
Novell®

novdocx (en) 13 M
ay 2009

AUTHORIZED DOCUMENTATION
PlateSpin Orchestrate 2.0 Administrator Reference
www.novell.com

PlateSpin® Orchestrate

2.0.2
June 17, 2009
Administrator Reference

novdocx (en) 13 M
ay 2009
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

novdocx (en) 13 M
ay 2009
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Administrator Reference

Contents

novdocx (en) 13 M
ay 2009
About This Guide 7

1 Basic PlateSpin Orchestrate Concepts 9
1.1 Understanding PlateSpin Orchestrate Architecture . 9

1.1.1 The PlateSpin Orchestrate Agent . 10
1.1.2 The Resource Monitor . 11
1.1.3 Entity Types and Managers . 11
1.1.4 Jobs . 14
1.1.5 Constraint-Based Job Scheduling . 17
1.1.6 Understanding PlateSpin Orchestrate API Interfaces . 18

1.2 Understanding PlateSpin Orchestrate Functionality . 20
1.2.1 Resource Virtualization . 20
1.2.2 Policy-Based Management . 21
1.2.3 Grid Object Visualization . 21
1.2.4 Understanding Job Semantics. 22
1.2.5 Distributed Messaging and Failover . 23
1.2.6 Web-Based User Interaction . 24

A PlateSpin Orchestrate Security 27
A.1 User and Administrator Password Hashing Methods. 27
A.2 User and Agent Password Authentication . 27
A.3 Password Protection . 28
A.4 TLS Encryption. 28
A.5 Security for Administrative Services. 29
A.6 Plain Text Visibility of Sensitive Information. 30

B Server Discovery and Multicasting 31
B.1 Multicast Troubleshooting . 31
B.2 Multicast Routes. 31
B.3 Multi-homed Hosts . 32
B.4 Multiple Subnets. 32
B.5 Datagrid and Multicasting. 32
B.6 Datagrid Multicast Interface Selection . 32
Contents 5

6 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
About This Guide

This Administration Guide introduces the processes you can use with PlateSpin® Orchestrate 2.0
from Novell®, including the applied use of the PlateSpin Orchestrate Development Client and
various command line tools. The guide provides an introductory overview of PlateSpin Orchestrate
and explains how it administers and manages work on the resources of the data center. The guide is
organized as follows:

Chapter 1, “Basic PlateSpin Orchestrate Concepts,” on page 9
Appendix A, “PlateSpin Orchestrate Security,” on page 27
Appendix B, “Server Discovery and Multicasting,” on page 31

For reference information about the Orchestrate Server or the Orchestrate Development Client, see
the PlateSpin Orchestrate 2.0 Development Client Reference. For information about the Orchestrate
Command Line Tools, see PlateSpin Orchestrate 2.0 Command Line Reference.

Audience

This book is intended for data center managers and IT or Operations administrators. It assumes that
users of the product have the following background:

General understanding of network operating environments and systems architecture.
Knowledge of basic UNIX* shell commands and text editors.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.

Documentation Updates

For the most recent version of this Administration Guide, visit the PlateSpin Orchestrate Web site
(http://www.novell.com/documentation/pso_orchestrate20/).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX, should use forward slashes as required by your software.
About This Guide 7

http://www.novell.com/documentation/feedback.html
http://www.novell.com/documentation/pso_orchestrate20/

8 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Administrator Reference

1
novdocx (en) 13 M

ay 2009
1Basic PlateSpin Orchestrate
Concepts

This section contains the followings information:

Section 1.1, “Understanding PlateSpin Orchestrate Architecture,” on page 9
Section 1.2, “Understanding PlateSpin Orchestrate Functionality,” on page 20

1.1 Understanding PlateSpin Orchestrate
Architecture
PlateSpin Orchestrate from Novell is an advanced datacenter management solution designed to
manage all network resources. It provides the infrastructure that manages group of ten, one hundred,
or thousands of physical or virtual resources.

PlateSpin Orchestrate is equally apt at performing a number of distributed processing problems.
From high performance computing, the breaking down of work into lots of small chunks that can be
processed in parallel through distributed job scheduling. The following figure shows the product’s
high-level architecture:

Figure 1-1 PlateSpin Orchestrate Architecture
Basic PlateSpin Orchestrate Concepts 9

10 PlateS

novdocx (en) 13 M
ay 2009
This section contains information about the following topics:

Section 1.1.1, “The PlateSpin Orchestrate Agent,” on page 10
Section 1.1.2, “The Resource Monitor,” on page 11
Section 1.1.3, “Entity Types and Managers,” on page 11
Section 1.1.4, “Jobs,” on page 14
Section 1.1.5, “Constraint-Based Job Scheduling,” on page 17
Section 1.1.6, “Understanding PlateSpin Orchestrate API Interfaces,” on page 18

1.1.1 The PlateSpin Orchestrate Agent
Agents are installed on all managed resources as part of the product deployment. The agent connects
every managed resource to its configured server and advertises to the PlateSpin Orchestrate Server
that the resource is available for tasks. This persistent and auto-reestablishing connection is
important because it provides a message bus for the distribution of work, collection of information
about the resource, per-job messaging, health checks, and resource failover control.

After resources are enabled, PlateSpin Orchestrate can discover, access, and store detailed
abstracted information—called “facts”—about every resource. Managed resources, referred to as
“nodes,” are addressable members of the Orchestrate Server “grid” (also sometimes called the
“matrix”). When integrated into the grid, nodes can be deployed, monitored, and managed by the
Orchestrate Server, as discussed in Section 1.2, “Understanding PlateSpin Orchestrate
Functionality,” on page 20.

An overview of the PlateSpin Orchestrate grid architecture is illustrated in the figure below, much of
which is explained in this guide:
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Figure 1-2 PlateSpin Orchestrate Server Architecture

For additional information about job architecture, see “Job Architecture” in the PlateSpin
Orchestrate 2.0 Developer Guide and Reference.

1.1.2 The Resource Monitor
PlateSpin Orchestrate enables you to monitor your system computing resources using the built-in
Resource Monitor. To open the Resource Monitor in the Development Client, see “Monitoring
Server Resources” in the PlateSpin Orchestrate Administration Guide.

1.1.3 Entity Types and Managers
The following entities are some of key components involved in the Orchestrate Server:

“Resources” on page 12
“Users” on page 12
“Job Definitions” on page 12
“Job Instances” on page 12
“Policies” on page 12
“Facts” on page 13
Basic PlateSpin Orchestrate Concepts 11

12 PlateS

novdocx (en) 13 M
ay 2009
“Constraints” on page 13
“Groups” on page 14
“VM: Hosts, Images, and Instances” on page 14
“Templates” on page 14

Resources

All managed resources, which are called nodes, have an agent with a socket connection to the
Orchestrate Server. All resource use is metered, controlled, and audited by the Orchestrate Server.
Policies govern the use of resources.

PlateSpin Orchestrate allocates resources by reacting as load is increased on a resource. As soon as
we go above a threshold that was set in a policy, a new resource is allocated and consequently the
load on that resource drops to an acceptable rate.

You can also write and jobs that perform cost accounting to account for the cost of a resource up
through the job hierarchy, periodically, about every 20 seconds. For more information, see
“Auditing and Accounting Jobs” in the PlateSpin Orchestrate 2.0 Developer Guide and Reference.

A collection of jobs, all under the same hierarchy, can cooperate with each other so that when one
job offers to give up a resource it is reallocated to another similar priority job. Similarly, when a
higher priority job becomes overloaded and is waiting on a resource, the system “steals” a resource
from a lower priority job, thus increasing load on the low priority job and allocating it to the higher
priority job. This process satisfies the policy, which specifies that a higher priority job must
complete at the expense of a low priority job.

Users

PlateSpin Orchestrate users must authenticate to access the system. Access and use of system
resources are governed by policies.

Job Definitions

A job definition is described in the embedded enhanced Python script that you create as a job
developer. Each job instance runs a job that is defined by the Job Definition Language (JDL). Job
definitions might also contain usage policies. For more information, see “Job Class” in the
PlateSpin Orchestrate 2.0 Developer Guide and Reference.

Job Instances

Jobs are instantiated at runtime from job definitions that inherit policies from the entire context of
the job (such as users, job definitions, resources, or groups). For more information, see “JobInfo” in
the PlateSpin Orchestrate 2.0 Developer Guide and Reference.

Policies

Policies are XML documents that contain various constraints and static fact assignments that govern
how jobs run in the PlateSpin Orchestrate environment.

Policies are used to enforce quotas, job queuing, resource restrictions, permissions, and other job
parameters. Policies can be associated with any PlateSpin Orchestrate object. For more information,
see Section 1.2.2, “Policy-Based Management,” on page 21.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Facts

Facts represent the state of any object in the PlateSpin Orchestrate grid. They can be discovered
through a job or they can be explicitly set.

Facts control the behavior a job (or joblet) when it’s executing. Facts also detect and return
information about that job in various UIs and server functions. For example, a job description that is
set through its policy and has a specified value might do absolutely nothing except return
immediately after network latency.

There are three basic types of facts:

Static: Facts that require you to set a value. For example, in a policy, you might set a value to
be False. Static facts can be modified through policies.
Dynamic: Facts produced by the PlateSpin Orchestrate system itself. Policies cannot override
dynamic facts. They are read only and their value is determined by the PlateSpin Orchestrate
Server itself.
Computed: Facts derived from a value, like that generated from the cell of a spreadsheet.
Computed facts have some kind of logic behind them which derive their values.
For example, you might have two numeric facts that you want expressed in another fact as an
average of the two. You could compose a computed fact which averages two other facts and
express it as an average value under a certain fact name. This enables you to create facts that
represent other metrics on the system that are not necessarily available in the default set, or are
not static to anything that might impact other dynamic facts.

For more information about facts, see “Facts” in “Policy Elements” in the PlateSpin Orchestrate 2.0
Developer Guide and Reference.

Constraints

In order for the PlateSpin Orchestrate to choose resources for a job, it uses resource constraints. A
resource constraint is some Boolean logic that executes against facts in the system. Based upon this
evaluation, it will only consider resources that match the criteria that have been set up by use of
constraints.

For more detailed information, see “Working with Facts and Constraints” in the PlateSpin
Orchestrate 2.0 Developer Guide and Reference and the following JDL constraint definitions listed
in the same guide:

“AndConstraint()”
“BinaryConstraint”
“Constraint”
“ContainerConstraint”
“ContainsConstraint”
“DefinedConstraint”
“EqConstraint”
“GeConstraint”
“GtConstraint”
“LeConstraint”
Basic PlateSpin Orchestrate Concepts 13

14 PlateS

novdocx (en) 13 M
ay 2009
“LtConstraint”
“NeConstraint”
“NotConstraint”
“OrConstraint”
“UndefinedConstraint”

Groups

Resources, users, job definitions and virtual machines (VM) are managed in groups with group
policies that are inherited by members of the group.

VM: Hosts, Images, and Instances

A virtual machine host is a resource that is able to run guest operating systems. Attributes (facts)
associated with the VM host control its limitations and functionality within the Orchestrate Server.
A VM image is a resource image that can be cloned and/or provisioned. A VM instance represents a
running copy of a VM image.

Templates

Templates are images that are meant to be cloned (copied) prior to provisioning the new copy. For
more information, see “Creating a Template from a VM” in the PlateSpin Orchestrate 2.0 VM Client
Guide and Reference.

1.1.4 Jobs
The Orchestrate Server manages all nodes by administering jobs (and the functional control of jobs
at the resource level by using joblets), which control the properties (facts) associated with every
resource. In other words, jobs are units of functionality that dispatch data center tasks to resources
on the network such as management, migration, monitoring, load balancing, etc.

PlateSpin Orchestrate provides a unique job development, debugging, and deployment environment
that expands with the demands of growing data centers.

As a job developer, your task is to develop jobs to perform a wide array of work that can be
deployed and managed by PlateSpin Orchestrate.

Jobs, which run on the Orchestrate Server, can provide functions within the PlateSpin Orchestrate
environment that might last from seconds to months. Job and joblet code exist in the same script file
and are identified by the .jdl extension. The .jdl script contains only one job definition and zero
or more joblet definitions. A .jdl script can have only one Job subclass. As for naming
conventions, the Job subclass name does not have to match the .jdl filename; however, the .jdl
filename is the defined job name, so the .jdl filename must match the .job filename that contains
the .jdl script. For example, the job files (demoIterator.jdl and demoIterator.policy)
included in the demoIterator example job are packaged into the archive file named
demoIterator.job, so in this case, the name of the job is demoIterator.

A job file also might have policies associated with it to define and control the job’s behavior and to
define certain constraints to restrict its execution. A .jdl script that is accompanied by a policy file
is typically packaged in a job archive file (.job). Because a .job file is physically equivalent to a
Java archive file (.jar), you can use the JDK JAR tool to create the job archive.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Multiple job archives can be delivered as a management pack in a service archive file (SAR)
identified with the .sar extension. Typically, a group of related files are delivered this way. For
example, the Xen30 management pack is a SAR.

As shown in the following illustration, jobs include all of the code, policy, and data elements
necessary to execute specific, predetermined tasks administered either through the PlateSpin
Orchestrate Development Client, or from the zos command line tool.

Figure 1-3 Components of a Job (my.job,)

Because each job has specific, predefined elements, jobs can be scripted and delivered to any agent,
which ultimately can lead to automating almost any datacenter task. Jobs provide the following
functionality:

“Controlling Process Flow” on page 15
“Parallel Processing” on page 16
“Managing the Cluster Life Cycle” on page 16
“Discovery Jobs” on page 16
“System Jobs” on page 16
“Provisioning Jobs” on page 17

For more information, see “Using PlateSpin Orchestrate Jobs” in the PlateSpin Orchestrate 2.0
Developer Guide and Reference and the following JDL job class definitions in the same guide:

“Job”
“JobInfo”

Controlling Process Flow

Jobs can written to control all operations and processes of managed resources. Through jobs, the
Orchestrate Server manages resources to perform work. Automated jobs (written in JDL), are
broken down into joblets, which are distributed among multiple resources.
Basic PlateSpin Orchestrate Concepts 15

16 PlateS

novdocx (en) 13 M
ay 2009
Parallel Processing

By managing many small joblets, the Orchestrate Server can enhance system performance and
maximize resource use.

Managing the Cluster Life Cycle

Jobs can detect demand and monitor health of system resources, then modify clusters automatically
to maximize system performance and provide failover services.

Discovery Jobs

Some jobs provide inspection of resources to more effectively management assets. These jobs
enable all agents to periodically report basic resource facts and performance metrics. In essence,
these metrics are stored as facts consisting of a key word and typed-value pairs like the following
example:

resource.loadaverage=4.563, type=float

Jobs can poll resources and automatically trigger other jobs if resource performance values reach
certain levels.

The system job scheduler is used to run resource discovery jobs to augment resource facts as
demands change on resources. This can be done on a routine, scheduled basis or whenever new
resources are provisioned, new software is installed, bandwidth changes occur, OS patches are
deployed, or other events occur that might impact the system.

Consequently, resource facts form a capabilities database for the entire system. Jobs can be written
that apply constraints to facts in policies, thus providing very granular control of all resources as
required. All active resources are searchable and records are retained for all off-line resources.

The following osInfo.job example shows how a job sets operating system facts for specific
resources:

resource.cpu.mhz (integer) e.g., "800" (in Mhz)
 resource.cpy.vendor (string) e.g. "GenuineIntel"
 resource.cpu.model (string) e.g. "Pentium III"
 resource.cpu.family (string) e.g. "i686"

osInfo.job is packaged as a single cross-platform job and includes the Python-based JDL and a
policy to set the timeout. It is run each time a new resource appears and once every 24 hours to
ensure validity of the resources. For a more detailed review of this example, see “osInfo.job” in
“Using PlateSpin Orchestrate Jobs” in the PlateSpin Orchestrate 2.0 Developer Guide and
Reference.

System Jobs

Jobs can be scheduled to to periodically trigger specific system resources based on specific time
constraints or events. As shown in the following figure, PlateSpin Orchestrate provides a built-in job
scheduler that enables you or system administrators to flexibly deploy and run jobs.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Figure 1-4 The Job Scheduler

For more information, see “Resource Selection” in “Using PlateSpin Orchestrate Jobs” in the
PlateSpin Orchestrate 2.0 Developer Guide and Reference and “The PlateSpin Orchestrate Job
Scheduler” in the PlateSpin Orchestrate 2.0 Development Client Reference. See also “Job
Scheduling” and “Job” in the PlateSpin Orchestrate 2.0 Developer Guide and Reference.

Provisioning Jobs

Jobs also drive provisioning for virtual machines and blade servers. Provisioning adapter jobs are
deployed and organized into appropriate job groups for management convenience. Provisioning
adapters are deployed as part of your VMM license.

For more information, see “Virtual Machine Management” in the “PlateSpin Orchestrate 2.0
Developer Guide and Reference” and Section 1.2.1, “Resource Virtualization,” on page 20.

1.1.5 Constraint-Based Job Scheduling
The Orchestrate Server is a “broker” that can distribute jobs to every “partner” agent on the grid.
Based on assigned policies, jobs have priorities and are executed based on the following contexts:

User Constraints
User Facts
Job Constraints
Job Facts
Job Instance
Resource User Constraints
Resource Facts
Groups
Basic PlateSpin Orchestrate Concepts 17

18 PlateS

novdocx (en) 13 M
ay 2009
Each object in a job context contains the following elements:

Figure 1-5 Constraint-Based Resource Brokering

For more information, see “Working with Facts and Constraints” in the PlateSpin Orchestrate 2.0
Developer Guide and Reference.

1.1.6 Understanding PlateSpin Orchestrate API Interfaces
There are three API interfaces available to the Orchestrate Server:

Orchestrate Server Management Interface: The PlateSpin Orchestrate Server, written
entirely in Java using the JMX (Java MBean) interface for management, leverages this API for
the PlateSpin Orchestrate Development Client. The Development Client is a robust desktop
GUI designed for administrators to apply, manage, and monitor usage-based policies on all
infrastructure resources. The Development Client also provides at-a-glance grid health and
capacity checks.

For more information, see the PlateSpin Orchestrate 2.0 Development Client Reference.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Figure 1-6 PlateSpin Orchestrate Development Client

Job Interface: Includes a customizable/replaceable Web application and the zosadmin
command line tool. The Web-based Server Portal built with this API provides a universal job
viewer from which job logs and progress can be monitored. The job interface is accessible via a
Java API or CLI. A subset is also available as a Web Service. The default PlateSpin Orchestrate
Server Portal leverages this API. It can be customized or alternative J2EE* application can be
written.
PlateSpin Orchestrate Monitoring System: Monitors all aspects of the data center through
an open source, Eclipse*-based interrface referred to as the PlateSpin Orchestrate VM
Client.This interface operates in conjunction with the Orchestrate Server and monitors the
following objects:

Deployed jobs that teach PlateSpin Orchestrate and provide the control logic that
PlateSpin Orchestrate runs when performing its management tasks.
Users and Groups
Virtual Machines

For more information, see the PlateSpin Orchestrate 2.0 VM Client Guide and Reference.
Basic PlateSpin Orchestrate Concepts 19

20 PlateS

novdocx (en) 13 M
ay 2009
Figure 1-7 The PlateSpin Orchestrate VM Client Interface

1.2 Understanding PlateSpin Orchestrate
Functionality

Section 1.2.1, “Resource Virtualization,” on page 20
Section 1.2.2, “Policy-Based Management,” on page 21
Section 1.2.3, “Grid Object Visualization,” on page 21
Section 1.2.4, “Understanding Job Semantics,” on page 22
Section 1.2.5, “Distributed Messaging and Failover,” on page 23
Section 1.2.6, “Web-Based User Interaction,” on page 24

1.2.1 Resource Virtualization
Host machines or test targets managed by the Orchestrate Server form nodes on the grid (sometimes
referred to as the matrix). All resources are virtualized for access by maintaining a capabilities
database containing extensive information (facts) for each managed resource.

This information is automatically polled and obtained from each resource periodically or when it
first comes online. The extent of the resource information the system can gather is customizable and
highly extensible, controlled by the jobs you create and deploy.

The PlateSpin Orchestrate Virtual Machine Builder is a service of VM Management that allows you
to build a VM to precise specifications required for your data center. You designate the parameters
required: processor, memory, hard drive space, operating system, virtualization type, whether it is
based on an auto-install file, and any additional parameters. When you lauch the build job, VM
Builder sends the build request to a machine that meets the hardware requirements of the defined
VM and builds the VM there.

For more information, see “Creating a Xen VM” in the PlateSpin Orchestrate 2.0 VM Client Guide
and Reference.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
1.2.2 Policy-Based Management
Policies are aggregations of facts and constraints that are used to enforce quotas, job queuing,
resource restrictions, permissions, and other user and resource functions. Policies can be set on all
objects and are inherited, which facilitates implementation within related resources.

Facts, which might be static, dynamic or computed for complex logic, are used when jobs or test
scenarios require resources in order to select a resource that exactly matches the requirements of the
test, and to control the access and assignment of resources to particular jobs, users, projects, etc.
through policies.This abstraction keeps the infrastructure fluid and allows for easy resource
substitution.

Of course, direct named access is also possible. An example of a policy that constrains the selection
of a resource for a particular job or test is shown in the sample below. Although resource constraints
can be applied at the policy level, they can also be described by the job itself or even dynamically
composed at runtime.

<policy>
 <constraint type="resource">
 <and>
 <eq fact="resource.os.family" value="Linux"/>
 <gt fact="resource.os.version" value="2.2" />
 <and>
 </constraint>
</policy>

An example of a policy that constrains the start of a job or test because too many tests are already in
progress is shown in the following sample:

<policy>
 <!-- Constrains the job to limit the number of running jobs to a
defined value but exempt certain users from this limit. All jobs
that attempt to exceed the limit are qued until the running jobs
count decreases and the constraint passes. -->

<constraint type="start" reason="Too busy">
 <or>
 <lt fact="job.instances.active" value="5"/>
 <eq fact="user.name" value="canary" />
 </or>
 </constraint>
</policy>

1.2.3 Grid Object Visualization
One of the greatest strengths of the PlateSpin Orchestrate solution is the ability to manage and
visualize the entire grid. This is performed through the PlateSpin Orchestrate Development
Clientand the PlateSpin Orchestrate VM Monitoring System.

The desktop Development Client is a Java application that has broad platform support and provides
job, resource, and user views of activity as well as access to the historical audit database system,
cost accounting, and other graphing features.

The Development Client also applies policies that govern the use of shared infrastructure or simply
create logical grouping of nodes on the grid. For more information about the PlateSpin Orchestrate
Development Client, see the PlateSpin Orchestrate 2.0 Development Client Reference.
Basic PlateSpin Orchestrate Concepts 21

22 PlateS

novdocx (en) 13 M
ay 2009
The PlateSpine Orchestrate VM Monitoring System provides robust graphical monitoring of all
managed virtual resources managed on the grid.

Figure 1-8 PlateSpin Orchestrate Monitoring in the VM Client

For more information, see the PlateSpin Orchestrate 2.0 VM Client Guide and Reference.

1.2.4 Understanding Job Semantics
As mentioned earlier, PlateSpin Orchestrate runs jobs. A job is a container that can encapsulate
several components including the Python-based logic for controlling the job life cycle (such as a
test) through logic that accompanies any remote activity, task-related resources such as
configuration files, binaries and any policies that should be associated with the job, as illustrated
below.

Figure 1-9 Components of a Job
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Workflows

Jobs can also invoke other jobs, creating hierarchies. Because of the communication between the job
client (either a user/user client application or another job) it is easy to create complex workflows
composed of discrete and separately versioned components.

When a job is executed and an instance is created, the class that extends job is run on the server and
as that logic requests resources, the class(es) that extend the joblet are automatically shipped to the
requested resource to manage the remote task. The communication mechanism between these
distributed components manifests itself as event method calls on the corresponding piece.

For more information, see “Workflow Job Example” in “Advanced Job Development Concepts”,
and “Job State Transition Events”, or “Communicating Through Job Events” in “Job Architecture”
in the PlateSpin Orchestrate 2.0 Developer Guide and Reference.

1.2.5 Distributed Messaging and Failover
A job has control over all aspects of its failover semantics, which can be specified separately for
conditions such as the loss of a resource, failure of an individual joblet, or joblet timeout.

The failover/health check mechanisms leverage the same communications mechanism that is
available to job and joblet logic. Specifically, when a job is started and resources are employed, a
message interface is established among all the components as shown in Figure 1-10 on page 24.

Optionally, a communication channel can also be kept open to the initiating client. This client
communication channel can be closed and reopened later based on jobid. Messages can be sent with
the command

sendEvent(foo_event, params, ...)

and received at the other end as a method invocation

def foo_event(self, params)

If a job allows it, a failure in any joblet causes the Orchestrate Server to automatically find an
alternative resource, copy over the joblet JDL code, and reestablish the communication connection.
A job also can listen for such conditions simply by defining a method for one of the internally
generated events, such as def joblet_failure_event(...).

Such failover allows, for example, for a large set of regression tests to be run (perhaps in parallel)
and for a resource to die in the middle of the tests without the test run being rendered invalid. The
figure below shows how job logic is distributed and failover achieved:
Basic PlateSpin Orchestrate Concepts 23

24 PlateS

novdocx (en) 13 M
ay 2009
Figure 1-10 A Job in Action

1.2.6 Web-Based User Interaction
PlateSpin Orchestrate ships a universal job monitoring and submission interface as a Web
application that natively runs on the Orchestrate Server. This application is written to the PlateSpin
Orchestrate job management API and can be customized or replaced with alternative rendering as
required.The figure belows shows an example of this interface, called the Server Portal.

Figure 1-11 PlateSpin Orchestrate Server Portal
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
For more information, see the PlateSpin Orchestrate 2.0 Server Portal Reference.
Basic PlateSpin Orchestrate Concepts 25

26 PlateS

novdocx (en) 13 M
ay 2009
pin Orchestrate 2.0 Administrator Reference

A
novdocx (en) 13 M

ay 2009
APlateSpin Orchestrate Security

This section explains various security issues related to PlateSpin® Orchestrate from Novell®:

Section A.1, “User and Administrator Password Hashing Methods,” on page 27
Section A.2, “User and Agent Password Authentication,” on page 27
Section A.3, “Password Protection,” on page 28
Section A.4, “TLS Encryption,” on page 28
Section A.5, “Security for Administrative Services,” on page 29
Section A.6, “Plain Text Visibility of Sensitive Information,” on page 30

A.1 User and Administrator Password Hashing
Methods
All passwords stored in PlateSpin Orchestrate are hashed using Secure Hash Alogrithm-1 (SHA-1).
However, user passwords are no longer hashed when sent from the client to the server. Instead, the
plain text password entered by the user is sent over an encrypted authentication connection to the
server to obtain a unique per-session credential issued by the server. This allows the server to “plug
in” to alternative user directories such as Active Directory or OpenLDAP. Agent credentials are still
stored, singly hashed, on the disk on the agent machine. The first pass hashing prevents “user
friendly” passwords entered by administrators from being compromised by storing them on the
agent machines. The server’s password database (for agents and for users not using an alternative
user directory) stores all passwords in a double-hashed form to prevent a stolen password database
from being used to obtain passwords.

WARNING: The zosadmin command line and the PlateSpin Orchestrate Development Client do
not use SSL encryption, nor do they support TLS/SSL, so they should only be used over a secure
network.

All agent and client connections support TLS encryption. This includes the zos command line and
the PlateSpin Orchestrate Agent.

A.2 User and Agent Password Authentication
The PlateSpin Orchestrate Server stores all user and agent passwords in its data store as double-
hashed strings. User clients such as the zos command send the plain text password over a TLS
encrypted authentication connection to obtain a randomly generated per-session credential issued by
the server. This session credential is retained by the client, either in memory or in a temporary disk
file for the duration of the session.

It is not possible to obtain the user’s password from the session credential, however. It should be
protected to prevent unauthorized users from taking over the session. Agents send a singly hashed
password as their login credential, which is in turn hashed once more on the server to authenticate
new agent connections. Upon authentication, agents receive the same type of session credential as
user clients.
PlateSpin Orchestrate Security 27

28 PlateS

novdocx (en) 13 M
ay 2009
Singly-hashed password strings are used as a special case for agents, because agents typically must
store their plain text credentials to disk to allow the agents to start up on host or VM reboot. The use
of a once hashed version of the password on the agent prevents administrators from compromising
“user friendly” text passwords by storing them unhashed on agents. The use of single hashing on the
agents and double hashing on the server database prevents stolen credential data from being used to
obtain actual user or administrator-entered passwords

A.3 Password Protection
You should take measures to protect the passwords and credentials on both the PlateSpin Orchestrate
Server and PlateSpin Orchestrate Agents by ensuring that only the user account of the PlateSpin
Orchestrate Server (currently root or Administrator, by default) has access to the /store and /
tls directories on the server, so that general users are prevented from obtaining the password. On
agents, allow only the agent users (normally root or Administrator) to have access to the
agent.properties file, which contains the agent’s authentication credential.

Currently, PlateSpin Orchestrate restricts file access on the server, but we recommend that you
disallow shell accounts on server machines for general users as a precaution.

For users, none of the Novell-provided client utilities stores the user-entered password to disk in
either plain text or hashed form. However, temporary once-per-session credentials are stored to the
disk in the users $HOME/.novell/zos/client directory. Theft of this session credential could
allow someone else to take over that user session, but not to steal the user’s password. Users can
protect their logged-in session by making sure the permissions either on their home directory or on
the ~/.novell/zos/client directory are set to forbid both read and write access by other users.

PlateSpin Orchestrate Agents use the same authentication protocol and password hashing as users
(agent passwords are stored to disk in hashed form, not plain text) with the exception that agent
passwords are not salted, allowing agents to be renamed by the server. Because agent passwords are
not salted, we recommend that you generate and use random non-mnemonic strings for agent
passwords.

For PlateSpin Orchestrate 2.0 and later, administrators can enhance security when configuring new
agents by setting the zos.agent.password property to the asterisk character (*). This causes the
agent to automatically generate a new random credential not based on any easily guessable plain text
word. When the new agent is “accepted” by the administrator, the newly generated credential is
stored by the server. This is the default behavior when the PlateSpin Orchestrate Agent is first
installed.

n addition, the zos.agent.password property can be set to a plain text password in
agent.properties. If this is done, the agent automatically replaces the plain text password with
the hashed version when it next starts. This allows administrators to more easily set up an initial
password for agents.

A.4 TLS Encryption
PlateSpin Orchestrate 1.3 uses Transport Layer Security (TLS) to provide encryption for both user
and agent connections. Both the PlateSpin Orchestrate Agent and the PlateSpin Orchestrate Clients
use TLS to initiate their connections to the Orchestrate Server, and then the server specifies whether
to “fall back” to plain text or continue the session fully encrypted.
pin Orchestrate 2.0 Administrator Reference

novdocx (en) 13 M
ay 2009
Although you can manually configure the agent and clients to either always require TLS encryption
or to fully disable TLS encryption, we recommended that you leave the agents and clients in their
default configuration, and then use the PlateSpin Orchestrate Development client on the server to
specify the default behavior. This is the purpose of the TLS Options section on the main server tab
of the Orchestrate Development Client.

Figure A-1 TLS Options in the PlateSpin Orchestrate Development Client

Here, there are 4 levels that you can set separately for both agent connections and user/client
connections:

Forbid TLS for (agents/clients): This option is to fully disable and prohibit TLS encryption
altogether. This is the least secure option and is therefore usually not the desirable choice, but it
could be required in countries that restrict encryption or in low security environments where
performance is more critical than security.
Allow TLS on the (agents/clients); default to falling back to unencrypted: This option (the
factory default for both agents and clients) is to allow TLS encryption if the agent or client
explicitly requests it, but to default to falling back to plain text after authentication.

NOTE: Authentication always occurs over SSL, regardless of settings.

Allow TLS on the (agents/clients); default to TLS encrypted if not configured encrypted:
This option is similar to the second option. Agents/clients may specify whether or not to use
TLS, but if they use the default of “server specified,” the server defaults to using TLS.
Make TLS mandatory on the (agents/clients): This option is the most secure, locked down
option. It requires TLS at all times, and fails connections if the agent or the client tries to
specify plain text.

In addition to these settings for TLS configuration, there are files that need to be protected on both
the server and on the client/agent. For more information, search for the TLS Certificate Installation
On PlateSpin Orchestrate article at the Novell Cool Solutions Community (http://www.novell.com/
communities/coolsolutions/).

A.5 Security for Administrative Services
The PlateSpin Orchestrate Development Client and the zosadmin command line tool are clients to
the MBean and RMI servers. PlateSpin Orchestrate does not provide encryption for these
administrative services, so you should be careful to use them only in a secure environment.

When the user logs in using either zosadmin login or the Orchestrate Development Client, the
user’s password is sent to the server, and then the server issues a per-session credential to be used for
further operations. The user’s cleartext password is never stored to disk; however, it is currently sent
“over the wire” in plain text form. For this reason, the administrative clients should only be used in a
secure, trusted environment.
PlateSpin Orchestrate Security 29

http://www.novell.com/communities/coolsolutions/

30 PlateS

novdocx (en) 13 M
ay 2009
The zosadmin client stores the session credential obtained from a zosadmin login request in a
temporary file for use by subsequent operations. This credential cannot be used to obtain the user’s
password, but it could be used to take over the user’s current session until it times out or expires.
For this reason, the files in the user’s .novell/zoc/ directory should be configured to disallow
access by other users.

A.6 Plain Text Visibility of Sensitive Information
The following table outlines where sensitive information might be visible as plain text:

Table A-1 Locations Where Sensitive Information Might Be Stored As Plain Text

Information Storage Location Visibility Issue

Audit Database
configuration

ZOS properties store Contains plain text information including user/
password for allowing PlateSpin Orchestrate to log
into the Audit Database for logging.

You should use a non-privileged database account for
logging.
pin Orchestrate 2.0 Administrator Reference

B
novdocx (en) 13 M

ay 2009
BServer Discovery and Multicasting

The PlateSpin* Orchestrate Server, Orchestrate Agent, and other Orchestrate tools use IP multicast
messages to locate servers and to announce when servers are started or shut down. If multicasting is
not supported in your existing network environment, all PlateSpin Orchestrate components allow a
specific machine to be specified instead of using multicast discovery. Multicast support is not
required to run the PlateSpin Orchestrate Server, the Orchestrate Agent, or any Orchestrate tools.

This section includes the following multicast information:

Section B.1, “Multicast Troubleshooting,” on page 31
Section B.2, “Multicast Routes,” on page 31
Section B.3, “Multi-homed Hosts,” on page 32
Section B.4, “Multiple Subnets,” on page 32
Section B.5, “Datagrid and Multicasting,” on page 32
Section B.6, “Datagrid Multicast Interface Selection,” on page 32

B.1 Multicast Troubleshooting
An exhaustive tutorial of IP multicasting and troubleshooting is beyond the scope of this document.
If you are having problems with multicast discovery, ensure that your operating system is configured
to provide IP multicasting support. Most modern versions of Linux* and Windows* provide this
support, however it might be disabled. Multicast discovery does not work unless IP multicasting is
enabled by the operating system. Routing misconfiguration on the system can also lead to problems
with multicast discovery.

B.2 Multicast Routes
A common problem with multicasting, particularly on Linux, is the lack of a default route or
multicast network route. Most systems are configured to have at least a “default” route, and on such
systems, multicast messages use the default route like any other network traffic. Systems do not
necessarily require a default route. Multicasting might not function correctly on systems that lack a
default route. Attempts to send messages on such systems fail with a Network Unreachable
message because the operating system is unable to determine the correct network interface on which
to send the message.

The quick solution is to add a default route on such systems. In some environments, however, it
might not make sense to add a default route. In such cases, another solution is to add a network route
for the 224.0.0.0/4 block representing the multicast IP address space. On Linux, for example, issue
the following command as the root user:

 route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

This command tells the system to send all multicast datagrams to the eth0 network card by default.
Substitute eth0 with a different interface name if applicable.
Server Discovery and Multicasting 31

32 PlateS

novdocx (en) 13 M
ay 2009
B.3 Multi-homed Hosts
A multi-homed host is a machine with more than one network interface configured. This can be
anything from a Linux system being used as a network router to a laptop computer with both an
active Ethernet connection and an active wireless connection. If there are two or more network
interfaces active at the same time (even if only one is actually being used) the system is “multi-
homed.”

Some operating systems like Linux provide only very rudimentary routing as a default part of the
operating system. They rely on external routing software like “mrouted” to support full multicast
routing. As a result, problems might arise in multi-homed machines because outgoing multicast
messages are sent on only one interface in the absence of more sophisticated routing software. It is
possible that the interface chosen by the operating system is incorrect. The Orchestrate Server and
its associated tools make a best effort to ensure that discovery queries and announcements are sent
on all available interfaces. It should not be necessary to run an external routing program with the
current Orchestrate Server.

B.4 Multiple Subnets
By default, Orchestrate Server and its associated tools are configured to allow multicast messages to
pass through up to two gateways. This allows discovery to work in multi-subnet environments,
provided that the network routers on your network are properly configured to perform multicast
routing. Consult the vendor’s documentation for information on configuring multicast routing on
your network routers.

B.5 Datagrid and Multicasting
The PlateSpin Orchestrate datagrid facility provides a multicast-based file distribution service that
allows large multi-gigabyte files to be simultaneously delivered to a large number of recipient
machines while using far less network bandwidth than would be used by copying the file
individually to each node. This service is available only in network environments that support IP
multicasting. Aside from the file multicast service, all other features of the datagrid use normal
unicast network operations and do not require multicast support. The routing and troubleshooting
pointers provided above for network discovery also apply to datagrid multicasting. In addition, due
to the potentially large bandwidth used by file transfers, you might want to limit the set of interfaces
on which files are multicasted.

B.6 Datagrid Multicast Interface Selection
On multi-homed servers, the datagrid multicast service sends outbound control and data packets on
all available interfaces on the system. This allows datagrid multicasting to work “out of the box”
with multi-homed servers. This behavior might not be optimal if you require multicasting of files
only to a subset of the available interfaces. You can instruct the datagrid to multicast only to the
desired interfaces by selecting the correct interfaces from the Orchestrate Development Client on the
Info/Configuration tab under Data Grid Configuration. Restricting the set of datagrid multicast
interfaces prevents large amounts of file data from being sent to uninterested subnets.
pin Orchestrate 2.0 Administrator Reference

	PlateSpin Orchestrate 2.0 Administrator Reference
	About This Guide
	1 Basic PlateSpin Orchestrate Concepts
	1.1 Understanding PlateSpin Orchestrate Architecture
	1.1.1 The PlateSpin Orchestrate Agent
	1.1.2 The Resource Monitor
	1.1.3 Entity Types and Managers
	1.1.4 Jobs
	1.1.5 Constraint-Based Job Scheduling
	1.1.6 Understanding PlateSpin Orchestrate API Interfaces

	1.2 Understanding PlateSpin Orchestrate Functionality
	1.2.1 Resource Virtualization
	1.2.2 Policy-Based Management
	1.2.3 Grid Object Visualization
	1.2.4 Understanding Job Semantics
	1.2.5 Distributed Messaging and Failover
	1.2.6 Web-Based User Interaction

	A PlateSpin Orchestrate Security
	A.1 User and Administrator Password Hashing Methods
	A.2 User and Agent Password Authentication
	A.3 Password Protection
	A.4 TLS Encryption
	A.5 Security for Administrative Services
	A.6 Plain Text Visibility of Sensitive Information

	B Server Discovery and Multicasting
	B.1 Multicast Troubleshooting
	B.2 Multicast Routes
	B.3 Multi-homed Hosts
	B.4 Multiple Subnets
	B.5 Datagrid and Multicasting
	B.6 Datagrid Multicast Interface Selection

