
Novell

m
w w w . n o v e l l . c o

Integration Manager™
6 . 0
J u n e 2 7 , 2 0 0 6

T 2 7 C O N N E C T U S E R ’ S G U I D E

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.
2 T27 Connect User’s Guide

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.
3

http://www.novell.com/company/legal/trademarks/tmlist.html

4 T27 Connect User’s Guide

Contents

About This Book. 9

1 Welcome to Integration Manager and T27 Connect . 11
Before You Begin. 11
About Integration Manager Connects . 11
What is the T27 Connect? . 12
About Integration Manager's T27 Component . 13
What Applications Can You Build Using the T27 Connect? . 13

2 Getting Started with the T27 Component Editor. 15
Steps Commonly Used to Create a T27 Component . 15

Creating XML Templates for Your Component . 15
Creating a T27 Connection Resource . 15
Connection Resources . 16
Constant and Expression Driven Connections . 17

3 Creating a T27 Component . 19
Creating a T27 Component . 19
About the T27 Component Editor Window . 21
About the T27 Native Environment Pane . 22
T27 Keyboard Support. 22
About the Screen Object . 23

What it is . 23
How it works . 24

T27-Specific Toolbar Buttons . 24
Record Button 24
Connection Button 25
Set Screen Text Button 25
Send Key Button 25
Create Check Screen Button 25

T27-Specific Menu Bar Items . 25
T27-Specific Context-Menu Items . 26

Native Environment Pane Context Menu . 26
Action Pane Context Menu . 26

4 Performing Basic T27 Actions . 29
About Actions. 29
About T27-Specific Actions . 29

The Set Screen Text Action . 30
The Send Key Action . 31
The Check Screen Action . 32

Understanding the Check Screen Action 33
Using Actions in Record Mode . 34

T27-Specific Expression Builder Extensions . 34
Login . 34
Screen Methods . 34

Multi-row Screen Selections in the T27 Connect. 39
Selecting Continuous Data . 39
Selecting Rectangular Regions. 39

5 T27 Components in Action . 41
The Sample Transaction . 41
7

Recording a T27 Session . 41
Editing a Previously Recorded Action Model . 45

Editing or Adding to an Existing Action . 46
Deleting an Action . 48
Looping Over Multiple Rows in Search of Data . 49

Testing your T27 Component . 50
Using the Animation Tools . 52
Data Sets that Span Screens . 53

Multiple Screens. 53
Dealing with Redundant Data . 53
Tips for Building Reliable T27 Components . 56
Using Other Actions in the T27 Component Editor . 56
Handling Errors and Messages. 56

Check Screen Errors 56
Set Screen Text Errors 57

Finding a “Bad” Action . 57
Performance Considerations . 58

6 Logon Components, Connections, and Connection Pools . 59
About T27 Terminal Session Performance . 59

When Will I Need Logon Components? . 59
Connection Pool Architecture . 60

The Logon Connection’s Role in Pooling . 62
How Many Pools Do I Need? . 62
Pieces Required for Pooling. 63

How Do I Implement Pooling? . 63
The T27 Logon Component . 63

Logon, Keep Alive, and Logoff Actions . 64
LOGON Actions . 64

Maximizing Performance with the Logon Component 65
Keep Alive Actions . 66

Maximizing Performance with Keep Alive Actions 67
Logoff Actions . 67
Logon Component Life Cycle . 67

About the T27 Logon Connection . 68
Many-to-One Mapping of Components to Logons 69

Connection Pooling with a Single Sign-On. 69
Creating a Connection Pool . 69

Overview . 69
Creating a Basic T27 Connection . 70
Creating a Logon Component. 70
Creating a Logon Connection using a Pool Connection . 72

Maximizing Performance of T27 Logon Connection 75
Static versus Dynamically Created Documents/Elements 76

Creating a Logon Connection using a Session Connection . 76
Creating a T27 Component That Uses Pooled Connections . 78

Maximizing Performance of T27 Terminal Components 78
Managing Pools . 79

Using the Integration Manager Console. 79
Connection Pool Management and Deployed Services . 81

Connection Discard Behavior. 81
Screen Synchronization . 81

A Glossary . 83

B T27 Display Attributes . 85
Viewing All Character Attributes at Once 85

C Reserved Words. 87
8 T27 Connect User’s Guide

About This Book

Purpose

The guide describes how to use Integration Manager T27 Connect, referred to as the T27 Component
Editor. The T27 Component Editor is a separately-installed component editor in Integration Manager.

Audience

The audience for the guide is developers and system integrators using Integration Manager to create Web
services and components which integrate T27 applications.

Prerequisites

The guide assumes the reader is familiar with and has used Integration Manager’s development
environment and deployment tools. You must also have an understanding of the T27 environment and
building or using applications utilizing T27. Familiarity with other mainframe terminal emulators, such
as UTS, 3270, 5250 or VT-series terminals (e.g. VT100) would also be helpful as you read through this
guide.

Additional documentation

For the complete set of Novell Integration Manager documentation, see the Novell Documentation Web
Site (http://www.novell.com/documentation-index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to Integration Manager and T27 User Interface, gives a definition and overview of
the T27 Connect and Component Editor and the types of applications you may build using them.

Chapter 2, Getting Started with the T27 Component Editor, describes the necessary preparations for
creating a T27 component.

Chapter 3, Creating a T27 Component, describes the different parts of the component editor.

Chapter 4, Performing T27 Actions, describes how to use the basic T27 actions, as well as the unique
features of the T27 Connect.

Chapter 5, T27 Components in Action, demonstrates using T27 components and actions using a sample
application in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes how to enhance
performance through use of shared connections.

Appendix A, is a glossary.

Appendix B, T27 Attributes, and their display significance along with a discussion of how to use the
getattribute().

Appendix C, Reserved Words, lists those words used only for T27 Connect.
9

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections
Form selections
Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers
File names
Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply
Technical terms used for the first time
Title of other Novell publications

Monospaced typeface indicates:

Method names
Code examples
System input
Operating system objects

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".
10 T27 Connect User’s Guide

1 Welcome to Integration Manager and T27
Connect

Before You Begin
Welcome to the T27 Connect Guide. This Guide is a companion to the Novell Integration Manager
User's Guide, which details how to use all the features of Integration Manager, except for the Connect
Component Editors. If you haven't looked at the Novell Integration Manager User's Guide yet, please
familiarize yourself with it before using this Guide.

Integration Manager provides separate Component Editors for each Connect. The special features of
each component editor are described in separate Guides like this one.

If you have been using Integration Manager, and are familiar with the XML Map Component Editor,
then this Guide should get you started with the T27 Component Editor.

Before you can begin working with the T27 Connect you must have installed it into your existing
Integration Manager. Likewise, before you can run any Services built with this Connect in the
Integration Manager Enterprise Server environment, you must have already installed the server-side
software for this Connect into Integration Manager Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the T27 environment and
the particular applications that you want to XML-enable.

About Integration Manager Connects
Integration Manager is built upon a simple hub and spoke architecture (Fig.1-1). The hub is a robust
XML transformation engine that accepts requests via XML documents, performs transformation
processes on those documents and interfaces with XML-enabled applications, and returns an XML
response document. The spokes, or Connects, are plug-in modules that "XML-enable" sources of data
that are not XML aware, bringing their data into the hub for processing as XML. These data sources can
be anything from legacy COBOL/applications to Message Queues to HTML pages.
Welcome to Integration Manager and T27 Connect 11

Figure 1-1

Integration Manager Connects can be categorized by the integration strategy each one employs to
XML-enable an information source. The integration strategies are a reflection of the major divisions
used in modern systems designs for Internet-based computing architectures. Depending on your B2B
needs and the architecture of your legacy applications, Integration Manager can integrate your business
systems at the User Interface, Program Logic, or Data levels. (See below.)

What is the T27 Connect?
The T27 Connect XML-enables Unisys host system data using the User Interface integration strategy by
hooking into the terminal data stream.

T27 terminals are used to interact with the popular Unisys mainframe models, including the A Series, V
Series, and ClearPath™ NX. Before personal computers became widely available in the mid-1980s,
companies relied heavily on large mainframe systems like these to store and access vital information.

Using the T27 Connect, you can make legacy applications and their business logic available to the
internet, extranet, or intranet as Web Services. The T27 Connect Component Editor allows you to build
12 T27 Connect User’s Guide

Web Services by simply navigating through an application as if you were at a terminal session. You will
use XML documents to drive inquiries and updates into the screens rather than keying, use the messages
returned from application screens to make the same decisions as if you were at a terminal, and move
data and responses into XML documents that can be returned to the requestor or continue to be
processed. The T27 screens appear in the Native Environment Pane of the T27 Component Editor.

About Integration Manager's T27 Component
Much like the XML Map component, the T27 Component is designed to map, transform, and transfer
data between two different XML templates (i.e., request and response XML documents). However, it is
specialized to make a connection to a Unisys T27 host application, process the data using elements from
a screen, and then map the results to an output DOM. You can then act upon the output DOM in any
way that makes sense for your integration application. In essence, you're able to capture data from, or
push data to, a host system without ever having to alter the host system itself.

A T27 Component can perform simple data manipulations, such as mapping and transferring data from
an XML document into a host program, or perform "screen scraping" of a T27 transaction, putting the
harvested data into an XML document. A T27 Component has all the functionality of the XML Map
Component and can process XSL, send mail, and post and receive XML documents using the HTTP
protocol.

What Applications Can You Build Using the T27 Connect?
Integration Manager, and consequently the T27 Connect, can be applied to the the following types of
applications:

1 Business to Business Web Service interactions such as supply chain applications.
2 Consumer to Business interactions such as self-service applications from Web Browsers.
3 Enterprise Application Integrations where information from heterogeneous systems is combined or

chained together.

Fundamentally, the T27 Component Editor allows you to extend any XML integration you are building
to include any of your business applications that support T27-based terminal interactions (See the
Novell Integration Manager User's Guide for more information.)

For example, you may have an application that retrieves a product's description, picture, price, and
inventory from regularly updated databases and displays it in a Web browser. By using the T27
Component Editor, you can now get the current product information from the operational systems and
the static information (e.g., a picture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current information to both
your internal and external users.
Welcome to Integration Manager and T27 Connect 13

14 T27 Connect User’s Guide

2 Getting Started with the T27 Component Editor

Steps Commonly Used to Create a T27 Component
While there are many ways to go about creating T27 Components, the most commonly used steps in
creating a simple component are as follows:

Create XML Template(s) for the program.
Create a T27 Connection Resource.
Create a T27 Component.
Enter Record mode and navigate through the program using terminal emulation available via the
component editor’s Native Environment Pane.
Drag and drop input-document data into the screen as needed.
Drag and drop screen results into the output document.
Stop recording.

This chapter will cover the first two steps in this process.

Creating XML Templates for Your Component
Although it is not strictly necessary to do so, your T27 Component may require you to create XML
templates so that you have sample documents for designing your component. (For more information,
see Chapter 5, “Creating XML Templates,” in the Novell Integration Manager User's Guide.)

In many cases, your input documents will be designed to contain data that a terminal operator might
type into the program interactively. Likewise, the output documents are designed to receive data
returned to the screen as a result of the operator's input. For example, in a typical business scenario, a
terminal operator may receive a phone request from a customer interested in the price or availability of
an item. The operator would typically query the host system via his or her T27 terminal session by
entering information (such as a part number) into a terminal when prompted. A short time later, the host
responds by returning data to the terminal screen, and the operator relays this information to the
customer. This session could be carried out by an Integration Manager Web Service that uses a T27
Component. The requested part number might be represented as a data element in an XML input
document. The looked-up data returned from the host would appear in the component’s output
document. That data might in turn be output to a web page, or sent to another business process as XML,
etc.

NOTE: Your component design may call for other xObject resources, such as custom scripts or Code
Table maps. If so, it is also best to create these objects before creating the T27 Component. For more
information, see the Novell Integration Manager User's Guide.

Creating a T27 Connection Resource
Once you have the XML templates in place, your next step will be to create a Connection Resource to
access the host program. If you try to create a T27 Component in the absence of any available
Connection Resources, a dialog will appear, asking if you wish to create a Connection Resource. By
answering Yes to this dialog, you will be taken to the appropriate wizard.
Getting Started with the T27 Component Editor 15

Connection Resources
When you create a Connection Resource for the T27 Component, you will have what appear to be three
choices: a straight Connection, a Logon Connection and a MultiBridge Connection. Generally speaking,
you will use the straight T27 Connection to connect to your host environment. The Logon Connection is
used for connection pooling, which will be explained in greater detail in Chapter 6 of this Guide. The
MultiBridge Connection is a gateway server version that minimizes the number of connections going
back to the host and also contains added security. A MultiBridge connection would need to be specially
enabled with the help of Novell and a third party business partner. If you think that your application
needs to use a MultiBridge connection, please contact Novell Technical Support.

After setting up your T27 Connection Resource, it will be available for use by any number of T27
Components that might require a host connection.

To create a T27 Connection Resource:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Connection.
NOTE: Alternatively, under Resource in the Integration Manager window category pane you can
highlight Connection, click the right mouse button, then select New.

The Create a New Connection Resource Wizard appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next. The second panel of the wizard appears.
16 T27 Connect User’s Guide

5 Select the T27 Connection type from the pull-down menu. The dialog changes appearance to show
just the fields necessary for creating the T27 connection.

6 In the Host or IP Address field, enter the physical (IP) address or hostname alias for the machine
to which you are connecting.

7 In the T27 Port field, enter the number of the T27 port. The default port number is 23.
8 In the Host Connection ID field, enter an identifier string used to manage your terminal

connection to the host.
9 In the Screen Wait (seconds) field, enter the amount of time in seconds that a T27 Terminal

component will wait for the arrival of the next screen in the Check Screen Action pane (this sets the
default value).

10 In the Screen Rows field, specify the default number of rows per screen.
11 In the Screen Columns field, specify the default number of columns per screen.
12 Enter a UserID and Password. These are not actually submitted to the host during the

establishment of a connection. They are simply defined here (the password is encrypted.) Right-
mouse-click and choose Expression if you want to make these fields expression-driven.
NOTE: After you’ve entered UserID and Password info in this dialog, the ECMAScript global
variables USERID and PASSWORD will point to these values. You can then use these variables in
Set Screen Text expressions (or as described in “Native Environment Pane Context Menu” on
page 26.

13 Click the Default check box if you'd like this particular T27 connection to become the default
connection for subsequent T27 Components.

14 Click Finish. The newly created resource connection object appears in the Integration Manager
Connection Resource detail pane.

Constant and Expression Driven Connections
You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant-based parameter uses the static value you supply in the Connection dialog every time the
Connection is used. An expression-based parameter allows you to set the value in question using a
programmatic expression (that is, an ECMAScript expression), which can result in a different value
each time the connection is used at runtime. This allows the Connection's behavior to be flexible and
vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a T27 Connection would be to
define the User ID and Password as PROJECT Variables (e.g.:
PROJECT.XPath("USERCONFIG/MyDeployUser"). This way, when you deploy the project, you can
update the PROJECT Variables in the Deployment Wizard to values appropriate for the final
Getting Started with the T27 Component Editor 17

deployment environment. At the other extreme, you could have a custom script that queries a Java
business object in the Application Server to determine what User ID and Password to use.

To switch a parameter from Constant-driven to Expression-driven:

1 Click the right mouse button in the parameter field you are interested in changing.
2 Select Expression from the context menu and the editor button will appear or become enabled. See

below.

3 Click on the Expression Editor button. The Expression Editor appears.

4 Create an expression (optionally using the pick lists in the upper portion of the window) that
evaluates to a valid parameter value at runtime. Click OK.
18 T27 Connect User’s Guide

3 Creating a T27 Component

Creating a T27 Component
As discussed in the previous chapter, before you proceed with creating a T27 component you must first
prepare any XML templates needed by the component. (For more information, see “Creating a New
XML Template” in the Novell Integration Manager User's Guide.) During the creation of your
component, you will use these template's sample documents to represent the inputs and outputs
processed by your component.

Also, as part of the process of creating a T27 component, you must specify a T27 connection for use
with the component (or you can create a new one). See the previous chapter for information on creating
T27 Connection Resources.

To create a new T27 Component:

1 Select File>New>xObject then open the Component tab and select T27 Terminal.
NOTE: Alternatively, under Component in the Integration Manager window category pane you can
highlight T27 Terminal, click the right mouse button, then select New.

2 The “Create a New T27 Component” Wizard appears.

3 Enter a Name for the new T27 Terminal Component.
4 Optionally, type Description text.
5 Click Next. The XML Input/Output Property Info panel of the New T27 Component Wizard

appears.
Creating a T27 Component 19

6 Specify the Input and Output templates as follows.
Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.
Select a Template Category if it is different than the default category.
Select a Template Name from the list of XML templates in the selected Template Category.
To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.
To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps outlined above.
NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
DOM without Using a Template” in the User’s Guide.

8 Click Next. The XML Temp/Fault Template Info panel of the New T27 Component Wizard
appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Specify the
templates as indicated in Step 6 above.

10 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.
20 T27 Connect User’s Guide

As above, to add additional temp or fault XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To remove an XML
template, select an entry and click Delete.

11 Click Next. The Connection Info panel of the Create a New T27 Component Wizard appears.

12 Select a Connection name from the pulldown list. For more information on the T27 Connection,
see “Creating a T27 Connection Resource” on page 15 in Chapter 2.

13 Click Finish. The component is created and the T27 Component Editor appears.

About the T27 Component Editor Window
The T27 Component Editor includes all the functionality of Integration Manager’s XML Map
Component Editor. For example, it contains mapping panes for Input and Output XML documents as
well as an Action pane.

There is one main difference, however. The T27 Component Editor also includes a Native Environment
Pane featuring a T27 emulator. This screen appears blue until you either click the Connection icon in the
main toolbar or begin recording by clicking the Record button in the toolbar. Either action establishes a
T27 emulation session inside the Native Environment Pane with the host that you specified in the
connection resource used by this T27 component.
Creating a T27 Component 21

About the T27 Native Environment Pane
The T27 Native Environment Pane provides T27 emulation of your host environment. From this pane,
you can execute a T27 session in real time, interacting with the Native Environment Pane exactly as you
would with the screen on a terminal connected to a Unisys mainframe. You can also do the following:

Use data from an Input XML document (or other available DOM) as input for a T27 screen field.
For example, you could drag a SKU number from an input DOM into the “part number” field of a
T27 screen, which would then query the host and return data associated with that part number, such
as description and price.
Map the data from the returned T27 screen and put it into an Output XML document (or other
available DOM, e.g., Temp, MyDom, etc.).
Map header and detail information (such as a form with multiple line items) from the Native
Environment Pane to an XML document using an ECMAScript expression or function.

T27 Keyboard Support
The T27 Native Environment Pane supports the use of several special attention keys including: Clear
Home, Local, Previous Page, Specify, Forms Mode Toggle, Next Page, Receive and Transmit. The
function for each attention key may vary depending on the host application. These keys are mapped to
the PC Keyboard as follows:

Table 1-1:

T27 Keys PC Key

Clear Home Ctrl+Home

Local F10 or F6

Previous Page PageUp
22 T27 Connect User’s Guide

You can either use the keys directly from the keyboard as you create your T27 Component, or you can
use a keypad tool bar available from the view menu.

How to Use the Floating Keypad:

1 Select View/Terminal Keypad from the Integration Manager Menu. A floating Keypad appears.
2 Click on the key you wish to invoke. If you require help, hover the mouse over that key. Help will

display the T27 keyboard equivalent for that key. You will see the result of the key you clicked in
the Native Environment Pane.

3 Click OK to close the keypad. In order for the keypad to redisplay, you must repeat step 1.

About the Screen Object
The Screen Object is a byte-array representation of the emulator screen shown in the Native
Environment Pane, with methods for manipulating the screen contents.

What it is
The T27 component communicates with the host environment via the block mode terminal data stream ,
in a T27 session. A block of data essentially represents a screen. The host sends a screen block that is
displayed in the component. The screen is edited by the user (and ultimately by the component you
create) and the modified screen block is sent back to the host for processing after you press an attention
key. The Screen Object represents the current screen’s block of data. For a 24 x 80 terminal screen, this
is 1,920 bytes of data.

Specify F9 or F5

Forms Mode, Toggle Esc, Alt+S or O

Next Page PageDown

Receive F11 or F7

Transmit F12 or F8

Table 1-1:

T27 Keys PC Key
Creating a T27 Component 23

How it works
When character data arrives from the host, appropriate updates to the Native Environment Pane occur in
real time. Those updates might be anything from a simple cursor repositioning to a complete repaint of
the terminal screen. The screen content is, in this sense, highly dynamic.

When you have signaled Integration Manager (via a Set Screen Text action) that you wish to operate on
the current screen’s contents, the screen buffer is packaged into a Screen Object that is made accessible
to your component through ECMAScript.

Many times, it is not necessary for your component to “know” or understand the complete screen
contents prior to sending keystrokes back to the host or prior to mapping data into a prompt. But when
mapping outbound from the screen to a DOM, it can be useful to have programmatic access to the Screen
Object. To make this possible, the Connect for T27 defines a number of ECMAScript extensions for
manipulating screen contents. These extensions are described in further detail in the next chapter. For
now, a simple example will suffice. Suppose you are interested in obtaining a string value that occurs on
the screen in row 23 at column position 21. If the string is 28 characters long, you could obtain its value
by using an ECMAScript expression as the Source in a Map action (with an output DOM or temp DOM
as the Target):

In the example shown above, the 28 characters beginning at row 23, column 21 on the screen would be
mapped to the Output DOM, with the XPATH /MARCOUTPUT/FAMSTATUS.

Map actions and screen methods will be discussed in greater detail in the section on “T27-Specific
Expression Builder Extensions” in the Chapter 4.

T27-Specific Toolbar Buttons
If you are familiar with Integration Manager, you will notice immediately that the T27 Connect includes
a number of Connect-specific tool icons on the component editor’s main toolbar. They appear as shown
below.

Record Button

Record icon (normal state)

Record icon (recording in progress)

Record icon (disabled)

Screen
getText
method
24 T27 Connect User’s Guide

The Record button allows you to capture keyboard and screen manipulations as you interact with the
Native Environment Pane. Recorded operations are placed in the Action Model as actions, which you can
then “play back” during testing.

Connection Button

Connection (disconnected state)

Connection (connected state)

Connection (connected/disabled state)

The Connection button on Integration Manager’s main toolbar toggles the connection state of the
component (using settings you provided during the creation of the Connection Resource associated with
the component).

NOTE: When you are recording or animating, a connection is automatically established, in which case
the button will be shown in the “connected/disabled” state. When you turn off recording, the connection the
button will return to the enabled state.

Set Screen Text Button

The Set Screen Text button on Integration Manager’s main toolbar is used to indicate that you
wish to send data to the screen object. Clicking this button will brings up the Set Screen Text
dialog, allowing you to create a new Set Screen Text Action.. (See the next chapter for a

detailed discussion of this action type.)

Send Key Button

The Send Key button on Integration Manager’s main toolbar would be pressed when you wish
to add a Send Key Action to the Action Model. (See the next chapter for a detailed discussion
of this action type.) The various T27 attention keys are discussed in “T27 Keyboard Support”

on page 22.

Create Check Screen Button

The Create Check Screen button on Integration Manager’s main toolbar is used to check that
the terminal screen is in the state you expect it to be. Clicking this button will brings up the
Check Screen dialog, allowing you to create a new Check Screen Action. (The next chapter

contains a detailed discussion of this action type.)

T27-Specific Menu Bar Items

Component Menu
Two additional items have been added to the Component drop down menu for the T27 Connect. These
are Start/Stop Recording and Connect/Disconnect (depending on your current status).

Start/Stop Recording—This menu option manages the automatic creation of actions as you interact
with a host program. Start will enable the automatic creation of actions as you interact with the screen
and Stop will end action creation.
Creating a T27 Component 25

Connect/Disconnect—This menu option allows you to control the connection to the host. When you
are recording or animating, a connection is automatically established (and consequently, the connection
icon is shown in the “connected/disabled” state). However, this menu choice is useful if you are not
recording and you merely want to establish a connection for the purpose of navigating the T27
environment.

T27-Specific Context-Menu Items
The T27 Connect also includes context-menu items that are specific to this Connect. To view the
context menu, place your cursor in either the Native Environment pane or the Action pane and click the
right mouse button.

Native Environment Pane Context Menu
When you right-mouse-click in the Native Environment Pane, you will see a contextual menu. The menu
items will be greyed out if you are not in record mode. In record mode, the context menu has the
following appearance:

The four commands work as follows:

Set Screen Text: USERID—Automatically sends User ID information to the host, based on the value
you supplied (if any) for User ID in the T27 Connection Resource for this component. Also creates the
corresponding Set Screen Text action in the Action Model.

Set Screen Text: PASSWORD—Automically transmits Password information to the host, based on the
Password you supplied (if any) in the T27 Connection Resource for this component. Also creates the
corresponding Set Screen Text action in the Action Model.

Set Screen Text...—Creates a new Set Screen Text dialog, allowing you to create a new Set Screen Text
Action. (See the next chapter for a detailed discussion of the use of this command).

Check Screen...—Brings up the Check Screen dialog, allowing you to create a new Check Screen
Action. (This will be discussed in greater detail in the next chapter.)

Action Pane Context Menu
If you click the right mouse button when the mouse is located anywhere in the Action pane, a context
menu appears as shown.
26 T27 Connect User’s Guide

The T27-specific functions of the context menu items are as follows:

Set Screen Text—Allows you to create a Set Screen Text action to send data to the host. A dialog
appears, allowing you to specify what you want to send to the host as well as determining the screen
position where the informatin will be received. (See the next chapter for a detailed discussion of the use
of this command.)

Check Screen— Allows you to create a new Check Screen action which is used to make sure the
appropriate screen is present before the component continues processing. A dialog appears, allowing
you to specify various go-ahead criteria as well as a Timeout value. (The next chapter contains a
detailed discussion of the Check Screen action.)
Creating a T27 Component 27

28 T27 Connect User’s Guide

4 Performing Basic T27 Actions

About Actions
An action is similar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. Please see the chapters in the Novell Integration Manager User's Guide
devoted to Actions.

Within the T27 Component Editor, a set of instructions for processing XML documents or
communicating with non-XML data sources is created as part of an Action Model. The Action Model
performs all data mapping, data transformation, data transfer between hosts and XML documents, and
data transfer within components and services.

An Action Model is made up of a list of actions that work together. As an example, you might design an
Action Model that would read some invoice data from a file and then transform the data in some way
before placing it in an output XML document.

The Action Model mentioned above would be composed of several actions. These actions would:

Use an XML document containing a sku number as input to perform a T27 transaction which
retrieves the invoice data for that sku from an inventory database that resides on your Unisys host
Map the result to a temporary XML document
Convert a numeric code using a Code Table
Map the result to an Output XML document

About T27-Specific Actions
As mentioned in the previous chapter, the T27 Connect includes three actions that are specific to the
T27 environment: Set Screen Text, Send Key and Check Screen.
Performing Basic T27 Actions 29

The purpose of these actions is to allow the T27 component (running in a deployed service) to replicate,
at runtime, the terminal/host interactions that occur in a T27 session. The usage and meanings of these
actions are described in further detail below.

The Set Screen Text Action
The Set Screen Text action encapsulates “keystroke data” (whether actually obtained from keystrokes,
or through a drag-and-drop mapping, or via an ECMAScript expression built with the Expression
Builder) that will be sent to the host in a single transmission at component execution time. When the Set
Screen Text action executes, the data will appear on the host system screen. The data will not, however,
be sent to the host until an attention key of some sort is sent using the Send Key Action..

The Set Screen Text action can be created in several ways:

In Record mode, just begin typing on the Native Environment Pane. Keystrokes are automatically
captured to a new Set Screen Text action.
Right-mouse-click anywhere in the Action Model; a contextual menu appears. Select New Action
and Set Screen Text.
In the main menu bar, under Action, select New Action and Set Screen Text.
While you are in Record mode, with your cursor in the Native Environment Pane, right-click then
select Set Screen Text.

T27 Action Description

Set Screen Text Allows the user to specify what data is transmitted to
the host and at what screen position it will be
received. The string is formed from Map actions, user
keystrokes or it may come from an ECMAScript
Expression. The Set Screen Text action can be
created manually, but will more often be generated
automatically when the user types into the screen or
maps data to the current prompt.

Send Key Sends a T27-specific attention key to the host system.
The Send Key action can be created manually by
clicking an icon, or automatically when the user
presses one of the mapped keys or selects it from the
T27 keypad.

Check Screen Allows the component to stay in sync with the host
application. This action signals the component that
execution must not proceed until the screen is in a
particular state (which can be specified in the Check
Screen setup dialog), subject to a user-specified
timeout value.
30 T27 Connect User’s Guide

To create a Set Screen Text action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action, then Set Screen Text,
from the contextual menu (or use the Action menu as described above). The Set Screen Text dialog
will appear.

2 To map a DOM element’s contents to the buffer, click the XPath radio button, then select a DOM
from the pulldown list and type the appropriate XPath node name in the text area (or click the
Expression icon at right and build the node name using the Expression Builder).

3 To specify the buffer’s contents using ECMAScript, click the Expression radio button, as shown
on the screen above, then use the Expression Builder dialog to create an ECMAScript expression
that evaluates to a string.

4 To specify the Row at which to receive data, type a value in the field. By default, the number you
type will be a constant. The down arrow next to the k (constant) allows you to toggle back and forth
between entering a constant and an ECMAScript expression.

5 To specify the Column at which to receive data, type a value in the field. By default, the number
you type will be a constant. The down arrow next to the k (constant) allows you to toggle back and
forth between entering a constant and an ECMAScript expression

6 Click OK.

NOTE: When a Set Screen Text action is created automatically for you while recording your session, all
of your subsequent keystrokes will be captured to the buffer until you press an attention key or select one
from the Send Key dialog.

The Send Key Action
The Send Key action does simply that - it sends an attention key to the host. This action will generally
follow a Set Screen Text action so that the information you wish to transmit to the host gets there. When
the Send Key action executes, the data you specified in the Set Screen Text action are actually
transmitted to the host. Some Send Key actions, of course, stand alone and can be pressed at any time to
receive specific information, clear the screen or navigate to different areas.

The Send Key action can be created in several ways:

In Record mode, press one of the PC keys designated as an attention key (see the previous chapter
for a discussion of these keys) to have the attention key executed at the current cursor position.
From the drop down menu, select View, Terminal Keypad, click on an attention key and click OK
to have the attention key executed at the current cursor position.
Click on the Send Key icon in the main toolbar to bring up the Send Key dialog box.
Performing Basic T27 Actions 31

To create a Send Key action using the main toolbar icon:

1 With focus on the action after which you would like your Send Key action to appear, click on the
Send Key icon in the main toolbar. The Send Key dialog will appear.

2 From the Key Value drop down, select the attention key you would like to send to the host.
Remember that the function for each attention key may vary depending on the host application.

3 If you wish the key to execute at a position other than the current row/column location, check the
Override Cursor Position box. This will enable the Row and Column position fields.

4 To specify the Row at which to transmit the key, type a value in the field. By default, the number
you type will be a constant. Alternatively, you can click on the Expression builder to enter the row
in the form of an ECMAScript expression.

5 To specify the Column at which to transmit the key, type a value in the field. By default, the number
you type will be a constant. Alternatively, you can click on the Expression builder to enter the
column in the form of an ECMAScript expression.

6 Click OK.

The Check Screen Action
Because of the latency involved in T27 sessions and the possibility that screen data may arrive in an
arbitrary, host-application-defined order, it is essential that your component can depend on the terminal
screen being in a given state before it operates on the current screen data. The Check Screen action makes
it possible for your component to stay “in sync” with the host. You will manually create Check Screen
actions at various points in your Action Model so that precisely the correct screens are acted on at
precisely the right time(s).

To create a new Check Screen action, you can do one of the following:

Click on the “Create Check Screen Action” button on the main toolbar, or
Perform a right mouse click inside the action list, then select New Action and Check Screen from
the contextual menu, or
In the component editor’s main menu bar, select Action, then New Action, then Check Screen
While you are in Record mode, with your cursor in the Native Environment Pane, right-click then
select Check Screen.

NOTE: You will most often use the toolbar button when you are in Record mode.
32 T27 Connect User’s Guide

To create a Check Screen action using a menu command:

1 With your cursor positioned in the Action Model on the action item after which you want your new
item to appear, perform a right mouse click. Then select New Action and Check Screen from the
contextual menu (or use the Action menu in the main menu bar as described above). The Check
Screen dialog appears.

2 Specify a Screen Wait value in seconds. (See discussion below.)
3 Specify a Screen Evaluation Expression by typing one in directly or clicking on the Expression

Builder icon to create one. (See discussion below.)
4 Click OK.

Understanding the Check Screen Action

It is important that the execution of actions in your Action Model not proceed until the host application
is ready, and all screen data have arrived (that is, the screen is in a known state).

Your component must have some way of “knowing” when the current screen is ready. The Check Screen
Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog is twofold:

It allows you to specify a wait time for program synchronization.
It allows you to specify an expression which will be used as a criterion to judge whether the screen
is in a state of readiness at execution time.

Screen Wait

The Screen Wait value (in seconds) represents the maximum amount of time that your component will
wait for screen data to arrive and meet the readiness criterion specified in the expression. If the available
screen data do not meet the readiness criteria before the specified number of seconds have elapsed, an
exception is thrown.

NOTE: Obviously, since the latency involved in a T27 session can vary greatly from application to
application, from connection to connection, or even from screen to screen, a great deal of discretion
should be exercised in deciding on a Screen Wait value. Careful testing of the component at design time
as well as on the server will be required in order to determine “safe” Screen Wait values.

The default Screen Wait value is determined by what you entered when setting up your T27 Connection
Resource.

Expression

To determine your “go-ahead” criterion, click the Expression radio button in the Check Screen Action
dialog and enter an ECMAScript expression in the associated text field. The expression checks for the
existence of some specific data at a location in the Screen Object buffer. At runtime, if the expression
evaluates as “true,” the screen is considered ready; but not otherwise. An example of such an expression
would be: Screen.getText(1,11,4) == “MARC”.
Performing Basic T27 Actions 33

Using Actions in Record Mode
The easiest way to create an Action Model for your component is to use Record mode. When you build
an Action Model in this way, a new Set Screen Text action is created for you automatically as soon as you
begin typing or drag an element from the Input DOM into the appropriate field onscreen. All you need
then do is send the appropriate attention key, wait for the next screen to arrive from the host, add a Check
Screen action to make sure you are on the right screen and begin the process again, repeatedly. In this
fashion, a sequence of Set Screen Texts, Send Keys and Check Screens actions can be built very quickly
and naturally.

Working in record mode will be discussed further in Chapter 5, in the section entitled “Recording a T27
Session.

T27-Specific Expression Builder Extensions
The Connect for T27 exposes several T27-specific ECMAScript variables and object extensions, which
are visible in Expression Builder picklists. The T27-specific items are listed under the node labelled
“T27.” There are two child nodes: Login and Screen Methods. See illustration below.

Login
T27 Connection Resources have two global variables that are accessible from Expression Builder
dialogs: USERID and PASSWORD. These properties (available under the Login node of the T27
picktree) specify the User ID and Password values that may be requested by the host system when you
connect. You can map these variables into the terminal screen, which eliminates the need for typing user
and password information explicitly in a map action.

NOTE: You can also create a Set Screen Text action where the XPath source is defined as
$PASSWORD.

Screen Methods
When an Expression Builder window is accessed from a Map or Function action in the T27 Component,
the picklists at the top of the window expose special T27-specific ECMAScript extensions, consisting of
various methods of the Screen object.

T27-specificpicktree nodes
34 T27 Connect User’s Guide

Hover-help is available if you let the mouse loiter over a given picktree item. (See illustration.)

In addition, you can obtain more complete online help by clicking Help in the lower left corner of the
dialog.

The Screen object offers methods with the following names, signatures, and usage conventions:

getAttribute(nRow, nColumn)

Returns datatype: int

This method returns the display attribute value of the character at the screen position given by aRow,
aColumn. The complete set of possible display attribute values is listed in Chapter , “”. An example of
using this method is:

if (Screen.getAttribute(5, 20) == 34) // if character at row 5, col 20 is
protected and bold

... // do something

getCursorCol(void)

Returns datatype: int

This method returns the current column position of the cursor in the T27 emulator screen (Native
Environment Pane). Column positions are one-based rather than zero-based. In other words, in 24x80
mode, this method would return a value from 1 to 80, inclusive.

getCursorRow(void)

Returns datatype: int

This method returns the current row position of the cursor in the T27 emulator screen (Native
Environment Pane). Row positions are one-based rather than zero-based. In other words, in 24x80 mode,
this method would return a value from 1 to 24, inclusive.

getCols(void)

Returns datatype: int
Performing Basic T27 Actions 35

This method returns the native horizontal dimension of the current screen. (Due to possible mode
changes in the course of host-program execution, this value can change from screen to screen. Do not
depend on this value staying constant over the life of the component.) When a program is in 24x80 mode,
this method will return 80. To loop over all columns of a screen, regardless of its native dimensions, you
could do:

for (var i = 1; i <= Screen.getCols(); i++)

{

var myCol = Screen.getTextAt(i, 1, Screen.getCols());

// do something with myCol

}

getNextMessage(void)

Returns datatype: string

The result of this method, when placed in a variable, returns the string representing the next captured
message. The setMessageCaptureOn() method (see below) must be set in order for this method to
return anything. In addition to these, there are two other messaging methods: hasMoreMessages() and
setMessageCaptureOff(). Below is an example demonstrating how the four of them might all be
used together:

function msgChecker(theScreen)

{

 theScreen.setMessageCaptureOn();

 while (theScreen.hasMoreMessages())

 {

 alert(theScreen.getNextMessage());

 }

 theScreen.setMessageCaptureOff();

}

getPrompt(void)

Returns datatype: string

The result of this method, when placed in a variable, returns the string representing all characters in the
cursor’s row, starting at column 1 and continuing to, but not including, the value returned by
getCursorCol()—in other words, everything from the beginning of the line to the current cursor
position. As an example:

var prompt=Screen.getPrompt();

alert(prompt);

NOTE: The string returned may or may not actually be a host prompt.

getRows(void)

Returns datatype: int

This method returns the native vertical dimension of the current screen. (Due to possible mode changes
in the course of host-program execution, this value can change from screen to screen. Do not depend on
this value staying constant over the life of the component.) When a program is in 24x80 mode, this
method will return 24. To loop over all rows of a screen, regardless of its native dimensions, you could
do:

for (var i = 1; i <= Screen.getRows(); i++)
36 T27 Connect User’s Guide

{

var myRow = Screen.getText(i, 1, Screen.getRows());

// do something with myRow

}

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

getStatusLine(void)

Returns datatype: string

The result of this method, when placed in a variable, returns an ECMAScript String that represents the
black status line at the bottom of the Native Environment Pane. This status line is only enabled following
a Check Screen action.

If you wished to create an alert stating the current status of the screen, for example, you could create a
function action like the following:

var screenStatus = Screen.getStatusLine();

alert(screenStatus);

getText(nRow, nColumn, nLength)

Returns datatype: String

This method returns an ECMAScript String that represents the sequence of characters (of length
nLength) in the current screen starting at the row and column position specified. Note that nRow and
nColumn are one-based, not zero-based. A zero value for either of these parameters will cause an
exception.

To put the first half of the 20th row of a 24x80 screen into a variable, you would do:

var myRow = Screen.getText(20, 1, 40);

The getText() technique is used internally both for drag-and-drop Map actions involving screen
selections (described in “Selecting Continuous Data” on page 39) and in the Check Screen action.

NOTE: If the amount of data selected by the function's arguments goes past the end of a screen line, no
newlines or other special characters are inserted into the string.

getTextFromRectangle(nStartRow, nStartColumn,nEndRow, nEndColumn)

The getTextFromRectangle() method returns a single String consisting of substrings (one per row)
comprising all the characters within the bounding box defined by the top left and bottom right
row/column coordinates specified as parameters. So for example, in 24x80 mode, you could obtain the
upper left quarter of the screen by doing:

var topLeftQuadrant = Screen.getTextFromRectangle(1,1,12,40);

The getTextFromRectangle() method is used internally in drag-and-drop Map actions involving
rectangular screen selection regions created using the Shift-selection method (see “Selecting Rectangular
Regions” on page 39).

Note that the string returned by this method contains newline delimiters between substrings. That is, there
will be one newline at the end of each row’s worth of data. The overall length of the returned string will
thus be the number of rows times the number of columns, plus the number of rows. For example,
Screen.getTextFromRectangle(1,1,4,4).length will equal 20.
Performing Basic T27 Actions 37

hasMoreMessages(void)

The hasMoreMessages() method returns true if more messages are available to obtain via the
getNextMessage() method, described above. This method is demonstrated along with the other
messaging methods in the getNextMessage() method, described above.

putString(nRow, nColumn, textString)

The putString() method allows you to send data to a specific row/column location on the screen
programmatically, without explicitly creating a Set Screen Text action. Example:

var goHome = "HOME";

Screen.putString(2,14, goHome); // send string to screen

putStringInField(nFieldNumber, textString)

The putStringInField() method allows you to send data to a specific field on the screen
programmatically, without explicitly creating a Set Screen Text action. In the MARC system, for
example, there are typically two fields, the Action: field on the second line, and the Choice: field on the
21st line. The example below would have the same effect as the putString one above:

var goHome = "HOME";

Screen.putStringInField(1, goHome); // send string to screen

setMessageCaptureOff(void)

The setMessageCaptureOff() method turns off the message capture feature (see
setMessageCaptureOn() below):

setMessageCaptureOn(void)

The setMessageCaptureOn() method turns on the message capture feature so that all host messages
are stored for retrieval by the caller. This method is demonstrated along with the other messaging
methods in the getNextMessage() method, described above.

typeKeys(String keys)

The typeKeys(Str) method allows the keystroke you represent by string to be emulated on the screen.
The specified string will be placed at the current cursor position on the screen. A function containing the
following text would have the same effect as a SendKey action:

Screen.typekeys("[Transmit]")
38 T27 Connect User’s Guide

Multi-row Screen Selections in the T27 Connect
In record mode, it is possible to select multiple rows of data in a continuous stream, for purposes of
dragging out to a DOM.

Selecting Continuous Data
When you drag across multiple rows of data without holding the Shift key down, all characters from the
initial screen offset (at the mouse-down event) to the final screen offset (at mouse-up) are selected, as
shown in the graphic below. (The selected text is “reversed out.” A partial row has been selected,
followed by two complete rows, followed by another partial row.

You will notice that as you drag, the component editor window’s status line in the lower left-hand corner
reports the beginning and ending rows and columns of your selection. If you were to drag this selection
out of the Native Environment Pane, into a DOM, a Map action would be generated as follows:

Notice that the getText() method is used. This means the captured screen characters form one string,
which is mapped to Output/MarcOutput/Teachtext. No newlines or other special characters are
inserted into the string. (Any blank spaces highlighted in darker blue on the screen shown are simply
represented as space characters in the string.)

Selecting Rectangular Regions
Sometimes you may not want the selection behavior described above. In certain cases, screen data may
be grouped into zones with their own natural boundaries. For example, in the screen shown previously,
you may want to capture (for drag-out purposes) just the five terms in the bottom left without their
definitions and a lot of blank space. To do this, first hold the Control key down, then drag your mouse
across the portion of the screen that you want to select. The selected area is highlighted and the
appropriate row/column start and end points are displayed in the status line of the component editor’s
window, as below:
Performing Basic T27 Actions 39

In this instance, when you drag the rectangular highlight region out of the Native Environment Pane, into
a DOM, the resulting Map action uses the getTextFromRectangle() method described above. The
resulting action looks like:

This method operates in a different fashion from getText(), because the string returned by
getTextFromRectangle() is wrapped at the rectangle’s right edge. Newlines are inserted at the wrap
points as discussed in the API description of getTextFromRectangle(), further above.
40 T27 Connect User’s Guide

5 T27 Components in Action

The Sample Transaction
For demonstration purposes, this guide uses a menu-driven system interface called MARC, Menu-
Assisted Resource Control, offered for demonstration purposes by a third party. The transactions shown
here in the form of screen captures will be representative of the type of transactions commonly used by
operators on T27 terminals.

Recording a T27 Session
The T27 Component differs from other components in that a major portion of the Action Model is built
for you automatically. This happens as you interact with the host in the Native Environment pane as part
of a live T27 session. Integration Manager records your interactions as a set of auto-generated actions in
the Action Model. Typically, in other Integration Manager components (such as a JDBC Component),
you must manually create actions in the Action Model, which then perform the mapping, logging,
transformation, communication, and other tasks required by the component or service. By contrast,
when you create a T27 Component, you record requests and responses to and from the host, which end
up as actions in the Action Model. In addition, you can add standard actions (Map, Log, Function, etc.)
to the Action Model just the same as in other components.

NOTE: In order to successfully build a T27 Component, you should be familiar with the specifics of the
host application you intend to use in your XML integration project.

The following example demonstrates several common tasks that you will encounter in building T27
Components, such as:

Automatic creation of Set Screen Text actions
Automatic creation of Send Key actions
Automatic reation of Check Screen actions
Drag-and-drop mapping of Input DOM elements to T27-screen prompts
Drag-and-drop mapping from the Native Environment Screen to the Output DOM
The use of ECMAScript expressions to manipulate Screen object elements

The following example starts with an input XML document that contains several transactional
commands for the MARC system to process. The goal of this particular component is to process these
commands on MARC to determine the last job completed and place the name of that job in the Output
DOM.

To record a T27 session:

1 Create a T27 Component per the procedure shown in Chapter 3, “Creating a T27 Component”.
2 Once created, the T27 Component Editor window appears, with the words “T27 Terminal” in the

center of the Native Environment Pane, indicating that no connection has yet been established with
a host.
T27 Components in Action 41

3 Click the Record button. You are automatically connected to the host that you selected in the
Connection Resource for the component. An input screen appears in the Native Environment pane
as shown below.

4 Drag the MARCINPUT/LOGIN node from the Input DOM to the first field in the Native
Environment Pane. (Don’t worry about exact placement within the field.) “SALES2” (without
quotation marks) appears as your usercode and a new Set Screen Text action appears automatically
in the Action Model.

5 Again, drag the MARCINPUT/LOGIN node from the Input DOM, but this time place it in the
second field in the Native Environment Pane. (“SALES2” will not appear in the password field
because it is a protected field on this screen.) A second Set Screen Text action appears
automatically in the Action Model. If you examine the two actions, you will notice that they differ
only in their row/column placements.
42 T27 Connect User’s Guide

6 Press the F12 Key. You will see that a Send Key Transmit Action is added to your Action Model.

7 In response to the Set Screen Text and Send Key Actions, the T27 screen redraws itself into the
Home Menu:

8 As discussed above in Chapter 4, “The Check Screen Action” it is a wise idea to make sure you are
on the correct screen before proceeding. To do this, begin by dragging your cursor over the word
“MARC” in the upper left-hand corner. Notice that the status line of the component editor window
in the lower left corner will indicate the row and column location where the word starts and ends.
Using your right mouse button in the Native Environment pane, click Check Screen. A Check
Screen action including a Screen.getText method automatically appears, verifying that the word
“MARC” does appear where expected on the screen.

Decide whether the default Screen Wait time (in this case 60 seconds) is going to be adequate for
this Check Screen action. The MARC program has a relatively quick response time. (Even so,
careful testing of the component should be done in order to verify that this timeout value is safe.)
Click on OK to enter the Check Screen action into your Action Model.
T27 Components in Action 43

9 Now, let’s map something from the Native Environment panel back to the Output DOM. Suppose
you are interested in verifying what type of Unisys mainframe you’re working on. The lower left-
hand corner of the emulator screen tells you this information. Click and Drag your cursor from the
word Unisys to the beginning of the word MARC. Again, as you click and drag, the onscreen
row/column coordinates of the selected area are displayed in the status line.
Drag the information you have highlighted into the SYSINFO node of the Output DOM. A new
Map Action appears in the Action Model:

10 Having verified that you are on the correct screen and using the correct system, you can begin
typing some commands. Click anywhere in the “Choice:” field of the T27 environment pane and
type JD.
NOTE: Unisys commands are often case-sensitive and are often entered in ALL CAPS.

A new Set Screen Text action appears automatically in your component’s action list. Notice that the
letters ‘JD’ are already in the action along with the screen coordinates for the field.

11 Being a T27 connection, nothing will happen until you press the Transmit key, so press F12 again
to add another Send Key Transmit action to the model.

12 In response to the ‘JD’ command you transmitted, the host program sends a new menu screen
shown below.

13 As always, it is a good idea to make sure you are on the expected screen, so highlight the letters
“JD” at the top of the screen and right click to create another Check Screen Action to evaluate your
screen’s readiness to continue. In this example, the expression will be set to:
Screen.getText(1,11,2) == “JD”

Click OK and your Check Screen action appears in the action list.
14 Drag the MARCINPUT/JOBS node from the Input DOM to the Choice: field in the Native

Environment Pane. “C” (without quotation marks) appears in the field and a new Set Screen Text
action appears automatically in the Action Model. In this menu, “C” is an abbreviation for
“Completed Jobs”.

15 Add another Send Key Transmit by pressing F12.
16 Add another Check Screen Action to ensure that you are in the correct menu. This time, check for

the word “OUTPUT”:
Screen.getText(1,11,6) == “OUTPUT”

17 In the Native Environment Pane, select the name of the first completed job by highlighting the
terminal-screen text in row 8 from column 35 to wherever the text ends, by clicking and dragging
the mouse. The text will appear highlighted.
44 T27 Connect User’s Guide

18 Lift your finger off the mouse button and place the mouse over the selected text. Click-drag the
selection to the Output DOM MARCOUTPUT/COMPLETEJOBS node. The selected text is
inserted into the DOM at the desired location, and a new Map Action is generated in the Action
Model automatically.

19 Click the Record button to turn recording off.
20 Save your component.

If you were sucessfully able to follow all the steps outlined above, your complete Action Model would

now look like this:

Obviously, this is a fairly simple component.that does not accomplish much real work. In using
Integration Manager to build T27 components, your initial recorded component may only be a starting
point. For this reason, it is important to study how to edit existing action models.

Editing a Previously Recorded Action Model
You will encounter times when you need to edit a previously recorded action model. Unlike the
situation with other components, editing a T27 Component requires extra attention. When a T27
Component executes, it plays back a sequence of actions that expect certain screens and data to appear
at certain times in order to work properly. So when editing a component you must be careful not to
make the action model sequence inconsistent with the host program execution sequence you recorded
earlier (i.e., don’t break it!).

In general, to ensure successful edits, the following recommendations apply:
T27 Components in Action 45

Exercise extreme care when using Cut, Copy, and/or Paste to delete, move, or replicate actions in
your Action Model. Actions that were created automatically during a “Record” session will often
create data dependencies that are easily overlooked in the editing process.
When you need to use drag-and-drop to add new Map actions to your Action Model, click the Start
Animation button in the Action Pane toolbar and step to the line of interest in your Action Model;
then Pause animation and turn on Record mode. At this point, you can safely drag to and from the
screen. Following this procedure will prevent your Action Model from getting out of sync with the
host or conflicting with previously mapped DOM data.

Editing or Adding to an Existing Action
The following procedure will explain how to change an existing action or add new actions to a previously
recorded session.

To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The component appears in
the T27 Component Editor window.

2 Navigate to the action in the Action Model where you’d like to make your edit or after which you’d
like to add additional actions and highlight that action.
46 T27 Connect User’s Guide

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red (Animation
will be discussed in further detail below).

4 Click the Start Animation button. The animation tools (in the Actions pane’s toolbar) become
enabled.

5 Click the Step to Breakpoint/End button. The Action Model executes all of the actions from the
beginning of the Action Model to the breakpoint you set in step 3 above.

6 Press the Pause Button:

Start Animation

Toggle Breakpoint

Step to Breakpoint/End
T27 Components in Action 47

7 In the Component Editor tool bar, click the Record button.

8 Edit the action to make any changes you wish to the current line by right-clicking on the action and
selecting Edit Action. Or, if you wish to add new actions, use Integration Manager's drag and drop
features to add new Map actions that interact with the screen. The new actions will be added
directly under the highlighted line.

9 Turn off recording. (Toggle the Record button.)
10 Test your component.

Deleting an Action
The following procedure explains how to delete an action in a previously recorded session

To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the right mouse button. Select Delete from
the menu. You may also highlight the line and press the Delete button on your keyboard.

Pause

Record button
48 T27 Connect User’s Guide

Looping Over Multiple Rows in Search of Data
In the MARC example (above), the goal was to find out what jobs had been completed and map the name
of the most recent of those jobs to the Output DOM. The name of this job could have been used as input
to another component or to a web service.

By simple visual inspection of the OUTPUT menu of the terminal emulator screen, it’s easy to see that
several jobs were complete, not just the one mapped in the example. Suppose you wanted know the job
numbers, names and times of completion for all jobs? To do this, you would need to iterate through
several lines of the terminal screen, placing the key values in the Output DOM. This could be
accomplished using a Repeat/While loop, which is explained in detail in Chapter 8 of the Novell
Integration Manager User's Guide in the section titled “The Repeat While Action.” Often, in T27
components you will find that you need to perform some form of looping in order to read the values from
the terminal window. Make sure you are very familiar with this chapter of the Novell Integration
Manager User's Guide.

Below is an example of a completed Action Model containing a Repeat/While loop that fills in an Output
DOM with several values obtained from the terminal window. In the example above, you used drag and
drop to place a single value from the list of completed jobs into a single pre-exising node in the Output
DOM. Here, each job has been placed in it’s own node along with some sub-nodes which could also be
used as attributes.
T27 Components in Action 49

Testing your T27 Component
As mentioned previously, Integration Manager includes animation tools that allow you to easily test
your component. There is also an Execution button on the UTS Component Editor tool bar, which
allows you to execute the entire Action Model and verify that your component works as you intend.
While testing, pay close attention to your Screen Wait Time values in all Check Screen actions to make
sure they are appropriate and that Set Screen Text and other actions work as intended.
50 T27 Connect User’s Guide

To execute a T27 Component:
1 Open a T27 Component. The T27 Component Editor window appears.

2 Select the Execute button. All the actions in the Action Model execute in order. If the component
executes successfully, a message appears as follows.

3 Click OK.

After executing the component, you may want to double check the contents of your DOMs to be sure all
of the appropriate data mappings occurred as expected. To make all data elements visible, select Expand
XML Documents from the View menu. This expands all of the parents, children, data elements, etc. of
the DOM trees, so that you can easily see the results of execution of the component. If your execution had
a problem, you can use the Animation tools to pinpoint where the difficulty occurred. This process is
described in the next section.

Execute button
T27 Components in Action 51

Using the Animation Tools
In the Action Model, you'll find animation tools that allow you to test a particular section of the Action
Model by setting one or more breakpoints. The Toggle/Breakpoint tool was introduced briefly in
“Editing or Adding to an Existing Action” on page 46, but all the animation tools will be explored in
more detail below. Using these tools, you can run through the actions that work properly, stop at the
actions that are giving you trouble, and then troubleshoot the problem actions one at a time.

•The following procedure is a brief example of the functionality of the animation tools. For a complete
description of all the animation tools and their functionality, please refer to the Novell Integration
Manager User's Guide.

To run a T27 Component using Animation Tools:

1 Open a T27 Component. The component appears in the T27 Component Editor window.
NOTE: Animation and Recording are mutually exclusive modes in the component. In order to
record during animation, you must either pause, or stop animation and then turn on record mode.

2 Click the Start Animation button in the Action Model tool bar, or press F5 on the keyboard. All of
the tools on the tool bar become active, and a connection is established with the host. The Native
Environment Pane becomes active.

3 Click the Step Into button. The first Check Screen action becomes highlighted.

4 Click the Step Into button again. The Check Screen action (above) executes and the next action
becomes highlighted.

5 Click the Step Into button repeatedly to execute actions one-by-one.
6 Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) as desired to control the execution

of the component. Note that you can set a breakpoint at any time during execution by clicking the
mouse on an action line and hitting F2 or using the Set Breakpoint button.

7 Once animation is complete, the following message appears.
52 T27 Connect User’s Guide

Data Sets that Span Screens
T27-based computing differs from other types of computing (including other terminal-based
interactions) in the following ways:

Retrieval of data sets may require repeated roundtrip communications with the Unisys host. One
query may bring many screens’ worth of data, which must be captured through multiple “page
forward” commands, etc.
Information that spans screens may be (and often is) partially duplicated on the final screen.

These factors can make automating a T27 interaction (via an Action Model) challenging. Suggestions on
how to deal with these issues, as well as an example, are given below.

Multiple Screens
A common requirement in T27 computing is to capture a data set that spans multiple screens. If this is the
case, most Unisys hosts will display a “+” sign in the Action field to indicate that the data continues on
the next screen.

It is not always obvious how many screens’ worth of data there may be. Generally, the only clue that
you have may be the presence of a the + sign in the Action field which changes to “Return” when you
reach the final screen.

The point is that if your query results in (potentially) more than one screen’s worth of information, you
must be prepared to iterate through all available screens using a Repeat/While action, and stop when no
additional screens are available. You will have to supply your own custom logic for deciding when to stop
iterating. Your logic might depend on one or more of the following strategies:

Determine the total number of screens to visit by “scraping” that information, if available, off the
first screen.
Divide “total records” (if this information is available) by the number of records per screen (if this
is known in advance), and add one.
Visit screens one-by-one and break when a blank record is detected.
Visit screens one-by-one until a special string (such as “End” or “Go Back”) is detected.
Visit screens one-by-one until two consecutive identical screens have been encountered.

Obviously, the strategy you use will depend on the implementation specifics of the host application in
question.

Dealing with Redundant Data
In T27 host applications, it’s common for the final screen of a multiscreen result set to be “padded” with
data from the previous screen. In this way, the appearance of a full screen is maintained.

Consider the following two screen shots. The top one shows the first screen’s worth of information after
transmitting a command that returns two screens of information. Notice the + sign in the Action field of
the first screen indicating that there is more data to follow.
T27 Components in Action 53

Pressing the Transmit Key (or F12), brings up the second screen. There are several things to notice about
this second (and, in this case, final) screen:

The + sign in the Action: field has been replaced by the word “REturn”. Sending the Transmit Key
here would return you to the Job and Task Display Menu.
The second screen shows exactly the same records as the first one, except for job number
2111/2111, which drops off to make room for four of the 1621 jobs because the second screen is
limited to listing 17 lines of jobs. (The first screen had only 14 lines of data, because there were
three lines worth of header information). The majority of this screen is showing us redundant data.
Another + sign appears on the screen, this time in marking the fourth-to-last job on the screen.
MARC provides us with a convenient way to see where the list splits and where the data ceases to
be redundant.

In most cases, you will not want to capture this sort of redundant data. Fortunately, MARC makes it fairly
simple to detect and reject redundant records by placing the + sign at the first column to the left in the list
where the data begins to be new. This can be used along with ECMAScript as an easy and convenient way
of maintaining unduplicated lists. The basic steps to do this would be:

Enter a Repeat/While loop checking the name of the screen.
Create a Switch Statement depending on whether the screen is continued or not.
Within each case of the Switch Statement, enter a Repeat While loop and fetch each record to place
it into a variable as shown in the example above.
After the loop is complete, send a Transmit Key to go on to the next screen.
54 T27 Connect User’s Guide

A completed Action Model which scrolls through two screens of data and eliminates redundancies would
look something like the one below.

NOTE: In order to accomodate the large size of this screen, this action model picks up where the one in
“Recording a T27 Session” earlier in this chapter left off.
T27 Components in Action 55

Tips for Building Reliable T27 Components
The following tips may be helpful to you in building reliable T27 Components.

Always follow a Set Screen Text Action with a Send Key Action.
Always follow your Send Key Action with a Check Screen Action.
Remember that the default Screen Wait values used in Check Screen actions are set when you
initially created your Connection resource. To change the default Screen Wait time, you must
change the property of the Connection Resource.
Remember also that Screen Wait timeout values may need to be increased, for load-sensitive
applications. Careful testing will reveal these sorts of problems.
Be careful when editing a previously recorded Action Model. Deleting or modifying a single Set
Screen Text Action can (and will!) throw your entire Action Model off course.

Using Other Actions in the T27 Component Editor
In addition to the Set Screen Text, Send Key and Check Screen actions, you have all the standard Basic
and Advanced Integration Manager actions at your disposal as well. The complete listing of Basic
Integration Manager Actions can be found in Chapter 7 of the Novell Integration Manager User's
Guide. Chapter 8 contains a listing of the more Advanced Actions available to you.

Handling Errors and Messages
In testing a T27 Component, you may encounter errors relating to Set Screen Text, Send Key and/or
Check Screen actions. The result is a dialog similar to the following:

This section discusses possible error conditions and how to deal with errors like these.

Check Screen Errors

Most of the errors you are likely to encounter at execution time will be related to Check Screen actions.
Generally speaking, your Check Screen errors will be timeout errors which means that the go-ahead
criteria you specified in the Check Screen setup dialog were not met within the Screen Wait imeout
period. Clicking the Details button on the error dialog will verify this. Therefore, you should first try to
determine whether slow host response might be the real problem (in which case, the solution is to
increase the Screen Wait time for the Check Screen action in question). If the error still occurs after the
Screen Wait time has been increased, then you can be sure the error is due to an incorrect or inappropriate
go-ahead condition in your Check Screen action.
56 T27 Connect User’s Guide

“Screen Check Expression {0} was evaluated as false”

This error happens when the ECMAScript expression you used for your Check Screen go-ahead happens
to evaluate as false at execution time. Once again, it’s important to realize that this sort of error can be
triggered simply on the basis of slow host response (timeout). When the host is slow to respond, it means
that your ECMAScript expression will be evaluated on the basis of whatever is in the screen buffer as of
the moment of timeout. If no data (or insufficient data) have arrived, the expression is bound to evaluate
as false.

To fix this sort of problem, either increase the Screen Wait time for this Check Screen action (if you
suspect that the problem is host latency) or try modifying the logic in your ECMAScript expression.

Set Screen Text Errors

Errors generated by Integration Manager from Set Screen Text action will, in general, be rare. This is
because you are given a great deal of leeway in your ability to send whatever you like to the screen.
Where you will more often run into trouble is on the application side. Unisys hosts are very particular
about the input they will accept. If the text you send in your Set Screen Text action is not what the host
expects, you will receive host-side errors and the rest of your Integration Manager Action model will not
proceed as expected.The way to avoid problems here is to make sure that for every Set Screen Text/Send
Key action combination, there is always a corresponding Check Screen action.

Finding a “Bad” Action
When you have a large Action Model (containing dozens or hundreds of Set Screen Text, Send Key and
Check Screen actions), simply locating the action that’s responsible for an error can be a challenge. One
way to find the problematic action is to:

1 Select and Copy some of the text in the error dialog. (Click the Details button if need be, to expose
the full error description. Highlight the relevant text, such as cursor coordinates. Then use Control-
C to Copy.)

2 Click inside the Action Model.
3 Use Control-F to initiate a search.
4 Paste the error text into the search dialog.
5 Execute the search.

Of course, if you have multiple Check Screen actions that are based on identical go-ahead criteria, the
foregoing technique won’t necessarily be helpful. If that’s the case, set a breakpoint at the midpoint of
your Action Model, and run the component. If the error doesn’t occur, move the breakpoint to a spot
halfway between the original breakpoint and the end of the action list. (Otherwise, if the error does
happen, set the breakpoint at a spot one quarter of the way down from the top of the action list.) Run the
component again. Keep relocating the breakpoint, each time halving the distance between the last
breakpoint or the top or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy, you should be able to
debug an Action Model containing 128 actions in just 7 tries.)
T27 Components in Action 57

Performance Considerations
You can perform second-based timing of your Action Model’s actions by wrapping individual actions (or
block of actions) in timing calls.

To time an Action:

1 Click into the Action Model and place a new Function Action immediately before the action you
wish to time. (Right-mouse-click, then New Action > Function.)

2 In the Function Action, enter an ECMAScript expression of the form:
startTime = Number(new Date)

3 Insert a new Function Action immediately after the action you wish to time.
4 In the Function Action, enter an ECMAScript expression of the form:

endTime = Number(new Date)

5 Create a Map Action that maps endTime – startTime to a temporary DOM element. (Right-
mouse-click, New Action > Map.)

6 Run the Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the overwhelming
majority of execution time is spent in Check Screen actions. Two implications of this worth considering
are:

ECMAScript expressions (in Map and/or Function actions) will seldom, if ever, be a performance
consideration for the component as a whole.
Overall component performance rests on careful tuning of Screen Wait timeout values in Check
Screen actions.

Finally, remember that testing is not truly complete until the deployed service has been tested (and proven
reliable) on the app server.

For additional performance optimization through the use of shared connections, be sure to read the next
chapter, on Logon Components.
58 T27 Connect User’s Guide

6 Logon Components, Connections, and
Connection Pools

This section discusses certain features available in the T27 Connect designed to maximize performance
of deployed services.

About T27 Terminal Session Performance
The overall performance of any service that uses back-end connectivity is usually dependent on the time
it takes to establish a connection and begin interacting with the host. Obtaining the connection is
“expensive” in terms of wait time. One strategy for dealing with this is connection pooling, a scheme
whereby an intermediary process (whether the app server itself, or some memory-resident background
process not associated with the server) maintains a set number of preestablished, pre-authenticated
connections, and oversees the “sharing out” of these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and authenticating to a host.
But in terminal-based applications, a considerable amount of time can be spent “drilling down” through
menu selections and navigating setup screens in order to get to the first bonafide application screen of the
session. So even when connections are reused through pooling, session-prolog overhead can be a serious
obstacle to performance.

Integration Manager addresses these issues by providing connection pooling, managed by a special kind
of component (called a logon component) that can maintain an open connection at a particular “drill-
down” point in a terminal session, so that clients can begin transactions immediately at the proper point
in the session.

When Will I Need Logon Components?
Logon Components are useful in several types of situations:

When you have a need for multiple tiers of pooling based on multiple security challenges within
your system. (For example, users may need one set of logon credentials to get into the network,
another to get into the mainframe, and another to get into database.) Serial log-in requirements may
dictate the use of multiple logon components.
When your service needs stateful “session-based” connections.
When you need the performance advantages available through connection pooling.

If performance under load is not a high-priority issue and your connectivity needs are relatively
uncomplicated, you may not need to use Logon Components at all. But there is no way to know if
performance is adequate merely by testing services at design time, on a desktop machine.
Logon Components, Connections, and Connection Pools 59

Components and services built with the T27 Component Editor may appear to execute quickly at design
time (in Animation Mode, for example). But in real-world conditions—which is to say under load, with
dozens or even hundreds of requests per second arriving at the server—session overhead can be a
significant factor in overall transaction time. The only way to know whether you need to use the special
performance enhancement features described in this chapter is to do load testing on a server, under test
conditions that mimic real-world “worst case” conditions.

Connection Pool Architecture
When you install the Connect for T27, three types of Connection Resources are added to the Connection
creation wizard:

T27 Connection
a T27 MultiBridge Connection
T27 Logon Connection (henceforth referred to as a Logon Connection)

The T27 MultiBridge Connection is a server version that minimizes the number of connections going
back to the host and also contains added security. The T27 Connection is a true terminal connection and
(when used by a T27 component) can establish a session with a host system. This is the connection-type
that has been used throughout this Guide.

The T27 connection resource is designed to make an individual connection to the host on an as-needed
basis. The connection is made just-in-time and discarded as soon as the client is done. It is not reused in
any way.

The Logon Connection, on the other hand, is different. It defines a pool of User IDs and passwords, each
of which can make its own connection. The Logon Connection also serves as an indirection layer to allow
clients to connect to the host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon Component. (A Logon
Connection always uses a Logon Component to get to the actual connection.) The architecture is shown
in the graphic below.
60 T27 Connect User’s Guide

A Connection Resource is always required in order to get to the host. (This is true for any Integration
Manager service that uses T27 components.) For simplicity, this diagram shows the Connection
Resource going directly to the host; in the real world, there may be intervening delegation layers for
security purposes.

The Logon Component contains Actions (an action model) designed to find a particular screen of interest
in the host program. This drill-down location is the effective entry point of the transaction for any
upstream process that uses this Logon Component. You can think of the Logon Component as a go-
between between the physical connection (represented by the Connection Resource) and the logic layer
(represented by the T27 Component itself.

In order for a T27 Component (at the top of the diagram) to use a Logon Component, it needs to enlist the
aid of a Logon Connection resource. The Logon Connection is the bridge between the T27 Component
and the Logon Component.

The kinds and responsibilities of the various objects discussed above are summarized in the following
table.

Object Role

T27 Connection
Resource

Allows a connection to be established with a host system.

Logon Component Specialized type of component in which the action model contains Logon,
Keep Alive, and Logoff action blocks. This component can maintain a
connection at a particular launch screen in a host program.

Logon Connection Specialized type of Connection Resource that associates a pool of
UserIDs and passwords with a given Logon Component type. At runtime,
connections are established for client processes on demand (and
reused), with one Logon Component instance per connection. Every
connection in the pool provides ready access to a given point (a particular
launch screen) in the host program, thanks to the associated Logon
Component (see above).

T27 Terminal
Component

Contains the action model that comprises the business logic for a
particular T27 interaction (or transaction).
Logon Components, Connections, and Connection Pools 61

The Logon Connection’s Role in Pooling
The Logon Connection differs from the ordinary “host-direct” connection resource in that it manages
pooling (the sharing of connection instances and Logon Component instances at runtime).

In the context of a Integration Manager service, pooling not only allows reuse of (open) connections at
runtime, it also increases the effective bandwidth of a deployed service. Consider the simple case where
you’ve designed a T27 component that uses a regular connection resource. In creating the connection
resource, you will have specified a UserID and password for the resource to use so that at runtime, the
component can log in to the host. When an actual running instance of your component is using that
connection, no other instance of the component can log in to the host using that same set of credentials.
The bandwidth of your service is limited to one connected instance at a time.

With a Logon Connection, on the other hand, numerous host connections can be maintained in a “live”
state so that multiple instances of your component can access the host (each on its own connection)
without waiting. Throughput is dramatically increased.

The diagram below shows one possible runtime case where three component instances (two instance of
T27 Terminal Component A and one instance of T27 Terminal Component B) are executing on the
server. Instance 1 of Component A is using UserID ‘E’ to obtain a connection. This component has its
own dedicated instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and is relinquishing its connection (established
through credentials defined by UID ‘F’). Note that because connection pooling is in effect, Component
B’s downstream resources (its Logon Component instance, M2, and its Connection instance, S2) are not
simply discarded; they remain live. As a result, Terminal Component A2 is able to obtain (reuse) the
M2/S2 resource instances that were previously held byTerminal Component B.

In this diagram, Logon Connection D is associated with four connections based on four UIDs (user IDs
or credentials: A-thru-F). One is in use; another (UID ‘F’) is alive but not being used; and two are inactive
but available (i.e., valid UIDs have been assigned, so these two connections can be made live at any
time).

How Many Pools Do I Need?
It’s possible for several different T27 components to draw from the same connection pool. It’s also
possible for different components to draw from different pools. This means different Logon Connections.

An important factor in deciding how many Logon Connection resources (in effect, how many pools) your
service needs is the number of different start screens (or entry point screens) needed by the various
components in your project. Suppose Terminal Component A needs to begin its work at a particular
starting screen in a host application, but you’ve also designed another component—Terminal Component
B—that needs to start on a different screen. Components A and B will need separate Logon Connections,
and the separate Logon Connections will point to separate Logon Components. (In any given connection
pool, Integration Manager objects are shared in such a way that every user of the pool must start at the
same screen.)
62 T27 Connect User’s Guide

Pieces Required for Pooling
The combination of a Logon Connection, a Logon Component, and its Connection Resource form the
basis of a connection pool. Starting from the host layer and working up the chain:

The Connection Resource defines the most basic parameters necessary for establishing a
connection with the Unisys host. When connection pooling is in effect, runtime instances of this
object are kept alive and reused.
The Logon Component defines the set of steps (actions) necessary to get to a particular entry point
in the host program. (At runtime, an instance of this component will actually carry out those steps
in order to arrive at, and maintain ready-to-use, a particular screen location in the host program.)
When connection pooling is in effect, instances of this object are kept alive and reused.
The Logon Connection is a special type of resource that contains all the information needed to
define a connection pool. This resource is designed to encapsulate pool-management info and does
not establish host connections directly; instead, it delegates those responsibilities to the Logon
Connection (which delegates them, in turn, to the appropriate Connection Resource).

How Do I Implement Pooling?
To create the various pieces required for pooling, you’ll go through the following basic steps (each of
which will be discussed in greater detail in the sections to follow):

1 First, you’ll create a basic T27 connection resource, as demonstrated in Chapter 2 of this Guide.
2 Next, you’ll create a Logon Component that uses the connection resource defined in Step 1. As part

of this process, you’ll create an action model designed to navigate to a certain point in the host
program.

3 You will create a Logon Connection resource, which is a specialized type of connection resource
that relies on a Logon Component (from Step 2) to make the basic connection (through the resource
defined in Step 1).

4 Finally, you’ll create a T27 Terminal Component and associate it with the Logon Connection
resource of Step 3.

These steps are described in detail starting with the discussion in “Creating a Connection Pool” on
page 69. Before going to that section, however, you should become familiar with the design principles
behind the Logon Component (and also the Logon Connection). We’ll start with the Logon Component,
since it’s impossible to create a Logon Connection without using a Logon Component.

The T27 Logon Component
The Logon Component is a special type of component: It has an Action Model, yet can be used as a
connection resource as well. The Action Model of this type of component is designed to manage a
connection that will be used by multiple T27 Terminal Components. In most respects, the Logon
Component is the same as a T27 Terminal component. The differences are:

1 In a Logon Component, the Action Model is organized around connection-management tasks.
Those tasks are implemented via special actions: the Logon Action, KeepAlive Action, and Logoff
Action.

2 A Logon Component is not invoked directly by another component or service. Its invocation is
under the control of a Logon Connection.
NOTE: A Logon Component must and can only be used in conjunction with a Logon Connection.
Logon Components, Connections, and Connection Pools 63

Instead of calling the Logon Component directly, using (for example) a Component Action, you will
associate the Logon Component with a special connection resource called a Logon Connection. When
your T27 Terminal Component executes, it executes via the Logon Connection, which in turn executes
the Logon Component.

Logon, Keep Alive, and Logoff Actions
The Logon Component provides several screen-management capabilities that are important factors in
overall performance. These capabilities are implemented in terms of Logon, Keep Alive, and Logoff
actions:

Logon Actions—These actions navigate through the host environment and park at a desired
launch screen in the host system. The connection is activated using UserIDs from the pool. The
T27 Terminal components that subsequently reuse the connection have the performance benefit of
already being at the launch screen and won’t incur the overhead of navigating to the launch screen
as if they had come in under their own new session.
Keep Alive Actions—These actions do two important tasks. First, they prevent the host from
dropping a connection if it is not used within a standard timeout period defined by the host.
Second, these actions must insure that the connection is always positioned at the “launch screen in
the host, even after performing the Keep Alive actions needed to prevent the connection from
dropping (the first important task).
Logoff Actions—These actions exit the host environment in a manner you prescribe for all the
connections made by User IDs from the pool, when a connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For now, it’s enough to know
that these three action groupings are created for you automatically when you first create a Logon
Component. Note the (empty) Logon, Keep Alive, and Logoff action blocks in the action model shown
below:

LOGON Actions
Actions you place in the LOGON group are primarily concerned with signing into the host security
screen and then navigating through the host menu system to a launch screen where each T27 compo-
nent's Action Model will start. It is important that any T27 component using a Logon component be able
to start execution at the same common screen. Otherwise, the performance gains of avoiding navigation
overhead won't be realized and more importantly, the odd T27 component won't work.

You can create actions under the Logon Actions block the same way as you would in an ordinary T27
Terminal Component—namely by using the Record feature to create (in real time) whatever actions are
necessary in order to enter sign-on info such as User ID and Password (as well as your initial menu
choices to arrive at the launch screen).
64 T27 Connect User’s Guide

NOTE: Remember to use the User IDs and Passwords from the Logon Connection Pool. (See the
discussion in “Creating a Logon Connection using a Pool Connection” on page 72.) To do this, you need
to map the two special system variables called USERID and PASSWORD to the appropriate fields on the
screen. By specifying these two variables, you make it possible for Integration Manager to automatically
locate and use values from the next active and free Pool slot.

The launch screen is a common point of execution for all the T27 Terminal Components that use the User
ID pool provided by a Logon Connection. The Logon actions in a Logon Component (which are executed
only once when a new connection is established) let the calling component—your T27 Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and end with a Check Screen
Action as shown in the screen below.

The final Check Screen action in the Logon block guarantees that control is not turned over to the T27
Component before the screen of interest has arrived in the connection. Without this, the T27 Component
could start at an invalid screen, throw an exception, and possibly corrupt a transaction.

NOTE: You may notice when animating a Logon Component that the ending Check Screen is skipped.
This is normal design-time behavior. In a production environment , the actions in a Logon Component
always execute in an interleaved manner with a T27 Terminal Component. Animating a Logon Component
from start to finish actually creates an abnormal sequence of events that would result in two Check
Screens being processed in succession, which is not allowed.

The performance benefit comes into play as a result not only of connection reuse but launch-screen reuse.
For example, if a User ID pool of three entries is fully used and (ultimately) reused by the execution of a
component fifteen times, the overhead of navigating to a menu item that executes the transaction of
interest will occuro nly three times. Likewise, there will only be three logons to the host because the
Logon actions at the top of a Logon Component are executed only once—when a new connection is
activated (not when it is reused). This is key to obtaining maximum performance in a high-transaction-
volume production settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors that may be
recoverable. Otherwise, the UserID trying to establish the failed logon will be discarded from the pool,
decreasing the potential pool size. The pool size will remain smaller until you manually reset the discarded
connections using the Integration Manager Enterprise Server Console for T27. See “Managing Pools” on
page 79 for more details.
Logon Components, Connections, and Connection Pools 65

Keep Alive Actions
The KEEP ALIVE block is where you will place actions that “ping the host” in whatever way necessary
to keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending an Attention key, such as <Transmit>, to the host at some
specified interval. However, if after sending the Attention key the screen changes to some screen that is
different than the launch screen, you must be sure to return the Logon Component to the launch screen in
the Keep Alive section. Failure to do so will leave the next component at an incorrect screen, causing it
to fail.

The Pool Info dialog of the Logon Connection setup dialog (see “Creating a Logon Connection using a
Pool Connection” on page 72) is where you control how often the Keep Alive actions will execute. If you
specify in your Logon Connection pool that you would like to keep a free connection active for three
minutes, but the host will normally drop a connection after two minutes of inactivity, you can specify
keyboard actions to take place at 30-second intervals to let the host know the connection is still active.

Keep Alive actions will be executed multiple times, at intervals defined by the Keep Alive parameter
defined on the Pool Info dialog of the Logon Connection.

The Inactivity Lifetime parameter (just below Keep Alive on the Pool Info dialog) tells Integration
Manager how long it should wait, in the event the connection is not actually used by a T27 Terminal
Component, before relinquishing the connection.

NOTE: The execution of the Keep Alive actions of a Logon Component will not cause the Inactivity
Lifetime clock to reset in the Logon Connection. Only a T27 Terminal component’s execution will reset the
Inactivity Lifetime. In other words, if a live connection is never actually used (but is merely kept alive by
“Keep Alive” actions), then it will time out according to the Inactivity Lifetime value in the Pool Info dialog.
But if the connection is used (by a T27 component) before it times out, the timer is reset at that point.
66 T27 Connect User’s Guide

The last action inside a Keep Alive block should be an empty but “enabled” navigation action. If a user
disables this last action, animation will not work properly due to two consecutive empty navigation
actions occurring. For example, if an action in Logon and the first action in Keep Alive are disabled, an
error occurs.

Maximizing Performance with Keep Alive Actions

Check Screen actions must occur at the beginning and end of the Keep Alive section.

Not only must the Keep Alive section prevent the connection from closing, but it must make sure that the
proper launch screen is present when the execution is completed. Therefore, the first Check Screen
checks to make sure that during the time the connection was available but not in use, an unexpected
screen didn’t arrive from the host. The ending Check Screen prevents the premature release of the
connection to the next T27 Component. See below for a typical Keep Alive block.

Logoff Actions
Logoff actions essentially navigate the User ID properly out of the host system after a timeout.

Logoff actions execute once for a given connection, and only when a connection times out (i.e. the
Inactivity Lifetime expires) or the connection is closed via the T27 Server console.

In a “best practices” sense, it’s vitally important to make Logoff Actions bulletproof. If an exception
occurs during execution of the Logoff actions, Integration Manager will break its connection with the
host, freeing the UserID in the pool. But the UserID may still be active on the host. Until the host kills the
UserID (from inactivity), a subsequent attempt by the pool to log on with that UserID may fail, unless
you’ve coded your logon to handle the situation. Logon failures cause the UserID to be discarded from
the pool, reducing the potential pool size and performance overall. As with Logon and Keep Alive
actions, the way to guarantee you are on the proper screen at the end of the logoff is to end with a Check
Screen.

Logon Component Life Cycle
Each time a User ID is activated from the Logon Connection Pool, an instance of the corresponding
Logon Component is created and associated with that User ID. Then the Logon actions are executed until
the desired launch screen is reached. At this point the T27 Terminal component execution begins. When
it is finished another T27 Terminal component using the same Logon Connection may begin executing,
starting at the same launch screen.

If no other component requests the connection, then the connection-instance in question enters an active
but free state (an “idle state”) defined by the Inactivity Lifetime and KeepAlive settings on the Pool Info
dialog of the Logon Connection. If the Keep Alive period (e.g., 2 minutes) is shorter than the Inactivity
Lifetime (e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep Alive actions will be
executed, preventing a host timeout and dropped connection; and the Keep Alive Period restarts.
Logon Components, Connections, and Connection Pools 67

A Logon Component’s execution lifetime is dependent on the activity of the Logon Connection that uses
it. As long as one entry in the Logon Connection pool is active, then one instance of the Logon
Component will be in memory in a live state. A Logon Component instance will go out of scope (cease
executing) when the last remaining pool entry expires due to inactivity. The only other way to stop
execution of a Logon Component is through the T27 Console on the Server.

About the T27 Logon Connection
The Logon Connection is not a true connection object like a T27 Connection Resource, but a pointer to a
Logon Component (which in turn connects to a host either through a conventional Connection Resource
or yet more intervening Logon Connection/Logon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes User IDs and
passwords, plus pool settings involving the time interval between retries on discarded connections, etc.
Another function of the Logon Connection is that it ensures the use of different instances of the same
Logon Component for all the User IDs for which connections are made.

The dialogs you’ll use in setting up a pool of User IDs for a Logon Connection are shown in the following
set of illustrations. Arrows denote the buttons that lead to continuation dialogs.

Every Logon Connection is associated with a given Logon Component. In addition, the Logon
Connection provides the following User ID pool functionality:

1 It allows the specification of multiple User IDs in advance ensuring that clients are able to secure a
connection when one is needed

2 It allows the reuse of a User ID/connection once it is established to eliminate repeated user
authentications and disconnects
68 T27 Connect User’s Guide

3 It allows a single User ID to use multiple connections if this is supported by the host system
4 It keeps a connection active to prevent host timeouts during inactive periods
5 It lets you specify when to remove a connection from the active pool
6 It sets a timeout period to use for a fully active pool to provide a free connection
7 It lets you specify error handling dependent on the state of the Logon Component used by the

Logon Connection

Many-to-One Mapping of Components to Logons

In order for multiple instances of a T27 Terminal component or different T27 Terminal components to
use a the same Logon Connection, the following conditions must be met:

1 All the T27 Terminal components must use the same Connection Resource (thereby sharing the
Unisys Host, Port and data encoding parameters)

2 All the T27 Terminal components must have a common launch screen in the host system from
which they can begin execution (see “Creating a Logon Component” on page 70 for more detail).

Connection Pooling with a Single Sign-On
If your host system security supports multiple logins from a single user ID, you may have circumstances
where you wish to pool the single User ID. This can be accomplished by performing the following steps:

Specify a User ID/Password in the Connection Resource used by the Logon Component.
On the Pool Info dialog of the Logon Connection, specify a Pool Size greater than 1.
Do NOT check the Override the UID/PWD setting in the Pool Info dialog of the logon
Connection.

These steps will cause each pool slot to use the User ID and Password contained in the Connection object
and not use the user IDs from the pool.

Creating a Connection Pool

Overview
When creating a T27 Terminal component, you normally first create the Connection object it needs first.
Similarly, when creating the objects comprising a Connection Pool, you must create certain objects first,
starting (in essence) at the host and working your way backwards to the T27 Terminal Component that
will access the host.

A typical sequence of steps for creating a Connection Pool is:
Logon Components, Connections, and Connection Pools 69

Creating a Basic T27 Connection
This step is simple. Create a new Connection Resource as described in “To create a T27 Connection
Resource:” on page 16. Even though you will be using User IDs and Passwords defined in the Logon
Connection later, you should still define one in the Connection as well. This will be needed when you
define the Logon Component in the next step. Alternatively, you can simply use an existing Connection
Resource.

Creating a Logon Component
To create a T27 Logon Component:

1 From the Integration Manager File menu, select New>xObject, then open the Component tab and
select T27 Logon.
The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.

Step One:
Create a basic host

Connection Resource

Step Two:
Create Logon Component
that uses basic Connection

Step Three:
Create Logon Connection

that uses Logon Component

Step Four:
Create standard Components

using Logon Connection
70 T27 Connect User’s Guide

3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

5 Select a Connection from the drop down list (this will be the standard connection, not the logon
connection at this point).

6 Click Finish and the Logon Component Editor appears.

NOTE: Recording actions follows a series of steps. The cursor must be positioned over LOGON;
turn Record on, and when you are done, turn Record off. Position the cursor to Keep Alive, turn
Record on, and when you are done, turn Record off. Position the cursor to Logoff, turn Record on,
then when you are done, turn Record off.

7 Record Logon Actions for logging into the host and navigating to the launch screen using the same
Recording techniques described in Chapter 5 of this Guide.

8 Edit the Logon Map actions that enter a User ID and Password to instead use the special USERID
and PASSWORD variables described in the section titled "T27 Specific Expression Builder
Extensions” in Chapter 4 of this Guide.
Logon Components, Connections, and Connection Pools 71

9 Create the needed Check Screen and Send Key actions in the KEEPALIVE section of the Action
Model (a quick way to do this is to copy an existing action, highlight the appropriate action, paste,
and then modify if
necessary).

10 Record LOGOFF actions for properly exiting the host
11 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection
To create a T27 Logon Connection:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Connection, or you can click on the icon. The Header Info panel of the New xObject Wizard
appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.
72 T27 Connect User’s Guide

5 For the Connection Type select "T27 Logon Connection" from the drop down list.
6 In the Logon Via control, select the Logon Component you just created.
7 Click on the Pool Info button and the Pool Info dialog appears.

8 Enter a Pool Size number. This represents the total number of connections you wish to make
available in this pool. For each connection, you will be expected to supply a UserID/Password
combination later.

9 Enter a KeepAlive time period. This number represents (in minutes) how often you wish to execute
the Keep Alive actions in the associated Logon Component whenever the connection is active but
free (i.e. not being used by a T27 component). The number you enter here should be less than the
Screen Wait Timeout period defined on the host for an inactive connection.

10 Enter an Inactivity Lifetime. This number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to its inactive state
in the pool, it will incur the overhead of logging in and navigating host screens when it is re-
activated.

11 Enter an Entry Wait time in seconds. This time represents how long a T27 component will wait for
a free connection when all the pool entries are active and in use. If this time period is reached, an
Exception will be thrown to the Application Server.
Logon Components, Connections, and Connection Pools 73

12 Checking Override UID/PWD means you wish to specify User ID/Password combinations for use
in the connection pool. When checked, this activates the Set Userids button. Click on the button to
display the Set USERIDs and PASSWORDS dialog.

On the Toolbar there are three icons: Add which adds an empty row, Delete, which deletes a highlighted
row and Paste which allows you to copy/paste information from a spreadsheet into the table. For more on
this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread sheet and paste it into the
table. Make sure your selection contains two columns. The first column must contain UserID; the second
Password. Open the spreadsheet, copy the two columns and as many rows as needed. Open the table
and immediately press the Paste icon located on the toolbar. You can also copy data from tables in a
Microsoft Word® document using the same technique.

13 Enter as many USERID/PASSWORD combinations until you reach the size of the pool you
specified and click OK. Pool size will be adjusted depending upon how many rows you entered.

14 Click OK to dismiss the “Set User IDs and Passwords” dialog and return to the Pool Info dialog.
15 Optionally click the Pool Host Connection IDs checkbox in the Pool Info dialog if you intend to

manage terminals by identifier strings. When checked, this activates the Set Host Connection IDs
button. Click on the button to display the dialog.

On the Toolbar there are three icons: Add which adds an empty row, Delete, which deletes a
highlighted row and Paste which allows you to copy/paste information from a spreadsheet into the
table.

16 Enter as many Terminal IDs as needed in the dialog and click OK when complete.
17 Optionally click the Use Sequential Connections checkbox if you want Integration Manager to

establish connections in the same order that User IDs were listed in the “Set User IDs and
Passwords” dialog. Connections will be made in numerical sequence.

Add

Delete

Paste
74 T27 Connect User’s Guide

18 Optionally check the Reuse connection only if expression is true control. This control allows you
to enter an ECMAScript expression that evaluates to true or false based on some test of the launch
screen. The purpose of the expression is to check to make sure the launch screen is the proper one
each time a new T27 Component is about to reuse an active free connection. Under circumstances
unrelated to your Integration Manager service, it’s possible that the launch screen will be replaced
by the host with a different screen. For instance, if there is a system ABEND on the host, the launch
screen in the Logon Component may be replaced by a System Message screen.

NOTE: For instructions on how to create this expression, see the discussion on “Handling Errors and
Messages” on page 56. Also refer to “Maximizing Performance of T27 Logon Connection” on page 75.

The following a is a sample Custom Script used to see if a particular screen is present. If it is not, the
script writes a message to the console stating that the screen is bad and the logon connection is being
released. This function is called from the “Reuse connect only if expression is true” control on the Pool
Info dialog.

19 Click OK to return to the Connection Info panel.
20 Click on Finish and the Logon Connection is saved.

Maximizing Performance of T27 Logon Connection

To prevent T27 Components from beginning execution on a connection that may have been left on an
invalid screen by a previous T27 component, the Logon Connection Resource allows the connection
itself to check for the presence of the launch screen. This is accomplished by using the option titled
“Reuse connection only if expression is true” on the Pool Info dialog of the Logon Connection. The
screen test you specify here is executed each time a T27 Component completes execution. If the test fails,
Integration Manager will immediately disconnect from the host, possibly leaving a dangling UserID on
the host. As noted before, the host will eventually kill the user, but the UserID may be discarded from the
pool if it is accessed again before being killed, thereby reducing the pool size and consequently overall
performance.

Another reason to use the “Reuse connection only if true” option is that you can perform very detailed
tests against the screen to make sure it is your launch screen. While Map Screen actions do perform a
screen check, they only look at the number of fields in the terminal data stream. In most cases, this is
sufficient. However, it is possible two different screens can have the same number of fields in which case
the expression based test that examines the content of the screen will produce more rigorous results. A
best practices approach mandates that you use this feature all the time.

function checkValidLaunchScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") != -1) &&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||

screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }
 else
 {
 java.lang.System.out.println("Warning - Releasing logon connection at bad screen");
 java.lang.System.err.println("Warning - Releasing logon connection at bad screen");
 return false;
 }
}

Logon Components, Connections, and Connection Pools 75

Static versus Dynamically Created Documents/Elements

In some Integration Manager applications, users have a need to place various control, auditing, and/or
meta-data in an XML document. This document may or may not be in addition to the actual
elements/documents being processed (i.e. created from an information source). If this document structure
and data is dynamically created by multiple Map actions (i.e. over 100) performance of the component
and therefore the entire service may suffer. To boost performance, create the portion of the document
structure without the dynamic content ahead of time, then load it into the Service at runtime via an XML
Interchange action and retain the Map actions for dynamic content. This can boost performance as much
as 30% in some cases.

Creating a Logon Connection using a Session Connection
Sometimes, you may want the extra level of control over session parameters that a Logon Connection
affords, without necessarily wanting to use pooling. In this case, you can follow the procedure outlined
below.

To create a T27 Logon Connection:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Connection, or you can click on the icon. The Header Info panel of the New xObject Wizard

appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.
76 T27 Connect User’s Guide

5 For the Connection Type select “T27 Logon Connection” from the drop down list.
6 In the Connect Via control, select the Logon Component you just created.
7 Click the Session Connections radio button and then on Session Info button.

8 The Keep Alive (minutes) number represents (in minutes) how often you wish to execute the Keep
Alive actions in the associated Logon Component whenever the connection is active but free (i.e.
not being used by a T27 Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

9 The Inactivity Lifetime (minutes) number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to its inactive state
in the pool, it will incur the overhead of logging in and navigating host screens when it is re-
activated.

10 Click in the checkmark box if you want to Reuse connection only if expression is true. If you
choose to do so, the expression field automatically displays and you can click on the expression
icon to display the if the expression is true dialog.
Logon Components, Connections, and Connection Pools 77

Creating a T27 Component That Uses Pooled Connections
At this point, you are ready to create a T27 Component that can use the Connection Pool. For the most
part, you will build the component as you would a normal T27 component, the only difference being the
Connection you specify on the connection panel of the New Component Wizard. (You’ll specify a
Logon Connection instead of a regular T27 Connection.)

To create a T27 Component:

1 From the Integration Manager File menu, select New>xObject, then open the Component tab and
select T27. The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the component.
3 Optionally, type Description text.
4 Click Next and the XML Property Info panel appears.
5 Select the necessary Input and Output Templates for your component.
6 Click Next and the Connection Info panel appears.
7 Select the Logon Connection you created and click on Next. The Component editor appears.
8 Build the component as described in “To create a new T27 Component:” on page 19.

Maximizing Performance of T27 Terminal Components

Once the launch screen is obtained by the logon Component’s logon actions, it is handed to the T27
Terminal Component that uses the connection. Then the T27 Terminal component (when finished
executing) leaves the screen handler back at the launch screen. If the T27 Component finishes without
being on the launch screen,(i.e. it releases the connection back to the pool with an invalid screen) then it
is possible that all subsequent T27 Components that use the connection may throw exceptions rendering
the connection useless. It also will degrade overall performance and possibly cause data integrity
problems within the component processing.

Once again, to ensure that the launch screen is present, the last action to execute in a T27 Component
must be a Check Screen that checks for the launch screen. This can be tricky if your component has many
decision paths that may independently end component execution. You must be sure that each path ends
with a Check Screen action.
78 T27 Connect User’s Guide

Managing Pools

Using the Integration Manager Console
T27 Connection Pools can by managed through the T27 Console Screen.

How to Access the Console

1 If you are using the Novell exteNd Application Server, log on to your Server via your web browser
using http://localhost/SilverMaster50 (or whatever is appropriate for the version in use). In this
example, Novell exteNd Application Server 5.0 is used.

NOTE: If you are not using the exteNd Application Server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link. You should see the main console page:
Logon Components, Connections, and Connection Pools 79

3 Click on the T27 link in the left (nav) frame and the T27 Console General Properties Screen will
come into view.

4 Click the Console button. A browser popup window (the T27 Connection Pool Management
Screen) should appear.

5 To initialize a Logon Connection Pool, enter its deployment context, the word "connection", and
the actual connection name in the text field near the bottom of the screen. (See illustration above.)
Then click the Initialize Pool button.
NOTE: Refer to the appropriate Integration Manager Enterprise Server guide for more information.

6 Optionally click the Refresh Console button to update the view.
80 T27 Connect User’s Guide

Connection Pool Management and Deployed Services
The Connection Pool Management Screen displays the current state of the connection(s) with the T27
Connect. The screen contains a table listing the Pool Name, Description of the connection, the maximum
number of connections in the pool, the number of connections in use, the number of connections
available, the number of connections discarded. It also contains several buttons allowing you to perform
various actions related to connection pooling, which are outlined in the table below.

Connection Discard Behavior
The performance benefits of connection pooling are based on the ability of more than one user to access
a resource, or set of resources, at once. The way a connection is established begins with the logon
component picking the User ID and Password from the table. If the connection fails, then it is discarded
for this User ID and Password and tries another until a connection is established. The failure of one
connection doesn’t necessarily prevent a successful connection from being established.

The Connect for T27 addresses the “one bad apple” problem by discarding any connection that can’t be
established (for whatever reason: bad user ID, timed-out password, etc.) and reusing the others. When a
connection is determined to be unusable, the Connect for T27 will write a message to the system log that
says: “Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization
Screen synchronization has special ramifications for users of pools. If a situation arises in which a user
leaves a connection without the screen returning to its original state, the next user will begin a session
with the screen in an unexpected state and an error will occur. To prevent this, there is a screen expression
which the user can specify in the connection pool. It is important that the last action in a T27 Component
be a Send Key action that will result in the session ending with the correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the T27 Terminal component
waits until the launch screen arrives before giving up the connection. (This should happen automatically,
when you create the Send Key action, but nevertheless, the last action should be the Check Screen.)

Table 1-2:

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

 Refill (Pool) Refills the pool with the maximum number of
connections

Additional Buttons on T27 Connection Pool Manager Console

 Refresh
Console

Shows the current status of the connection pool

 Initialize Pool Initializes a Logon Connection Pool by entering a
relative path to the deployed lib directory. This will not
work unless the deployed jar is extracted. Click on
the SUBMIT button when finished.
Logon Components, Connections, and Connection Pools 81

If you want to check, at runtime, for the presence of a bad screen at the end of a user session, include a
Function Action at the end of your component’s action model that executes a function similar to the one
shown below:

if((Screen.getText(1,11,4)== "MARC" || Screen.getText(2,2,7) == "Action:"
) &&
 (Screen.getTextFromRectangle(1,1,24,80).indexOf("COMMAND
UNRECOGNIZED") == -1 ||
Screen.getTextFromRectangle(1,1,24,80).indexOf("UNSUPPORTED FUNCTION") ==
-1))
 {
 java.lang.System.out.println("OK to exit");
 }
 // Otherwise, write error messages to Sys.out
 else
 {
 java.lang.System.out.println("Warning - Releasing logon
connection at bad screen");
 }

In this particular example, this function checks the screen text for either the MARC header or the Action:
field and also makes sure it doesn’t see the words “COMMAND UNRECOGNIZED” or
“UNSUPPORTED FUNCTION.” If this is the case, it will write an error to the log.
82 T27 Connect User’s Guide

A Glossary

ANSI
American National Standards Institute.

Check Screen
An action that action signals the component that execution must not proceed until the screen is in a particular state, subject to
a user-specified timeout value.

Connection Pooling
An arrangement whereby an intermediary process (whether the app server itself, or some memory-resident background process
not associated with the server) maintains a set number of preestablished, pre-authenticated connections, and oversees the
“sharing out” of these connections among client apps or end users.

Dumb Terminal
A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum necessary to communicate
with a more powerful host machine.

ECMAScript
Any JavaScript-like language that conforms to European Computer Manufacturers Association standard No. 262.

Native Environment Pane
A pane in the T27 Component Editor that provides an emulation of an actual T27 terminal session.

Screen Object
Represents the current T27 screen display

Send Key
An action that represents pressing a T27-specific attention or function key.

Set Screen Text
An action that appears in the Action Model whenever there is map to the screen or keys entered on the screen.

T27
A terminal originally developed by the Burroughs Corporation, later purchased by Unisys. Used to interact with mainframe
computers including the A Series, V Series and ClearPath™ NX.

Terminal Emulation
A program that allows a personal computer to act like a (particular brand of) terminal, e.g. a T27. The computer
thus appears as a terminal to the mainframe (host) computer and accepts the same escape sequences and other
attention keys for functions such as cursor positioning and clearing the screen.
Glossary 83

Unisys
Designers, manufacturers and marketers of computer-based information systems and related products and
services. The T27 mainframe terminal was originally developed by Burroughs Corporation, which became part of
Unisys in 1986. Mainframe computer models, including the A Series, V Series, and ClearPath™ NX run T27
terminal emulation
84 T27 Connect User’s Guide

B T27 Display Attributes

The Screen.getAttribute() method will return one of the values shown below, representing the
current attribute state of the onscreen character at the given location. The attributes listed below are just
the most common and any combination of what is stated below could, theoretically occur. Basically,
underlined, bold, blinking and reverse characters return a standard integer. This is then added to the
hexadecimal number indicating whether the field is secure, protected, selected and/or vertical.

Viewing All Character Attributes at Once

Using the Screen.getAttribute() method, you can easily write a function that captures all
attributes (at all screen locations) at once. The following ECMAScript function, for example, can be used
at design time to display screen attributes in an alert dialog.

function showAttributes(myScreen)

{

 var attribs = new String(); // create empty string

// Iterate over all rows and columns:

for (var i = 1; i <= myScreen.getRows(); i++, attribs += "\n")

 for (var k = 1; k <= myScreen.getCols(); k++)

 attribs += " " + myScreen.getAttribute(i,k);

}

// display the results:

Number Attribute

0 standard (can type into - e.g., entry field)

16 (0X10) secure (can type into - e.g., passwords)

32 (0X20) protected (cannot type into)

33 (0X20)+1 protected and underlined

34 (0X20)+2 protected and bold

36 (0X20)+4 protected and blinking

40 (0X20)+8 protected and reverse

48 (0X10)+(0X20) secure and protected

64 (0X40) selected

80 (0X40) + (0X10) selected and secure

96 (0X20)+(0X40) selected and protected

98 (0X20)+(0X40)+2 selected, protected and bold

0X100 vertical
T27 Display Attributes 85

alert(showAttributes(Screen));

The following illustration shows a T27 screen:

The illustration below shows the result of applying the showAttributes() function to the screen (the
illustration had to be cropped as the right/left margin would have gone outside the boundaries of the
page):
86 T27 Connect User’s Guide

C Reserved Words

The following terms are reserved words in Integration Manager for T27 Connect and should not be used
as labels for any user-created variables, methods, or objects.

•USERID
•PASSWORD
•PROJECT
•Screen
•getAttribute
•getCols
•getCursorCol
•getCursorRow
•getNextMessage
•getPrompt
•getRows
•getStatusLine
•getText
•getTextFromRectangle
•hasMoreMessages
•putString
•putStringInField
•setMessageCaptureOff
•setMessageCaptureOn
•typeKeys
Reserved Words 87

88 T27 Connect User’s Guide

Index
A
Action

Check Screen 27
Action Model

example 55
examples 45
looping and repeating 45
testing 50, 52

Action pane context menu 27
Actions

Check Screen 43
deleting 48
Send Key 25
Set Screen Text 25, 27, 42

Animation
starting 52
step into 52
toggle breakpoint 47

Animation Tools 52
applications 13
Architecture 11

connection pool 60

C
case-sensitivity 44
Check Screen Action 26, 43

errors related to 56
performance 78
tips 56

Check Screen Actions 27
Component Editor Window 21
Components

executing 51
selecting a Connection 21
steps in creating 15, 19
testing 50
tips for building 56

Connecting 25
and disconnecting 26

Connection Button 25
Connection Discard Behavior 81
Connection Pool

steps for creating 69
Connection Pool Architecture 60
Connection Pool Console, refreshing 81
Connection Pools

implementing 63
steps in creating 69

Connection Resource 60, 70
creating 15
steps in creating 15

ConnectionPools
status 81

Connections
logon 68
maximum 81
resetting discarded 81

constant-based parameters 17
context menu items 26
Control key down, dragging with 39
Create Check Screen Button 25
Creating a Connection Pool 69
Creating a Logon Connection 72
Creating a Logon Connection using a Pool Connection 72
Creating a Logon Connection using a Session Connection 76

D
deleting an action 48
Dragging and dropping to DOMs 42

E
ECMAScript 17, 58
Entry Wait, pools 73
errors 56

connection 81
Executing a component 51
expression-based parameters 17

F
Floating Keypad 23

G
getTextFromRectangle() 40

H
Host Connection ID 17, 74
89

I
Inactivity Lifetime

pools 73
session connection 77

Initialize Pool 81

K
Keep Alive 77

session connection 77
KEEPALIVE 66
KeepAlive

pools 73
KEEPALIVE Actions

recording 71
KeepAlive Actions 63
Keyboard 22
keypad 22

L
launch screen 64
Logoff action 64
LOGOFF Actions

recording 71
Logon action 64
LOGON Actions

recording 71
Logon Actions 64
Logon Component

definition 63
Logon Components

creating 70
Logon Connections 16, 60

session connections 76
Looping in an Action Model 45

M
Managing Pools 79
Maximizing Performance with KEEP ALIVE Actions 67
Maximizing Performance with the Logon Component 65
MultiBridge Connection 16

N
Native Environment Pane 21
newlines, in rectangular screen selections 40

O
Override the UID/PWD 69

P
parameters, constant vs expression-based 17
Password 17

Set Screen Text automatically 26
Performance 58, 59, 78

logon connection and pools 75
Pool Info dialog 73
Pool Size 73
pools 73

checking status 81
implementing 63
initializing 81
managing 79
maximum connections 81
refilling 81
resetting 81

R
readiness criteria and the Check Screen Action 44
Record Button 24
Recording 24, 41

adding to a previous recording 46
and animating 52
editing after recording 45
start/stop 25
turning off 45

rectangular onscreen selections 39
Redundant Data, dealing with 53
Refill Pool 81
Refresh Consolel 81
Reset Discarded 81
Reset Pool 81
row/column placement 43

S
Screen Object, definition of 23
Screen Synchronization 81
Screen Wait time 17, 43, 56
screen, T27 terminal 23
Send Key Action

tips 56
Send Key Button 25
Session Connections 76
Set Screen Text 26
Set Screen Text Action 26, 27, 42

errors related to 57
tips 56

Set Screen Text Button 25
shift-drag selection technique 39
Single Sign-On and connection pools 69
Start Animation 52
Static versus Dynamically Created Documents/Elements 76
status line, in Native Environment Pane 37
status line, marking row/column placement 43
Step Into 52
90

T
T27 Connection types 60
T27 terminal screen 23
T27, definition of 12
Temp XML Document 20
Terminal Keypad 23
Toggle Breakpoint 47
toolbar

connection 25
Create Check Screen Button

Actions
Create Check Screen 25

record 24
Send Key button 25
Set Screen Text 25

toolbar buttons 24

U
Unisys mainframes 12
Userid

Set Screen Text automatically 26
USERID/PASSWORD 74
Userids 17

V
variables, Userid and Password 17
91

92 T27 Connect User’s Guide

	Contents
	About This Book
	1 Welcome to Integration Manager and T27 Connect
	Before You Begin
	About Integration Manager Connects
	What is the T27 Connect?
	About Integration Manager's T27 Component
	What Applications Can You Build Using the T27 Connect?

	2 Getting Started with the T27 Component Editor
	Steps Commonly Used to Create a T27 Component
	Creating XML Templates for Your Component
	Creating a T27 Connection Resource
	Connection Resources
	Constant and Expression Driven Connections

	3 Creating a T27 Component
	Creating a T27 Component
	About the T27 Component Editor Window
	About the T27 Native Environment Pane
	T27 Keyboard Support
	About the Screen Object
	What it is
	How it works

	T27-Specific Toolbar Buttons
	T27-Specific Menu Bar Items
	T27-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	4 Performing Basic T27 Actions
	About Actions
	About T27-Specific Actions
	The Set Screen Text Action
	The Send Key Action
	The Check Screen Action
	Using Actions in Record Mode

	T27-Specific Expression Builder Extensions
	Login
	Screen Methods

	Multi-row Screen Selections in the T27 Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	5 T27 Components in Action
	The Sample Transaction
	Recording a T27 Session
	Editing a Previously Recorded Action Model
	Editing or Adding to an Existing Action
	Deleting an Action
	Looping Over Multiple Rows in Search of Data

	Testing your T27 Component
	Using the Animation Tools
	Data Sets that Span Screens
	Multiple Screens

	Dealing with Redundant Data
	Tips for Building Reliable T27 Components
	Using Other Actions in the T27 Component Editor
	Handling Errors and Messages
	Finding a “Bad” Action
	Performance Considerations

	6 Logon Components, Connections, and Connection Pools
	About T27 Terminal Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The T27 Logon Component
	Logon, Keep Alive, and Logoff Actions
	LOGON Actions
	Keep Alive Actions
	Logoff Actions
	Logon Component Life Cycle

	About the T27 Logon Connection
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic T27 Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Creating a Logon Connection using a Session Connection
	Creating a T27 Component That Uses Pooled Connections
	Managing Pools
	Using the Integration Manager Console

	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	A Glossary
	B T27 Display Attributes
	C Reserved Words
	Index

