver. Click
Actions to expand the menu, which includes:

Show All Associations: Displays all objects associated with the driver.
Filter for Disabled Associations: Displays all the driver’s associated objects that have a
Disabled state.
Filter for Manual Associations: Displays all the driver’s associated objects that have a
Manual state.
Filter for Migrate Associations: Displays all the driver’s associated objects that have a
Migrate state.
Filter for Pending Associations: Displays all the driver’s associated objects that have a
Pending state.
Filter for Processed Associations: Displays all the driver’s associated objects that have a
Processed state.
Filter for Undefined Associations: Displays all the driver’s associated objects that have
an Undefined state.
Association Summary: Displays the state of all objects associated with the driver.

Object DN: Displays the DN of the associated objects.
State: Displays the association state of the object.
Object ID: Displays the value of the association.

N.15 Server Variables
This page lets you enable and disable Password Synchronization and the associated options for the
selected driver.

When setting up Password Synchronization, consider both the settings on this page for an individual
driver and the Universal Password Configuration options in your password policies.
Properties of the JDBC Driver 285

286 Identity Man

novdocx (en) 11 D
ecem

ber 2007
This page lets you control which password Identity Manager updates directly, either the Universal
Password for an Identity Vault, or the Distribution Password used for password synchronization by
Identity Manager.

However, Novell Modular Authentication Service (NMAS) controls whether the various passwords
inside the Identity Vault are synchronized with each other. Password Policies are enforced by
NMAS, and they include settings for synchronizing Universal Password, NDS Password,
Distribution Password, and Simple Password.

To change these settings in iManager:

1 In iManager, select Passwords > Password Policies.
2 Select a password policy, then click Edit.
3 Select Universal Password.

This option is available from a drop-down list or a tab, depending on your version of iManager
and your browser.

4 Select Configuration Options, make changes, then click OK.

NOTE: Enabling or disabling options on this page corresponds to values of True or False for
certain global configuration values (GCVs) used for password synchronization in the driver
parameters. Novell recommends that you edit them here in the graphical interface, instead of on
the GCVs page. This interface helps ensure that you don't set conflicting values for the
password synchronization GCVs.

Option Description

Identity Manager accepts
password (Publisher
Channel)

If this option is enabled, Identity Manager allows passwords to flow
from the connected system driver into the Identity Vault data store.

Disabling this option means that no <password> elements are
allowed to flow to Identity Manager. They are stripped out of the XML
by a password synchronization policy on the Publisher channel.

If this option is enabled, and the option below it for Distribution
Password is disabled, a <password> value coming from the
connected system is written directly to the Universal Password in the
Identity Vault if it is enabled for the user. If the user's password policy
does not enable Universal Password, the password is written to the
NDS Password.
ager 3.5.1 Driver for JDBC: Implementation Guide

novdocx (en) 11 D
ecem

ber 2007
Use Distribution Password
for password
synchronization

To use this setting, you must have a version of eDirectory that
supports Universal Password, regardless of whether you have
enabled Universal Password in your password policies.

If this option is enabled, a password value coming from the
connected system is written to the Distribution Password. The
Distribution Password is reversible, which means that it can be
retrieved from the Identity Vault data store for password
synchronization. It is used by Identity Manager for bidirectional
password synchronization with connected systems. For Identity
Manager to distribute passwords to connected systems, this option
must be enabled.

NMAS and Password policies control whether the Distribution
Password is synchronized with other passwords in the Identity Vault.
By default, the Distribution Password is the same as the Universal
Password in the Identity Vault.

If the password in the Identity Vault is to be independent of Password
Synchronization, so that Identity Manager is a conduit only for
synchronizing passwords among connected systems, change this
default setting. In the Universal Password Configuration Options in a
Password policy, disable Synchronize Universal Password with
Distribution Password. This use of Identity Manager Password
Synchronization is also referred to as “tunneling.”

Accept password only if it
complies with user’s
Password Policy

To use this setting, users must have a Password policy assigned that
has Universal Password enabled, and Advanced Password Rules
enabled and configured.

If this option is chosen, Identity Manager does not write a password
from this connected system to the Distribution Password in the
Identity Manager data store or publish it to connected systems unless
the password complies with the user's Password policy.

By using the notification option that is also on this page, you can
inform users when a password is not set because it is not compliant.

Option Description
Properties of the JDBC Driver 287

288 Identity Man

novdocx (en) 11 D
ecem

ber 2007
If password does not
comply, ignore Password
Policy on the connected
system by resetting user’s
password to the Distribution
Password

This option lets you enforce Password policies on the connected
system by replacing a password that does not comply. If you select
this option, and a user's password on the connected system does not
comply with the user's Password policy, Identity Manager resets the
password on the connected system by using the Distribution
Password from the Identity Vault data store.

Keep in mind that if you do not select this option, user passwords can
become out-of-sync on connected systems.

By using the notification option that is also on this page, you can
inform users when a password is not set or reset. Notification is
especially helpful for this option. If the user changes to a password
that is allowed by the connected system but rejected by Identity
Manager because of the Password policy, the user won't know that
the password has been reset until the user receives a notification or
tries to log in to the connected system with the old password.

NOTE: Consider the connected system's password policies when
deciding whether to use this option. Some connected systems might
not allow the reset because they don't allow you to repeat passwords.

Always accept password;
ignore Password Policies

If you select this option, Identity Manager does not enforce the user's
Password policy for this connected system. Identity Manager writes
the password from this connected system to the Distribution
Password in the Identity Vault data store, and distributes it to other
connected systems, even if the password does not comply with the
user's Password policy.

Application accepts
passwords (Subscriber
Channel)

If you select this option, the driver sends passwords from the Identity
Vault data store to this connected system. This also means that if a
user changes the password on a different connected system that is
publishing passwords to the Distribution Password in the Identity
Vault data store, the password is changed on this connected system.

By default, the Distribution Password is the same as the Universal
Password in the Identity Vault, so changes to the Universal Password
made in the Identity Vault are also sent to the connected system.

If you want the password in the Identity Vault to be independent of
Password Synchronization, so that Identity Manager is a conduit only
for synchronizing passwords among connected systems, you can
change this default setting. In the Universal Password Configuration
Options in a password policy, disable Synchronize Universal
Password with Distribution Password. This use of Password
Synchronization is also referred to as “tunneling.”

Notify the user of password
synchronization failure via-
email

If you select this option, e-mail is sent to the user if a password is not
synchronized, set, or reset. The e-mail that is sent to the user is
based on an e-mail template. This template is provided by the
Password Synchronization application. However, for the template to
work, you must customize it and specify an e-mail server to send the
notification messages.

NOTE: To set up e-mail notification, select Passwords > Edit EMail
Templates.

Option Description
ager 3.5.1 Driver for JDBC: Implementation Guide

Documentation Updates

O
novdocx (en) 11 D

ecem
ber 2007

289

ODocumentation Updates

The documentation was updated on the following dates:

Section O.1, “October 10, 2007,” on page 289

O.1 October 10, 2007
Updates were made to the following sections. The changes are explained below.

O.1.1 Upgrading the JDBC Driver

Location Change

Section 4.2,
“Upgrading after
Identity Manager Is
Installed,” on page 46

Change the driver name from Delimited Text to JDBC.

	Identity Manager 3.5.1 Driver for JDBC: Implementation Guide
	About This Guide
	1 Introducing the Identity Manager Driver for JDBC
	1.1 What’s New in the Driver for JDBC
	1.2 Driver Concepts
	1.2.1 JDBC
	1.2.2 Identity Manager Driver for JDBC
	1.2.3 Third-Party JDBC Driver
	1.2.4 Identity Vault
	1.2.5 Directory Schema
	1.2.6 Application Schema
	1.2.7 Database Schema
	1.2.8 Synchronization Schema
	1.2.9 Logical Database Class
	1.2.10 XDS

	1.3 Database Concepts
	1.3.1 Structured Query Language
	1.3.2 Data Manipulation Language
	1.3.3 Data Definition Language
	1.3.4 View
	1.3.5 Identity Columns/Sequences
	1.3.6 Transaction
	1.3.7 Stored Procedures or Functions
	1.3.8 Trigger
	1.3.9 Instead-Of-Trigger

	1.4 Driver Features
	1.4.1 Local and Remote Platforms
	1.4.2 Role-Based Entitlements
	1.4.3 Password Synchronization
	1.4.4 Data Synchronization Models
	1.4.5 Triggerless vs. Triggered Publication

	2 Installing the Driver for JDBC
	2.1 Before You Install
	2.1.1 Driver Prerequisites
	2.1.2 Known Issues
	2.1.3 Limitations
	2.1.4 Placing Jar Files

	2.2 Installing the Driver Separately
	2.3 Setting Up a Remote Loader
	2.4 Installing and Configuring Database Objects
	2.4.1 SQL Script Conventions
	2.4.2 Installing IBM DB2 Universal Database (UDB)
	2.4.3 Installing Informix Dynamic Server (IDS)
	2.4.4 Installing Microsoft SQL Server
	2.4.5 Installing MySQL
	2.4.6 Installing Oracle
	2.4.7 Installing PostgreSQL 7
	2.4.8 Installing PostgreSQL 8
	2.4.9 Installing Sybase Adaptive Server Enterprise (ASE)

	2.5 Test Scripts
	2.6 Troubleshooting

	3 Uninstalling the IDM Driver for JDBC
	3.1 Deleting Identity Manager Driver Objects
	3.2 Running the Product Uninstaller
	3.3 Executing Database Uninstallation Scripts
	3.3.1 IBM DB2 Universal Database (UDB) Uninstallation
	3.3.2 Informix Dynamic Server (IDS) Uninstallation
	3.3.3 Microsoft SQL Server Uninstallation
	3.3.4 MySQL Uninstallation
	3.3.5 Oracle Uninstallation
	3.3.6 PostgreSQL Uninstallation
	3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

	4 Upgrading the JDBC Driver
	4.1 Upgrading While Installing Identity Manager 3.5.1
	4.1.1 Backward Incompatibilities

	4.2 Upgrading after Identity Manager Is Installed
	4.2.1 Upgrading the Driver by Using Designer
	4.2.2 Upgrading the Driver by Using iManager

	5 Importing an Example JDBC Configuration File
	5.1 Using Designer to Import
	5.2 Using iManager to Import
	5.3 JDBC Driver Settings

	6 Configuring the JDBC Driver
	6.1 Smart Configuration
	6.2 Configuration Parameters
	6.2.1 Viewing Driver Parameters
	6.2.2 Deprecated Parameters
	6.2.3 Authentication Parameters

	6.3 Driver Parameters
	6.3.1 Uncategorized Parameters
	6.3.2 Database Scoping Parameters
	6.3.3 Connectivity Parameters
	6.3.4 Compatibility Parameters

	6.4 Subscription Parameters
	6.4.1 Uncategorized Parameters
	6.4.2 Primary Key Parameters

	6.5 Publication Parameters
	6.5.1 Uncategorized Parameters
	6.5.2 Triggered Publication Parameters
	6.5.3 Triggerless Publication Parameters
	6.5.4 Polling Parameters

	6.6 Trace Levels
	6.7 Configuring Third-Party JDBC Drivers

	7 Activating the JDBC Driver
	8 Managing the JDBC Driver
	8.1 Starting, Stopping, or Restarting the JDBC Driver
	8.2 Migrating and Resynchronizing Data
	8.3 Using the DirXML Command Line Utility
	8.4 Viewing Driver Versioning Information
	8.4.1 Viewing a Hierarchical Display of Versioning Information
	8.4.2 Viewing the Versioning Information As a Text File
	8.4.3 Saving Versioning Information

	8.5 Reassociating a Driver Set Object with a Server Object
	8.6 Changing the Driver Configuration
	8.7 Storing Driver Passwords Securely with Named Passwords
	8.7.1 Using Designer to Configure Named Passwords
	8.7.2 Using iManager to Configure Named Passwords
	8.7.3 Using Named Passwords in Driver Policies
	8.7.4 Configuring Named Passwords by Using the DirXML Command Line Utility

	8.8 Adding a Driver Heartbeat

	9 Synchronizing Objects
	9.1 What Is Synchronization?
	9.2 When Does Synchronization Occur?
	9.3 How Does the Metadirectory Engine Decide Which Object to Synchronize?
	9.4 How Synchronization Works
	9.4.1 Scenario One
	9.4.2 Scenario Two
	9.4.3 Scenario Three

	10 Schema Mapping
	10.1 High-Level View
	10.2 Logical Database Classes
	10.3 Indirect Synchronization
	10.3.1 Mapping eDirectory Classes to Logical Database Classes
	10.3.2 Parent Tables
	10.3.3 Parent Table Columns
	10.3.4 Child Tables
	10.3.5 Referential Attributes
	10.3.6 Single-Value Referential Attributes
	10.3.7 Multivalue Referential Attributes

	10.4 Direct Synchronization
	10.4.1 View Column Meta-Identifiers
	10.4.2 Primary Key Columns
	10.4.3 Schema Mapping

	10.5 Synchronizing Primary Key Columns
	10.6 Synchronizing Multiple Classes
	10.7 Mapping Multivalue Attributes to Single- Value Database Fields

	11 Mapping XDS Events to SQL Statements
	11.1 Mapping XDS Events for Indirect Synchronization

	12 The Event Log Table
	12.1 Event Log Columns
	12.2 Event Types

	13 Embedded SQL Statements in XDS Events
	13.1 Common Uses of Embedded SQL
	13.2 Embedded SQL Basics
	13.2.1 Elements
	13.2.2 Namespaces
	13.2.3 Embedded SQL Example

	13.3 Token Substitution
	13.4 Virtual Triggers
	13.5 Manual vs. Automatic Transactions
	13.6 Transaction Isolation Level
	13.7 Statement Type
	13.8 SQL Queries
	13.9 Data Definition Language (DDL) Statements
	13.10 Logical Operations
	13.11 Implementing Password Set with Embedded SQL
	13.12 Implementing Modify Password with Embedded SQL
	13.13 Implementing Check Object Password
	13.14 Calling Stored Procedures and Functions
	13.14.1 Using Embedded SQL to Call Stored Procedures or Functions
	13.14.2 Using the jdbc:call-procedure Element
	13.14.3 Using the jdbc:call-function Element

	13.15 Best Practices

	14 Supported Databases
	14.1 Database Interoperability
	14.2 Supported Databases
	14.3 Database Characteristics
	14.3.1 Database Features
	14.3.2 Current Time Stamp Statements
	14.3.3 Syntaxes for Calling Stored Procedures and Functions
	14.3.4 Left Outer Join Operators
	14.3.5 Undelimited Identifier Case Sensitivity
	14.3.6 Supported Transaction Isolation Levels
	14.3.7 Commit Keywords
	14.3.8 IBM DB2 Universal Database (UDB)
	14.3.9 Informix Dynamic Server (IDS)
	14.3.10 Microsoft SQL Server
	14.3.11 MySQL
	14.3.12 Oracle
	14.3.13 PostgreSQL
	14.3.14 Sybase Adaptive Server Enterprise (ASE)

	15 Third-Party JDBC Drivers
	15.1 Third-Party JDBC Driver Interoperability
	15.2 JDBC Driver Types
	15.2.1 Which Type To Use?

	15.3 Third-Party Jar File Placement
	15.3.1 Identity Manager File Paths
	15.3.2 Remote Loader File Paths

	15.4 Supported Third-Party JDBC Drivers
	15.4.1 Third-Party JDBC Driver Features
	15.4.2 JDBC URL Syntaxes
	15.4.3 JDBC Driver Class Names
	15.4.4 IBM DB2 Universal Database Type 4 JDBC Driver
	15.4.5 Informix JDBC Driver
	15.4.6 jTDS JDBC Driver
	15.4.7 MySQL Connector/J JDBC Driver
	15.4.8 Oracle Thin Client JDBC Driver
	15.4.9 Oracle OCI JDBC Driver
	15.4.10 PostgreSQL JDBC Driver
	15.4.11 Sybase Adaptive Server Enterprise JConnect JDBC Driver

	15.5 Supported-But-Discouraged Third-Party JDBC Drivers
	15.5.1 Third-Party JDBC Driver Features
	15.5.2 JDBC URL Syntaxes
	15.5.3 JDBC Driver Class Names
	15.5.4 IBM DB2 Universal Database Type 3 JDBC Driver
	15.5.5 Microsoft SQL Server 2000 Driver for JDBC
	15.5.6 Microsoft SQL Server 2005 JDBC Driver

	15.6 Deprecated Third-Party JDBC Drivers
	15.6.1 BEA Weblogic jDriver for Microsoft SQL Server

	15.7 Other Third-Party JDBC Drivers
	15.7.1 IBM Toolbox for Java/JTOpen
	15.7.2 Minimum Third-Party JDBC Driver Requirements
	15.7.3 Considerations When Using Other Third-Party JDBC Drivers

	15.8 Security Issues

	16 The Association Utility
	16.1 Independent Operations
	16.2 Before You Begin
	16.3 Using the Association Utility
	16.4 Editing Associations

	17 Troubleshooting the JDBC Driver
	17.1 Recognizing Publication Events
	17.2 Executing Test Scripts
	17.3 Troubleshooting Driver Processes
	17.3.1 Viewing Driver Processes

	18 Backing Up the JDBC Driver
	18.1 Exporting the Driver in Designer
	18.2 Exporting the Driver in iManager

	A Best Practices
	B FAQ
	B.1 Can’t See Tables or Views
	B.2 Synchronizing with Tables
	B.3 Processing Rows in the Event Log Table
	B.4 Managing Database User Accounts
	B.5 Synchronizing Large Data Types
	B.6 Slow Publication
	B.7 Synchronizing Multiple Classes
	B.8 Encrypted Transport
	B.9 Mapping Multivalue Attributes
	B.10 Synchronizing Garbage Strings
	B.11 Running Multiple Driver for JDBC Instances

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E JDBC Interface Methods
	F Third-Party JDBC Driver Descriptor DTD
	G Third-Party JDBC Driver Descriptor Import DTD
	H Database Descriptor DTD
	I Database Descriptor Import DTD
	J Policy Example: Triggerless Future Event Processing
	K Setting Up an OCI Client on Linux
	K.1 Downloading the Instant Client
	K.2 Setting Up the OCI Client
	K.3 Configuring the OCI Driver

	L Sybase Chain Modes and the Identity Manager Driver for JDBC
	L.1 Error Codes
	L.2 Procedures and Modes
	L.2.1 Using Stored Procedure sp_proxmode
	L.2.2 Chained and Unchained Modes
	L.2.3 Managing Transactions in a Policy
	L.2.4 Useful Links

	M The DirXML Command Line Utility
	M.1 Interactive Mode
	M.2 Command Line Mode

	N Properties of the JDBC Driver
	N.1 Driver Configuration
	N.1.1 Driver Module
	N.1.2 Driver Object Password
	N.1.3 Authentication
	N.1.4 Startup Option
	N.1.5 Driver Parameters

	N.2 Global Configuration Values
	N.3 Named Passwords
	N.4 Engine Control Values
	N.5 Log Level
	N.6 Driver Image
	N.7 Security Equals
	N.8 Filter
	N.9 Edit Filter XML
	N.10 Misc
	N.11 Excluded Users
	N.12 Driver Manifest
	N.13 Driver Cache Inspector
	N.14 Driver Inspector
	N.15 Server Variables

	O Documentation Updates
	O.1 October 10, 2007
	O.1.1 Upgrading the JDBC Driver

