
Novell®

novdocx (en) 16 A
pril 2010

AUTHORIZED DOCUMENTATION
PlateSpin Orchestrate 2.5 Development Client Reference
www.novell.com

PlateSpin® Orchestrate

2.5
November 29, 2010
Development Client Reference

novdocx (en) 16 A
pril 2010
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2010 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/documentation

novdocx (en) 16 A
pril 2010
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

Contents

novdocx (en) 16 A
pril 2010
About This Guide 9

1 Layout 11

2 Orchestrate Development Client Menus and Tools 15
2.1 The Operations Menu Bar . 15

2.1.1 File . 15
2.1.2 Edit. 16
2.1.3 View . 20
2.1.4 Actions . 20
2.1.5 Provision . 21
2.1.6 Server . 22
2.1.7 Windows . 26
2.1.8 Help . 26

2.2 The Orchestrate Development Client Toolbar . 26

3 The Orchestrate Server and the Server Admin Objects 29
3.1 The Orchestrate Server Object . 29

3.1.1 The Orchestrate Server Info/Configuration Page . 30
3.1.2 The Orchestrate Server Authentication Page . 36
3.1.3 The Orchestrate Server Policies Page . 40
3.1.4 The Orchestrate Server Constraints/Facts Page. 40

3.2 The Server Admin Object . 41

4 The Job Object 43
4.1 Job Groups. 43
4.2 The Job Info/Groups Tab . 43

4.2.1 Info. 44
4.2.2 Groups . 53

4.3 The JDL Editor Tab . 53
4.4 The Job Library Editor Tab. 54
4.5 The Job Policies Tab . 55
4.6 The Job Constraints/Facts Tab . 56

5 The Resource Object 57
5.1 Resource Groups . 57
5.2 The Resource Info/Groups Page . 57

5.2.1 The Info Panel . 57
5.2.2 The Groups Panel . 84

5.3 The Provision Info Page. 84
5.4 The Resource Log Page . 85
5.5 The Resource Policies Page . 85
5.6 The Resource Health Debugger Page . 85
5.7 The Resource Constraints/Facts Page . 86
5.8 Resource Object Naming and Renaming. 86
Contents 5

6 PlateS

novdocx (en) 16 A
pril 2010
6 The VM Host Object 87
6.1 The Info Page. 87

6.1.1 Show Inherited Fact Values Check Box . 88
6.1.2 VM Host Information Panel . 88
6.1.3 Provisioning Adapter Config Panel . 90
6.1.4 Guest VM Monitor Information Panel. 91

6.2 The Policies Page . 92
6.3 The Health Debugger Page . 92
6.4 The Constraints/Facts Page. 92
6.5 The Action History Page . 92
6.6 VM Host Object Naming and Renaming . 93
6.7 Unique VM Host Cluster Facts . 93

6.7.1 Orchestrate Facts in the VM Host Cluster Object . 93
6.7.2 Orchestrate Facts in a VM Host Residing in a Cluster . 94
6.7.3 Orchestrate Facts in VMs Hosted in Clusters . 95

6.8 vCPU Slots for VM Hosts . 96
6.8.1 Configuring vCPUs on VM Hosts. 96
6.8.2 Configuring vCPUs on VM Host Clusters . 97
6.8.3 Configuring vCPUs on VMs . 97

7 The Virtual Disk Object 99
7.1 Understanding the Virtual Disk Object . 99

7.1.1 Creating Or Deleting a vDisk in the Development Client . 99
7.1.2 Sharing Virtual Disks Among VM Hosts . 102
7.1.3 Moving Virtual Disks . 102

7.2 Viewing Virtual Disk Configuration in the Development Client . 104
7.2.1 The Virtual Disk Information Panel . 104
7.2.2 The Virtual Disk Policies Tab. 106
7.2.3 The Virtual Disk Health Debugger Tab . 106
7.2.4 The Virtual Disk Constraints/Facts Tab . 107
7.2.5 Virtual Disk Object Naming and Renaming . 107

8 The Virtual NIC Object 109
8.1 Understanding the Virtual NIC Object . 109

8.1.1 The Purpose of the Virtual NIC . 109
8.1.2 Creating Or Deleting a vNIC in the Development Client . 109

8.2 Viewing the Virtual NIC Configuration in the Development Client . 112
8.2.1 The Virtual NIC Info Panel . 113
8.2.2 The Virtual NIC Policies Tab . 117
8.2.3 The Virtual NIC Health Debugger Tab. 117
8.2.4 The Virtual NIC Constraints/Facts Tab . 117
8.2.5 Virtual NIC Object Naming and Renaming . 117

9 The Network Group and its Virtual Bridge Objects 119
9.1 Understanding the Network Group and Virtual Bridge Objects . 119

9.1.1 The Virtual Bridge Object. 119
9.1.2 The Purpose of the Virtual Bridge . 120
9.1.3 Creating or Deleting a vBridge in the Development Client 120
9.1.4 Virtual Bridge Object Naming and Renaming . 122

9.2 Viewing the Virtual Bridge Configuration in the Development Client 123
9.2.1 The Virtual Bridge Info/Groups Tab . 124
9.2.2 The Virtual Bridge Policies Tab . 125
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
9.2.3 The Virtual Bridge Health Debugger Tab. 125
9.2.4 The Virtual Bridge Constraints/Facts Tab . 125

10 The Repository Object 127
10.1 Right-Click Menu Actions on the Repository Object. 127
10.2 Repository Groups . 128
10.3 The Repository Info/Groups Tab . 128

10.3.1 The Info Panel . 128
10.3.2 Best Practices for Entering Repository File Paths . 133
10.3.3 Groups . 134

10.4 The Repository Policies Tab . 134
10.5 The Repository Health Debugger Tab . 135
10.6 The Repository Constraints/Facts Tab. 135
10.7 The Repository Action History Tab . 135
10.8 Repository Object Naming and Renaming. 135

11 The User Object 137
11.1 User Groups. 137
11.2 The User Info/Groups Tab . 137

11.2.1 Info. 137
11.2.2 Groups . 143

11.3 The User Policies Tab . 143
11.4 The User Health Debugger Tab . 143
11.5 The User Constraints/Facts Tab . 144
11.6 The User Action History Tab . 144

12 Miscellaneous Objects Displayed in the Explorer Tree 145
12.1 The Policy Object . 145

12.1.1 Policy Constraints . 145
12.1.2 Policy Facts . 145

12.2 Computed Fact Objects . 145
12.3 Event Objects. 146
12.4 Metrics Objects . 146

13 The PlateSpin Orchestrate Job Scheduler 147
13.1 Understanding the Job Scheduler View . 147

13.1.1 Navigating The Job Schedules Table . 148
13.1.2 Creating or Modifying a Job Schedule. 150
13.1.3 Understanding Cron Syntax in the Job Scheduler . 160

13.2 Walkthrough: Scheduling a System Job . 164
13.2.1 Deploying a Sample System Job. 164
13.2.2 Creating a New Schedule for the Job . 167
13.2.3 Defining the New Schedule . 167
13.2.4 Activating the New Schedule . 174
13.2.5 Running the New Schedule Immediately . 174

14 The Policy Debugger 177
14.1 The Constraints Table View . 177

14.1.1 The Match Context Area . 178
14.1.2 The Constraint Type List . 180
Contents 7

8 PlateS

novdocx (en) 16 A
pril 2010
14.1.3 The Verbose Check Box . 180
14.1.4 The Capable Resources Summary . 180
14.1.5 The Constraints Column of the Constraints Table View . 180
14.1.6 The Policy Column of the Constraints Table . 182

14.2 The Facts Table View . 182
14.2.1 The All Facts Check Box . 183

14.3 Policy Debugger Use Cases . 184
14.3.1 Use Case 1: Determining Why a Job is in a Waiting State 184

A Grid Object Health Monitoring 187
A.1 Health Facts . 187
A.2 Health Events. 189
A.3 The Health Debugger. 189

A.3.1 The Constraints Table Panel . 190
A.3.2 The Facts Table View . 193

B Events 195
B.1 Event Object Visualization and Management in the Development Client 195

B.1.1 Deploying a New Rule-Based Event . 196
B.1.2 Deploying a Pre-written Rule-Based Event . 196
B.1.3 Undeploying an Event . 197
B.1.4 The Event Editor . 197

B.2 The Event Debugger . 198
B.2.1 The Constraints Table . 199
B.2.2 The Facts Table. 201

B.3 Understanding the PlateSpin Orchestrate Events System. 202
B.3.1 Event Notification. 203
B.3.2 Built-in Events . 203
B.3.3 Rule-based Events . 204

C The Metrics Facility 207
C.1 Metrics Facility Functionality . 207
C.2 Ganglia Metrics . 207
C.3 How Does the Metrics Facility Impact Orchestrate Server Performance? 209

C.3.1 I/O Contention . 209
C.3.2 Too Many Open Files . 209

C.4 RRD Definition Using Deployable .metric Files . 209
C.4.1 XML Format for Deployable .metric Definitions . 210

C.5 Query of Aggregated Metric Values . 211
C.5.1 Example of a JDL Query for Aggregated Metric Values . 211
C.5.2 Example of a Policy Constraint or Event Constraint Using Aggregated Metric

Values . 211
C.5.3 Example of Using Non-aggregated (“Raw”) Historical Metric Values 212

C.6 MetricsManager MBean API . 212
C.6.1 MBean Methods Exposed by the MetricsManager Facility 212
C.6.2 The MetricsDeployer Facility . 213

C.7 Using the Metrics Facility in the Development Client Interface . 213

D Documentation Updates 215
D.1 November 29, 2010 . 215
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
About This Guide

This PlateSpin Orchestrate Development Client Reference introduces the PlateSpin Orchestrate
Development Client, the product’s basic administration environment. The guide provides an
introductory overview of the Development Client interface. The guide is organized as follows:

Chapter 1, “Layout,” on page 11
Chapter 2, “Orchestrate Development Client Menus and Tools,” on page 15
Chapter 3, “The Orchestrate Server and the Server Admin Objects,” on page 29
Chapter 4, “The Job Object,” on page 43
Chapter 5, “The Resource Object,” on page 57
Chapter 6, “The VM Host Object,” on page 87
Chapter 7, “The Virtual Disk Object,” on page 99
Chapter 8, “The Virtual NIC Object,” on page 109
Chapter 9, “The Network Group and its Virtual Bridge Objects,” on page 119
Chapter 10, “The Repository Object,” on page 127
Chapter 11, “The User Object,” on page 137
Chapter 12, “Miscellaneous Objects Displayed in the Explorer Tree,” on page 145
Chapter 13, “The PlateSpin Orchestrate Job Scheduler,” on page 147
Chapter 14, “The Policy Debugger,” on page 177
Appendix A, “Grid Object Health Monitoring,” on page 187
Appendix B, “Events,” on page 195
Appendix C, “The Metrics Facility,” on page 207
Appendix D, “Documentation Updates,” on page 215

Audience

This book is intended for data center managers and IT or Operations administrators. It assumes that
users of the product have the following background:

General understanding of network operating environments and systems architecture.
Knowledge of basic UNIX shell commands and text editors.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html (http://
www.novell.com/documentation/feedback.html) and enter your comments there.
About This Guide 9

http://www.novell.com/documentation/feedback.html

10 PlateS

novdocx (en) 16 A
pril 2010
Additional Documentation

In addition to this PlateSpin Orchestrate Development Client Reference, PlateSpin Orchestrate 2.5
documentation includes the following additional guides that contain valuable information about the
product:

PlateSpin Orchestrate 2.5 Getting Started Reference
PlateSpin Orchestrate 2.5 Installation and Configuration Guide
PlateSpin Orchestrate 2.5 Upgrade Guide
PlateSpin Orchestrate 2.5 VM Client Guide and Reference
PlateSpin Orchestrate 2.5 Virtual Machine Management Guide
PlateSpin Orchestrate 2.5 Administrator Reference
PlateSpin Orchestrate 2.5 High Availability Configuration Guide
PlateSpin Orchestrate 2.5 Command Line Reference
PlateSpin Orchestrate 2.5 Server Portal Reference
PlateSpin Orchestrate 2.5 Developer Guide and Reference
pin Orchestrate 2.5 Development Client Reference

1
novdocx (en) 16 A

pril 2010
1Layout

Both the grid administrator and the job developer need to have access to and use the PlateSpin
Orchestrate Development Client. The administrator needs to use the console to perform any
management functions, such as creating user accounts and managing Orchestrator Server activities.
The developer uses the console to access the JDL editor for creating or modifying jobs and policies.

The following figure shows the general areas on the console interface that are referred to in this
guide.

Figure 1-1 The PlateSpin Orchestrate Development Client with Parts Identified

The following chart describes the functional areas of the main PlateSpin Orchestrate Development
Client display.
Layout 11

12 PlateS

novdocx (en) 16 A
pril 2010
Table 1-1 Detailed Description of Console Areas

Area Description

Menu bar Provides operations categorized under menus such as File, Edit, View, Grid,
Server, Windows, and Help.

The File menu lets you save any changes you’ve made or exit the
console.

The Edit menu lets cut, copy, and paste items and choose general and
server preferences for console.

The View menu lets you manipulate the display of the different
components of the console and refresh the Explorer and Workspace
panels.

The Actions menu lets you launch specific tools that create and delete
users or user groups, computing resources, jobs, policies, and
computed facts.

The Server menu lets you start a local server, log in to the server, create
and display logs for logged in servers, log out from the server, and shut
down the server.

The Windows menu lets you select console windows to display when
you have more than one console window open. You can open the
Explorer panel and the two tabs of the Info panel (<Orchestrator> Log
and Console Output) in their own windows by right-clicking the tab and
choosing Open in window in the pop-up menu.

The Help menu provides access to the About box for the console. It also
provides a link to ZENworks Orchestrator documentation on the Web.

Main toolbar The main toolbar has buttons for executing common tasks. The basic tasks
are Go Back, Go Forward, Refresh the view, Hide or Show the Explorer
Panel, Cut, Copy, Paste, and Save changes in workspace view and Open the
Find Dialog.

The toolbar also includes buttons that open monitoring views for Jobs,
Resources, and Users.

To the far left of the toolbar, a pinwheel icon indicates when the console is
busy.

Explorer panel The Explorer panel displays a hierarchical tree. The tree lets you navigate to
different objects; you can click items in the tree to see their details. For
example, you can display computing resources for a selected grid. When you
click Computing Resources in the tree, its details appear in the Workspace
panel with a list of active computing resources. You can edit the Computing
Resource attributes in the workspace panel.

Workspace panel The Workspace panel displays a detailed view for an item you select in the
Explorer panel. For example, if you select a computing resource under
physical in the Explorer panel, the Workspace panel view changes to show
the details for that resource. You can edit the properties of an Orchestrator
object in the views displayed in the Workspace panel.

Info panel The Info panel displays a variety of information, such as validation and error
messages, log files, and query results. You can display or hide the Info panel
by clicking the Info panel button in the Status bar.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
For information about launching the client and using it for the first time, see “Walkthrough:

Launching the PlateSpin Orchestrate Development Client”in the PlateSpin Orchestrate 2.5
Installation and Configuration Guide.

For information about the user interface of the PlateSpin Orchestrate Development Client, see
Chapter 2, “Orchestrate Development Client Menus and Tools,” on page 15.

Status bar The status bar displays general identity information about the Orchestrator
Server where you are logged in.

Area Description
Layout 13

14 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

2
novdocx (en) 16 A

pril 2010
2Orchestrate Development Client
Menus and Tools

A number of operations are available from the PlateSpin Orchestrate Development Client and can be
accessed from its menu bar and toolbar.

Section 2.1, “The Operations Menu Bar,” on page 15
Section 2.2, “The Orchestrate Development Client Toolbar,” on page 26

2.1 The Operations Menu Bar
The Operations Menu Bar in the Orchestrate Development Client provides options that help you to
create and administer objects in the Explorer Tree.

Section 2.1.1, “File,” on page 15
Section 2.1.2, “Edit,” on page 16
Section 2.1.3, “View,” on page 20
Section 2.1.4, “Actions,” on page 20
Section 2.1.5, “Provision,” on page 21
Section 2.1.6, “Server,” on page 22
Section 2.1.7, “Windows,” on page 26
Section 2.1.8, “Help,” on page 26

2.1.1 File
The File menu (Alt+F) provides keyboard and mouse accessible methods for users to save changes
or to exit the application.

“Save” on page 15
“Exit” on page 15

Save

The Save operation provides a mouse and keyboard (File > Ctrl+S) accessible method for users to
save any changes made in the visible view.

Exit

The exit operation provides a mouse and keyboard (File > Alt+X) accessible method for users to
close all server connections and to exit the Orchestrate Development Client application.
Orchestrate Development Client Menus and Tools 15

16 PlateS

novdocx (en) 16 A
pril 2010
2.1.2 Edit
The Edit menu (Alt+E) provides keyboard and mouse accessible methods for users to save changes
or to exit the application.

“Undo Addition” on page 16
“Redo” on page 16
“Cut” on page 16
“Copy” on page 16
“Paste” on page 16
“Find” on page 17
“Find Next” on page 17
“Find Previous” on page 17
“Enter Find String” on page 17
“Load Text” on page 17
“Save Text” on page 17
“Preferences” on page 18

Undo Addition

The Undo operation provides a mouse-accessible method for users to undo the action they have just
performed in the Orchestrate Development Client. The operation can also be executed from the
keyboard (Ctrl+Z).

Redo

The Redo operation provides a mouse-accessible method for users to redo the action they have just
performed in the Orchestrate Development Client. The operation can also be executed from the
keyboard (Ctrl+Y).

Cut

The Cut operation provides a mouse-accessible method for users to cut the selected object and move
it to the clipboard. The operation can also be executed from the keyboard (Ctrl+X).

Copy

The Copy operation provides a mouse-accessible method for users to copy the selected object to the
clipboard. The operation can also be executed from the keyboard (Ctrl+C).

Paste

The Paste operation provides a mouse-accessible method for users to paste the contents of the
clipboard to the desired location. The operation can also be executed from the keyboard (Ctrl+V).
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Find

The Exit operation provides a mouse-accessible method for users to open the Find and Replace
dialog box, where they can search for and replace (if necessary) editable strings located in logs and
editing views (for example, the Policy Editor).

Figure 2-1 The Find and Replace Dialog Box Invoked From the Policy Editor

The operation can also be executed from the keyboard (Ctrl+F).

Find Next

The Find Next operation provides a mouse-accessible method for users to find the next occurrence
of the string they previously searched for. The operation can also be executed from the keyboard
(F3).

Find Previous

The Find Previous operation provides a mouse-accessible method for users to find the previous
occurrence of the string they searched for. The operation can also be executed from the keyboard
(Shift+F3).

Enter Find String

The Enter Find String operation provides a mouse-accessible method for users to load the text of the
string they want to search for. The operation can also be executed from the keyboard (Ctrl+E).

Load Text

The Load Text operation provides a method for users to load text from an existing file into the open,
editable view. When selected, the operation opens a browse dialog box where the file can be
selected.

Save Text

The Save Text operation provides a method for users to save text in an editable, active view to a file.
When selected, the operation opens a save dialog box where you can browse to a network location
where you want to save the file. By default, the file is named according to the view and the context
within which you are viewing it. You can change the name of the file when you save it.
Orchestrate Development Client Menus and Tools 17

18 PlateS

novdocx (en) 16 A
pril 2010
Preferences

The Preferences operation provides a method for users to change the preferences for the Orchestrate
Development Client display. When selected, the operation opens the Orchestrate Development
Client Preferences dialog box.

The dialog box has three tabbed pages.

General Page

Figure 2-2 General Page of the Orchestrate Development Client Preferences

Preference settings on this page that you can change are self-explanatory. If you click Initialize
Preferences, the preference settings (except Look and Feel settings) are initialized to installation
values.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Server Page

Figure 2-3 Server Page of the Orchestrate Development Client Preferences

Preference settings on this page that you can change are self-explanatory.
Orchestrate Development Client Menus and Tools 19

20 PlateS

novdocx (en) 16 A
pril 2010
Java Properties Page

Figure 2-4 The Java Properties Page of the Orchestrate Development Client Preferences

This page lists the Java property names and values that Novell uses to render the Orchestrate
Development Client interface in Java Swing. The list is for your information only.

2.1.3 View
The View menu includes various operations that let you manipulate the Orchestrate Development
Client display of the various PlateSpin Orchestrate component views. The function of the options
under this menu are self explanatory, and are a compilation of view operations that are also available
from the Operations toolbar.

For more information about the View operations, see Section 2.2, “The Orchestrate Development
Client Toolbar,” on page 26.

2.1.4 Actions
The multiple operations listed as options under the Actions menu provide a quick way for you to
perform operations that can also be performed (generally by right-clicking an object) in the Explorer
View.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
For example, if you select a Create option from the Actions menu, the create dialog remains open
after you create each object. Here you can repeatedly create new objects in the dialog, pressing OK
or Create after each is created. Similarly, in the dialog boxes of some operations in the Actions
menu, you can select many objects and delete them at the same time.

2.1.5 Provision
The Provision menu is added to the menu bar only if you have installed Virtual Machine
Management. The multiple operations listed in the menu include two of the provisioning actions that
you can execute by right-clicking a VM object in the Explorer Tree.

Discover VM Hosts & Repositories

When you select this option, the Discover VM Hosts and Repositories dialog box is displayed.

Figure 2-5 VM Discovery Dialog Box

Using this dialog box, you can select a provisioning adapter (esx, hyperv, vcenter, vmserver, or
xen30) that discovers all VM host machines where the PlateSpin Orchestrate Agent is installed and
creates objects in the model. The provisioning adapter also discovers the VM Repositories where
VM hosts reside.

Discover VM Images

When you select this option, the Discover VM Images dialog box is displayed.
Orchestrate Development Client Menus and Tools 21

22 PlateS

novdocx (en) 16 A
pril 2010
Figure 2-6 VM Images Discover Dialog Box

Using this dialog box, you can select a provisioning adapter (esx, hyperv, vcenter, vmserver, or
xen30) that discovers all VM images and creates objects in the model.

Other Provisioning Operations

The other operations listed in the menu are self-explanatory.

Start VM Hosts

Shutdown VM Hosts

Shutdown VMs

Resync VM’s State

Resync VMs’s Host State

Reset State of all VMs

2.1.6 Server
The Server menu lets you start a local server, log in to the server, create and display logs for logged
in servers, log out from the server, and shut down a server.

“Select Server” on page 23
“Discover Servers” on page 23
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
“Shutdown Server” on page 23
“Login” on page 23
“Logout” on page 23
“Display Log” on page 24
“Create Custom Log” on page 24

Select Server

The Select Server operation lets you select one of the Orchestrate Servers in your grid to log onto.
When you select a server, you are required to log on. This operation accomplishes the same thing as
selecting a server object from the Explorer Tree.

Discover Servers

The Discover Servers operation lets you launch the discovery process for servers. This is the same
process that initiates (if so chosen in your server preferences) when the Orchestrate Development
Client starts.

Shutdown Server

The Shutdown Server operation lets you shut down the current, logged on Orchestrate Server. The
shutdown dialog box also lets you create a snapshot of the server state when you shut down.

Figure 2-7 The Server Shutdown Dialog Box

Login

The Login operation lets you establish a remote connection to another Orchestrate Server. The server
IP address is required for the login. When you enter the IP address, you need to provide the
username and password for the server where you are logging on.

Logout

The Logout operation lets you log out of the current, logged on Orchestrate Server without exiting
the Orchestrate Development Client. Logging out removes the server’s nodes from the Explorer
Tree and its workspace views.
Orchestrate Development Client Menus and Tools 23

24 PlateS

novdocx (en) 16 A
pril 2010
Display Log

The Display Log operation displays the default server log for the current, logged on Orchestrate
Server. The display is in the Information window located at the bottom of the Orchestrate
Development Client. The server log file is also located by default in the /var/opt/novell/
zenworks/zos/server/logs directory.

Figure 2-8 Server Log Opened in Information Window of the Orchestrate Development Client

When a log is displayed, you can right-click its tab to further direct the actions of the display. You
can pause logging in the window, copy the log to the clipboard, clear its contents, undock the log
display as a new window, or remove it from the Information window.

If you right-click on the log display, all of the default editing capabilities of the Orchestrate
Development Client are available for your use inside the window. For more information, see
Section 2.1.2, “Edit,” on page 16.

Create Custom Log

The Create Custom Log operation opens the Custom Log View Parameters dialog box.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 2-9 The Custom Log View Parameters Dialog Box

By enabling a custom log, you can monitor various components of the Orchestrate Server. For
example, you can view debugging information for the Audit facility. You can create, update, or
remove a log view from the dialog box. You can open a custom view in the Information window by
selecting Open in the dialog box.

Log View Name: Enter the name of the log view. This will be displayed on a tab in the log display
panel.

NOTE: You can enter only alphanumeric characters and spaces in the Log View Name field.

Log Level: From the drop-down list, select the minimum log level for the log view. The log
messages included in the custom view will be of this level and those of greater severity.

Log Channels: A log channel provides log information specific to an PlateSpin Orchestrate
component or facility, such as the Audit facility.

When the custom view is displayed, you can right-click its tab to further direct the actions of the
display. You can pause logging in the window, copy the log to the clipboard, clear its contents,
undock the log display as a new window, or remove it from the Information window.
Orchestrate Development Client Menus and Tools 25

26 PlateS

novdocx (en) 16 A
pril 2010
If you right-click on the log display, all of the default editing capabilities of the Orchestrate
Development Client are available for your use inside the window. For more information, see
Section 2.1.2, “Edit,” on page 16.

2.1.7 Windows
When you right-click various views and panels in the Orchestrate Development Client, you can
select the Open in Window option to open these views and panels in separate windows. This allows
you the perspective you sometimes need when working with PlateSpin Orchestrate objects in
conjunction with one another. The Windows menu lets you toggle between the various views or
panels that are open. You can also choose to Show All, Hide All, or Close All of these windows.

When a given window is open, its fields and selectable dialogs remain functional so that you can
perform object operations or text editing as you would when these views or panels are docked
normally to the Orchestrate Development Client.

2.1.8 Help
From the Help menu, you can access a link to the online PlateSpin Orchestrate documentation
(available in .html or .pdf format) or you can open the About box for the product, where you can
view its version number, its license expiration date, and a list of its current management pack
capabilities (for example, the Virtual Machine Management capability).

2.2 The Orchestrate Development Client Toolbar
The Orchestrate Development Client Toolbar includes several iconic buttons that let you perform
command tasks in the Development Client workspace views and the Explorer Tree. The table below
lists the functions of these buttons.

Table 2-1 Tool Buttons from the Orchestrate Development Client Toolbar

Tool Icon Tool Name Tool Function

Back Go back to the previous workspace view seen.

Forward Go forward to the next workspace view.

Refresh Refresh the Explorer and Workspace views.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Open/Hide
Explorer

Open the Explorer Tree in a window

Hide the Explorer window

Cut Cut the selected object from the workspace and copy it to the
clipboard

Copy Copy the selected object to the clipboard while keeping the original
in place

Paste Paste the contents of the clipboard

Find and Replace Open the Find dialog box

Save Save changes (in the workspace views or in the Explorer)

Resource Usage
Meter

(Not an active button) visual indication of resource usage. Mouse
over for a listing of Active Resources, Busy resources and Available
Resources, right-click to stop the meter

none (blank
area)

Bookmark Toolbox Click and drag any object from the Explorer tree into this area to
create a bookmark to jump to that object’s view. Right-click the
bookmark to select options to open and show the object or to
remove it from the toolbox. Right-click to remove all objects when
some are not visible.

Busy Indicator (Not an active button). This pinwheel shape appears to rotate when
the Server is busy performing an operation.

Tool Icon Tool Name Tool Function
Orchestrate Development Client Menus and Tools 27

28 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

3
novdocx (en) 16 A

pril 2010
3The Orchestrate Server and the
Server Admin Objects

The PlateSpin Orchestrate Development Client lets you visualize the object model maintained by
the Orchestrate Server and that the server uses to make resource provisioning decisions. The left
pane of the Orchestrate Development Client displays a hierarchical tree known as the Explorer Tree
or the Explorer View. This tree lets you navigate to different objects to see their details. Each object
in the Explorer Tree is referred to as a “Grid object.” These objects can also be associated with one
or more containers called Groups. When you navigate to these objects, you can edit their attributes
and view more detail about their configurations.

This section includes information about the following objects that you can manage in the Explorer
Tree:

Section 3.1, “The Orchestrate Server Object,” on page 29
Section 3.2, “The Server Admin Object,” on page 41

3.1 The Orchestrate Server Object
The highest object in the Explorer Tree is the Orchestrate Server Object, sometimes called the “grid
server” object because it represents the PlateSpin Orchestrate Server acting as the holding place for
all of the information used to manage objects for a single computing grid.

The PlateSpin Orchestrate Development Client is “version aware.” When the Orchestrate
Development Client is launched or when server discovery is manually run, the client recognizes
both current PlateSpin Orchestrate installations and old installations of discovered servers and
displays their icons accordingly. This visual cue helps you to recognize when older Orchestrate
Servers need to be upgraded.

Figure 3-1 Current and “Old” Server Objects

The tooltip for an Orchestrate Server lists its RMI configuration, its IP address, the directory
location where the server instance was installed, and its exact version number.

The icons to the right of a current Orchestrate Server represent its policies, either those added by
default upon server install and configuration, or those added later. A drop-down menu of all
associated policies is opened when you right-click a policy icon. From there, you can select a policy
to open in the Policy Editor. For more information about policies, see Section 12.1, “The Policy
Object,” on page 145.
The Orchestrate Server and the Server Admin Objects 29

30 PlateS

novdocx (en) 16 A
pril 2010
When selected, the Server Object exposes four tabs where you can further configure its attributes.
Further information about these tabs is available in the following sections:

Section 3.1.1, “The Orchestrate Server Info/Configuration Page,” on page 30
Section 3.1.2, “The Orchestrate Server Authentication Page,” on page 36
Section 3.1.3, “The Orchestrate Server Policies Page,” on page 40
Section 3.1.4, “The Orchestrate Server Constraints/Facts Page,” on page 40

3.1.1 The Orchestrate Server Info/Configuration Page
The page that opens under the Info/Configuration tab includes several collapsible sections on the
page where you can configure the general information and attributes of the server.

“The Server/Cluster Panel” on page 30
“The Data Grid Configuration Panel” on page 31
“The Security/TLS Configuration Panel” on page 32
“The Agent/User Session Configuration Panel” on page 33
“The Audit Database Configuration Panel” on page 33
“The Sentinel Server Configuration Panel” on page 34
“The Job Limits Panel” on page 36

The Server/Cluster Panel

If you are using this server in a High Availability environment, the information in this section is
populated as a result of the configuration you managed during the High Availability installation. The
following items are included in the section:

Server Version: A non-editable field that lists the version of this server in the form
<major>.<minor>.<point>.<build_number>. This is the data for the fact ”matrix.version”.

Is Master Server: A check box that is not selected if the server is not the Master Server in a High
Availability cluster configuration.

Master Server Address: Set this value when the Orchestrate Server participates in a High
Availability cluster.

External Cluster Address: Set this value when the Orchestrate Server participates in a High
Availability cluster.

Cluster Addresses: Shows the hostname) or IP Addresses associated with an Orchestrate Server
when it is in a High Availability configuration.

The button opens the Attribute Element Values dialog box, where you can add, remove, or
reorder addresses (element values) in an array of address choices.

For more information about using PlateSpin Orchestrate in a High Availability environment, see the
PlateSpin Orchestrate 2.5 High Availability Configuration Guide.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The Data Grid Configuration Panel

This section of the Info/Configuration tab allows for advanced configuration of datagrid related
tuning parameters. The properties on the page and their descriptions are listed below.

Data Grid Root: The location of the PlateSpin Orchestrate datagrid in the file system. For example,
you might change this location to use a different file system mount point (recommended when there
is considerable datagrid I/O).

Cleanup Interval: The interval at which the Orchestrate Server scans User job history files on the
datagrid. Job history files older than the owning user’s job history retention time limit
(user.datagrid.maxhistory) are deleted.

Cleanup Interval Enabled: Select this check box to set a flag to enable periodic job history
cleanup checking. Deselect to disable the checking.

Default Multicast Rate: Sets the default data rate in bytes per second for multicast operations in
which the client has not explicitly set a rate for a particular file transfer.

Max Multicast Rate: The maximum data rate(in bytes per second) that a client can specify for a
multicast file transfer.

Selected Interfaces: The interfaces on which multicast file transfers are to be sent. This allows an
administrator to limit multicast traffic to specific interfaces (that is, the interfaces where the agents
are connected). You can add or delete interfaces by clicking the button.

Available Interfaces: Lists the network interfaces that are available on the local machine for
multicasting.

NOTE: The property is read-only and is provided for your information.

The Multicast Metrics Subpanel: This panel lets you monitor multicast data transfer, including:

Total Packets Sent: The total number of multicast data packets sent by the file multicaster
since the last reset of the counters.
Total Packets Resent: The total number of multicast packets resent because of errors since
the last counter reset.
Total Resend Rate: The total packet resend rate as a percentage since the last counter reset.
Current Packets Sent: The total number of multicast packets sent during the current or most
recent multicast file transfer.
Current Packets Resent: The total number of multicast packets resent because of errors,
corruption, or loss during the current or most recent multicast file transfer.
Current Resend Rate: The packet resend rate as a percentage of packets sent since the start of
the current or most recent multicast file transfer.
Current File Size: The file size in bytes for the current or most recent multicast file transfer.
Current Bytes Sent: The number of bytes sent so far in the current or most recent multicast
file transfer.
Current Percent Complete: The completion percentage of the current or most recent
multicast file transfer.
Skipped (Sparse) Bytes: The number of bytes skipped because of long runs of zeros. These
“holes” are skipped in order to reduce file transfer time for large sparse files like VM images.
The Orchestrate Server and the Server Admin Objects 31

32 PlateS

novdocx (en) 16 A
pril 2010
Current Receiver Count: The number of recipient agents for the current or most recent
multicast file transfer.
Current File Name: The name of the file transferred in the current or most recent multicast
file transfer.

The data list includes a check box that is selected if the current multicast transfer is finished. It also
includes a Reset Stats button that you can select to clear all of the metrics in order to begin
monitoring multicast statistics from a new point in time.

The Security/TLS Configuration Panel

This section lets you configure TLS or SSL data encryption for both user and agent connections.
There are four different levels of encryption that can be set for both users and nodes. These are
described below. The properties in this section also let you configure the TCP/IP socket listener
address and port for TLS connections.

TLS On Agent: Allows the encryption level to be set to one of four values, as described (in order of
security level) below:

Forbid TLS for agents: Only unencrypted connections are allowed for nodes (that is, agents)
authenticating to this server. If the agent attempts to initiate encrypted communication, the
connection attempt is rejected. This is the least secure of the encryption levels and is only
recommended for installations where encryption is forbidden because of legal or policy
restrictions, or where the performance benefits of disabling encryption outweigh security
concerns.
Allow TLS on the agents: default to falling back to unencrypted: Specifies that the server
defaults to unencrypted communication, but the agent can optionally enable encryption.
This is the default setting for the Orchestrate Server. More secure installations might require a
setting to one of the higher levels below.
Allow TLS on the agents; default to TLS encrypted if not configured encrypted: The
server defaults to using encryption, but the agent can optionally disable encryption.
Make TLS mandatory on the agents: The Orchestrate Server rejects any connections that do
not establish TLS encryption. This is the most secure encryption level because it ensures that
all message communication between the node (that is, an agent) and the server is protected
from tampering or interception.

TLS On Client: This setting allows the encryption level to be set to one of four values, as described
(in order of security level) below.

Forbid TLS for clients: Only unencrypted connections are allowed for users of this server. If
the user or client attempts to initiate encrypted communication, the connection attempt is
rejected. This is the least secure of the encryption levels and is only recommended for
installations where encryption is forbidden because of legal or policy restrictions, or where the
performance benefits of disabling encryption outweigh security concerns.
Allow TLS on clients; default to falling back to unencrypted: This level specifies that the
server defaults to unencrypted communication, but that the user can optionally enable
encryption.
This is the default setting for the Orchestrate Server. More secure installations might require a
setting to one of the higher levels below.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Allow TLS on agents; default to TLS encrypted if not configured encrypted: The server
defaults to using encryption, but the user can optionally disable encryption.
Make TLS mandatory on the clients: The Orchestrate Server rejects any connections that do
not establish TLS encryption. This is the most secure encryption level because it ensures that
all message communication between the user’s client programs and the server is protected from
tampering or interception.

TLS Address: The port number and optional bind address for incoming encrypted connections
from users and nodes. The format is hostname:port. For example, 10.10.10.10:8101 causes the
server to accept only TLS connections on the address 10.10.10.10 on port 8101. If “*” is used as
the hostname, then the Orchestrate Server listens on all available network interfaces. The default is
*:8101, which causes the Orchestrate Server to listen for encrypted sessions on all available
interfaces on the system.

The Agent/User Session Configuration Panel

When nodes (agents) and users log on to the Orchestrate Server, they establish a session context that
is used to manage the state of the messaging connection between client and server. This session can
be revoked by the administrator, and it can also expire if the connection exceeds its maximum
lifetime or idle timeout.

Agent Session Lifetime: The maximum number of seconds that an agent’s session can last before
the agent is disconnected and must re-authenticate with the server. A value of -1 means “forever.”

Agent Session Timeout: The idle timeout for agents. If an agent connection remains idle with no
message traffic in either direction for this time period (in seconds), the session times out, and the
agent is disconnected and must reauthenticate when it is ready to communicate with the server
again.

Socket Keeps Agent Sessions Alive: Select this check box to set a flag that causes the server and
agent to maintain a keep alive ping in order to detect hung/stalled network connections. This allows
the agent to recover from hung connections and to transparently reconnect with the server.

User Session Lifetime: The maximum number of seconds that a user’s session can last before the
user is required to re-authenticate with the server. A value of -1 means “forever.”

User Session Timeout: The idle timeout (in seconds) for user sessions. If a user’s session
encounters no message traffic or requests in either direction for time, then any connection with user
software is closed and the session expires. At this point, the user must re-authenticate.

Socket Keeps User Sessions Alive: Select this check box to set a flag that causes the server and
user client to maintain a keep alive ping in order to detect hung/stalled network connections. This
allows the agent to recover from hung connections and to transparently reconnect an with the server.
This setting applies only in situations where you are using custom user client software or certain
subcommands of the zos command line utility to maintain a persistent connection.

The Audit Database Configuration Panel

This section of the Info/Configuration page lets you configure the connection to a relational
database that uses a deployed JDBC driver and connection properties. The PostgreSQL driver is
deployed by default.

JDBC Driver Name: Specifies the Java class for the driver.
The Orchestrate Server and the Server Admin Objects 33

34 PlateS

novdocx (en) 16 A
pril 2010
JDBC Library: Specifies the deployed library that contains the driver.

JDBC Connection URL: Specifies the driver-dependent connection string.

Database Username: Specifies the username for database authentication.

Database Password: Specifies the password to be used for database authentication.

Is Connected: Indicates that the driver is successfully connected.

Connect (button): Click to connect through the current connection settings.

Disconnect (button): Click to disconnect the current connection.

Clear Queue (button): Clear queued records that have not yet been written to the database.

The Sentinel Server Configuration Panel

This section of the Info/Configuration page lets you configure the values needed to connect to a
deployed Novell Sentinel Event Source Server, where logging events from PlateSpin Orchestrate are
collected, parsed, and mapped for prioritization and subsequent administrator analysis.

For information about setting up a Sentinel Collector Server in your PlateSpin Orchestrate
environment, see “Integrating PlateSpin Orchestrate with a Sentinel Collector” in the PlateSpin
Orchestrate 2.5 Installation and Configuration Guide.

The following fields are available in the Sentinel Server Configuration panel:

Server Hostname: Specify the hostname of the Sentinel Event Source Server where log messages
are to be sent.

Server Port Number: Specify the port number on the Sentinel Event Source Server where the
PlateSpin Orchestrate Server should make its SSL connection.

Is Connected: Selected when the connection between the PlateSpin Orchestrate Server and the
Sentinel Event Source Server is established.

Log Channels: Lists the log channels from which log messages are to sent to the Sentinel server.

Connect (button): Click to connect to the Sentinel Event Source Server. When the SSL connection
is made, PlateSpin Orchestrate begins to send its log messages to Sentinel.

Disconnect (button): Click to disconnect the PlateSpin Orchestrate Server from the Sentinel server.
When the connection ends, log messages are no longer sent to the Sentinel server.

Configure (button): Click to open the Sentinel Log Parameters dialog box. In this dialog box, you
can map a log level to one or more log channels. These log channels send log messages to the
Sentinel server.

For more information about PlateSpin Orchestrate log levels, see “PlateSpin Orchestrate Log Levels
Mapped to Sentinel Log Levels” in the PlateSpin Orchestrate 2.5 Installation and Configuration
Guide.

NOTE: To select multiple log channels, press Ctrl while selecting the log channel options you want.
You can select only one log level at a time for mapping log channels.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The following table shows some of the log channels you can choose from and the PlateSpin
Orchestrate actions that trigger sending a log message through this channel.

Table 3-1 Log Channels and the Occasions for Sending Messages Through Each

Log Channel Name in the
Development Client (Sentinel Server
Configuration Panel)

When Are Messages Sent to This Channel?

ActionStatusManager When the status of a Grid action is updated

Audit When the Grid interacts with the audit database

AuthLDAP
AuthZOS
AuthenticationManager

Grid-wide authentication events

Broker Job execution

start

cancel

Event Manager
JobManager
NodeManager
UserManager
repositoryManager
vbridgeManager
vdiskManager
vnicManager

When a Grid object of the corresponding type is created,
deleted, or its health changes to a bad state

GroupManager When a member is added/removed in a Group

JobScheduler Job schedule or job trigger deployment/undeployment

MBeanServer When internal Grid Resources are updated.

PolicyManager Policy creation/deletion

Policy association/disassociation with any Grid object

Sentinel When the Grid interacts with a Novell Sentinel server

SessionManager User or Resource login/logout

VmManager Actions are performed on VMs (provision, migrate, shutdown,
clone etc.). This could be initiated automatically or manually,
by a user.

Authorization fails during VM operation

When provisioning job fails

computedFact When computed facts are created or updated or deleted
The Orchestrate Server and the Server Admin Objects 35

36 PlateS

novdocx (en) 16 A
pril 2010
The Job Limits Panel

The facts in this section of the page are used in the default constraints to help protect the Orchestrate
Server from denial-of-service attacks or badly written jobs that might otherwise get stuck in the
server queue, consume resources, and cause adverse server performance.

The following fields are available in the job.limits panel:

max.active.jobs: Sets a global default limit on the number of active jobs.

The Orchestrate Server uses this value in the start constraint and does not allow more than this
number of jobs (including child jobs) to be actively running at the same time. Jobs that exceed this
number might be queued. See max.queued.jobs, below.

max.queued.jobs: Sets a global default limit on the number of queued jobs.

This value is similar to max.active.jobs but it is used in the accept constraint and limits the
number of jobs sitting in a queue waiting to be started. Therefore, the maximum jobs that can be
present on an Orchestrate Server is max.active.jobs + max.queued.jobs. New jobs are not be
accepted by the server if they exceed this total.

job.finishing.timeout: Sets a global default limit on the timeout for job completion.

This value represents the number of seconds that the Orchestrate Server allows a job to execute its
job_cancelled_event() (if defined) before forcibly canceling the job. This prevents jobs from
potentially hanging during cancellation.

3.1.2 The Orchestrate Server Authentication Page
The Authentication tab opens a page with several collapsible sections where you can configure
various methods for authenticating both users and resources to the PlateSpin Orchestrate Server.

“The Resources Panel” on page 37
“The Users Panel” on page 37
“The Credential Manager” on page 39

deployer/computedFact
deployer/event
deployer/facility
deployer/jdlLibrary
deployer/job
deployer/library
deployer/metric
deployer/policy
deployer/properties
deployer/schedule
deployer/service
deployer/trigger
deployer/xml

When a corresponding resource is deployed to or undeployed
from the Grid

Log Channel Name in the
Development Client (Sentinel Server
Configuration Panel)

When Are Messages Sent to This Channel?
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The Resources Panel

The resources in a PlateSpin Orchestrate grid are actually PlateSpin Orchestrate Agents that
authenticate or “register” with the PlateSpin Orchestrate Server.

Auto Register Agents: Select this check box if you want the PlateSpin Orchestrate Server to
automatically register agents when they first connect to the Orchestrate Server.

The Users Panel

Only authenticated users can log into the PlateSpin Orchestrate Server. As an administrator, you can
configure this authentication to use an internal user database or to externally authenticate users
through an LDAP server.

Auto Register Users: Select this check box if you want the PlateSpin Orchestrate Server to
automatically register users when they first connect to the Orchestrate Server.

The Enable LDAP Subpanel

Depending on the selections you make in this subpanel, the following settings are displayed:

“The Enable LDAP Check Box:” on page 37

The Enable LDAP Check Box: Select this check box if you want the Orchestrate Server to
authenticate users externally by using an LDAP server. Additional LDAP-related configuration
fields are displayed when you select the check box:

Administrators

The Administrators list specifies the group names whose membership includes PlateSpin
Orchestrate administrators as returned by the specified authentication provider. You can add groups
to this list by clicking the button to open an array editor dialog box, which allows groups to be
added, removed, and reordered. A group must be in the format
<provider>:<group|groupnocase>:<groupname>, where the <provider> is either ZOS or
LDAP. For example, adding LDAP:groupnocase:XyZ allows users reported by the LDAP server as
members of a group xyz, or XYZ, xYz, etc. to authenticate as an administrator. To enforce to case-
sensitive matching, use LDAP:group:XyZ instead. Non-case-sensitive matching is needed for Active
Directory servers.

Active Directory Service Settings

If you select Active Directory Service in the Server Type drop down list, the following settings are
available:

Directory Name: The name of the Active Directory Service server.

Servers: A list of strings containing server:port entries for a list of servers to be used.

Each entry can be of one of three forms:

<hostname>

<hostname>:<port>

<hostname>:<port>:<sslport>
The Orchestrate Server and the Server Admin Objects 37

38 PlateS

novdocx (en) 16 A
pril 2010
In all cases, <hostname> is a resolvable DNS name or an IP address. If SSL or TLS is in use, the
hostname must exactly match the name on the ADS server SSL certificate.

You can modify this list by clicking the button to open an Attribute Element Values dialog
box, where you can add, remove, or change the order of server names.

Advanced: The settings in this section are for more selective ADS authentication.

SSL: If the accompanying Start TLS check box is not selected and if the ADS server’s SSL
certificate has been installed on the PlateSpin Orchestrate Server JVM, this option securely
connects to the ADS server through SSL encryption.

The older LDAP protocol (ldaps://) is used for the connection.
Start TLS: Selecting this option immediately promotes the connection to SSL encryption by
bypassing the older protocol in favor of the LDAPv3 Start TLS extended operation on the non-
SSL LDAP port. To use this option, the ADS server’s SSL certificate must be installed on the
JVM of the PlateSpin Orchestrate Server.
Query Account: The account name that is to be used for querying group information on
authenticated users.
Query Password: The clear text password used to authenticate the query account on the
LDAP server.

Generic Settings

When you select Generic LDAP Directory Service as the Server Type, the following additional
settings are displayed:

Base Domain Name: The Root DN of the LDAP server’s directory tree. This must be obtained by
the administrator, and is usually in the form of dc=adsroot,dc=novell,dc=com.

User Attribute: The attribute on a user’s entry that identifies his or her login account name. For
ADS servers, this attribute is sAMAccountName.

User Filter: The name of the filter to be used in the lookup for the user’s LDAP distinguished
name.

For ADS, this prefix is cn=Users.

User Prefix: The prefix used to define the LDAP subtree within the BaseDN tree that contains user
accounts. If you leave this property blank, the Orchestrate Server uses the BaseDN.

Group Attribute: Specifies the attribute of a group entry describing the login name of that group.

Group Filter: A filter to be used in the lookup for group memberships on some LDAP schemas.
The filter can use either ${USER_NAME} or ${USER_DN} to substitute that value. For example:
memberUid=${USER_NAME}.

Group Prefix: The prefix used to define the LDAP subtree within the BaseDN tree that contains
group accounts.

Not used for Active Directory authentication.

Group DNA Attribute: The directory root where all queries for a user’s group memberships
(stored as a list of “member of” attributes on the user’s entry on an ADS server) are to occur.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Nested DNA Attribute: The attribute of a group entry where subgroups can be queried.

The Credential Manager

As a data center administrator, you often have to provide credentials and certificates as you interact
with the different hypervisor technologies– the Amazon EC2 or vSphere technologies, in particular.
PlateSpin Orchestrate lets you store this data in a centralized, secure (no cleartext passwords are
accessible) location in its Credential Manager.

NOTE: PlateSpin Orchestrate uses TripleDES password-based encryption in its Credential
Manager to encrypt stored credentials and certificates.

The Credential Manager, located in the Authentication page of the Orchestrate Server Grid object in
the Development Client, includes the following sections:

“The Stored Credentials Panel” on page 39
“The Stored Certificates Panel” on page 39

The Stored Credentials Panel

The Stored Credentials panel displays a list of names of credential sets that you have created. You
can create additional credentials if you select Add Credential and fill in the following fields:

Name: (Required) The name that you want to use to refer to this credential set.

User: (Required) The username with rights to administer objects in this grid.

Secret/Password: (Required) The password that authenticates the user.

Type: (Optional) A user-defined string that lets similar credentials be put into a category or group.
For example, you might have a “type” of credential for the amazon-ec2 provisioning adapter and
another type for the vsphere provisioning adapter.

Stored Credentials Password: (Conditional) If you want to change the password element of your
stored credentials, click Change and enter the new password.

This password is stored as a fact on the Matrix grid object. In the Fact Editor, the fact is listed as
matrix.credential.manager.passphrase. It is used to encrypt the stored passwords. By default
the password is CHANGE_THIS_PASSWORD. We recommend that you select a new password to use for
encrypting stored passwords.

The Stored Certificates Panel

In order to trust certificates not signed by well known certificate authorities, PlateSpin Orchestrate
lets you store certificates that are trusted by Java.

NOTE: Public/Private key pairs can be stored as certificates. This is useful if you need to manage
amazon- ec2 key pairs.

The Stored Certificates panel displays a list of stored certificates. These certificates are not mapped
to anything other than the name or identifier that you assign. They are not stored in a trust store, but
their PEM-encoded representation is encrypted and stored alongside the credentials referred to
above. Trust stores are generated on demand and are available to the Orchestrate Agents.
The Orchestrate Server and the Server Admin Objects 39

40 PlateS

novdocx (en) 16 A
pril 2010
You can create additional trust stores if you select Add Certificate and fill in the following fields:

Currently (Orchestrate version 2.5), this functionality is used only by the Orchestrate vsphere
provisioning adapter.

Identifier: (Required) The name that you want to use to refer to this trust store.

Location: (Required) Where the certificate should be obtained. This can be either a file (which you
can browse to find on the local machine), or as an HTTPS server.

Select Browse if you want to select an existing a PEM-encoded certificate file from the local
machine.

If you want to provide the actual URL for the certificate, open the drop-down list, select HTTPS,
then enter the URL. The HTTPS server address can be entered as:

https://your.server.name

or as

your.server.name

or as

https://your.server.name:<sslport>

With this address, Orchestrate retrieves the public server certificate from the server and then stores it
in a secure location.

Group: (Optional) A user-defined string used for grouping related certificates. For example, you
might have a grouping called “vsphere” when you are managing resources in a multiple-vSphere
Server environment.

3.1.3 The Orchestrate Server Policies Page
The Policies tab opens a page that contains a policy viewer for each of the policies associated with
the Server Object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, and clicking the
save icon.

3.1.4 The Orchestrate Server Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for the
Server object. The Server object has an associated set of facts and constraints that define its
properties. By building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can
individually change the functionality of any system resource by managing an object’s facts and
constraints. The Orchestrate Server assigns default values to each of the component facts, although
they can be changed at any time by the administrator, unless they are read-only. Facts with mode r/
o have read-only values, which can be viewed by using the pencil icon, but changes cannot be made.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
3.2 The Server Admin Object
The Server Admin object lists the accessible PlateSpin Orchestrate Servers and their deployed
components. Clicking a deployed component displays information about that component's
associated Deployment Session.
The Orchestrate Server and the Server Admin Objects 41

42 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

4
novdocx (en) 16 A

pril 2010
4The Job Object

A job is deployed to the Orchestrate Server to automate processes, such as coordinating VM
provisioning, high-performance computing, or general data center management. Jobs consist of Job
Development Language (JDL) scripts and might have one or more policies associated with them.
Policies define job arguments and other facts that are used by the job.

Usually a job has logic that runs on the PlateSpin Orchestrate Server itself and schedules work to run
on one or more managed resources that are running the PlateSpin Orchestrate Agent. The logic that
is dispatched and run on the managed resources is called a joblet. A job might or might not define
one or more joblets.

A JDL script is partitioned into a Job section and one or more Joblet sections. The joblet sections of
the script describe most of the work of a job. The PlateSpin Orchestrate Server dispatches joblets to
resources in the grid where the work is done.

The Job object also contains facts with attributes that are used for job and joblet control. Policies
associated with the job also control the job. The Orchestrate Development Client has an
administrative (“admin”) view in the Explorer Panel that lets you edit these objects.

This section includes information about a Job object that is visible in the Explorer view and the
accompanying Admin view of the Orchestrate Development Client:

Section 4.1, “Job Groups,” on page 43
Section 4.2, “The Job Info/Groups Tab,” on page 43
Section 4.3, “The JDL Editor Tab,” on page 53
Section 4.4, “The Job Library Editor Tab,” on page 54
Section 4.5, “The Job Policies Tab,” on page 55
Section 4.6, “The Job Constraints/Facts Tab,” on page 56

4.1 Job Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter (PA) discovers a
local repository on a VM host. For example, the xen30 PA, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a xen30
repository group. You can also create groups manually in the Development Client, either by clicking
the Actions menu and choosing Create Job Group or by right-clicking a Job Group object (anywhere
in the Job hierarchy) and selecting New Job Group.

4.2 The Job Info/Groups Tab
The page that opens under the Info/Configuration tab of the Job admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the job.

Section 4.2.1, “Info,” on page 44
Section 4.2.2, “Groups,” on page 53
The Job Object 43

44 PlateS

novdocx (en) 16 A
pril 2010
NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
objects icon , signifying that the object has been altered. If you want to save the changes you have
made, you need to click the save icon on the Development Client toolbar.

4.2.1 Info
The following fields on the Information panel provide facts for the Job object:

“Show Inherited Fact Values Check Box” on page 44
“Job Control Settings” on page 44
“Joblet Control Settings” on page 48
“Automatic Resource Provisioning Settings” on page 50
“Resource Preemption Settings” on page 50
“Job Counts” on page 51
“Job History” on page 51

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Job Control Settings

The Job Control Settings panel on the Info/Groups page includes the following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Description: Enter information in this box that describes the nature or purpose of this job.

In the Fact Editor, this fact is listed as job.description:

<fact name="job.description" value="" type="String" />

Enabled: This check box is selected by default. When it is selected (it has a value of true), the job is
enabled (and it is ready to run).

In the Fact Editor, this fact is listed as job.enabled:

<fact name="job.enabled" value="true" type="Boolean" />

Job Visible to Users: This check box is selected by default. When it is selected (it has a value of
true), the job can be viewed in the Development Client, through the use of command line queries, or
in the Orchestrate Server Portal. Deselecting this check box does not keep the job from running.

In the Fact Editor, this is fact is listed as job.visible:

<fact name="job.visible" value="true" type="Boolean" />

JDL Debug Tracing: This check box is not selected by default. When it is selected (it has a value
of true), the job log includes tracing information when job events are executed.

In the Fact Editor, this fact is listed as job.tracing:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="job.tracing" value="false" type="Boolean" />

Job Type: Lets you choose the job type that applies to this job. This setting is optional and is
leveraged by the server in order to provide better quality completion time calculation for the job.

The job type options (completion time algorithms) include:

normal: The default job type. If this job has joblets, the job is based on PSPACE progression
algorithm. If it does not have joblets, it is based on historical wall time average.
workflow: This job type does not offer a time algorithm to the server.
pspace: If this job has joblets, the job is based on PSPACE progression. If it does not have
joblets, do not offer a time algorithm.
fixedtime: This job type directs the server to use a time algorithm based on historical wall time
average.
fixedgcycles: If this job has joblets, the job is based on average gcycles and current
consumption rate. If it does not have joblets, the job is based on historical wall time average.

NOTE: You can change this setting at runtime to refine the calculation time as the job progresses.
For example, the zosmake job might start out as type normal, but when all tasks have been
submitted, you could change it to type workflow to allow its subjobs to drive the end time.

In the Fact Editor, the Job Type fact is listed as job.jobtype:

<fact name="job.jobtype" value="normal" type="String" />

Job Timeout: The amount of time (in seconds) after which the server can take action to cancel the
whole job, including all joblets and subjobs. A value of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.timeout:

<fact name="job.timeout" value="-1" type="Integer" />

Job Auto Terminate: This check box is selected by default. When it is selected (it has a value of
true), the job ends when all child jobs and joblets are executed.

In the Fact Editor, this fact is listed as job.autoterminate.

<fact name="job.autoterminate" value="true" type="Boolean" />

Provision Adapter Hook Jobs: The name of a job that implements administrator-defined pre- or
post-provisioning hooks.

NOTE: This fact is visible in the Info/Groups tab only when a provision adapter job is selected.

In the Fact Editor, this fact is listed as an array:

<fact name="job.paHooksVmJob">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog
box, where you can add or remove fact specifications to the array of element choices. For more
information, see “Provisioning Adapter Hooks” in the PlateSpin Orchestrate 2.5 Developer Guide
and Reference.
The Job Object 45

46 PlateS

novdocx (en) 16 A
pril 2010
Queue Type: Lets you choose the queue type that applies to this job. This setting is optional and is
leveraged by the server to provide a better start time calculation for the job.

The queue type options (start time algorithms) include:

none: The start time is always unknown for jobs that are queued.
pfifo: Packet First In First Out. The start time implemented through policies. The server is
directed to look at the job as having a finite number of active slots, so its start time depends on
its position in the queue and the estimated end time of running jobs of this type. The FIFO
queue for this queue reshuffles based on priority.
fifo: First In First Out. The start time implemented through policies. The server is directed to
look at the job as having a finite number of active slots, so its start time depends on its position
in the queue (first-come, first-served) and the estimated end time of running jobs of this type.
The FIFO queue for this job does not reshuffle based on priority.
lifo: Last In First Out. The start time is implemented through policies. The server is directed to
look at the job as having a finite number of active slots, so its start time depends on its position
in the queue and the estimated end time of running jobs of this type. The queue for this job does
not reshuffle based on priority.
fixedtime: The start time is based on the historical average queue time. This can be explicitly
overridden through setting the job.history.queuetime.average fact.

In the Fact Editor, this fact is listed as job.queuetype:

<fact name="job.queuetype" value="pfifo" type="String" />

Job Queued Timeout: The amount of time (in seconds) after which the server can take action to
cancel a queued job, including all joblets and subjobs. A value of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.queuedtimeout:

<fact name="job.queuedtimeout" value="-1" type="Integer" />

Resource Match Cache TTL: Specifies the job’s willingness to allow resource matches to be
cached if the Job Scheduler becomes too loaded. The value is the time (in seconds) to live (TTL) of
the cache. Enter a value less than zero (<0) to disable caching.

In the Fact Editor, this fact is listed as jopb.cacheresourcematches.ttl:

<fact name="job.cacheresourcematches.ttl" value="30" type="Integer" />

Preemptible: This check box is not selected by default. When it is selected (it has a value of true),
you set the job’s ability to be preempted. This setting can be overridden by the job instance.

In the Fact Editor, this fact is listed as job.preemptible:

<fact name="job.preemptible" value="false" type="Boolean" />

Restartable: This check box is not selected by default. When it is selected (it has a value of true),
you set the job’s ability to be restarted when the server restarts. This setting can be overridden by the
job instance.

In the Fact Editor, this fact is listed as job.restartable:

<fact name="job.restartable" value="false" type="Boolean" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Absolute Max Joblets: Specifies the absolute maximum number of joblets that you want this job to
schedule.

In the Fact Editor, this fact is listed as job.joblet.max:

<fact name="job.joblet.max" value="1000" type="Integer" />

Max Joblet Failures: Specifies the number of non-fatal joblet errors that you want this job to
tolerate before the job fails completely. Set the value at -1 to attempt to continue after errors.

In the Fact Editor, this fact is listed as job.joblet.maxfailures:

<fact name="job.joblet.maxfailures" value="0" type="Integer" />

Max Node Failures: Specifies the number resource failures that you want this job to tolerate before
the node is excluded from further joblet processing. Set the value at -1 to specify that limited
failures are acceptable.

In the Fact Editor, this fact is listed as job.maxnodefailures:

<fact name="job.maxnodefailures" value="2" type="Integer" />

Max Resources: Specifies the absolute maximum number of resources that you want the job to use
at one time. PlateSpin Orchestrate does not exceed the value set here. Set the value at -1 to specify
unlimited resources.

In the Fact Editor, this fact is listed as job.maxresources:

<fact name="job.maxresources" value="-1" type="Integer" />

Max Joblets Running: Specifies the absolute maximum number of joblets that you want the job to
have running at one time. PlateSpin Orchestrate does not exceed the value set here. Set the value at
-1 to specify unlimited joblets.

In the Fact Editor, this fact is listed as job.joblet.maxrunning:

<fact name="job.joblet.maxrunning" value="-1" type="Integer" />

Max Joblets Per Resource: Specifies the absolute maximum number of joblets that you want the
job to occupy on a resource. Set the value at -1 to specify unlimited joblets.

In the Fact Editor, this fact is listed as job.joblet.maxperresource:

<fact name="job.joblet.maxperresource" value="-1" type="Integer" />

Resource Selection Ranking: Displays ranking specification used to select suitable resources. The
element syntax is fact/order where order is either ascending or descending

In the Fact Editor, this fact is listed as an array:

<fact name="job.resources.rankby">
 <array>
 <string>resource.loadaverage/a</string>
 <string>resource.anything/a</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog
box, where you can add or remove fact specifications to the array of element choices.
The Job Object 47

48 PlateS

novdocx (en) 16 A
pril 2010
Persist Facts on Completion: This check box is not selected by default. When it is selected (it has a
value of true), you specify that the Grid objects that this job modifies are persistent after the job.
This setting is available and applicable only in a High Availability setup.

In the Fact Editor, this fact is listed as job.persistfactsonfinish:

<fact name="job.persistfactsonfinish" value="false" type="Boolean" />

Joblet Control Settings

Joblet Timeout: Specifies the amount of time (in seconds) you want the Orchestrate Server to wait
until cancelling the joblet. Set the value at -1 to specify no timeout.

In the Fact Editor, this fact is listed as job.joblet.timeout:

<fact name="job.joblet.timeout" value="-1" type="Integer" />

Max Joblet Retries: Specifies the number of joblet retries (of any type) to be attempted before the
Orchestrate Server considers the joblet as failed. A value of zero (0) specifies that the joblet should
not be retried. A value of less than zero (<0) specifies that the joblet should be continually retried.

In the Fact Editor, this fact is listed as job.joblet.maxretry:

<fact name="job.joblet.maxretry" value="0" type="Integer" />

Retry Limit (Forced): Specifies the number of forced joblet retries (requested by the joblet to run
on another resource) to be allowed before the Orchestrate Server considers the joblet as failed. A
value of zero (0) specifies that the joblet should not be retried. A value of less than zero (<0)
specifies that the joblet should be continually retried.This value should never exceed the value in
job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.forced:

<fact name="job.joblet.retrylimit.forced" value="-1" type="Integer" />

Retry Limit (Unforced): Specifies the number of unforced joblet retries to be allowed before the
Orchestrate Server considers the joblet as failed. A value of zero (0) specifies that the joblet should
not be retried. A value of less than zero (<0) specifies the joblet should be continually retried. This
value should never exceed the value in job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.unforced:

<fact name="job.joblet.retrylimit.unforced" value="-1" type="Integer" />

Retry Limit (Resource Disconnect): Specifies the number of joblet retries caused by unexpected
resource disconnect to be allowed before the Orchestrate Server considers the joblet as failed. A
value of zero (0) specifies that the joblet should not be retried. A value of less than zero (<0)
specifies the joblet should be continually retried. This value should never exceed the value in
job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.disconnect:

<fact name="job.joblet.retrylimit.disconnect" value="-1" type="Integer" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Retry Limit (Timeout): Specifies the number of joblet retries caused by server-initiated joblet
timeout to be allowed before the Orchestrate Server considers the joblet as failed. A value of zero
(0) specifies that the joblet should not be retried. A value of less than zero (<0) specifies that the
joblet should be continually retried. This value should never exceed the value in
job.joblet.maxretry.

In the Fact Editor, this fact is listed as job.joblet.retrylimit.timeout:

<fact name="job.joblet.retrylimit.timeout" value="-1" type="Integer" />

Immediately Retry Failed Joblet: This check box is not selected by default. When it is selected (it
has a value of true), you specify that you want the system to immediately retry a joblet rather than
waiting until all others are either running or complete before retrying.

In the Fact Editor, this fact is listed as job.joblet.immediateretry:

<fact name="job.joblet.immediateretry" value="true" type="Boolean" />

Max Joblet Wait Time: Specifies the amount of time (in seconds) you want a resource to wait
before being utilized by a joblet. A setting of -1 indicates no timeout.

In the Fact Editor, this fact is listed as job.joblet.maxwaittime:

<fact name="job.joblet.maxwaittime" value="-1" type="Integer" />

Joblet JDL Debug Tracing: This check box is not selected by default. When it is selected (it has a
value of true), you specify that you want the joblet to include tracing information on the job log as it
executes joblet events.

In the Fact Editor, this fact is listed as job.joblet.tracing:

<fact name="job.joblet.tracing" value="false" type="Boolean" />

Joblet Run Type: Use this list to select whether or not the file and executable operations that run in
the joblet are in behalf of the job user.

RunAsJobUserFallingB ackToNodeUser: (The default setting.) If this option is selected, any
joblet logic executes as the local user with the same name as the grid user. If a local user of a
matching name is not available, the joblet logic runs as the same user who is running the
Orchestrate Agent (also known as the Node User). By default, the agent (Node User) is root.
RunOnlyAsJobUser: If this option is selected, any joblet logic executes as the local user using
the same name as the grid user (that is the Orchestrate Server user who matches the PlateSpin
Orchestrate username. If a local user of a matching name is not available, the joblet logic (and
perhaps the job) fails. By default, the agent (Node User) is root.
RunOnlyAsNodeUser: If this option is selected, any joblet logic runs as the same user who is
running the Orchestrate Agent (also known as the “Node User”). It does not run as the OS user
whose username matches the PlateSpin Orchestrate user name. By default, the agent (Node
User) is root.

In the Fact Editor, this fact is listed as job.joblet.runtype:

<fact name="job.joblet.runtype" value="RunAsJobUserFallingBackToNodeUser"
type="String" />
The Job Object 49

50 PlateS

novdocx (en) 16 A
pril 2010
Automatic Resource Provisioning Settings

Max Resource Provisions: specifies the number of resources that can be automatically provisioned
in behalf of this job. A setting of zero (0) turns off automatic provisioning behavior. A setting of -1
allows unlimited provisioning.

In the Fact Editor, this fact is listed as job.provision.maxcount:

<fact name="job.provision.maxcount" value="0" type="Integer" />

Max Pending Provisions: Specifies the number of resources that can be automatically provisioned
at one time (that is, simultaneously) in behalf of this job. A setting of less than or equal to zero (<=0)
turns off automatic provisioning behavior.

In the Fact Editor, this fact is listed as job.provision.maxpending:

<fact name="job.provision.maxpending" value="1" type="Integer" />

Max Resource Provision Failures: Specifies the maximum number of provision failures resources
to be tolerated before excluding the node from future automatic provisioning. A setting of -1
indicates that unlimited failures are acceptable.

In the Fact Editor, this fact is listed as job.provision.maxnodefailures:

<fact name="job.provision.maxnodefailures" value="1" type="Integer" />

Provision Selection Ranking: Displays ranking the specification used to select suitable resources
to automatically provision. The element syntax is fact/order where order is either ascending or
descending.

In the Fact Editor, this fact is listed as an array:

<fact name="job.provision.rankby">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog
box, where you can add or remove fact specifications for the array of element choices.

Host Selection Strategy: Lets you choose the type of strategy you want to use in finding a host for
any automatically provisioned resource. The choices include:

queue: Directs the server to use the default affinity wait period defined by the resource before
considering all possible hosts. The request is queued until a suitable resource becomes
available or a requesting job completes.
immediate: Directs the server to immediately consider the affinity host before trying to find
any matching resources and to fail if a suitable resource is not available.

In the Fact Editor, this fact is listed as job.provision.hostselection:

<fact name="job.provision.hostselection" value="immediate" type="String" />

Resource Preemption Settings

Job Selection Ranking: Displays the ranking specification used to select suitable jobs to
automatically preempt on a resource. Element syntax is fact/order where order is either ascending
or descending.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as an array:

<fact name="job.preemption.rankby">
 <array>
 <string>jobinstance.priority/a</string>
 <string>jobinstance.joblets.running/d</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog
box, where you can add or remove fact specifications for the array of element choices.

Job Counts

Total Instances: Displays the total number of job instances of this type that exist in the PlateSpin
Orchestrate system.

In the Fact Editor, this fact is listed as job.instances.total:

<fact name="job.instances.total" value="0" type="Integer" />

Active Instances: Displays the total number of job instances of this type that are in a queued state in
the PlateSpin Orchestrate system.

In the Fact Editor, this fact is listed as job.instances.active:

<fact name="job.instances.active" value="0" type="Integer" />

Queued Instances: Displays the total number of job instances of this type that are active in the
PlateSpin Orchestrate system.

In the Fact Editor, this fact is listed as job.instances.queued:

<fact name="job.instances.queued" value="0" type="Integer" />

Job Accounting Group: Lets you select the Job Group whose statistics are updated by default
when the job runs.

In the Fact Editor, this fact is listed as job.accountinggroup:

<fact name="job.accountinggroup" value="all" type="String" />

Job Resource Group: Lets you select the default Resource Group whose members and any of its
resource policies are selected for this job.

In the Fact Editor, this fact is listed as job.resourcegroup:

<fact name="job.resourcegroup" value="all" type="String" />

Job History

Shared Instance Count: (Read only) Displays the total number of job instances (including those
denied by “accept” constraints) of this job that have ever been initiated on this PlateSpin Orchestrate
system.

In the Fact Editor, this fact is listed as job.history.jobcount:

<fact name="job.history.jobcount" value="0" type="Integer" />
The Job Object 51

52 PlateS

novdocx (en) 16 A
pril 2010
Completed Count: (Read only) Displays the total number of job instances (including those denied
by “accept” constraints) of this job that have been canceled.

In the Fact Editor, this fact is listed as job.history.jobcount.complete:

<fact name="job.history.jobcount.complete" value="0" type="Integer" />

Cancelled Count: (Read only) Displays the total number of job instances (including those denied
by “accept” constraints) of this job that have been completed.

In the Fact Editor, this fact is listed as job.history.jobcount.cancelled:

<fact name="job.history.jobcount.cancelled" value="0" type="Integer" />

Failed Count: (Read only) displays the total number of job instances of this type that have failed.

In the Fact Editor, this fact is listed as job.history.jobcount.failed:

<fact name="job.history.jobcount.failed" value="0" type="Integer" />

Total Cost: Displays the total cost of running this job. The amount is calculated since the job was
deployed or last modified.

In the Fact Editor, this fact is listed as job.history.cost.total:

<fact name="job.history.cost.total" value="0.0000" type="Real" />

Average Cost: displays the average cost of running this job. The amount is calculated since the job
was deployed or last modified and is updated only if the job finishes successfully.

In the Fact Editor, this fact is listed as job.history.cost.average:

<fact name="job.history.gcycles.average" value="0" type="Integer" />

Total Runtime: Displays the total runtime (in seconds) since the job was deployed.

In the Fact Editor, this fact is listed as job.history.runtime.total:

<fact name="job.history.runtime.total" value="0" type="Integer" />

Average Runtime: Displays the average runtime (in seconds) since the job was deployed.

In the Fact Editor, this fact is listed as job.history.runtime.average:

<fact name="job.history.runtime.average" value="0" type="Integer" />

Total Execution Time: Displays the total combined resource wall time (in seconds) of all work
performed on behalf of this job since the job was deployed.

In the Fact Editor, this fact is listed as job.history.time.total:

<fact name="job.history.time.total" value="0" type="Integer" />

Average Execution Time: Displays the average resource wall time (in seconds) of all work
performed on behalf of this job since the job was deployed.

In the Fact Editor, this fact is listed as job.history.time.average:

<fact name="job.history.time.average" value="0" type="Integer" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Total Grid Time: Displays the total amount of normalized grid time (in gcycles) consumed by this
job since deployment.

In the Fact Editor, this fact is listed as job.history.gcycles.total:

<fact name="job.history.gcycles.total" value="0" type="Integer" />

NOTE: A gcycle can be thought of as a normalized second of compute time. It is a relative measure
that is approximately a second of the real processing time of a 2Ghz Pentium* class Intel* processor.

Average Grid Time: Displays the average amount of normalized grid time (in gcycles, which is a
normalized grid cycle) consumed by running this job. The value is updated only if the job finishes
successfully.

In the Fact Editor, this fact is listed as job.history.gcycles.average:

<fact name="job.history.gcycles.average" value="0" type="Integer" />

Total Queue Time: Displays the total amount of time (in seconds) since deployment that the job
has spent in a queued state.

In the Fact Editor, this fact is listed as job.history.queuetime.total:

<fact name="job.history.queuetime.total" value="0" type="Integer" />

Average Queue Time: Displays the average amount of wall time (in seconds) spent waiting for this
job to start.

In the Fact Editor, this fact is listed as job.history.queuetime.average:

<fact name="job.history.queuetime.average" value="0" type="Integer" />

Average Sample Size: Displays the total number of points you want to use in the trailing average
calculation for all historical averages.

In the Fact Editor, this fact is listed as job.history.samplesize:

<fact name="job.history.samplesize" value="2" type="Integer" />

NOTE: A trailing average is the mean average measured over the last x datapoints.

4.2.2 Groups
This section of the Info/Groups page lists the groups of Job objects in the grid. Click Choose to open
the Job Group Selection dialog box. In this dialog box, you can choose which Job Groups to display
in the Explorer Panel by selecting a group and then clicking Add or Remove to move it to or from the
Source Job Groups list.

4.3 The JDL Editor Tab
The JDL Editor tab of the Job admin view opens an editor where you can inspect and modify the Job
Description Language (JDL) code. This code consists of a Python script that contains the bits to
control a job. The JDL code for each job includes commented documentation to explain the job’s
purpose and methods for implementation.
The Job Object 53

54 PlateS

novdocx (en) 16 A
pril 2010
Figure 4-1 The JDL Editor

A drop-down list at the top of the editor includes the Java classes and their methods that are
bookmarked in the code. Select any of these to go to the location in the code where they are invoked.
Clickable colored blocks on the editor scroll bar perform a similar bookmarking function.

4.4 The Job Library Editor Tab
The Library Editor tab of the Job admin view opens an editor where you can inspect and modify the
different library scripts for a job. The scripts for each job include instructions to the Orchestrate
Server for handling job functions.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 4-2 The Job Library Editor

There are two drop-down lists located at the top of the Library Editor view. The first list displays the
different libraries for the job, and the second list displays the methods that are bookmarked in the
code. Select a method in the second drop-down list to go to the location in the library code where
that method is invoked. Clickable colored blocks on the editor scroll bar perform a similar
bookmarking function.

4.5 The Job Policies Tab
The Policies tab of the Job admin view opens a page that contains a policy viewer for each of the
policies associated with a Job Grid object.

You can modify a policy by using the Policy Grid object. For more information see Section 12.1,
“The Policy Object,” on page 145.

Click Choose in the admin view of the Policy viewer to launch a Policy Selection dialog box where
you can add or remove individual policies to be applied to the selected Job Grid object.
The Job Object 55

56 PlateS

novdocx (en) 16 A
pril 2010
Figure 4-3 The Policy Selection Dialog Box

4.6 The Job Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a
Grid object. Each Grid object has an associated set of facts and constraints that define its properties.
By changing the policy constraints and fact values for a job, you can change the behavior of the job
and how the PlateSpin Orchestrate Server allocates available system resources to it. The Orchestrate
Server assigns default values to each of the component facts, although they can be changed at any
time by the administrator unless they are read-only. Facts with mode r/o have read-only values,
which can be viewed (by using the pencil icon), but changes cannot be made.
pin Orchestrate 2.5 Development Client Reference

5
novdocx (en) 16 A

pril 2010
5The Resource Object

A Resource object in the Explorer tree represents a fixed physical machine or a virtual machine
(VM) that is managed by PlateSpin Orchestrate. If a resource is running the PlateSpin Orchestrate
Agent, that resource can be scheduled for remote execution of a job.

This section includes information about a Resource object that is visible in the Explorer tree and the
accompanying Admin view of the Orchestrate Development Client:

Section 5.1, “Resource Groups,” on page 57
Section 5.2, “The Resource Info/Groups Page,” on page 57
Section 5.3, “The Provision Info Page,” on page 84
Section 5.4, “The Resource Log Page,” on page 85
Section 5.5, “The Resource Policies Page,” on page 85
Section 5.6, “The Resource Health Debugger Page,” on page 85
Section 5.7, “The Resource Constraints/Facts Page,” on page 86
Section 5.8, “Resource Object Naming and Renaming,” on page 86

5.1 Resource Groups
Any group object displayed in the Explorer tree represents a collection of similar object types.
Groups can also be created automatically, such as the case when a provisioning adapter (PA)
discovers a local repository on a VM host. For example, the xen PA, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a xen
repository group. You can also create groups manually in the Development Client, either by clicking
the Actions menu and choosing Create Resource Group or by right-clicking a Resource Group
object (anywhere in the Resource hierarchy) and selecting New Resource Group.

5.2 The Resource Info/Groups Page
The page that opens under the Info/Configuration tab of the Resource admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the job.

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you
have made, you need to click the save icon on the Development Client toolbar.

Section 5.2.1, “The Info Panel,” on page 57
Section 5.2.2, “The Groups Panel,” on page 84

5.2.1 The Info Panel
The following fields on the Information panel provide facts for the Resource object:

“Show Inherited Fact Values Check Box” on page 58
The Resource Object 57

58 PlateS

novdocx (en) 16 A
pril 2010
“Resource Information” on page 58
“VM Host Info” on page 62
“Virtual Machine Configuration” on page 63
“Provisioning Information” on page 67
“OS Information” on page 77
“CPU Information” on page 79
“Memory Information” on page 80
“Disk/Network Information” on page 80
“Agent Information” on page 81
“Agent Configuration” on page 82
“Installed Components” on page 84

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Resource Information

The Job Control Settings panel on the Info/Groups page includes the following fields:

Resource Type
Resource Enabled
Healthy
Shutting Down
Host Name
Host Fully Qualified Name
Password
Host IP Address
VNC IP Address
VNC Port
Billing Rate
Bill For
Power Factor
Load Average
CPU Load
Joblet Slots
Extra System Joblet Slots
Joblets Active
Became Idle On
Total Joblets Started
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Total Completed Joblets
Total Cancelled Joblets
Total Failed Joblets
Total Charge
Total Wall Time
Total Grid Time
Sessions
Provisionable Resource

NOTE: Tool tip text is available when you mouse over any of these fields.

Resource Type: Lets you choose the resource type. If you manually create a resource, you must
select the appropriate type.

Fixed Physical: The node is a physical, hardware-based computer.
VM: The node is a virtual, software-based container that can run its own operating system and
applications as if it were a physical computer.
VM Template: The node is an image of a server that can be used to create and provision new
virtual servers. The template includes a virtual hardware components, a guest operating system,
its configuration, and other software applications.

In the Fact Editor, the Resource Type fact is listed as resource.type:

<fact name="resource.type" value="Fixed Physical" type="String" />

Resource Enabled: This check box is selected by default. When it is selected (it has a value of
true), the resource is enabled and allowed to accept work.

In the Fact Editor, this fact is listed as resource.enabled:

<fact name="resource.enabled" value="true" type="Boolean" />

Healthy: When this check box is selected (it has a value of true), the resource is considered to be in
good health. You can set the health of the object by selecting or deselecting the health check box.
Changing the value in this way has an immediate effect unless the value is overriden by an attached
policy. For more information, see Appendix A, “Grid Object Health Monitoring,” on page 187.

In the Fact Editor, this is fact is listed as resource.health:

<fact name="resource.health" value="true" type="Boolean" />

Shutting Down: (Read Only) When this check box is selected (it has a value of true), the node is
attempting to shut down, pause, or suspend and does not accept new work.

In the Fact Editor, this fact is listed as resource.shuttingdown:

<fact name="resource.shuttingdown" value="false" type="Boolean" />

Host Name: The network hostname of the resource that is running the Orchestrate Agent. The
resource ID and the hostname are often the same, but this is not always the case.

In the Fact Editor, this fact is listed as resource.hostname:
The Resource Object 59

60 PlateS

novdocx (en) 16 A
pril 2010
<fact name="resource.hostname" value="foonode" type="String" />

Host Fully Qualified Name: The full network hostname of the resource that is running the
Orchestrate Agent.

In the Fact Editor, this fact is listed as resource.hostname.full:

<fact name="resource.hostname.full" value="foonode.division.company.com"
type="String" />

Password: The password you want the PlateSpin Orchestrate Agent on this node to use for
authentication to the PlateSpin Orchestrate Server.

In the Fact Editor, this fact is listed as resource.password.

<fact name="resource.password" value="xxx" type="String" />

Host IP Address: The network IP address of the resource running the Orchestrate Agent.

In the Fact Editor, this fact is listed as resource.ip:

<fact name="resource.ip" value="10.255.255.255" type="String" />

VNC IP Address: The IP address for a VNC session running on this resource.

In the Fact Editor, this fact is listed as resource.vnc.ip:

<fact name="resource.vnc.ip" value="" type="String" />

VNC Port: The port number for a VNC session running on this resource.

In the Fact Editor, this fact is listed as resource.vnc.port:

<fact name="resource.vnc.port" value="0" type="Integer" />

Billing Rate: The billing rate (in dollars per hour) that you want to charge for this resource running
its assigned joblets.

In the Fact Editor, this fact is listed as resource.billingrate:

<fact name="resource.billingrate" value="1.0000" type="Real" />

Bill For: Lets you choose the time scale you want to bill for.

walltime: The total time for the process to complete.
gcycles: The normalized average of compute cycles.

In the Fact Editor, this fact is listed as resource.billfor:

<fact name="resource.billfor" value="walltime" type="String" />

Power Factor: (Read Only) The normalized power index of this machine relative to a 2.0 GHz Intel
Pentium 4 machine.

In the Fact Editor, this fact is listed as resource.powerfactor:

<fact name="resource.powerfactor" value="1.0000" type="Real" />

Load Average: (Read Only) The load average on this resource as determined with the uptime
command or other similar methods. The resource is polled every 30 seconds to determine the
average.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.loadaverage:

<fact name="resource.loadaverage" value="0.0000" type="Real" />

CPU Load: (Read Only) The percentage of CPU utilization currently used by the resource.

In the Fact Editor, this fact is listed as resource.cpuload

<fact name="resource.cpuload" value="0" type="Integer" />

Joblet Slots: The number of joblets that this resource can run simultaneously.

In the Fact Editor, this fact is listed as resource.joblets.slots:

<fact name="resource.joblets.slots" value="1" type="Integer" />

Extra System Joblet Slots: The number of extra slots you want to be made available to privileged
system joblets.

In the Fact Editor, this fact is listed as resource.joblets.systemslots:

<fact name="resource.joblets.systemslots" value="1" type="Integer" />

Joblets Active: (Read Only) The number of joblets that are currently active on this resource.

In the Fact Editor, this fact is listed as resource.joblets.active:

<fact name="resource.joblets.active" value="0" type="Integer" />

Became Idle On: (Read Only) The date and time when the resource became idle. The field displays
-1 if the resource is active.

In the Fact Editor, this fact is listed as resource.becameidle:

<fact name="resource.becameidle" value="7/23/09 5:02 PM" type="Date" />

Total Joblets Started: (Read Only) The total number of joblets that have run historically on this
resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount:

<fact name="resource.history.jobletcount" value="8" type="Integer" />

Total Completed Joblets: (Read Only) The total number of joblets that have completed historically
on this resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount.completed:

<fact name="resource.history.jobletcount.completed" value="8" type="Integer" /
>

Total Cancelled Joblets: (Read Only) The total number of joblets that have been canceled
historically on this resource.

In the Fact Editor, this fact is listed as resource.history.jobletcount.cancelled:

<fact name="resource.history.jobletcount.cancelled" value="0" type="Integer" /
>

Total Failed Joblets: (Read Only) The total number of joblets that have failed historically on this
resource.
The Resource Object 61

62 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.history.jobletcount.failed:

<fact name="resource.history.jobletcount.failed" value="0" type="Integer" />

Total Charge: (Read Only) The cost (in dollars) of all of the joblets run on this resource.

In the Fact Editor, this fact is listed as resource.history.cost.total:

<fact name="resource.history.cost.total" value="0.0088" type="Real" />

Total Wall Time: (Read Only) The total wall time (measured in seconds) that this resource has
spent running joblets.

In the Fact Editor, this fact is listed as resource.history.time.total:

<fact name="resource.history.time.total" value="31" type="Integer" />

Total Grid Time: (Read Only) The amount of time (measured in gcycles, which is the normalized
average of compute cycles) of all work performed on this resource.

In the Fact Editor, this fact is listed as resource.history.gcycles.total:

<fact name="resource.history.gcycles.total" value="31" type="Integer" />

Sessions: (Read Only) The number of current active sessions (that is, the resource instances with an
active agent). The value will be either 1 or 0, unless the object is actually a resource template, in
which case it might be greater than 1.

In the Fact Editor, this fact is listed as resource.sessions:

<fact name="resource.sessions" value="0" type="Integer" />

Provisionable Resource: This check box is not selected by default. When it is selected (it has a
value of true), you specify that this resource is a provisionable type. Currently, only a VM resource
and a VM template resource are provisionable.

In the Fact Editor, this fact is listed as resource.provisionable:

<fact name="resource.provisionable" value="false" type="Boolean" />

VM Host Info

The settings in this section of the Info/Groups page are available when the resource is a VM host.

VM Host Containers
VM Host Repositories

VM Host Containers: A list of VM host containers that are supported by this resource. The list is
aggregated from the VM host containers.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vmhosts">
 <array>
 <string>host1slesx_xen30</string>
 </array>
</fact>
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
You can edit this array by clicking the button to open an array editor, where you can add or
remove VM host containers for the array of element choices.

VM Host Repositories: A list of VM host repositories visible to this resource. The list is
aggregated from the VM host repositories.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.repositories">
 <array>
 <string>zos</string>
 <string>vmh3slesx</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove VM host repositories to the array of element choices.

Virtual Machine Configuration

The settings in this section of the Info/Groups page are available when the resource is a VM:

Under Construction
VM Vendor
VM UUID
VM Version
Default Storage Repository
Virtual NICs
Virtual NIC Networks
Virtual Disks
Virtual Disk Repositories
Moveable Virtual Disk Repositories
Unmoveable Virtual disk Repositories
Storage Location in Repository
VM Files
Required VM Memory
Required VM Memory Overhead
Required Total VM Memory
Host CPU Architecture
Requires Host HVM Support
Host CPU % Weight
Host CPU Number
Moveable Disk Size
Allow VM Migration
VM Host Ranking
Construction Specification
The Resource Object 63

64 PlateS

novdocx (en) 16 A
pril 2010
Under Construction: This check box is not selected by default. When it is selected (it has a value
of true), the VM is currently in the process of being created and cannot be provisioned.

In the Fact Editor, this fact is listed as resource.vm.underconstruction:

<fact name="resource.vm.underconstruction" value="false" type="Boolean" />

VM Vendor: The vendor name of the hypervisor that has provided the virtual machine.

In the Fact Editor, this fact is listed as resource.vm.vendor:

<fact name="resource.vm.vendor" value="xen" type="String" />

VM UUID: The vendor and adapter-specific UUID of the resource. You should edit this value only
if you are manually creating a Resource object.

In the Fact Editor, this fact is listed as resource.vm.uuid:

<fact name="resource.vm.uuid" value="237e9975-xxx15-yy1122-7c62-bf6d23d3a049"
type="String" />

VM Version: This fact is no longer used.

In the Fact Editor, this fact is listed as resource.vm.version:

<fact name="resource.vm.version" value="0" type="Integer" />

Default Storage Repository: Lets you choose the repository where the images of this VM disk and
other configuration files are currently stored or where they will be stored.

In the Fact Editor, this fact is listed as resource.vm.repository:

<fact name="resource.vm.repository" value="vmh1slesx" type="String" />

Virtual NICs: The virtual network interface cards (VNICs) that make up this VM. The list is
aggregated from the VNIC containers.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.vnics">
 <array>
 <string>win2003_vnic1</string>
 </array>
</fact>

Virtual NIC Networks: The networks associated with the VM network interfaces.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.networks">
 <array>
 <string>eth1</string>
 </array>
</fact>

Virtual Disks: TThe list of virtual disks that make up this VM.

In the Fact Editor, this fact is listed as an array:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="resource.vm.vdisks">
 <array>
 <string>websrvr_vdisk1</string>
 </array>
</fact>

Virtual Disk Repositories: The repositories where the VM disk images are stored..

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories">
 <array>
 <string>zos</string>
 </array>
</fact>

Moveable Virtual Disk Repositories: The repositories where the moveable VM disk images are
stored.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories.moveable">
 <array>
 <string>zos</string>
 </array>
</fact>

Unmoveable Virtual Disk Repositories: The repositories where the unmoveable VM disk images
are stored.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.repositories.unmoveable">
 <array type="String">
 </array>
</fact>

Storage Location in Repository: The file system location (either absolute or relative to
repository.location) of the VM file(s).

In the Fact Editor, this fact is listed as resource.vm.basepath:

<fact name="resource.vm.basepath" value="vm/websrvr" type="String" />

VM Files: The files that make up this VM.The dictionary key (String) represents the file type
(adapter specific). The value is the file path either absolute or relative to repository.location of
the resource.vm.repository.

In the Fact Editor, this fact is listed as a dictionary:

<fact name="resource.vm.files">
 <dictionary>
 <dictelement key="config">
 <string>/var/lib/xen/images/win2kbuild/config.xen</string>
 </dictelement>
 </dictionary>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove ranking specifications for the array of element choices.
The Resource Object 65

66 PlateS

novdocx (en) 16 A
pril 2010
Required VM Memory: The amount (measured in MB) of virtual memory required for this VM
image.

In the Fact Editor, this fact is listed as resource.vm.memory:

<fact name="resource.vm.memory" value="1024" type="Integer" />

Required VM Memory Overhead: The amount (measured in MB) of virtual memory overhead
required for this VM image to provision.

In the Fact Editor, this fact is listed as resource.vm.memory.overhead:

<fact name="resource.vm.memory.overhead" value="70" type="Integer" />

Required Total VM Memory: The total amount (measured in MB) of virtual memory required for
this VM image.

In the Fact Editor, this fact is listed as resource.vm.memory.total:

<fact name="resource.vm.memory" value="402" type="Integer" />

Host CPU Architecture: The type of CPU architecture required by this VM. You should edit these
values only when you are manually creating a Resource object.

Possible types include:

x86
x86_64
sparc
ppc
mips
alpha

In the Fact Editor, this fact is listed as resource.vm.cpu.architecture:

<fact name="resource.vm.cpu.architecture" value="x86" type="String" />

Requires Host HVM Support: This check box is selected by default. When it is selected (it has a
value of true), this VM requires host HVM support. The setting is required when you want to
perform paravirtualization; otherwise, only full virtualization is possible.

In the Fact Editor, this fact is listed as resource.vm.cpu.hvm:

<fact name="resource.vm.cpu.hvm" value="true" type="Boolean" />

Host CPU % Weight: The CPU weight (as a percentage of the virtual processor runtime) that you
can assign to the virtual processor associated with this VM.

A value of 1.0 represents normal weighting. Setting another VM to a weight of 2.0 means that it
would get twice as much CPU runtime as this VM.

In the Fact Editor, this fact is listed as resource.vm.cpu.weight:

<fact name="resource.vm.cpu.weight" value="1.0000" type="Real" />

Host CPU Number: The number of virtual CPUs assigned to this VM.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.vm.vcpu.number:

<fact name="resource.vm.vcpu.number" value="1" type="Integer" />

Moveable Disk Size: The total size (measured in MB) of all the virtual moveable disks for this VM
image.

In the Fact Editor, this fact is listed as resourc.vm.vdisksize:

<fact name="resource.vm.vdisksize" value="4096" type="Integer" />

Allow VM Migration: This check box is selected by default. When it is not selected (it has a value
of false), PlateSpin Orchestrate prevents prevents migration of the VM to another potential VM
host.

In the Fact Editor, this fact is listed as resource.vm.migratable:

<fact name="resource.vm.migratable" value="true" type="Boolean" />

VM Host Ranking: This list box includes the ranking specifications used to select suitable VM
hosts. The element syntax is fact/order, where order is either ascending or descending.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.vm.vmhost.rankby">
 <array>
 <string>vmhost.vm.placement.score/a</string>
 <string>vmhost.loadindex.slots/a</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove ranking specifications for the array of element choices. A trailing /a indicates an ascending
sort order. A trailing /d indicates a descending sort order.

Construction Specification: The VM Builder Specifications field in this section displays a list of
specifications that were used to build this VM. These specifications are interpreted by the
provisioning adapter. You should edit these values by using the PlateSpin Orchestrate VM Client.

In the Fact Editor, this fact is listed as a dictionary:

<fact name="resource.vm.spec">
 <dictionary>
 <dictelement key="ssd">
 <string>ddd</string>
 </dictelement>
 </dictionary>
</fact>

You can edit the dictionary by clicking the button to open an attribute editor where you can
add or remove dialog box and then expand the map to open the details of the dictionary.

Provisioning Information

The settings on this section of the Info/Groups panel are not available unless the resource you select
is a VM.

Provisioning Job
The Resource Object 67

68 PlateS

novdocx (en) 16 A
pril 2010
Provisioned Instances
Cloned Instances
Instances
Max Provisioned Instances
Agent Shudown Timeout
Default Agent Idle Timeout
Host Wait Timeout
Preferred Host Wait
Recommended Host
Debug Provision Log
Parent Template
Current State
Current Host
Current Status
Current Action
Request Time
Start Time
Shutdown Time
Host Wait Time
Managing Job ID
Automatic Provision
Needs Resync

If the Resource object is a VM, it can be automatically personalized for provisioning with
information you provide in one of the following subpanels of the Provisioning Information panel:

“Linux Autoprep Config:” on page 71
“Windows Sysprep Config” on page 73

Provisioning Job: Lets you select the name of the provisioning job that manages the life cycle of
this resource.

In the Fact Editor, this fact is listed as resource.provisioner.job:

<fact name="resource.provisioner.job" value="xen30" type="String" />

Provisioned Instances: The total count of operational instances and provisions in progress.

In the Fact Editor, this fact is listed as resource.provisioner.count:

<fact name="resource.provisioner.count" value="0" type="Integer" />

Cloned Instances: The total count of cloned instances of the template.

In the Fact Editor, this fact is listed as resource.provisioner.instancecount:

<fact name="resource.provisioner.instancecount" value="0" type="Integer" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Instances: The IDs of the instances of this template resource (if applicable).

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.instances">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open an array editor, where you can add or
remove instance IDs to the array of choices.

Max Provisioned Instances: (For VM templates only) The maximum allowed number of instances
of this provisionable resource.

In the Fact Editor, this fact is listed as resource.provisioner.maxinstances:

<fact name="resource.provisioner.maxinstances" value="1" type="Integer" />

Agent Shutdown Timeout: The maximum amount of time, measured in seconds, allowed for this
VM to shut down and for the Orchestrate Agent to disconnect from the Orchestrate Server.

In the Fact Editor, this fact is listed as resource.provisioner.timeout.shutdown:

<fact name="resource.provisioner.timeout.shutdown" value="" type="Integer" />

Default Agent Idle Timeout: The maximum amount of time, measured in seconds, allowed for a
VM instance to be idle before relaxing reservation policy or shutting down. Behavior depends on
mode, and can be overridden by the provision request.

In the Fact Editor, this fact is listed as resource.provisioner.timeout.idle:

<fact name="resource.provisioner.timeout.idle" value="" type="Integer" />

Host Wait Timeout: The maximum amount of time, measured in seconds, to wait for a suitable
host before timing out. A value of less than zero (<0), means that the VM waits indefinitely.

In the Fact Editor, this fact is listed as resource.provisioner.host.maxwait:

<fact name="resource.provisioner.host.maxwait" value="-1" type="Integer" />

Preferred Host Wait: The amount of time, measured in seconds, after which some VM Host
constraints (for example, whether to move the disk image) are lifted to increase the available pool of
hosts. A value of less than zero (<0), means that the VM resource waits indefinitely.

In the Fact Editor, this fact is listed as resource.provisioner.host.preferredwait:

<<fact name="resource.provisioner.host.preferredwait" value="0" type="Integer"
/>

Recommended Host: The names of VM hosts that you can choose to associate with this VM
resource image. You might specify this host when you want a quick VM startup or if you want to
change hosts because the original host was suspended. When combined with the
resource.provisioner.host.preferredwait fact, this fact can lock a VM to one host.

In the Fact Editor, this fact is listed as resource.provisioner.recommendedhost:

<fact name="resource.provisioner.recommendedhost" value="" type="String" />
The Resource Object 69

70 PlateS

novdocx (en) 16 A
pril 2010
Debug Provision Log: This check box is not selected by default. When it is selected (it has a value
of true), the debug log level in the provisioner is enabled.

In the Fact Editor, this fact is listed as resource.provisioner.debug:

<fact name="resource.provisioner.debug" value="false" type="Boolean" />

Parent Template: The ID of the template resource from which this instance was created.This is
only applicable if the template was copied from another template.

In the Fact Editor, this fact is listed as resource.provision.template:

<fact name="resource.provision.template" value="" type="String" />

Current State: The current state of this provisioned instance. The different states include:

down
suspended
up
paused
unknown (when an administrative action is in process)

In the Fact Editor, this fact is listed as resource.provision.state:

<fact name="resource.provision.state" value="down" type="String" />

Current Host: The ID of the VM host that is currently housing this provisioned resource.

In the Fact Editor, this fact is listed as resource.provision.vmhost:

<fact name="resource.provision.vmhost" value="vmh6sles_xen30" type="String" />

Current Status: (Read Only) The current descriptive status of the provisioned resource.

In the Fact Editor, this fact is listed as resource.provision.status:

<fact name="resource.provision.status" value="Undefined" type="String" />

Current Action: (Read Only) The management action currently in progress on this provisioned
resource.

In the Fact Editor, this fact is listed as resource.provision.currentaction:

<fact name="resource.provision.currentaction" value="" type="String" />

Request Time: (Read Only) The time when the last provision (or other administrative action) was
requested.

In the Fact Editor, this fact is listed as resource.provision.time.request:

<fact name="resource.provision.time.request" value="8/24/09 4:36 PM"
type="Date" />

Start Time: (Read Only) The time when the resource was last successfully provisioned.

In the Fact Editor, this fact is listed as resource.provision.time.start:

<fact name="resource.provision.time.start" value="12/31/69 4:59 PM"
type="Date" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Shutdown Time: (Read Only) The time when the resource was last shut down.

In the Fact Editor, this fact is listed as resource.provision.time.shutdown:

<fact name="resource.provision.time.shutdown" value="12/31/69 4:59 PM"
type="Date" />

Host Wait Time: (Read Only) The amount of time (measured in seconds) that this resource has
been waiting for or did wait for a suitable host.

In the Fact Editor, this fact is listed as resource.provision.time.hostwait:

<fact name="resource.provision.time.hostwait" value="0" type="Integer" />

Managing Job ID: (Read Only) The current or last Job ID that performed a provisioning action on
this resource. This is useful when viewing the job log to monitor specific provisioning actions.

In the Fact Editor, this fact is listed as resource.provision.jobid:

<fact name="resource.provision.jobid" value="system.xen30.74239" type="String"
/>

Automatic Provision: (Read Only) This check box is not selected by default. When it is selected (it
has a value of true), the resource was cloned or provisioned automatically and will be shut down or
destroyed automatically.

In the Fact Editor, this fact is listed as resource.provision.automatic:

<fact name="resource.provision.automatic" value="false" type="Boolean" />

Needs Resync: This check box is not selected by default. When it is selected (it has a value of true),
you specify that the provisioned resource’s state needs to be resynchronized by using the associated
provisioning technology at the next opportunity.

In the Fact Editor, this fact is listed as resource.provision.resync:

<fact name="resource.provision.resync" value="false" type="Boolean" />

Linux Autoprep Config:

NOTE: This section displays when a Linux VM is selected.

If any of the fields in this section are blank (that is, undefined), click Define to install a fact editor
that you can use to define the value.

This section includes the following settings:

Linux Computer Name
Linux Domain

The section also includes a subpanel where you can set Network Autoprep Configuration
information.

Linux Computer Name: This value specifies the host name of a new VM. Enter “*” to indicate that
the VM ID is to be used rather than the host name you specify.

In the Fact Editor, this fact is listed as resource.provisioner.autoprep.linuxglobal.ComputerName
The Resource Object 71

72 PlateS

novdocx (en) 16 A
pril 2010
<fact name="resource.provisioner.autoprep.linuxglobal.ComputerName"
value="afd" type="String" />

Linux Domain: This value specifies the domain to which the new VM belongs.

In the Fact Editor, this fact is listed as resource.provisioner.autoprep.linuxglobal.Domain

<fact name="resource.provisioner.autoprep.linuxglobal.Domain" value=""
type="String" />

Network Autoprep Config

This section includes the following settings:

DNS Server IP Addresses
DNS Suffixes
Gateway IP Addresses

DNS Server IP Addresses: This field displays a list of DNS server IP addresses for name
lookup.This is only for cloning/personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSServers">
 <array>
 <string>0.0.00.200</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box you
can add or remove a server IP address or change its order in the array of element choices.

DNS Suffixes: The list of suffixes to append to a name for lookup.This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSSuffixes">
 <array>
 <string>afjkdl</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box you
can add or remove a suffix or change its order in the array of element choices.

Gateway IP Addresses: The list of internet gateways available to this VM. This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.Gateways">
 <array>
 <string>afdasadfs</string>
 </array>
</fact>
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
You can edit this array by clicking the button to open an array editor. In this dialog box you
can add or remove the IP address or change its order in the array of element choices.

Windows Sysprep Config

NOTE: This section displays when a Windows VM is selected.

If any of the fields in this section are blank (that is, undefined), click Define to install a fact editor
that you can use to define the value.

The section includes the following settings/facts:

Change SID
Delete Accounts
Admin Password
Admin Password Plaintext
Timezone
Autologon
Autologon Count
Fullname
Org Name
Computer Name
Product ID
Run Once Command
Workgroup
Domain
Domain Admin
Domain Admin Password
Domain Admin Password Plaintext
Machine Object OU
Machine Password
Machine Password Plaintext
License File Automode
License File Autousers

The section also includes a subpanel where you can set Network Sysprep Configuration information.

Change SID: The Windows Security ID. If true, sysprep generates a new Security ID.

In the Fact Editor, this fact is listed as resource.provisioner.autoprep.options.changeSID:

<fact name="resource.provisioner.autoprep.options.changeSID" value="false"
type="Boolean" />

Delete Accounts: If set to true, this fact removes all accounts from the destination VM. If false, it
retains existing accounts from the source VM.
The Resource Object 73

74 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.options.deleteAccounts:

<fact name="resource.provisioner.autoprep.options.deleteAccounts"
value="true" type="Boolean" />

Admin Password: This field displays the IP address for the adapter.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.value:

<fact
name="resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.value
" value="klvm" type="String" />

Admin Password Plaintext: This field displays the subnet mask for the adapter.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.plainText:

<fact
name="resource.provisioner.autoprep.sysprep.GuiUnattended.AdminPassword.plain
Text" value="false" type="Boolean" />

Timezone: The time zone of the new VM. See Microsoft [GUI Unattended] (Sysprep) product
documentation (http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx). (Scroll
to the TimeZone heading on that page.)

If you do not specify a value for this fact, the default value is 004 (Pacific Standard Time).

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.TimeZone:

<fact name="resource.provisioner.autoprep.sysprep.GuiUnattended.TimeZone"
value="10" type="String" />

Autologon: If true, the VM automatically logs into the Administrator account using
AdminPassword. If false, logon is prompted.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogon:

<fact name="resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogon"
value="true" type="Boolean" />

Autologon Count: The limit count for the VM to auto log on with the Administrator account.
AutoLogon must be True.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogonCount:

<fact
name="resource.provisioner.autoprep.sysprep.GuiUnattended.AutoLogonCount"
value="2" type="Integer" />

Fullname: The user’s full name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.FullName:
pin Orchestrate 2.5 Development Client Reference

http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc772783%28WS.10%29.aspx

novdocx (en) 16 A
pril 2010
<fact name="resource.provisioner.autoprep.sysprep.UserData.FullName"
value="adfkl" type="String" />

Org Name: The organization name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.OrgName:

<fact name="resource.provisioner.autoprep.sysprep.UserData.OrgName"
value="Novell" type="String" />>

Computer Name: The VM's new host name. An asterisk (*) means to generate a name based on the
source VM name.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.ComputerName:

<fact name="resource.provisioner.autoprep.sysprep.UserData.ComputerName"
value="docdev1" type="String" />

Product ID: The Windows product key.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.UserData.ProductID:

<fact name="resource.provisioner.autoprep.sysprep.UserData.ProductID"
value="jklaieuqa4354" type="String" />

Run Once Command: A list of commands that run the first time a user logs on after the new VM is
created. Commands are scheduled using the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce registry
key.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.GuiRunOnce.Command:

<fact name="resource.provisioner.autoprep.sysprep.GuiRunOnce.Command"
value="purge" type="String" />>

Workgroup: Windows workgroup name. If joining a domain, use JoinDomain.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.JoinWorkgroup:

<fact
name="resource.provisioner.autoprep.sysprep.Identification.JoinWorkgroup"
value="prod" type="String" />

Domain: Windows domain name. If the VM is joining a workgroup, use JoinWorkgroup. For
joining a domain, DomainAdmin and DomainAdminPassword must be defined..

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.JoinDomain:

<fact name="resource.provisioner.autoprep.sysprep.Identification.JoinDomain"
value="test" type="String" />>

Domain Admin: The Windows domain administrator name.
The Resource Object 75

76 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdmin:

<fact name="resource.provisioner.autoprep.sysprep.Identification.DomainAdmin"
value="admin" type="String" />

Domain Admin Password: The Windows domain administrator account password.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.valu
e:

<fact
name="resource.provisioner.autoprep.sysprep.Identification.DomainAdminPasswor
d.value" value="cleanwindow" type="String" />

Domain Admin Password Plaintext: Select the check box if DomainAdminPassword is in plain
text..

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.DomainAdminPassword.plai
nText:

<fact
name="resource.provisioner.autoprep.sysprep.Identification.DomainAdminPasswor
d.plainText" value="false" type="Boolean" />

Machine Object OU: Enter the organizational unit (OU) of the Windows Active Directory
machine.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachineObjectOU

<fact
name="resource.provisioner.autoprep.sysprep.Identification.MachineObjectOU"
value="dd" type="String" />

Machine Password: Enter the account password for the Windows Active Directory machine.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachinePassword.value

<fact
name="resource.provisioner.autoprep.sysprep.Identification.MachinePassword.va
lue" value="fad" type="String" />

Machine Password Plaintext: Select the check box if MachinePassword is in plain text.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.Identification.MachinePassword.plainText

<fact
name="resource.provisioner.autoprep.sysprep.Identification.MachinePassword.pl
ainText" value="true" type="Boolean" />

License File Automode: Enter either PerServer or PerSeat. If you enter PerServer, AutoUsers
must be set.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoMode:

<fact
name="resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoMode"
value="PerSeat" type="String" />

License File Autousers: The number of client licenses. Use this setting only if AutoMode is
PerServer.

In the Fact Editor, this fact is listed as
resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoUsers:

<fact
name="resource.provisioner.autoprep.sysprep.LicenseFilePrintData.AutoUsers"
value="33" type="Integer" />

Network Sysprep Config

This section includes the following settings:

DNS Suffixes

DNS Suffixes: The list of suffixes to append to a name for lookup.This is only for cloning/
personalize actions.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.provisioner.autoprep.DNSSuffixes">
 <array>
 <string>afjkdl</string>
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box you
can add or remove a suffix or change its order in the array of element choices.

OS Information

This section includes the following settings:

OS Name
OS Version
OS Version String
OS Architecture
OS Family
OS Type
OS Vendor
OS Vendor Version
OS Vendor String
OS File Path Separator

OS Name: (Read Only) The name of the resource operating system.
The Resource Object 77

78 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.os.name:

<fact name="resource.os.name" value="Windows" type="String" />

OS Version: (Read Only) The version number of the resource operating system. For a VM
resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.os.version:

<fact name="resource.os.version.string" value="Microsoft Windows XP [Version
5.1.2600]" type="String" />

OS Version String: (Read Only) The operating system vendor full identification string (requires
osInfo system job).

In the Fact Editor, this fact is listed as resource.os.version.string:

<fact name="resource.os.vendor.string" value="Microsoft Windows XP [Version
5.1.2600]" type="String" />

OS Architecture: The operating system architecture (for example, x86, amd64, i386, or sparc).

In the Fact Editor, this fact is listed as resource.os.arch:

<fact name="resource.os.arch" value="i386" type="String" />

OS Family: The operating system family name (for example, windows, linux, solaris, unix, aix,
mac) of the resource, if known.

In the Fact Editor, this fact is listed as resource.os.family:

<fact name="resource.os.family" value="linux" type="String" />

OS Type: This drop-down list lets you select the unique string identifier for each OS release, for
example, sles11.

In the Fact Editor, this fact is listed as resource.os.type:

<fact name="resource.os.type" value="sles10" type="String" />

OS Vendor: (Read Only) The operating system vendor (SuSE for SUSE Linux Enterprise Server or
SUSE Linux Enterprise Desktop).

In the Fact Editor, this fact is listed as resource.os.vendor:

<fact name="resource.os.vendor" value="SuSE" type="String" />

OS Vendor Version: (Read Only) This field displays the vendor-defined version for the operating
system (for example, 10 for SUSE Linux Enterprise Server 10).

In the Fact Editor, this fact is listed as resource.os.vendor.version:

<fact name="resource.os.vendor.version" value="10" type="String" />

OS Vendor String: (Read Only) This field displays the full identification for the operating system
that is supplied by the vendor. The osinfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.os.vendor.string:

<fact name="resource.os.vendor.string" value="Welcome to SUSE Linux Enterprise
Server 11 (i586) - Kernel (\l)." type="String" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
OS File Path Separator: (Read Only) The resource operating system file separator.

In the Fact Editor, this fact is listed as resource.os.file.separator:

<fact name="resource.os.file.separator" value="/" type="String" />

CPU Information

This section includes the following settings:

Number of CPUs
CPU Speed (Mhz)
CPU Vendor
CPU Model
CPU Architecture
CPU HVM Support

Number of CPUs: (Read only) The number of CPUs available for this resource to use. For a VM
resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.number:

<fact name="resource.cpu.number" value="2" type="Integer" />

CPU Speed (Mhz): (Read only) The processor speed measured in Mhz. The cpuinfo job must run
for this value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.mhz:

<fact name="resource.cpu.mhz" value="2594" type="Integer" />

CPU Vendor: (Read only) The name of the CPU vendor. The cpuinfo system job must run for this
value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.vendor:

<fact name="resource.cpu.vendor" value="GenuineIntel" type="String" />

CPU Model: (Read only) The full vendor model number of the CPU. The cpuinfo system job must
run for this value to be displayed. For a VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.model:

<fact name="resource.cpu.model" value="Intel(R) Pentium(R) 4 CPU 2.60GHz"
type="String" />

CPU Architecture: Thhe CPU architecture (for example, x86, x86_64, sparc) of this resource. For a
VM resource, this fact remains undefined.

In the Fact Editor, this fact is listed as resource.cpu.architecture:

<fact name="resource.cpu.architecture" value="x86" type="String" />

CPU HVM Support: This field is marked true if the CPU has hardware virtualization support.

In the Fact Editor, this fact is listed as resource.cpu.hvm:

<fact name="resource.cpu.hvm" value="false" type="Boolean" />
The Resource Object 79

80 PlateS

novdocx (en) 16 A
pril 2010
Memory Information

This section includes the following settings:

Virtual Memory (Mb)
Virtual Available
Physical Memory (Mb)
Physical Available
Swap Memory (Mb)
Swap Available

Virtual Memory (Mb): (Read only) The total amount of virtual memory (measured in MB) on the
resource. The memInfo system job must run for this value to be displayed

In the Fact Editor, this fact is listed as resource.memory.virtual.total:

<fact name="resource.memory.virtual.total" value="4060" type="Integer" />

Virtual Available: (Read only) Ththe amount of available virtual memory (measured in MB) on the
resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.virtual.available:

<fact name="resource.memory.virtual.available" value="19951" type="Integer" />

Physical Memory (Mb): (Read only) The total amount of physical memory (measured in MB) on
the resource. The memInfo system job must run for this value to be displayed

In the Fact Editor, this fact is listed as resource.memory.physical.total:

<fact name="resource.memory.physical.total" value="3889" type="Integer" />

Physical Available: (Read only) The amount of available physicall memory (measured in MB) on
the resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.physical.available:

<fact name="resource.memory.physical.available" value="3565" type="Integer" />

Swap Memory (Mb): (Read only) The total amount of configured swap space (measured in MB)
on the resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.swap.total:

<fact name="resource.memory.swap.total" value="16386" type="Integer" />

Swap Available: (Read only) The total amount of free swap space (measured in MB) on the
resource. The memInfo system job must run for this value to be displayed.

In the Fact Editor, this fact is listed as resource.memory.swap.available:

<fact name="resource.memory.swap.available" value="16386" type="Integer" />

Disk/Network Information

The facts in the Disk/Network Information section of the Info/Groups page are not currently
functional and are not supported.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Agent Information

This section includes the following settings:

Agent Version
Agent Install Dir
Agent Java Version
Agent Java Runtime
Agent Java Vendor
Agent Java Home Dir
Available Agent Memory
Enhanced Exec Available
Clustered Agent

Agent Version: (Read only) The PlateSpin Orchestrate Agent version and build number that is
installed on this resource. The string uses the following syntax:

major.minor.point_build

In the Fact Editor, this fact is listed as resource.agent.version:

<fact name="resource.agent.version" value="2.0.2_70917" type="String" />

Agent Install Dir: (Read only) The name of the home directory of the PlateSpin Orchestrate Agent
installation files.

In the Fact Editor, this fact is listed as resource.agent.home:

<fact name="resource.agent.home" value="/opt/novell/zenworks/zos/agent"
type="String" />

Agent Java Version: (Read only) The version of the Java JVM currently in use by the PlateSpin
Orchestrate Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.version:

<fact name="resource.agent.jvm.version" value="1.5.0_17" type="String" />

Agent Java Runtime: (Read only) The version of the Java JVM runtime currently in use by the
PlateSpin Orchestrate Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.runtime:

<fact name="resource.agent.jvm.runtime" value="1.5.0_17-b04" type="String" />

Agent Java Vendor: (Read only) The name of the vendor of the Java JVM currently in use by the
PlateSpin Orchestrate Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.vendor:

<fact name="resource.agent.jvm.vendor" value="Sun Microsystems Inc."
type="String" />

Agent Java Home Dir: (Read only) The path to the home directory of the Java JVM currently in
use by the PlateSpin Orchestrate Agent installed on this resource.
The Resource Object 81

82 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.agent.jvm.home:

<fact name="resource.agent.jvm.home" value="/opt/novell/zenworks/zos/agent/
jre" type="String" />

Available Agent Memory: (Read only) The amount of memory (measured in Mb) available to the
PlateSpin Orchestrate Agent installed on this resource.

In the Fact Editor, this fact is listed as resource.agent.jvm.memory:

<fact name="resource.agent.jvm.memory" value="127" type="Integer" />

Enhanced Exec Available: This check box is selected by default. When it is selected (it has a value
of true), it indicates that the PlateSpin Orchestrate Agent installed on this resource is able to use
enhanced exec features (as opposed to unsupported agent installs, fsuch as AIX).

In the Fact Editor, this fact is listed as resource.agent.exec.installed:

<fact name="resource.agent.exec.installed" value="true" type="Boolean" />

Clustered Agent: This check box is not selected by default. When you select it (it has a value of
true), you specify that the agent is “clustered” on this VM resource. This means that it converts
duplicate logins to failover logins.

In the Fact Editor, this fact is listed as resource.agent.clustered:

<fact name="resource.agent.clustered" value="false" type="Boolean" />

Agent Configuration

This section includes the following settings:

Gmond Port
Datagrid Cache TTL
Datagrid Cleanup Interval
Exec Daemon Timeout
Exec As Agent User Only
Cleanup After Joblets
Use Enhanced Exec
Log Level
Debug Logging

Gmond Port: The port that the agent uses for gmond. Port 8649 is the default port. A setting of zero
(0) or less means that the value is not read.

In the Fact Editor, this fact is listed as esource.agent.config.gmond.port:

<fact name="resource.agent.config.gmond.port" value="8649" type="Integer" />

Datagrid Cache TTL: The amount of time (measured in minutes) that inactive files should remain
in the agent’s datagrid cache. A setting of zero (0) turns off the cache.

In the Fact Editor, this fact is listed as jresource.agent.config.datagrid.cache.lifetime:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="resource.agent.config.datagrid.cache.lifetime" value="1440"
type="Integer" />

Datagrid Cleanup Interval: The amount of time (measured in minutes) that the Orchestrate Server
should wait between cleanup sweeps of the agent’s datagrid cache.

In the Fact Editor, this fact is listed as
resource.agent.config.datagrid.cache.cleanupinterval:

<fact name="resource.agent.config.datagrid.cache.cleanupinterval" value="60"
type="Integer" />

Exec Daemon Timeout: The amount of time (measured in seconds) that the enhanced exec daemon
is to remain running. A setting of zero (0) specifies that the daemon is to remain running. The exec
daemon is the non-Java component of the agent that is responsible for executing commands
remotely.

In the Fact Editor, this fact is listed as resource.agent.config.exec.daemon.timeout:

<fact name="resource.agent.config.exec.daemon.timeout" value="300"
type="Integer" />

Exec As Agent User Only: This check box is selected by default. When you select it (it has a value
of true), you specify that the agent is to always run executables as the Agent User only. Selecting
this check box overrides any job fact settings (for the job.joblet.runtype fact).

In the Fact Editor, this fact is listed as resource.agent.config.exec.asagentuseronly:

<fact name="resource.agent.config.exec.asagentuseronly" value="true"
type="Boolean" />

Cleanup After Joblets: This check box is not selected by default. When you select it (it has a value
of true), you specify that the agent on this resource is to clean up temporary directories created for
each joblet. You can deselect this check box for debugging purposes; when you select it again, the
cleanup process starts again, deleting temporary directories that were created while the setting was
deactivated.

In the Fact Editor, this fact is listed as resource.agent.config.joblet.cleanup:

<fact name="resource.agent.config.joblet.cleanup" value="true" type="Boolean"
/>

Use Enhanced Exec: This check box is not selected by default. When you select it (it has a value of
true), you specify that the agent on this resource is to use the enhanced exec feature of the agent,
which is available for supported agent installations. Marking this fact as false causes the enhanced
exec feature not to be used.

In the Fact Editor, this fact is listed as resource.agent.config.exec.enhancedused:

<fact name="resource.agent.config.exec.enhancedused" value="true"
type="Boolean" />

Log Level: Lets you choose the level of agent logging in terms of the amount of detail (that is, the
“verbosity”) you want to include in the agent log. The choices include:

quiet
normal
verbose
The Resource Object 83

84 PlateS

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as resource.agent.config.loglevel:

<fact name="resource.agent.config.loglevel" value="normal" type="String" />

Debug Logging: This check box is not selected by default. When you select it (it has a value of
true), you activate the debug function in the agent log, which is additive to the log level.

In the Fact Editor, this fact is listed as resource.agent.config.logdebug:

<fact name="resource.agent.config.logdebug" value="false" type="Boolean" />

Installed Components

Applications: A list of the names of applications (including the full version name) that are installed
on this resource. This is useful for constraining joblets to run only on a resource with a particular
application installed.

In the Fact Editor, this fact is listed as an array:

<fact name="resource.installed.apps">
 <array>
 <string>man-pages-2.39-0.9</string>
 <string>xorg-x11-fonts-scalable-6.9.0-50.45</string>
 <string>cifs-mount-3.0.24-2.23</string>
 <string>gdbm-1.8.3-243.2</string>
 <string>libaio-0.3.104-14.2</string>
 <string>libnl-1.0-18.4</string>
...
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box you
can add or remove the application name or change its order in the array of element choices.

5.2.2 The Groups Panel
This section of the Info/Groups page lists the groups of Resource objects in the grid. Click Choose
to open the Resource Group Selection dialog box. In this dialog box, you can choose which
Resource Groups to display in the Explorer Panel by selecting a group and then clicking Add or
Remove to move it to or from the Source Resource Groups list.

5.3 The Provision Info Page
The Provision Info tab is displayed only for VM resource objects selected in the Explorer tree. The
read-only fields displayed at the top of the Provision Info page summarize information related to the
provisioning of the resource, whether that resource is a VM or VM template.

The page has several subtabs that open other pages that display further information about the VM:

Show Log: A log that includes historical details about the history of the provisioning of the
VM.
Host Assignment Log: A log of VM host assignment constraint errors of the last migration or
provision action.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Autoprep Data: A list of autoprep/sysprep fact overrides used to prepare this VM instance.
For more information about autoprep, see “Understanding Autoprep” in the PlateSpin
Orchestrate 2.5 Virtual Machine Management Guide.
Policy Debugger: Information to help you debug the policy (and its resulting constraints and
facts) associated with this VM. For more information, see Chapter 14, “The Policy Debugger,”
on page 177.
Action History: A log that includes historical details about the history of the provisioning of
the VM. For more information, see “Provisioning Actions and History” in the PlateSpin
Orchestrate 2.5 Virtual Machine Management Guide.

5.4 The Resource Log Page
Open the Resource Log tab to view the contents of the log file for this resource. You can click
Refresh to update the content. You can also select Debug Logging to activate the debug feature as
part of the logging or change the Log Level to the level of detail that you want.

5.5 The Resource Policies Page
The Policies tab of the Resource admin view opens a page that contains a policy viewer for each of
the policies associated with a Resource Grid object.

You can modify a policy using the Policy Grid object. For more information see Section 12.1, “The
Policy Object,” on page 145.

Click Choose in the admin view of the Policy viewer to launch a Policy Selection dialog box where
you can add or remove individual policies to be applied to the selected Resource Grid object.

Figure 5-1 The Policy Selection Dialog Box

5.6 The Resource Health Debugger Page
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Chapter A.3, “The Health Debugger,” on page 189.
The Resource Object 85

86 PlateS

novdocx (en) 16 A
pril 2010
5.7 The Resource Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a
Grid object. Each Grid object has an associated set of facts and constraints that define its properties.
By changing the policy constraints and fact values for a job, you can change the behavior of the job
and how the PlateSpin Orchestrate Server allocates available system resources to it. The Orchestrate
Server assigns default values to each of the component facts, although they can be changed at any
time by the administrator unless they are read-only. Facts with mode r/o have read-only values,
which can be viewed by using the edit pencil icon, but changes cannot be made.

For information about renaming Resource objects using the Fact Editor on this page, see
Section 5.8, “Resource Object Naming and Renaming,” on page 86.

5.8 Resource Object Naming and Renaming
The PlateSpin Orchestrate Resource Grid object type can include resources of various types,
including physical machines, virtual machines (VMs), and VM templates, all of which are modeled
differently in the Development Client because of their varying roles in the Orchestrate system. Some
resource names are generated by the Orchestrate system and can therefore receive generic, arbitrary
names such as mysql-1, mysql-2, and so on. Resources you name at installation time or creation
time might also change in their purpose or facilities.

As the quantity of these Resource objects grows in your grid, you might find it helpful or necessary
to rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Development Client interface, the VM Client interface, the
Server Portal, and in optional zos and zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these Resource objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A Resource object’s name is stored in the ${objectType}.displayname fact, which exists on
every Grid object type, even those objects that cannot be renamed.

You can rename a Resource object in the Orchestrate Development Client using one of three
methods:

Right-click the Resource object in the Explorer tree, then select Rename to allow editing of the
display name.
Triple-click the Resource object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the resource object .displayname fact
and then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.

NOTE: Even after being renamed, the Resource object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.
pin Orchestrate 2.5 Development Client Reference

6
novdocx (en) 16 A

pril 2010
6The VM Host Object

A VM host represents a VM host technology or hypervisor (for example, Xen, Hyper-V, and so on)
either installed on a physical resource or accessed by it (in the case of VMware). VM host objects
can be used when making provisioning decisions for a resource.

PlateSpin Orchestrate also supports the discovery of VMware vSphere clusters used for high
availability (HA) in a VMware environment or managed by the VMware Distributed Resource
Scheduler (DRS) (after an Orchestrate Agent has been deployed into such an environment). In this
scenario, Orchestrate also allows you to determine when actions have taken place outside of
Orchestrate, such as when DRS moves a VM to an alternate host in the cluster or when an
administrator moves a VM into a different resource pool (see “Setting Up Orchestrate to
Accommodate VMware DRS Clustering and Updates” in the PlateSpin Orchestrate 2.5 Virtual
Machine Management Guide).

Although the VM host and the VM host Cluster are regarded as two different types of VM host
object, and have differing icons, the discovered clusters are represented in the Explorer tree of the
Development Client as VM host objects.

NOTE: The Development Client interface (that is, the fields in the admin view) for a VM host and a
VM host Cluster are nearly identical. Facts unique to the VM host Cluster are listed in Section 6.7,
“Unique VM Host Cluster Facts,” on page 93.

This section includes the following information:

Section 6.1, “The Info Page,” on page 87
Section 6.2, “The Policies Page,” on page 92
Section 6.3, “The Health Debugger Page,” on page 92
Section 6.4, “The Constraints/Facts Page,” on page 92
Section 6.5, “The Action History Page,” on page 92
Section 6.6, “VM Host Object Naming and Renaming,” on page 93
Section 6.7, “Unique VM Host Cluster Facts,” on page 93
Section 6.8, “vCPU Slots for VM Hosts,” on page 96

6.1 The Info Page
The page that opens under the Info tab includes several collapsible sections on the page where you
can configure the general information and attributes of the VM host.

Section 6.1.1, “Show Inherited Fact Values Check Box,” on page 88
Section 6.1.2, “VM Host Information Panel,” on page 88
Section 6.1.3, “Provisioning Adapter Config Panel,” on page 90
Section 6.1.4, “Guest VM Monitor Information Panel,” on page 91
The VM Host Object 87

88 PlateS

novdocx (en) 16 A
pril 2010
NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the save icon on the Development Client toolbar.

6.1.1 Show Inherited Fact Values Check Box
Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable), although you can use the Policy Editor to
modify the policy values themselves if you want to.

6.1.2 VM Host Information Panel
The VM Host Information panel on the Info page includes the following fields:

NOTE: Tool tip text is available when you mouse over any of these fields.

Physical Resource: (Read Only) The name of the resource that houses this VM host container.

In the Fact Editor, this fact is listed as vmhost.resource:

<fact name="vmhost.resource" value="vmh7sles" type="String" />

VM Host Type: This field displays a read-only fact, as discovered by PlateSpin Orchestrate. It
identifies the VM host as a regular VM host (vmhost) or as a VMware cluster (vmhostcluster).

In the Fact Editor, this fact is listed as vmhost.type:

<fact name="vmhost.type" value="vmhostcluster" type="String" />

VmHost Cluster: (Conditional) This field displays a read-only fact, as discovered by PlateSpin
Orchestrate. It identifies the VM host Cluster to which this VM host belongs. The field is displayed
on the information page only when the VM host is a member of a cluster.

In the fact editor, this fact is listed as vmhost.cluster:

<fact name="vmhost.cluster" value="esx35_cluster_vsphere" type="String" />

Enabled: This check box is selected by default. When it is selected (it has a value of true), the VM
host is enabled, which means that VM instances can be provisioned on it.

In the Fact Editor, this fact is listed as vmhost.enabled:

<fact name="vmhost.enabled" value="true" type="Boolean" />

Online: When this check box is selected (it has a value of true), the agent on the physical resource is
online.

In the Fact Editor, this fact is listed as vmhost.online:

<fact name="vmhost.online" value="true" type="Boolean" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Healthy: This check box is selected by default. When it is selected (it has a value of true), the VM
host is designated as being in good health. You can set the health of the object by selecting or
deselecting the health check box. Changing the value in this way has an immediate effect unless the
value is overriden by an attached policy. For more information, see Appendix A, “Grid Object
Health Monitoring,” on page 187

In the Fact Editor, this is fact is listed as vmhost.health:

<fact name="vmhost.health" value="false" type="Boolean" />

Shutting Down: When this check box is selected (it has a value of true), the VM host is attempting
to shut down and does not accept provisioning requests.

In the Fact Editor, this fact is listed as vmhost.shuttingdown:

<fact name="vmhost.shuttingdown" value="false" type="Boolean" />

Location: For the vsphere provisioning adapter, this is the ManagedObjectReference path for this
VM host. For other provisioning adapters, this is an optional description of the physical location of
the VM host.

In the Fact Editor, this fact is listed as vmhost.location:

<fact name="vmhost.location" value="" type="String" />

Supports VM Migration: When this check box is selected (it has a value of true), the VM host can
support VM migration. The state of this fact can also depend on the migration capabilities of the
provisioning adapter used to provision the VM.

In the Fact Editor, this fact is listed as vmhost.migration:

<fact name="vmhost.migration" value="true" type="Boolean" />

Supports H/W HVM: When this check box is selected (it has a value of true), the hypervisor on the
VM host can support hardware virtualization.

In the Fact Editor, this fact is listed as vmhost.hvm:

<fact name="vmhost.hvm" value="false" type="Boolean" />

Accounting Group: The default VM host group that you want to be adjusted for VM tracking
statistics.

In the Fact Editor, this fact is listed as vmhost.accountinggroup:

<fact name="vmhost.accountinggroup" value="all" type="String" />

Max Hosted VMs: The maximum number of VM instances allowed on this VM host.

In the Fact Editor, this fact is listed as vmhost.maxvmslots:

<fact name="vmhost.maxvmslots" value="8" type="Integer" />

Max Hosted vCPUs: The maximum number of virtual CPUs that this VM host can support.

In the Fact Editor, this fact is listed as vmhost.vcpu.max:

<fact name="vmhost.vcpu.max" value="8" type="Integer" />

For more information about vCPU slots, see Section 6.8, “vCPU Slots for VM Hosts,” on page 96.
The VM Host Object 89

90 PlateS

novdocx (en) 16 A
pril 2010
Max Virtual Memory: The amount of memory (measured in MB) available to hosted VMs.

In the Fact Editor, this fact is listed as vmhost.memory.max:

<fact name="vmhost.memory.max" value="1000" type="Integer" />

Repositories: The list of repositories (VM disk stores) that are visible to this VM host.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.repositories">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add, remove, or edit repositories in an array of repository choices.

Available VM Resource Groups: This field displays a list of resource groups containing VMs that
are allowed to run on this VM host.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.vm.available.groups">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add, remove, or edit the resource groups (element values) in an array of choices.

Managing Job: The ID of a running job that manages VM operations on this VM host. When this
field is completed, the VM Manager prevents other jobs from initiating provisioning actions. The
fact is cleared when the managing job ends.

In the Fact Editor, this fact is listed as vmhost.controllingjob:

<fact name="vmhost.controllingjob" value="" type="String" />

Needs Resync: When this check box is selected (it has a value of true), you specify that, at the next
opportunity, this VM host is to be probed to resynchronize all the VMs that are managed here.

In the Fact Editor, this fact is listed as vmhost.resync:

<fact name="vmhost.resync" value="false" type="Boolean" />

6.1.3 Provisioning Adapter Config Panel
Adapter Job Name: The name of the provisioning adapter job that manages VM discovery on this
host. Do not change this value unless you have implemented your own discovery job.

In the Fact Editor, this fact is listed as vmhost.provisioner.job:

<fact name="vmhost.provisioner.job" value="vsphere" type="String" />

Username: (Optional) The username required for provisioning on the VM host.

In the Fact Editor, this fact is listed as vmhost.provisioner.username:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="vmhost.provisioner.username" value="" type="String" />

Password: (Optional) The password required for provisioning on the VM host.

In the Fact Editor, this fact is listed as vmhost.provisioner.password:

<fact name="vmhost.provisioner.password" value="" type="String" />

6.1.4 Guest VM Monitor Information Panel
Current VM Count: (Read Only) The current number of active VM instances.

In the Fact Editor, this fact is listed as vmhost.vm.count:

<fact name="vmhost.vm.count" value="0" type="Integer" />

Available vCPUs: The number of vCPUs available on this VM host.

In the Fact Editor, this fact is listed as vmhost.vcpu.available:

<fact name="vmhost.vcpu.available" value="8" type="Integer" />

For more information, see Section 6.8, “vCPU Slots for VM Hosts,” on page 96.

Available Virtual Memory: The amount of memory (measured in MB) available to new VMs.

In the Fact Editor, this fact is listed as vmhost.memory.available:

<fact name="vmhost.memory.available" value="1000" type="Integer" />

VM Image Counts: The dictionary of running instance counts for each running VM template.

In the Fact Editor, this fact is listed as a dictionary:

<fact name="vmhost.vm.templatecounts">
 <dictionary>
 <dictelement key="ads">
 <time>12:00 AM</time>
 </dictelement>
 </dictionary>
</fact>

You can edit the dictionary elements by clicking the button to open the VM Image Counts
dialog box, then adding or removing the names in the dictionary.

Running VM Instances: (Read Only) A list of active VM instances.

In the Fact Editor, this fact is listed as an array:

<fact name="vmhost.vm.instanceids">
 <array type="String">
 </array>
</fact>

Load Index (Slots): (Read Only) The current loading index of resource slots, which is a ratio of the
active hosted VMs to the specified maximum number of VMs allowed on this host. Each provision
VM takes up one slot. For more information, see Max Hosted VMs.

In the Fact Editor, this fact is listed as vmhost.loadindex.slots:
The VM Host Object 91

92 PlateS

novdocx (en) 16 A
pril 2010
<fact name="vmhost.loadindex.slots" value="0.1250" type="Real" />

Load Index (Memory): (Read Only) The current loading index for memory, which is a ratio of the
virtual memory consumed on this VM host to the specified maximum amount of memory allocated
to this host.

In the Fact Editor, this fact is listed as vmhost.loadindex.virtualmemory:

<fact name="vmhost.loadindex.virtualmemory" value="0.0000" type="Real" />

6.2 The Policies Page
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon and selecting Edit Policy. Remember
to click the save icon when your changes are complete..

6.3 The Health Debugger Page
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Chapter A.3, “The Health Debugger,” on page 189.

6.4 The Constraints/Facts Page
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. By
building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can individually
change the functionality of any system resources by managing an object’s facts and constraints. The
Orchestrate Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only. Facts with mode r/o have read-
only values, which can be viewed (using the pencil icon) but changes cannot be made.

For information about using the Fact Editor on this page to rename VM host objects, see Section 6.6,
“VM Host Object Naming and Renaming,” on page 93

6.5 The Action History Page
The Action History tab is displayed in the administrative view of the Repository object. When you
select the Action History tab, a table displays on the Action History page with a list of the history for
all VM provisioning actions performed on this Grid object.

The Orchestrate Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action
status is not polled. Click the refresh icon in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Development Client”in the PlateSpin Orchestrate 2.5 Virtual Machine
Management Guide.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
6.6 VM Host Object Naming and Renaming
Some VM host names (or VM host Cluster names) are generated by the Orchestrate system and can
therefore receive generic, arbitrary names such as host2_demoAdapter, host3_demoAdapter, and
so on. VM hosts you name at creation time might also change later in their purpose or facilities.

As the quantity of these VM host objects grows in your grid, you might find it helpful or necessary
to rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Development Client interface, the VM Client interface, the
Server Portal, and in optional zos and zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these VM host objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A VM host object’s name is stored in the ${objectType}.displayname fact, which exists on
every Grid object type, even those objects that cannot be renamed.

You can rename a VM host object (or a VM host Cluster object) in the Orchestrate Development
Client using one of three methods:

Right-click the VM host object in the Explorer tree, then select Rename to allow editing of the
display name.
Triple-click the VM host object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the VM host object .displayname fact
and then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.

NOTE: Even after being renamed, the VM host object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.

6.7 Unique VM Host Cluster Facts
There are several VM host Cluster related facts that are not found in a regular VM host object. This
section contains detail about those facts.

Section 6.7.1, “Orchestrate Facts in the VM Host Cluster Object,” on page 93
Section 6.7.2, “Orchestrate Facts in a VM Host Residing in a Cluster,” on page 94
Section 6.7.3, “Orchestrate Facts in VMs Hosted in Clusters,” on page 95

6.7.1 Orchestrate Facts in the VM Host Cluster Object
Any vSphere clusters discovered by PlateSpin Orchestrate are listed in the Development Client as
members of a convenience group (for example, a group named clusters_vsphere). The following
table lists the read-only, cluster-related facts in a VM host Cluster object.
The VM Host Object 93

94 PlateS

novdocx (en) 16 A
pril 2010
Table 6-1 Cluster-Related Facts in a Cluster Object

6.7.2 Orchestrate Facts in a VM Host Residing in a Cluster
The following table lists the read-only, cluster-related facts in a virtual or physical machine with an
installed Orchestrate Agent and residing in a cluster.

Table 6-2 Cluster-Related Facts in a VM Host Residing in a vSphere Cluster

Fact Name Type Description

vmhost.cluster.vmhosts String[] This string array lists all of the VM
hosts that are members of this cluster.

vmhost.location String The data center Managed Object
Reference (MOR) path to the cluster.

vmhost.vphere.cluster.das.admission_c
ontrol_enabled

Boolean If this fact value is true, the VM host
cluster has HA configuration to use
admission control.

NOTE: HA was originally named
“Dynamic Availability Service” (DAS)
in VMware. This is the origin of the
.das. prefix.

vmhost.vphere.cluster.das.enabled Boolean If this fact value is true, HA is turned
on in this cluster.

vmhost.vphere.cluster.drs.allow_behav
ior_override

Boolean Whether VMs can specify their own
placement behavior.

vmhost.vphere.cluster.drs.default_beh
avior

String Specifies manual, partially automated,
or fully automated VM placement.

vmhost.vphere.cluster.drs.enabled Boolean If this fact value is true, DRS is turned
on in this cluster.

vmhost.vphere.pools Dictionary The mapping of the pool MOR path to
dictionaries of pool configuration
values.

vmhost.type String The “type” differentiation for clusters
vs. VM hosts (the value is either
vmhost or vmhostcluster.

Fact Name Type Description

vmhost.cluster String[] The ID of the cluster that contains this
host.

vmhost.type String The “type” differentiation for clusters
vs. VM hosts (the value is either
vmhost or vmhostcluster.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
6.7.3 Orchestrate Facts in VMs Hosted in Clusters
The following table lists the read-only, cluster-related facts in a VM hosted in vSphere clusters.

Table 6-3 Cluster-Related Facts in VMs Hosted in Clusters

Fact Name Type Description

resource.provision.vmhost String The ID of the VM host cluster or VM host that
contains this VM.

When provisioning or migrating to a cluster, this
value is initially the cluster ID. On subsequent
resync or discovery or when using the
VsphereUpdate daemon, this is set to the value of
the selected VM host within the cluster.

resource.vm.pool String The MOR path of the resource pool that contains
this VM.

 This value is also a key in the
vmhost.vsphere.pools dictionary.

resource.vm.vmhost.location String The MOR path of the VM host cluster that
contains this VM.

This is always the cluster if the VM host is in a
cluster; otherwise, it is the MOR path of the VM
host itself.

resource.vm.vsphere.cpu.limit Integer The maximum amount (in MHz) of CPU
resources to be used by this VM.

resource.vm.vsphere.cpu.reservat
ion

Integer The minimum amount (in MHz) of CPU resources
guaranteed to this VM.

resource.vm.vsphere.cpu.shares.l
evel

String The relative amount (assigned a value of low,
normal, high, or custom) of CPU allocated for this
VM.

resource.vm.vsphere.cpu.shares.c
ustom

Integer The custom amount of relative CPU for this VM.

This fact is valid only when the value for the
resource.vm.vsphere.cpu.shares.level
fact is “custom.”

resource.vm.vsphere.memory.limit Integer The maximum amount (measured in MB) of
memory resources to be used by this VM.

resource.vm.vsphere.memory.reser
vation

Integer The minimum amount (measured in MB) of
memory resources guaranteed to this VM.

resource.vm.vsphere.memory.share
s.level

String The relative amount (assigned a value of low,
normal, high, or custom) of memory specified for
this VM.
The VM Host Object 95

96 PlateS

novdocx (en) 16 A
pril 2010
6.8 vCPU Slots for VM Hosts
In PlateSpin Orchestrate, a vCPU represents a logical CPU. It provides a way to set up limits for
allocating CPUs on VM hosts. These limits let you specify how many vCPUs should be hosted by
each VM host so that you can control how much CPU processing power is available. If all vCPUs
are in use, a subsequent provision can be denied or made to wait. This lets you ensure the quality of
service you want to maintain in the data center.

When a VM is provisioned, Orchestrate runs a constraint check on every suitable VM host to
determine if the number of available vCPUs on the VM host is sufficient for a VM. If a VM host
with sufficient available vCPUs is not available, the provision request waits until one becomes
available or (depending on VM facts) the request is denied.

Using vCPU facts differs from using the existing slot fact (vmhost.maxvmslots). The maxvmslots
fact provides basic control of the number of VMs allocated to a VM host — useful for limiting VMs
because of license restrictions or for generally limiting the VMs being managed. The vCPU facts are
similar to the memory limit facts, giving you more control to avoid overloading a VM host and
letting you ensure quality of service.

This section includes information about how the vCPU facts are used in PlateSpin Orchestrate.

Section 6.8.1, “Configuring vCPUs on VM Hosts,” on page 96
Section 6.8.2, “Configuring vCPUs on VM Host Clusters,” on page 97
Section 6.8.3, “Configuring vCPUs on VMs,” on page 97

6.8.1 Configuring vCPUs on VM Hosts
There are two vCPU facts displayed on the VM host Info page in the Orchestrate Development
Client:

Max Hosted vCPUs: This value (Integer) represents the maximum number of vCPUs that the
VM host can support. The fact name is vmhost.vcpu.max.
Available vCPUs: This value (Integer) represents the number of virtual CPUs available on this
host. The fact name is vmhost.vcpu.available.

The vmhost.vcpu.available value changes when a VM is provisioned or shut down on that VM
host. If the vmhost.vcpu.max fact is set to -1 (unlimited), the vmhost.vcpu.available value
changes to -1 (unlimited). When set to unlimited, no counting occurs, so PlateSpin Orchestrate does
not check vCPU limits.

resource.vm.vsphere.memory.share
s.custom

Integer The custom amount of relative memory for this
VM.

This fact is valid only when the value for the
resource.vm.vsphere.memory.shares.le
vel fact is “custom.”

Fact Name Type Description
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
When a VM host object is created (during discovery), the vmhost.vcpu.max value is set to the
number of physical cores multiplied by a factor of 4. For example, on a Xen VM host that has eight
physical cores, the Orchestrate VM host discovery for Xen creates a VM host object with a
maximum vCPU of 32. The factor value of 4 represents partitioning a physical core to four vCPUs,
which represents 25% capacity.

You can change this default value by creating a policy that sets the vmhost.vcpu.max fact value
and associates the policy either to the VM host or to a Resource Group of VM hosts. In the
preceding Xen VM host example, if you wanted to partition the eight physical cores on a VM host to
50% capacity, you would set the maximum vCPUs to 16, doing so by creating the following policy
and then associating it to the VM host or to a Resource Group of VM hosts:

<policy>
 <vmhost>
 <fact name="vcpu.max" type="Integer" value="16" />
 </vmhost>
</policy>

If you want PlateSpin Orchestrate to allocate vCPUs without checking limits, you can set the
maximum vCPUs to -1, which indicates an unlimited number. You would create the following
policy to make that configuration setting:

<policy>
 <vmhost>
 <fact name="vcpu.max" type="Integer" value="-1 />
 </vmhost>
</policy>

6.8.2 Configuring vCPUs on VM Host Clusters
Because the VM host Cluster object represents a set of VM hosts, both vmhost.vcpu.available
and vmhost.vcpu.max facts are sums of the underlying VM host objects. If all of the underlying
VM hosts have their vmhost.vcpu.max values set to -1 (unlimited), then the corresponding
vmhost.vcpu.max fact in the VM host Cluster is -1 (unlimited). This also means that no counting
or checking occur for vCPU limits. This is used in scenarios where you rely on the underlying
hypervisor to account for vCPUs rather than PlateSpin Orchestrate. For example, if you have set up
vSphere with DRS and clustering, you do not need PlateSpin Orchestrate to do any checking.

NOTE: The Orchestrate vsphere provisioning adapter sets the vmhost.vcpu.max fact value to -1
(unlimited) for DRS-enabled VM host clusters.

6.8.3 Configuring vCPUs on VMs
An existing vCPU fact (resource.vm.vcpu) specifies the number of vCPUs for a VM. This fact is
set on VM image discovery. You can view it in the Development Client on the VM object Admin
view on the Info/Groups page. The Virtual Machine Configuration pane on this page has a Host
CPU Number field where this fact is set.

In the VM Hosts Monitor view, the tool tip for a VM host displays the following:

..Total vCPUs: xx, Available vCPUs: xx
The VM Host Object 97

98 PlateS

novdocx (en) 16 A
pril 2010
Figure 6-1 Tool Tip Text for VM Host vCPU Slots

These values change when a VM is provisioned or shut down. For example, if the
vmhost.vcpu.max fact were set to -1 (unlimited), then the tool tip would show “-1” for both total
and available.
pin Orchestrate 2.5 Development Client Reference

7
novdocx (en) 16 A

pril 2010
7The Virtual Disk Object

This section includes the following information:

Section 7.1, “Understanding the Virtual Disk Object,” on page 99
Section 7.2, “Viewing Virtual Disk Configuration in the Development Client,” on page 104

7.1 Understanding the Virtual Disk Object
A virtual disk (vDisk) represents any type of physical disk (such as a file-backed disk image, an ISO
image file, a physical hard drive, a block device, a CD/DVD device, or a block device) associated to
a VM. The vDisk objects are discovered, along with their associated VM, when a “Discover VM
Images” job is run on a repository.

The vDisk is modeled as a Grid object, located as a subordinate to the VM Grid object in the
Explorer Tree (of the Development Client). In the Explorer Tree, a vDisk is given the form
vmname_vDisk<n> where <n> represents the numerical order in which this vDisk was discovered,
with 1 being appended to the name of the first vDisk discovered or created. For example,
suse11_vdisk1 would be the name of the first disk discovered for a VM with the Grid ID suse11.
Each additional vDisk is incremented by one, so the second vDisk in this example would be named
suse11_vdisk2.

This section includes the following information:

Section 7.1.1, “Creating Or Deleting a vDisk in the Development Client,” on page 99
Section 7.1.2, “Sharing Virtual Disks Among VM Hosts,” on page 102
Section 7.1.3, “Moving Virtual Disks,” on page 102

7.1.1 Creating Or Deleting a vDisk in the Development Client
This section includes the following information:

“Creating and Configuring a Virtual Disk” on page 99
“Deleting a Virtual Disk” on page 101

Creating and Configuring a Virtual Disk

You might want to manually create a vDisk in a scenario similar to any of the following:

When you want to create a “blank” disk image file for the VM. In this scenario, the disk image
does not actually reside on the file system, but a disk image of the specified size (measured in
MB) should be created at the location specified for use by the VM.

NOTE: This is essentially a blank file, until used by the VM.

When PlateSpin Orchestrate might not have discovered the vDisk objects correctly, such as
omitting a disk that should exist. You need to manually correct the incorrect discovery.
The Virtual Disk Object 99

100 PlateS

novdocx (en) 16 A
pril 2010
A VM that already exists needs to have patches applied to it. The patches are delivered through
an ISO file, which was not configured to be attached to the VM. This configuration lets the
administrator configure the VM with access to the ISO disk image, then apply the patches, and
then later delete the vDisk object, returning the VM to its original configuration.
You need to manually add the vDisk, run the Save Config command from the Development
Client, and then apply the patches to the running VM. Later, you shut down the VM, delete the
vDisk object from PlateSpin Orchestrate, and then run the Save Config command again.
The scenario includes configuring the VM to use the existing ISO file (create vDisk object,
runnning Save Config), and then de-configuring the VM to no longer use the ISO file (delete
vDisk object, run saveConfig).

NOTE: At the end of this scenario, only the vDisk object from PSO is deleted, not the ISO file.

To create a virtual disk in the PlateSpin Development Client, you can either right-click the VM
where you want to create the vDisk, then select Create Virtual Disk (if you do this, you can skip to
Step 4 below) or you can use the following procedure from the Development Client menu:

1 From the PlateSpin Development Client, select Actions > Create Virtual Disk to display the
Create a New Virtual Disk dialog box.

2 In the VM drop-down list, select the name of the VM where you want to add a vDisk, then click
Create.

3 When you have created all of the vDisks you need, click Close.
4 Select the newly created vDisk object in the Explorer tree to view the Info/Groups page of the

Admin view.
5 On the Info/Groups page, configure the following settings:

Type: Specifies the vDisk type as the VM host sees it.
Description: Describes the vDisk with any text that you choose
Healthy: Designates the health state of the vDisk.
Moveable: Specifies whether the disk image can be copied (relocated) with the VM when
the VM is moved (relocated) to another repository. For more information, see “Moveable”
later in this section.
Repository: The repository where this disk location path resides.
Location: The path (location) to the disk image.

If you specify a location to a disk that already exists, the existing disk file is used and
the VM configuration is modified accordingly to use this existing disk.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
If you specify a path to a disk that does not exist, an empty disk image file of the
specified size is created.
For a vDisk created for a Hyper-V VM, you need to provide the complete path of that
vDisk file.
To form the path, you need to know the repository path where the VM currently
resides, the vDisk name, which is the name you give it plus the “ .vhd” extension.
For example, the syntax would be
<value of the “repository.preferredpath” fact>\<your_vhd_filename>.vhd

TIP: Make sure that the .vhd file you designate in this field doesn’t already exist in
the path.

Size: The size (measured in MB) of the disk image.
6 Click the save icon to save the fact changes you have made.
7 In the Explorer tree, right-click the VM object where you added the vDisk, then select Save

Config to apply the changes to the VM’s configuration.

Deleting a Virtual Disk

You might want to manually delete a vDisk in at least two scenarios.

When PlateSpin Orchestrate might not have discovered the vDisk objects correctly, such as
adding a disk that should not exist. The administrator needs to manually correct the incorrect
discovery.
A VM that already exists needs to have patches applied to it. The patches are delivered through
an ISO file, which was not configured to be attached to the VM. This configuration lets the
administrator configure the VM with access to the ISO disk image, then apply the patches, and
then later delete the vDisk object, returning the VM to its original configuration.
The administrator needs to manually add the vDisk, run the Save Config command from the
Development Client, and then apply the patches to the running VM. Later, the administrator
shuts down the VM, deletes the vDisk object from PlateSpin Orchestrate, and then runs the
Save Config command again.
The scenario includes configuring the VM to use the existing ISO file (create vDisk object,
runnning Save Config), and then de-configuring the VM to no longer use the ISO file (delete
vDisk object, run saveConfig).

NOTE: At the end of this scenario, only the vDisk object from PSO is deleted, not the ISO file.

To delete a virtual disk, you can either right-click the vDisk object in the Explorer, then select Delete
(if you do this, you can skip to Step 4, below), or you can use the following procedure:

1 From the PlateSpin Development Client, select the VM object where the vDisk resides, then
select Delete Virtual Disk to display the Delete a Virtual Disk dialog box.
The Virtual Disk Object 101

102 PlateS

novdocx (en) 16 A
pril 2010
2 In the Source Objects list, select the name of the vDisk (hold down the Ctrl key to select
multiple), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vDisks you want to delete, click Delete to display the Delete
query dialog box.

4 In the dialog box, select Apply to all to delete all of the vDisk objects in the Delete Targets list,
click OK, then click Close.

5 In the Explorer tree, right-click the VM object where you deleted the vDisk, then select Save
Config to apply the changes to the VM's configuration.

NOTE: The Save Config action rewrites the configuration file for the VM (for example,
config.xen), but it does not delete any vDisk files on the file system. In this case, manual deletion
of the vDisk file would be required.

7.1.2 Sharing Virtual Disks Among VM Hosts
For a VM to be provisionable by other VM hosts, all of a VM’s vDisks must be visible in the same
way that the VM’s default repository (resource.vm.repository) is visible to VM hosts. If a VM
has multiple vDisks and each vDisk has a different associated repository, these repositories must
also be visible from a potential VM host.

7.1.3 Moving Virtual Disks
When you move a VM to a new repository, all of its moveable vDisk images (see “Moveable:” on
page 105) are moved with it to be co-located in the same repository. PlateSpin Orchestrate uses the
aggregated size of each moveable vDisk to determine if the designated repository has enough space
for all of the disk images. vDisks that are marked as not moveable stay in place and are not used in
the calculation for the VM disk size.

The following illustration further explains this concept:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 7-1 Example of Moving Virtual Disks with the VM

VM host 1, VM host 2, and VM host 3 all have their own local storage repositories.
VM host 1 has a vDisk located on it. It is designated as a moveable vDisk.
VM host 1 and VM host 2 are also connected to a shared NAS storage repository.
The local repository connected to VM host 1 has a vDisk located on it. It is designated as a
moveable vDisk.
The shared NAS repository has a vDisk located on it. It is designated as a non-moveable vDisk.

NOTE: Shared repositories are not created on discovery. They must be manually created and
the sharing (visibility) configured.

VM host 1 has a VM located on it.
VM host 3 cannot communicate with the NAS repository; its vmhost.repositories fact does
not include the NAS repository in the array, so that repository is not visible to VM host 3.

If you want to move the VM from VM host 1 to another VM host, PlateSpin Orchestrate manifests
the following behavior:

The vDisk sizes used by the VM (on local storage and shared storage) are aggregated and
compared to free space available on the repositories
The only vDisk that would be allowed to copy is the moveable disk. This disk would be copied
to either the shared NAS repository or the local storage on VM host 2.
VM host 3 would not be considered because it does not have access to the unmoveable disk on
the NAS repository.

Local
Storage

Local
Storage

Local
Storage

Shared NAS
Repository

VM
Host 1

VM
Host 2

VM
Host 3

VM

Moveable Vdisk

Non-Moveable Vdisk
The Virtual Disk Object 103

104 PlateS

novdocx (en) 16 A
pril 2010
7.2 Viewing Virtual Disk Configuration in the
Development Client
You can visually expose a vDisk Grid object in the Development Client in two ways:

In the Explorer Tree, select a VM Resource object, then select the Info/Groups tab in the
Admin View to open the VM Info Groups page, then scroll to the Virtual Machine
Configuration panel on that page. You can right-click the vDisk icon in that panel to display
the four tabs in the Virtual Disk Admin view.
In the Explorer Tree, click the expand/collapse icon of a VM Grid object, identify the vDisk
icon, then select the icon to display the four tabs in the Virtual Disk Admin view.

Figure 7-2 The Virtual Disk Info/Groups Page

The page that opens under the Info tab includes fields where you can configure the general
information and attributes (facts) of the vDisk.

NOTE: Whenever you make changes to vDisk object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you
have made, you need to click the Save icon on the Development Client toolbar.

This section includes the following additional information:

Section 7.2.1, “The Virtual Disk Information Panel,” on page 104
Section 7.2.2, “The Virtual Disk Policies Tab,” on page 106
Section 7.2.3, “The Virtual Disk Health Debugger Tab,” on page 106
Section 7.2.4, “The Virtual Disk Constraints/Facts Tab,” on page 107
Section 7.2.5, “Virtual Disk Object Naming and Renaming,” on page 107

7.2.1 The Virtual Disk Information Panel
The Virtual Disk Information panel on the Info page includes the following fields:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
NOTE: Tooltip text is available when you mouse over any of these fields.

Type: This drop down list lets you select one of the vDisk types as the VM host sees it:

file: Specifies this vDisk as a file-backed disk.
block: Specifies this vDisk as a block device.

In the Fact Editor, this fact is listed as vdisk.type:

<fact name="vdisk.type" value="file" type="String" />

Description: Describes the vDisk with any text that you choose.

In the Fact Editor, this fact is listed as vdisk.description:

<fact name="vdisk.description" value="" type="String" />

For a vDisk discovered and managed by the Xen provisioning adapter, this field is usually blank.
Because this is a freeform field, you can enter any text you want here. For a vDisk discovered and
managed by the vSphere provisioning adapter, this field is populated with a display name label
obtained by vSphere and mapped to this vDisk by PlateSpin Orchestrate.

Healthy: For a vDisk managed by Xen, this check box is selected by default, which designates the
vDisk as being in good health.

NOTE: We recommend that you do not change the Healthy value from its default.

In the Fact Editor, this is fact is listed as vdisk.health:

<fact name="vdisk.health" value="true" type="Boolean" />

Moveable: When this check box is selected (its value is true), the vDisk is moveable, which means
that the disk image can be copied to a different repository when the VM moves.

In the Fact Editor, this fact is listed as vdisk.moveable:

<fact name="vdisk.moveable" value="true" type="Boolean" />

If Moveable is unchecked, the disk image must stay at its current location because it cannot be
copied or moved. By default upon discovery, if PlateSpin Orchestrate sees that this vDisk is an ISO
image, the fact is set to false because it is assumed that the administrator doesn’t want to copy ISO
images from one location to another.

Whenever you want to prevent a vDisk from being moved, you can deselect this check box.

VM: (Read Only) Specifies the name of the VM that uses this vDisk.

In the Fact Editor, this fact is listed as vdisk.vm:

<fact name="vdisk.vm" value="mysql" type="String" />

This is a fact junction referencing the associated VM. Conversely, the resource.vm.vdisks fact
visible from the VM Grid object is a fact junction showing the associated vDisks associated with the
VM.
The Virtual Disk Object 105

106 PlateS

novdocx (en) 16 A
pril 2010
Repository: The storage location containing the vDisk image on the VM host. In the case of block
type disks, the repository should be typically set to --none--, which means that it will pass all of the
repository constraints, so this setting would not take effect when choosing a host.

NOTE: Changing this fact after discovery only corrects a possible incorrectly discovered fact.
Changing the storage location does not move the vDisk.

In the Fact Editor, this fact is listed as vdisk.repository:

<fact name="vdisk.repository" value="zos" type="String" />

Location: For file-backed disks, this fact represents the file system path to the vDisk image in the
specified repository.

For example, a vDisk located on an NFS repository datastore would show the URI to the NFS share
with the path to the disk appended to it.

In the case of block type disks, this fact contains the URI to the block device, for example /dev/
hdc, which could represent a CD/DVD tray on a VM host.

In the Fact Editor, this fact is listed as vdisk.location:

<fact name="vdisk.location" value="/var/lib/xen/images/mysql/disk1"
type="String" />

Size: The size (measured in MB) of this vDisk image.

In the Fact Editor, this fact is listed as vdisk.size:

<fact name="vdisk.size" value="2048" type="Integer" />

The disk size value for each moveable vDisk on a VM is aggregated by PlateSpin Orchestrate into
the resource.vm.vdisksize fact, which is used to determine if the VM can relocate from one
repository to another, given that the new repository has enough free space to store the VM.

7.2.2 The Virtual Disk Policies Tab
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy and clicking the
Save icon.

7.2.3 The Virtual Disk Health Debugger Tab
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Chapter A.3, “The Health Debugger,” on page 189.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
7.2.4 The Virtual Disk Constraints/Facts Tab
To support constraining a VM’s provision actions based on more than one disk’s repository (that is,
more than just resource.vm.repository), the vDisk can be referenced in constraints. The vDisk
constraints are used to assign VM hosts during actions such as provisioning, building, or migrating.
You can write constraints against attributes of disks (such as the repository where the vDisk resides)
and against the available VM host repositories.

The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can
individually change the functionality of any and all system resources by managing an object’s facts
and constraints. The Orchestrate Server assigns default values to each of the component facts,
although they can be changed at any time by the administrator, unless they are read-only. Facts with
mode r/o have read-only values, which can be viewed (using the edit pencil icon) but changes
cannot be made.

IMPORTANT: Several custom facts for the vDisk object can be added at discovery time, and vary
according to the VM technology that manages the respective vDisk. These facts are documented in
the PlateSpin Orchestrate 2.5 Developer Guide and Reference.

For more information about using the Fact Editor on this page to rename the Virtual Disk object, see
Section 7.2.5, “Virtual Disk Object Naming and Renaming,” on page 107.

7.2.5 Virtual Disk Object Naming and Renaming
Some resource names are generated by the Orchestrate system and can therefore receive generic,
arbitrary names such as mysql-vdisk1, mysql-vdisk2, and so on. A Virtual Disk (vDisk) you
name at creation time might also change later in its purpose or facilities.

As the quantity of these vDisk objects grows in your grid, you might find it helpful or necessary to
rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Development Client interface, the VM Client interface, the
Server Portal, and in optional zos and zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these vDisk objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A vDisk object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a vDisk object in the Orchestrate Development Client using one of three methods:

Right-click the vDisk object in the Explorer tree, then select Rename to allow editing of the
display name.
Triple-click the vDisk object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the vDisk object .displayname fact and
then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.
The Virtual Disk Object 107

108 PlateS

novdocx (en) 16 A
pril 2010
NOTE: Even after being renamed, the vDisk object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.
pin Orchestrate 2.5 Development Client Reference

8
novdocx (en) 16 A

pril 2010
8The Virtual NIC Object

This section includes the following information:

Section 8.1, “Understanding the Virtual NIC Object,” on page 109
Section 8.2, “Viewing the Virtual NIC Configuration in the Development Client,” on page 112

8.1 Understanding the Virtual NIC Object
A virtual network interface card (vNIC) represents the configuration of a VM connected to a
network. A VM can be configured to have multiple vNICs. When a VM is provisioned, each of its
associated vNICs can be attached to a Virtual Bridge in order to gain connectivity to a specified
network. The vNIC objects are discovered, along with their associated VM, when a “Discover VM
Images” job has been run on a repository.

The vNIC is modeled as a Grid object, located as a subordinate to the VM Grid object in the
Explorer Tree (of the Development Client). A vNIC is given the form of vmname_vnic<n> where
<n> is appended to indicate the order of discovery or creation of the vNIC. For example,
redhat_vnic1 would be the name of the first NIC discovered for a VM with the Grid ID redhat.
Each additional vNIC would be incremented by one, so the second vNIC in this example would be
named redhat_vnic2.

This section includes the following information:

Section 8.1.1, “The Purpose of the Virtual NIC,” on page 109
Section 8.1.2, “Creating Or Deleting a vNIC in the Development Client,” on page 109

8.1.1 The Purpose of the Virtual NIC
A vNIC represents the network interface configuration for a virtual machine. A vNIC is linked to a
network by connecting to a virtual network bridge (vBridge). A group of vBridge objects is
represented as a Network group in the Explorer Tree. By convention, during VM host discovery, any
vBridges that are configured with the same name are assumed to be part of the same network.

For more information, see Chapter 9, “The Network Group and its Virtual Bridge Objects,” on
page 119.

8.1.2 Creating Or Deleting a vNIC in the Development Client
Although a vNIC is generally discovered on a VM, you can also manually create or delete a vNIC.
This section includes the following information:

“Creating a Virtual NIC” on page 110
“Creating a Virtual NIC for a Hyper-V VM” on page 110
“Deleting a Virtual NIC” on page 111
The Virtual NIC Object 109

110 PlateS

novdocx (en) 16 A
pril 2010
Creating a Virtual NIC

You might want to manually create a vNIC anytime you want to give a VM access to a network
configured on the VM host.

To create a vNIC, you can select the VM Grid object in the Explorer tree, then right-click and select
Create Virtual NIC. You can also use the following alternate method:

1 From the PlateSpin Development Client, select Actions > Create Virtual NIC to display the
Create a New Virtual NIC dialog box.

2 In the VM drop-down list, select the name of the VM to which you want to add a vNIC, then
click Create.

3 When you have created all of the vNICs you need, click Close.
4 Select the newly created vNIC object in the Explorer Tree to view the Info/Groups page of the

admin view.
5 On the Info/Groups page, configure the following settings:

MAC Address: The MAC Address assigned to this vNIC. If left empty, or set to asterisk
(*), a MAC address is autogenerated for this vNIC.
Network: The network (vBridge group) that should be used when provisioning the VM.
When a VM is provisioned, any vBridge contained within the specified network group can
be used for attaching the VNIC to the network.

Although the vNIC can be formally created at this point, you can also configure Autoprep or
Sysprep facts used to prepare a personalized version of the VM that can be provisioned later.

6 Click the save icon to save the fact changes you have made.
7 In the Explorer tree, right-click the VM object to which you added the vNIC, then select Save

Config to apply the changes to the VM's configuration.

IMPORTANT: If you do not run the Save Config action after configuring the vNIC, any
vNICs that were added to the grid or vNIC settings that were modified could be lost.

Creating a Virtual NIC for a Hyper-V VM

Use the following steps to create a vNIC for a Hyper-V VM:

1 Right-click the VM for which you want to create a vNIC, select Create Virtual NIC.
2 In the Explorer tree, select the vNIC object you created in the previous step, then from the

Admin view, select the Constraints/Facts tab to open the Constraints/Facts page.
3 In the Constraints/Facts page, click the add a fact button to open the Add Fact dialog box.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
4 In the dialog box, add a custom fact for each of the items in the table below.

5 In the Explorer tree, right-click the VM object to which you added the vNIC, then select Save
Config to apply the changes to the VM's configuration.

IMPORTANT: If you do not run the Save Config action after configuring the vNIC, any
vNICs that were added to the grid or vNIC settings that were modified could be lost.

Deleting a Virtual NIC

Although uncommon, you might want to manually delete a vNIC when you no longer want the VM
to have access to a specified network on the VM host. For example, if the initial need for connecting
the VM to a network no longer exists or the network is going to become private and the VM should
not have access you would delete the virtual NIC that allows connectivity.

To delete a virtual NIC, you can select the vNIC object in the Explorer tree, then right-click and
select Delete, or you can use the following procedure:

1 From the PlateSpin Development Client, select Actions> Delete Virtual NIC to display the
Create a New Virtual NIC dialog box.

Fact name Type Value and Description

vnic.type String SyntheticEthernetPort

or

EmulatedEthernetPort

SyntheticEthernetPort is the default vNIC type. Use
the EmulatedEthernetPort type to perform a network-
based installation of the guest OS or when integration
services are not installed in the guest OS.

vnic.mac String Provide a valid MAC address.

vnic.static_mac_address Boolean true or false. When set to true, the provided MAC
address (vnic.mac) is used to set for this adapter,
otherwise it is dynamically set by the Hyper-V system.

vnic.network String Copy the value of group.id fact from the networks
to which you want to attach the vNIC.
The Virtual NIC Object 111

112 PlateS

novdocx (en) 16 A
pril 2010
2 In the Source Objects list, select the name of the vNIC (hold down the Ctrl key to select
multiple), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vNICs you want to delete, click Delete to display the Delete
query dialog box.

4 In the dialog box, select Apply to all to delete all of the vNIC objects in the Delete Targets list,
click OK, then click Close.

5 In the Explorer tree, right-click the VM object where you deleted the vNIC, then select Save
Config to apply the changes to the VM's configuration.

NOTE: You must run the Save Config action to confirm the deletion of the vNIC. If you do not run
this action, the vNIC is not deleted from the VM’s configuration.

8.2 Viewing the Virtual NIC Configuration in the
Development Client
You can visually expose a vNIC Grid object in the Development Client in two ways:

In the Explorer Tree, select a VM Resource object, then select the Info/Groups tab in the
Admin View to open the VM Info Groups page, then scroll to the Virtual Machine
Configuration panel on that page. You can right-click the vNIC icon in that panel to display the
four tabs in the Virtual Disk Admin view.
In the Explorer Tree, click the expand/collapse icon of a VM Grid object, identify the vNIC
icon, then select the icon to display the four tabs in the Virtual NIC Admin view.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 8-1 The Virtual NIC Info/Groups Page

The page that opens under the Info/Groups tab includes fields where you can configure the general
information and attributes (facts) of the vNIC.

NOTE: Whenever you make changes to vNIC object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you
have made, you need to click the Save icon on the Development Client toolbar.

This section includes the following additional information:

Section 8.2.1, “The Virtual NIC Info Panel,” on page 113
Section 8.2.2, “The Virtual NIC Policies Tab,” on page 117
Section 8.2.3, “The Virtual NIC Health Debugger Tab,” on page 117
Section 8.2.4, “The Virtual NIC Constraints/Facts Tab,” on page 117
Section 8.2.5, “Virtual NIC Object Naming and Renaming,” on page 117

8.2.1 The Virtual NIC Info Panel
The Virtual NIC Info panel on the Info/Groups page includes the following sections:

“Show Inherited Fact Values Check Box” on page 113
“Virtual NIC Information” on page 114
“Autoprep/Sysprep Network Adapter” on page 115

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached and/or
inherited policies. Such fact values are read only (non-editable).
The Virtual NIC Object 113

114 PlateS

novdocx (en) 16 A
pril 2010
Virtual NIC Information

The Virtual NIC Information panel on the Info page includes the following fields:

NOTE: Tool tip text is available when you mouse over any of these fields.

Description: A free-form field you can use to add any description about this vNIC.

In the Fact Editor, this fact is listed as vnic.description:

<fact name="vnic.description" value="" type="String" />

Healthy: In most cases, this check box is selected by default, which designates the vNIC as being in
good health.

NOTE: We recommend that you do not change the Healthy value from its default.

In the Fact Editor, this is fact is listed as vnic.health:

<fact name="vnic.health" value="true" type="Boolean" />

MAC Address: Specifies the MAC address assigned to this vNIC. An empty string implies an auto-
generated MAC address, as does an asterisk (*).

When the VM appears on the network, this will be its MAC identifier. A MAC address must be
unique on the network to avoid routing conflicts.

There are some situations when you might want to define a static MAC address. For example, if a
VM uses DHCP, you might want the DHCP service on the network to give the VM a static address.
When the VM boots up and attempts to get an IP address, it contacts the DHCP server, which sees
its statically-defined MAC address and then provides the same IP address (not a new one) each time
the VM boots up. In this way, the VM is consistently configured with the same IP address. You
might also want to define a static MAC address for audit trails or other security reasons.

In the Fact Editor, this fact is listed as vnic.mac:

<fact name="vnic.mac" value="" type="String" />

vBridge: Specifies the name of the actual host bridge used by this vNIC. When the VM is not
running, this field is blank. When a VM is provisioned, a vBridge is chosen for this vNIC based on
the available VM hosts and the specified network group. When the VM is running, the associated
vBridge is identified in this field. For more information, see Chapter 9, “The Network Group and its
Virtual Bridge Objects,” on page 119.

In the Fact Editor, this read-only fact is listed as vnic.vbridge:

<fact name="vnic.vbridge" value="" type="String" />

VM: Specifies the name of the VM resource that uses this vNIC .

In the Fact Editor, this read-only fact is listed as vnic.vm:

<fact name="vnic.vm" value="" type="String" />

This is a fact junction referencing the associated VM. Conversely, the resource.vm.vnics fact
visible from the VM Grid object is a fact junction showing the associated vNICs associated with the
VM. A vNIC cannot be shared between two VMs. Each VM has its own vNIC objects.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Network: The network (vBridge group) that should be used by this vNIC when the VM is
provisioned. This fact will be used in combination with the VM host placement constraints to
choose a suitable vBridge at provision time.

In the Fact Editor, this fact is listed as vnic.network:

<fact name="vnic.network" value="eth1" type="String" />

Autoprep/Sysprep Network Adapter

VMs can be prepared for provisioning by configuring the facts in this panel. Click Define on each
field if the value has not been previously configured.

NOTE: When you change any of the settings in this panel, you need to right click the VM and select
Personalize for the changes to take effect.

MAC Address: The MAC address of the interface. Specify an asterisk (*) to generate a new
MAC address. If the value is not set, the existing vnic.mac is used.

IMPORTANT: An unset MAC Address fact generates a new MAC address. This is contrary to
the current tool tip text.

In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.MACAddress:

<fact name="vnic.provisioner.autoprep.MACAddress" value="" type="String" /
>

Use DHCP: When this check box is selected (it has a value of true), the VM will be configured
to retrieves its network settings from a DHCP server. If the check box is not selected (it has
value of false), you should make sure that the IP address, subnet mask, and gateway address
facts are defined.In the Fact Editor, this fact is listed as
vnic.provisioner.autoprep.UseDHCP:
<fact name="vnic.provisioner.autoprep.UseDHCP" value="false"
type="Boolean" />

IP Address: The IP address for the adapter.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.IPAddress:
<fact name="vnic.provisioner.autoprep.IPAddress" value="" type="String" />

Subnet Mask: The subnet mask for this adapter.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.subnetMask:
<fact name="vnic.provisioner.autoprep.subnetMask" value="" type="String" /
>

Gateway IP Addresses: (Windows Sysprep only) A list of the gateway IP addresses available
to the interface.
In the Fact Editor, this fact is listed as an array:
<fact name="vnic.provisioner.autoprep.Gateways">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box
you can add or remove the IP address or change its order in the array of element choices.
The Virtual NIC Object 115

116 PlateS

novdocx (en) 16 A
pril 2010
DNS from DHCP: (Optional. SUSE VM only) When this check box is selected (it has a value
of true), the SUSE VM is configured to retrieve its DNS server settings from DHCP.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.DNSFromDHCP:
<fact name="vnic.provisioner.autoprep.DNSFromDHCP" value="false"
type="Boolean" />

DNS Server IP Addresses: (Windows VM only) The adapter’s list of DNS servers used for
name lookup.
In the Fact Editor, this fact is listed as an array:
<fact name="vnic.provisioner.autoprep.DNSServers">
 <array type="String">
 </array>
</fact>

DNS Domain: (Windows VM only) The adapter’s DNS domain name.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.DNSDomain:
<fact name="vnic.provisioner.autoprep.DNSDomain" value="" type="String" />

Primary WINS Server: (Windows VM only) The name of the adapter’s primary WINS
server.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.primaryWINS:
<fact name="vnic.provisioner.autoprep.primaryWINS" value="" type="String"
/>

Secondary WINS Server: (Windows VM only) The name of the adapter’s secondary WINS
server.
In the Fact Editor, this fact is listed as vnic.provisioner.autoprep.secondaryWINS:
<fact name="vnic.provisioner.autoprep.secondaryWINS" value=""
type="String" />

DNS Suffixes: (Windows VM only) A list of the suffixes associated with this adapter that are
appended to the name for lookup.
In the Fact Editor, this fact is listed as an array:
<fact name="vnic.provisioner.autoprep.DNSSuffixes">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open an array editor. In this dialog box
you can add or remove the DNS suffix or change its order in the array of element choices.
NetBIOS: (Windows VM only) The NetBIOS options for this VM. Options include:

EnableNetBIOSviaDhcp
EnableNetBIOS
DisableNetBIOS

In the Fact Editor this fact is listed as vnic.provisioner.autoprep.netBIOS:
<fact name="vnic.provisioner.autoprep.netBIOS" value="" type="String" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
8.2.2 The Virtual NIC Policies Tab
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy and clicking the
Save icon.

8.2.3 The Virtual NIC Health Debugger Tab
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Chapter A.3, “The Health Debugger,” on page 189.

8.2.4 The Virtual NIC Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can
individually change the functionality of any and all system resources by managing an object’s facts
and constraints. The Orchestrate Server assigns default values to each of the component facts,
although they can be changed at any time by the administrator, unless they are read-only. Facts with
mode r/o have read-only values, which can be viewed (that is, using the edit “pencil” icon) but
changes cannot be made.

For information about using the Fact Editor on this page to rename the Virtual NIC object, see
Section 8.2.5, “Virtual NIC Object Naming and Renaming,” on page 117.

8.2.5 Virtual NIC Object Naming and Renaming
Some resource names are generated by the Orchestrate system and can therefore receive generic,
arbitrary names such as mysql-vnic1, mysql-vnic2, and so on. A Virtual NIC (vNIC) you name at
creation time might also change later in its purpose or facilities.

As the quantity of these vNIC objects grows in your grid, you might find it helpful or necessary to
rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Development Client interface, the VM Client interface, the
Server Portal, and in optional zos and zosadmin commands.

NOTE: Resource object groups (that is, the folders that contain these vNIC objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A vNIC object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a vNIC object in the Orchestrate Development Client using one of three methods:

Right-click the vNIC object in the Explorer tree, then select Rename to allow editing of the
display name.
The Virtual NIC Object 117

118 PlateS

novdocx (en) 16 A
pril 2010
Triple-click the vNIC object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the vNIC object .displayname fact and
then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.

NOTE: Even after being renamed, the vNIC object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.
pin Orchestrate 2.5 Development Client Reference

9
novdocx (en) 16 A

pril 2010
9The Network Group and its Virtual
Bridge Objects

This section includes the following information:

Section 9.1, “Understanding the Network Group and Virtual Bridge Objects,” on page 119
Section 9.2, “Viewing the Virtual Bridge Configuration in the Development Client,” on
page 123

9.1 Understanding the Network Group and
Virtual Bridge Objects

Section 9.1.1, “The Virtual Bridge Object,” on page 119
Section 9.1.2, “The Purpose of the Virtual Bridge,” on page 120
Section 9.1.3, “Creating or Deleting a vBridge in the Development Client,” on page 120
Section 9.1.4, “Virtual Bridge Object Naming and Renaming,” on page 122

9.1.1 The Virtual Bridge Object
In PlateSpin Orchestrate, a group of Virtual Bridge (vBridge) objects is called a Network. It
represents the networks (actually, LANs and VLANs) that are available to that VM host, and can be
shared across multiple VM hosts. Network groups are created automatically during VM and VM
host discovery as their virtual networking settings are determined. By default, PlateSpin Orchestrate
automatically groups vBridges with the same name into a corresponding Network with the same
name, assuming that vBridges with similar names usually refer to the same Network. After
discovery, you can freely reassign the vBridges to other Networks or multiple Networks, depending
on your organization’s physical network topology.

The VLAN Fact

A Virtual LAN (VLAN) provides a “logical” LAN topology for a group of machines that does not
have to depend on the switch hardware to which the machines (virtual or physical) are directly
connected. Modern “smart” network switches can keep track of a “VLAN ID” on network traffic
passing though them. Using this ID, the switches transparently route such traffic to the hosts
configured to use the VLAN specified by the ID.

Using VLANs can reduce the costs of an organization’s physical network infrastructure. For
example, if your organization requires multiple subnets or multi-homed hosts, you won’t have to
buy new equipment for each new subnet or install multiple physical NICs on the physical machines;
this can be done with VLANs using the same common physical network layer. VLANs allow greater
flexibility in managing the network topology.

Where possible, PlateSpin Orchestrate discovers that a VLAN ID is in use on a network. The Virtual
LAN Identifier fact is found on a Network object :

<fact name="group.vlanid" value="" type="String" />
The Network Group and its Virtual Bridge Objects 119

120 PlateS

novdocx (en) 16 A
pril 2010
The fact is populated with a positive integers value upon discovery of an already-existing VM host
configuration. PlateSpin Orchestrate can track a VLAN ID for each network object to allow correct
management of individual VLANs as full-fledged networks.

PlateSpin Orchestrate applies a graphic overlay to the Network icon to signify that the Network
was discovered as a VLAN. In cases where VLAN discovery is not accomplished through
automation, you can also set the VLAN fact value by hand.

9.1.2 The Purpose of the Virtual Bridge
The vBridge is discovered, along with its associated VM, when a discovery job runs on a VM host.
A virtual bridge (vBridge) acts as a “virtual” Ethernet segment contained entirely within the
software of a VM host. The virtual NIC (vNIC) devices on that host’s VMs can each be assigned to
one of the VM host’s vBridges as if they were being physically connected to a LAN.

Virtual bridges can also be associated with one or more physical NICs to combine the virtual LANs
on these hosts into one common virtual LAN. This combined LAN is referred to as as a “Network”
in PlateSpin Orchestrate. Association of virtual bridges is also frequently done to include a “virtual”
LAN on a VM host in the organization’s overall physical LAN topology so the VMs can access
other systems in the organization as if they were directly connected to the switches.

The following points might help you understand the relationship of these objects:

Associating a vNIC to a vBridge is like plugging a physical NIC into an Ethernet switch.
Associating a vBridge with a physical NIC is like connecting two physical switches together
using their uplink ports.
A vBridge can become part of a vLAN by associating it with a physical NIC device that itself is
configured as a VLAN.
A VM host can have multiple vBridges, each of which can be connected to separate physical
networks (for example, through 802.1Q VLAN tagging).
When a VM is provisioned, a Virtual NIC must be connected to a Virtual Bridge in order for
the Virtual NIC to be usable.

In the Explorer Tree, a vBridge is given the form vmhostname_ethn where n represents the
numerical order in which this vBridge was discovered on the VM host, with 0 being appended to the
name of the first vBridge discovered or created. For example, host1_eth0 might be the name of
the first bridge. Each additional vBridge is incremented by one, so the second vBridge in this
example would be named host1_eth1.

9.1.3 Creating or Deleting a vBridge in the Development Client
This section includes the following information:

“Creating a Virtual Bridge” on page 121
“Deleting a Virtual Bridge” on page 121
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Creating a Virtual Bridge

You might want to manually create a vBridge if, for some reason, the discovery process did not find
one of the vBridges in a network. Creating a new vBridge in the Development Client does not “add”
a physical bridge to the network, it only helps to model a physical bridge that was not previously
discovered.

To create a vBridge, you can select the Network object in the Explorer tree, then right-click and
select New Virtual Bridge. You can also use the following alternate method:

1 From the PlateSpin Development Client, select Actions > Create Virtual Bridge to display the
Create a New Virtual Bridge dialog box.

2 In the Source Groups list, select the Network object where you want to add a vBridge, then
click Add to move it to the Target Groups list.

3 In the New Virtual Bridge Name field, enter the name you want to use to identify this vBridge.
The data you enter here is completely free form. When PlateSpin Orchestrate discovers and
names vBridges, it associates them by name as the default practice. This is done for
convenience in locating the objects. A vBridge can be named anything, provided that it is a
legal name for a vBridge on the VM host’s operating system.
It is not necessary to add the <vmhostname>_ prefix on the name. This prefix is automatically
prepended when the new object is created. For example, if you select bridge name sales on
VM host vmh1, the actual object is created as vmh1_sales.

4 Click Create, then click Close.
5 In the Explorer tree, expand the Network group where you created the new vBridge object.
6 Select the new vBridge object to open its Info/Groups admin view.
7 Configure the settings described in Section 9.2.1, “The Virtual Bridge Info/Groups Tab,” on

page 124.
8 Click the save icon to save the fact changes you have made.

Deleting a Virtual Bridge

Although uncommon, you might want to manually delete a vBridge when you no longer want the
VM to have access to a specified network on the VM host. For example, if the initial need for
connecting the VM to a network no longer exists or the network is going to become private and the
VM should not have access you would delete the vBridge that allows connectivity.
The Network Group and its Virtual Bridge Objects 121

122 PlateS

novdocx (en) 16 A
pril 2010
To delete a Virtual Bridge, you can select the vBridge object in the Explorer tree, then right-click
and select Delete, or you can use the following procedure:

1 From the PlateSpin Development Client, select Actions> Delete Virtual Bridge to display the
Create a New Virtual Bridge dialog box.

2 In the Source Objects list, select the name of the vBridge (hold down the Ctrl key to select
multiple), then click Add to move these objects to the Delete Targets list.

3 When you have selected all of the vBridges you want to delete, click Delete to display the
Delete query dialog box.

4 In the dialog box, select Apply to all to delete all of the vBridge objects in the Delete Targets
list, click OK, then click Close.

9.1.4 Virtual Bridge Object Naming and Renaming
Some resource names are generated by the Orchestrate system and can therefore receive generic,
arbitrary names such as host1-eth1, host2-eth1, and so on. A Virtual Bridge (vBridge) you
name at creation time might also change later in its purpose or facilities.

As the quantity of these vBridge objects grows in your grid, you might find it helpful or necessary to
rename them, assigning more meaningful, intuitive names to suit the purpose of the object. The
object’s “display name” is visible in the Development Client interface, the VM Client interface, the
Server Portal, and in optional zos and zosadmin commands.

NOTE: A Network object (that is, the group that contains these vBridge objects) can also be
renamed. Objects such as jobs, events, and users cannot be renamed.

A vBridge object’s name is stored in the ${objectType}.displayname fact, which exists on every
Grid object type, even those objects that cannot be renamed.

You can rename a vBridge object in the Orchestrate Development Client using one of three
methods:

Right-click the vBridge object in the Explorer tree, then select Rename to allow editing of the
display name.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Triple-click the vBridge object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the vBridge object .displayname fact and
then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.

NOTE: Even after being renamed, the vBridge object retains its associated resource ID in the .id
fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.

9.2 Viewing the Virtual Bridge Configuration in
the Development Client
You can visually expose a vBridge Grid object in the Development Client Explorer tree by
selecting a Network object to expand it, then selecting the vBridge you want to view in the Info/
Groups page.

Figure 9-1 The Virtual Bridge Info/Groups Page

The page that opens under the Info/Groups tab includes fields where you can configure the general
information and attributes (facts) of the vBridge.

NOTE: Whenever you make changes to vBridge object facts, the write icon is superimposed on the
object’s icon , signifying that the object has been altered. If you want to save the changes you
have made, you need to click the Save icon on the Development Client toolbar.
The Network Group and its Virtual Bridge Objects 123

124 PlateS

novdocx (en) 16 A
pril 2010
9.2.1 The Virtual Bridge Info/Groups Tab
The page that opens under the Info/Groups tab includes two collapsible sections where you can
configure the general information and attributes of the vBridge.

“The Virtual Bridge Info Panel” on page 124
“The Virtual Bridge Groups Panel” on page 125

The Virtual Bridge Info Panel

The Info panel on the Info/Groups page includes the following information:

“Show Inherited Fact Values Check Box” on page 124
“Network Information” on page 124

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached and/or
inherited policies. Such fact values are read only (non-editable).

Network Information

The Network Information panel on the Info/Groups page for the vBridge Grid object includes the
following fields:

NOTE: Tool tip text is available when you mouse over any of these fields.

Description: Enter a description of the vBridge Grid object.

In the Fact Editor, this fact is listed as vmhost.resource:

<fact name="vbridge.description" value="" type="String" />

Vbridge Enabled: This check box is selected by default. When it is selected (it has a value of true),
the vBridge is enabled and Virtual NICs can be attached to it.

In the Fact Editor, this fact is listed as vbridge.enabled:

<fact name="vbridge.enabled" value="true" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the
Virtual Bridge is designated as being in good health. You can set the health of the object by
selecting or deselecting the health check box. Changing the value in this way has an immediate
effect unless the value is overridden by an attached policy (this follows the normal rules of policy
inheritance). For more information, see Appendix A, “Grid Object Health Monitoring,” on page 187

In the Fact Editor, this is fact is listed as vbridge.health:

<fact name="vbridge.health" value="true" type="Boolean" />

Attached Virtual NICs: This list box lists the Virtual NICs that are attached to this vBridge.

In the Fact Editor, this fact is listed as an array:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="vbridge.vnics">
 <array type="String">
 </array>
</fact>

The list includes vNICs from currently running VMs only. When a VM is not running, PlateSpin
Orchestrate does not consider its vNICS as “currently attached.” This is because vNICs are
configured to associate with Network objects, and the attached vBridge might change, depending on
which host the VM has been provisioned. The list can also change dynamically if the VM is
migrated to another host (and so that host’s vBridge) on the same Network.

The Virtual Bridge Groups Panel

This section of the Info/Groups page lists the groups of vBridge objects (called “Networks”) in the
grid to which this vBridge is associated. Click Choose to open the Network Selection dialog box. In
this dialog box, you can choose which networks to display in the Explorer tree by selecting a group
and then clicking Add or Remove to move it to or from the Source Networks list.

9.2.2 The Virtual Bridge Policies Tab
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object. Click Choose to associate an existing policy with a vBridge.

NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy and clicking the
Save icon.

9.2.3 The Virtual Bridge Health Debugger Tab
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Appendix A.3, “The Health Debugger,” on page 189.

9.2.4 The Virtual Bridge Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a Grid
object. Each Grid object has an associated set of facts and constraints that define its properties. In
essence, by building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can
individually change the functionality of any and all system resources by managing an object’s facts
and constraints. The Orchestrate Server assigns default values to each of the component facts,
although they can be changed at any time by the administrator, unless they are read-only. Facts with
mode r/o have read-only values, which can be viewed (that is, using the edit “pencil” icon) but
changes cannot be made.
The Network Group and its Virtual Bridge Objects 125

126 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

10
novdocx (en) 16 A

pril 2010
10The Repository Object

Repositories are storage areas for VM image files and VM template files.

If a VM’s files are stored on a particular host server, that VM must be run from that host server. If a
VM’s files are stored on a shared repository, that VM can be run on any host server that has access
to the shared repository.

Host servers can have multiple repositories associated with them, and some repository types can be
associated with multiple host servers as shared repositories. A host server can be associated with
repositories stored locally on its server and with shared repositories stored on other machines.

The default size for all repositories is unlimited. To control disk space usage, you can change this
default. For more information, see Capacity (MB): in “Repository Information Subpanel” on
page 128.

The repository groups and their constituent repository objects are displayed in the Explorer panel
and the accompanying Repository Admin View of the Development Client.

Section 10.1, “Right-Click Menu Actions on the Repository Object,” on page 127
Section 10.2, “Repository Groups,” on page 128
Section 10.3, “The Repository Info/Groups Tab,” on page 128
Section 10.4, “The Repository Policies Tab,” on page 134
Section 10.5, “The Repository Health Debugger Tab,” on page 135
Section 10.6, “The Repository Constraints/Facts Tab,” on page 135
Section 10.7, “The Repository Action History Tab,” on page 135
Section 10.8, “Repository Object Naming and Renaming,” on page 135

10.1 Right-Click Menu Actions on the Repository
Object
The Repository object displayed in the Explorer tree has three available actions in the right-click
menu.

Discover VM Images: Use this action on a newly-discovered or a newly-created repository to
populate it with the VMs residing in the mapped datastore location.
Delete: Use this action to delete the Repository object from the Explorer tree in the Orchestrate
Development Client.
Before you delete the Repository object, you need to delete all the VMs contained in that
repository; otherwise, an error message is displayed.
Rename: Use this action to rename the Repository object. For more information, see
Section 10.8, “Repository Object Naming and Renaming,” on page 135.
The Repository Object 127

128 PlateS

novdocx (en) 16 A
pril 2010
10.2 Repository Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter (PA) discovers a
local repository on a VM host. For example, the Xen PA, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a Xen
repository group. You can also create groups manually in the Development Client, either by clicking
the Actions menu and choosing Create Repository Group or by right-clicking the Repository object
(anywhere in the Repository hierarchy) and selecting New Repository Group.

10.3 The Repository Info/Groups Tab
The page that opens under the Info/Configuration tab includes several collapsible sections on the
page where you can configure the general information and attributes of the repository.

Section 10.3.1, “The Info Panel,” on page 128
Section 10.3.2, “Best Practices for Entering Repository File Paths,” on page 133
Section 10.3.3, “Groups,” on page 134

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the Save icon on the Development Client toolbar.

10.3.1 The Info Panel
The following fields on the Information panel provide facts for the Repository object:

“The “Show Inherited Fact Values” Check Box” on page 128
“Repository Information Subpanel” on page 128
“SAN Adapter Configuration” on page 133

The “Show Inherited Fact Values” Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

Repository Information Subpanel

The Repository Information panel on the Info/Groups page includes the following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Description: The nature or purpose of this repository.

In the Fact Editor, this fact is listed as repository.description:

<fact name="repository.description" value="" type="String" />

Repository Enabled: This check box is selected by default. When it is selected (it has a value of
true), VMs can be moved to this repository or they can be provisioned from it.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
In the Fact Editor, this fact is listed as repository.enabled:

<fact name="repository.enabled" value="true" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the
repository is designated as being in good health. You can set the health of the object by selecting or
deselecting the health check box. Changing the value in this way has an immediate effect unless the
value is overriden by an attached policy. For more information, see Appendix A, “Grid Object
Health Monitoring,” on page 187

In the Fact Editor, this is fact is listed as repository.health:

<fact name="repository.health" value="true" type="Boolean" />

Type: Select the repository type for this Repository object by selecting an option from the drop-
down list.

In the Fact Editor, this fact is listed as repository.type:

<fact name="repository.type" value="local" type="String" />

The following table includes information about the various repository types:

Table 10-1 Repository Types and Descriptions

IMPORTANT: If you have a vSphere environment with an iSCSI datastore based on an ESX 3.5
(or previous) host, the Development Client incorrectly displays its type as local rather than SAN.
This misrepresentation affects the accuracy of the VM host assignment (how the repositories are
scored in the plan), and could possibly affect VM migration validation.

To work around this issue, set the type to SAN. You need to check that this setting is retained when
another VM host or Repository discovery is executed.

Repository Type Description Development
Client Icon

local The default repository on a host server. Each host server
starts with its own local repository, which has the same name
as the server’s Resource Grid object.

NAS (Network Attached
Storage)

Represents a NAS device connected to host servers (for
example, NFS mount). This NAS device must be mounted and
available on all host servers associated with this Repository
Grid object.

SAN (Storage Area
Network)

Represents an iSCSI or Fibre Channel SAN. Currently
supported only with the vsphere provisioning adapter.

datagrid The shared datagrid repository (named zos) is located on the
Orchestrate Server and is accessible to all host servers in the
datagrid. By default, each host server has access to the zos
datagrid repository.

virtual Represents an externally managed virtual disk (for example,
Amazon EC2).

The Repository Object 129

130 PlateS

novdocx (en) 16 A
pril 2010
SAN ID: (SAN repositories only) The SAN ID (the Virtual Fabric ID) for this repository.

In the Fact Editor, this fact is listed as repository.id:

<fact name="repository.id" value="test1" type="String" />

Root Location: The repository’s logical root location. You can also think of this as the base
location for all VM files and subdirectories contained within this repository.

In the Fact Editor, this fact is listed as repository.location:

<fact name="repository.location" value="/" type="String" />

The table below provides some examples you can consider as you enter a shared root path in this
field. For more information, see “Best Practices for Entering Repository File Paths” on page 133.

Table 10-2 Repository Types and Root Location Examples

VM Config Search Path: The relative path (from repository.location) to be used during
discover of VM configuration files. This fact also implicitly includes the
resource.preferredpath fact. For xen30 repositories, the default path is /etc/xen/vm.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.searchpath">
 <array>
 <string>/etc/xen/vm</string>
 </array>
</fact>

IMPORTANT: If you use this field, do not include a leading forward slash (/) in the path. For
more information, see “Best Practices for Entering Repository File Paths” on page 133.

The button opens the Attribute element values dialog box, where you can add, remove, or edit
the path (element values) in an array of path choices.

The table below provides some examples you can consider as you enter a search path in this field.

Repository Type Root Location Examples

local / (root)

c:/vm

NAS (Network Attached
Storage)

This is the mount point that is assumed to be the same on every host
server with a connection to this NAS.

/u

/mnt/myshareddisk

SAN (Storage Area
Network)

Not required.

datagrid grid:///vms

virtual / (root)

c:/vm
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Table 10-3 Repository Types and VM Config Search Path Examples

Preferred Storage Path: The relative path (from repository.location) where you want
PlateSpin Orchestrate to place the VM files after a move or a clone operation.

In the Fact Editor, this fact is listed as repository.preferredpath:

<fact name="repository.preferredpath" value="" type="String" />

IMPORTANT: If you use this field, do not include a leading forward slash (/) in the path. For
more information, see “Best Practices for Entering Repository File Paths” on page 133.

Table 10-4 Repository Types and Preferred Storage Path Examples

Capacity (MB): The maximum amount (in MB) of storage space available to VMs. The default (-1)
designates an unlimited amount of space.

In the Fact Editor, this fact is listed as repository.capacity:

<fact name="repository.capacity" value="-1" type="Integer" />

Used Space (MB): The amount (in MB) of storage space used for VMs.

In the Fact Editor, this fact is listed as repository.usedspace:

<fact name="repository.usedspace" value="0" type="Integer" />

Repository Type VM Config Search Path Examples

local /etc/xen/vm

NAS (Network
Attached Storage)

Each of these is the relative path from the location to search for VM configuration
files. Null specifies to search the whole mount.

my_vms

saved_vms

null (no path entry)

SAN (Storage Area
Network)

Not required.

datagrid grid:///vms

virtual

Repository Type Preferred Storage Path Examples

local var/lib/xen/images for Xen VMs

NAS (Network Attached
Storage)

my_vms

SAN (Storage Area Network) Not required.

datagrid grid:///vms

virtual
The Repository Object 131

132 PlateS

novdocx (en) 16 A
pril 2010
Free Space (MB): The amount (in MB) of storage space available to new VMs. The value is always
set to -1, which designates an unlimited amount of space.

In the Fact Editor, this fact is listed as repository.freespace:

<fact name="repository.freespace" value="-1" type="Integer" />

Efficiency: Enter an efficiency coefficient that PlateSpin Orchestrate uses to calculate the cost of
moving VM disk images to and from the repository. This value is multiplied by the disk image size
(in MB) to determine an efficiency score. A score of zero (0) means no cost (very efficient).

In the Fact Editor, this fact is listed as repository.efficiency:

<fact name="repository.efficiency" value="1.0000" type="Real" />

Stored VMs: The VM images stored in this repository. The list is aggregated from individual VM
facts.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.vmimages">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute Element Values dialog
box, where you can add, remove, or edit the VM host IDs (element values) in an array of VM host
ID choices.

Compatible VM Hosts: The VM hosts capable of using this repository. The list is aggregated from
individual VM facts.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.vmhosts">
 <array>
 <string>tszen4_xen30</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute element values dialog box,
where you can add, remove, or edit the VM host IDs (element values) in an array of VM host ID
choices.

Accessed By Provision Adapters: The provisioning adapter jobs that are allowed access to VMs on
this repository.

In the Fact Editor, this fact is listed as an array:

<fact name="repository.provisioner.jobs">
 <array>
 <string>xen30</string>
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add or remove provisioning adapters for the array of provisioning adapter choices.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
NOTE: In the Fact Editor, you edit the provisioning adapter array by using the Attribute Element
Values dialog box.

SAN Adapter Configuration

SAN Adapter Vendor: (SAN repositories only) The name of the vendor of the SAN.This should be
adapter specific, such as iqn, npiv, emc. An empty field (that is, no value in the string) indicates
that bind/unbind is a noop (no operation performed).

In the Fact Editor, this fact is listed as repository.san.vendor:

<fact name="repository.san.vendor" value="" type="String" />

SAN Transport: (SAN repositories only) From the drop-down list, select iSCSI or Fibre Channel
to indicate the type of SAN transport this repository uses.

In the Fact Editor, this fact is listed as repository.san.type:

<fact name="repository.san.type" value="" type="String" />

10.3.2 Best Practices for Entering Repository File Paths
Use the following guidelines in scenarios where you need VM repositories.

“Creating a Repository to Use with New VMs” on page 133
“Creating a Repository to Use with Existing VMs” on page 133
“Creating a Repository for Existing VMs with Shared Root Locations and Separate
Configuration Directories” on page 134

Creating a Repository to Use with New VMs

If you are creating a repository for new VMs that you will eventually provisions:

1 In the Root Location field, specify the location for the new repository.
Example: /vms_new

2 In the Preferred Storage Path field, specify the path to your image file store (relative to the root
location path). This becomes the path for VM configuration files and VM image files when you
associate a VM with this repository.
Example: images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/images.

Creating a Repository to Use with Existing VMs

Use this procedure when you already have VMs in your grid and a store for the VM configuration
and disk image files already exists.

1 In the Root Location field, specify the shared location for this repository.
Example: /vms_new

2 In the VM Config Search Path field, specify the search path to your existing configuration file
store (relative to the Root Location path).
The Repository Object 133

134 PlateS

novdocx (en) 16 A
pril 2010
Example: old_config (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM
configuration files in /vms_new/old_config.

3 In the Preferred Storage Path field, specify the path to your existing image file store (relative to
the root location path).This also becomes the path for VM configuration files and VM image
files when you associate a VM with this repository.
Example: all_images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/all_images.

Creating a Repository for Existing VMs with Shared Root Locations and Separate
Configuration Directories

Use this procedure when you want to create a repository for existing VMs that have a shared root
path but separate configuration file directories such as /vms_new/old_config1 and /vms_new/
old_config2).

1 In the Root Location field, specify the shared location for this repository.
Example: /vms_new

2 In the VM Config Search Path field, specify the search paths to your existing configuration file
store (relative to the Root Location path).
Example: Adjacent to the VM Config Search Path field, click , click Add element, enter
old_config1 (no leading forward slash), click OK, click Add element again, specify
old_config2 (no leading forward slash), then click OK.
Because the fields are concatenated, the provisioning adapter searches for the existing VM
configuration files in the array consisting of /vms_new/old_config1 and /vms_new/
old_config2.

3 In the Preferred Storage Path field, specify the path to your existing image file store (relative to
the Root Location path).This path also becomes the path for VM configuration files and VM
image files after a move or clone when a VM has been associated with this repository.
Example: all_images (no leading forward slash)
Because the fields are concatenated, the provisioning adapter searches for the existing VM files
in /vms_new/all_images.

10.3.3 Groups
This section of the Info/Groups page lists the groups of Repository objects in the grid. Click Choose
to open the repository Group selection dialog box. In this dialog box, you can choose which
Repository Groups to display in the Explorer Panel by selecting a group, then clicking Add or
Remove to move it to or from the Source Repository Groups list.

10.4 The Repository Policies Tab
The Policies tab opens a page that contains a policy viewer for each of the policies associated with a
Grid object.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
NOTE: You can edit a policy by right-clicking a policy icon, selecting Edit Policy, then clicking the
Save icon.

10.5 The Repository Health Debugger Tab
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Appendix A.3, “The Health Debugger,” on page 189.

10.6 The Repository Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a
Grid object. Each Grid object has an associated set of facts and constraints that define its properties.

By building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can individually
change the functionality of any system resources by managing an object’s facts and constraints. The
Orchestrate Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only. Facts with mode r/o have read-
only values, which can be viewed by using the pencil icon, but changes cannot be made.

10.7 The Repository Action History Tab
The Action History tab is displayed in the administrative view of the Repository object. When you
select the Action History tab, a table displays a list of the history for all actions performed on this
Grid object.

The Orchestrate Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action
status is not polled. Click the refresh icon in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Development Client”in the PlateSpin Orchestrate 2.5 Virtual Machine
Management Guide.

10.8 Repository Object Naming and Renaming
Some resource names are generated by the Orchestrate system and can therefore receive generic,
arbitrary names such as host1, host2, host3, and so on. Repositories you name at creation time
might also change later in their purpose or facilities.

As the quantity of these Repository objects grows in your grid, you might find it helpful or
necessary to rename them, assigning more meaningful, intuitive names to suit the purpose of the
object. The object’s “display name” is visible in the Development Client interface, the VM Client
interface, the Server Portal, and in optional zos and zosadmin commands.

NOTE: Repository object groups (that is, the folders that contain these Repository objects) can also
be renamed. Objects such as jobs, events, and users cannot be renamed.

A Repository object’s name is stored in the ${objectType}.displayname fact, which exists on
every Grid object type, even those objects that cannot be renamed.
The Repository Object 135

136 PlateS

novdocx (en) 16 A
pril 2010
You can rename a Repository object in the Orchestrate Development Client using one of three
methods:

Right-click the Repository object in the Explorer tree, then select Rename to allow editing of
the display name.
Triple-click the Repository object in the Explorer tree to allow editing of the display name.
In the Constraints/Facts page, where you can select the Repository object .displayname fact
and then open the Fact Editor to enter a new value for that fact.

As you begin to rename using one of these methods, you will notice that the fact value is pre-
populated with the ${objectType}.id fact. This functions as the name value for the object name
until you decide to change it.

NOTE: Even after being renamed, the Repository object retains its associated resource ID in the
.id fact. This is not editable.

For more information about making the Resource object display names visible from the zos or
zosadmin command line, see the PlateSpin Orchestrate 2.5 Command Line Reference.
pin Orchestrate 2.5 Development Client Reference

11
novdocx (en) 16 A

pril 2010
11The User Object

A User object represents an individual account that is allowed to connect to the PlateSpin
Orchestrate Server. Administrator users are also allowed to connect by using the zosadmin
command line and the PlateSpin Orchestrate Development Client user interfaces.

You can use the Orchestrate Development Client user interface to manually create a User object.
You can create objects automatically if authentication through LDAP or Active Directory is
enabled, or optionally if autoregistration is configured.

The user object icon and the red square user object icon.

Section 11.1, “User Groups,” on page 137
Section 11.2, “The User Info/Groups Tab,” on page 137
Section 11.3, “The User Policies Tab,” on page 143
Section 11.4, “The User Health Debugger Tab,” on page 143
Section 11.5, “The User Constraints/Facts Tab,” on page 144
Section 11.6, “The User Action History Tab,” on page 144

11.1 User Groups
Any group object displayed in the Explorer panel represents a collection of similar object types.
Groups can also be created automatically, such as when a provisioning adapter (PA) discovers a
local repository on a VM host. For example, the Xen PA, upon discovery of a VM host,
automatically creates a local repository for that VM host and places the created repository in a Xen
repository group. You can also create groups manually in the Development Client, either by clicking
the Actions menu and choosing Create User Group or by right clicking a User Group object
(anywhere in the User hierarchy) and selecting New User Group.

11.2 The User Info/Groups Tab
The page that opens under the Info/Configuration tab of the User admin view includes several
collapsible sections on the page where you can configure the general information and attributes of
the user.

Section 11.2.1, “Info,” on page 137
Section 11.2.2, “Groups,” on page 143

NOTE: Whenever you make changes to any Grid object, the write icon is superimposed on the
object’s icon, signifying that the object has been altered. If you want to save the changes you have
made, you need to click the save icon on the Development Client toolbar.

11.2.1 Info
The following fields on the Information panel provide facts for the User object:

“Show Inherited Fact Values Check Box” on page 138
The User Object 137

138 PlateS

novdocx (en) 16 A
pril 2010
“User Information” on page 138
“Personal Information” on page 139
“Job Information” on page 140
“Accounting Information” on page 140
“Job Control” on page 141
“Quota Information” on page 142

Show Inherited Fact Values Check Box

Select this check box to show facts with overridden values supplied through attached or inherited
policies. These fact values are read only (non-editable).

User Information

The User Information panel on the Info/Groups page includes the following fields:

NOTE: Tooltip text is available when you mouse over any of these fields.

Account Enabled: This check box is selected by default.When the check box is selected, the user is
allowed to log in and run jobs..

In the Fact Editor, this fact is listed as user.enabled:

<fact name="user.enabled" value="true" type="Boolean" />

Online: When this check box is selected (it has a value of true), the user is currently logged in to the
server.

In the Fact Editor, this fact is listed as user.online:

<fact name="user.online" value="false" type="Boolean" />

Healthy: This check box is selected by default. When it is selected (it has a value of true), the user is
designated as being in good health. You can set the health of the object by selecting or deselecting
the health check box. Changing the value in this way has an immediate effect unless the value is
overriden by an attached policy. For more information, see Appendix A, “Grid Object Health
Monitoring,” on page 187

In the Fact Editor, this is fact is listed as user.health:

<fact name="user.health" value="true" type="Boolean" />

External Groups: A list of external groups (for example, LDAP) that this user belongs to.

In the Fact Editor, this fact is listed as an array:

<fact name="user.external.groups">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Attribute element values dialog box,
where you can add, remove, or edit the name and value for every user environment you want to use.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Personal Information

First Name: The user’s first name.

In the Fact Editor, this fact is listed as user.name.first:

<fact name="user.name.first" value="" type="String" />

Last Name: The user’s last name.

In the Fact Editor, this fact is listed as user.name.last:

<fact name="user.name.last" value="" type="String" />

Password: The user’s hashed login password.

In the Fact Editor, this fact is listed as user.password:

<fact name="user.password" value="kNLj1_Fc96C3ajVXcqQEGZBRrbivgxhhzK3TKLpP"
type="String" />

IMPORTANT: The System User password should not be changed. If you try to change this
password by using the Orchestrate Development Client, the password does not actually change and
no warning is posted that the change was unsuccessful. There is no indication of authentication
failure until you try to log in with the “new” password.

EMail: The user’s e-mail address.

In the Fact Editor, this fact is listed as user.name.email:

<fact name="user.name.email" value="" type="String" />

City: The name of the city where the user is located.

In the Fact Editor, this fact is listed as user.location.city:

<<fact name="user.location.city" value="" type="String" />

State: The name of the state or province where the user is located.

In the Fact Editor, this fact is listed as user.location.state:

<fact name="user.location.state" value="" type="String" />

Country: The name of the country where the user is located.

In the Fact Editor, this fact is listed as user.location.country:

<fact name="user.location.country" value="" type="String" />

Site: The name of the site (for example, a campus or building) where the user works.

In the Fact Editor, this fact is listed as user.location.site:

<fact name="user.location.site" value="" type="String" />

Environment: A list of default user environment variable names and values that the Orchestrate
Server sets when executing joblets remotely.

In the Fact Editor, this fact is listed as a dictionary:
The User Object 139

140 PlateS

novdocx (en) 16 A
pril 2010
<fact name="user.env">
 <dictionary>
 <dictelement key="dfadsafd">
 <string>safdaf</string>
 </dictelement>
 </dictionary>
</fact>

Job Information

Total Job Count: The total number of jobs that this user has historically initiated on this
Orchestrate server.

In the Fact Editor, this fact is listed as user.history.jobcount:

<fact name="user.history.jobcount" value="0" type="Integer" />

Active Jobs: The number of top-level jobs run with this user account that are in an active state.

In the Fact Editor, this fact is listed as user.jobs.active:

<fact name="user.jobs.active" value="0" type="Integer" />

Queued Jobs: The number of top-level jobs run with this user account that are currently in a queued
state.

In the Fact Editor, this fact is listed as user.jobs.queued:

<fact name="user.jobs.queued" value="0" type="Integer" />

Total Jobs: The total number of top-level jobs run by this user account.

In the Fact Editor, this fact is listed as user.jobs.total:

<fact name="user.jobs.total" value="0" type="Integer" />

Active Sessions: The number of currently active sessions (that is, connections) that the user has
established with the Orchestrate Server.

In the Fact Editor, this fact is listed as user.sessions:

<fact name="user.sessions" value="1" type="Integer" />

Accounting Information

Total Spending: The total cost of computing resources by this user.

In the Fact Editor, this fact is listed as user.history.cost.total:

<fact name="user.history.cost.total" value="0.0088" type="Real" />

Average Spending Rate: The computed moving average spending (in dollars per hour) over the last
hour of activity for this user.

In the Fact Editor, this fact is listed as user.account.spendrate:

<fact name="user.account.spendrate" value="-0.0006" type="Real" />
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Maximum Spending Rate: An amount (in dollars per hour) to be used by the Resource Scheduler
to throttle the rate at which computing cycles are consumed by the user. A value of less than or equal
to zero (<=0) turns the feature off.

In the Fact Editor, this fact is listed as user.account.maxspendrate:

<fact name="user.account.maxspendrate" value="0.0000" type="Real" />

Default Accounting Group: Lets you select the default User Group to be billed for work conducted
by this user.

In the Fact Editor, this fact is listed as user.accounting.group:

<fact name="user.accountinggroup" value="all" type="String" />

Total Wall Time: The total amount of wall time (in seconds) consumed by this user.

In the Fact Editor, this fact is listed as user.history.time.total:

<fact name="user.history.time.total" value="31" type="Integer" />

Total Grid Time: The total amount of grid time (in gcycles, which is a normalized average of
compute cycles) consumed by this user.

In the Fact Editor, this fact is listed as user.history.gcycles.total:

<fact name="user.history.gcycles.total" value="31" type="Integer" />

Job Control

Default Priority Value: A numerical representation of the default priority at which this user’s job
runs, with 1 being the lowest priority and 9 being the highest priority.

In the Fact Editor, this fact is listed as user.priority.default:

<fact name="user.priority.default" value="7" type="Integer" />

Default Priority: The string representation of the default priority at which this user can run a job.
The value is matched to the integer value in user.priority.default.

In the Fact Editor, this fact is listed as user.priority.default.string:

<fact name="user.priority.default.string" value="high" type="String" />

Maximum Priority Value: A numerical representation of the maximum priority at which this
user’s job can run, with 1 being the lowest priority and 9 being the highest priority. Only the system
user can run jobs at priority 10.

In the Fact Editor, this fact is listed as user.priority.max:

<fact name="user.priority.max" value="5" type="Integer" />

Datagrid Maximum History: The maximum number of job instance directories that should be kept
in the datagrid for this user.

In the Fact Editor, this fact is listed as user.datagrid.maxhistory:

<fact name="user.datagrid.maxhistory" value="25" type="Integer" />
The User Object 141

142 PlateS

novdocx (en) 16 A
pril 2010
Job Preemption Enabled: Select this check box if you want to allow the user to preempt jobs that
have a priority less than the priority of the running job instance.

In the Fact Editor, this fact is listed as user.preemption.enabled:

<fact name="user.preemption.enabled" value="false" type="Boolean" />

Max Preemption Priority: The highest job priority band from which this user is allowed to
preempt resources. The value acts as a delta from the current job instance priority. The maximum
preemptible priority is always less than or equal to user.priority.max.

In the Fact Editor, this fact is listed as user.preemption.priority.delta:

<fact name="user.preemption.priority.delta" value="0" type="Integer" />

Resources Stealing Enabled: Select this check box to allow the user to steal resources that are
running jobs that have a priority less than the priority of the running job instance.

In the Fact Editor, this fact is listed as user.stealing.enabled:

<fact name="user.stealing.enabled" value="false" type="Boolean" />

Max Stealing Priority: The highest job priority band from which this user is allowed to steal
resources. The value acts as a delta from the current job instance priority, and must be less than zero
(<0).

In the Fact Editor, this fact is listed as user.stealing.priority.delta:

<fact name="user.stealing.priority.delta" value="-1" type="Integer" />

Privileged Job Groups: A list of Job Groups with jobs and joblets that this user is allowed to run on
resources that have reached their slot maximum or that are provisioned resources that are reserved
for another user or job.

In the Fact Editor, this fact is listed as an array:

<fact name="user.privilegedjobgroups">
 <array type="String">
 </array>
</fact>

You can edit this array by clicking the button to open the Choose Grid Objects dialog box,
where you can add or remove Job Groups in an array of choices. The Job Groups can be added to or
removed from a list of Source Grid Objects to a list of Target Grid Objects (or vice versa).

Quota Information

Account Balance Remaining: The balance (measured in dollars) that remains available for this
user since the last reset. You can use this value to implement quotas on your server.

In the Fact Editor, this fact is listed as user.account.balance:

<fact name="user.account.balance" value="0.0000" type="Real" />

Job Counter: The number of jobs this user has initiated since the last reset. You can use this value
to implement quotas on your server.

In the Fact Editor, this fact is listed as user.jobcount:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
<fact name="job.history.jobcount.complete" value="0" type="Integer" />

Time Remaining: The amount of wall time (measured in seconds) remaining for use by this user
since last the reset. You can use this value to implement quotas on your server.

In the Fact Editor, this fact is listed as user.account.time:

<fact name="user.account.time" value="0" type="Integer" />

Grid Time Remaining: The amount of grid time (measured in gcycles) remaining for use by this
user since last the reset. You can use this value to implement quotas in your grid.

In the Fact Editor, this fact is listed as job.history.jobcount.complete:

<fact name="user.account.gcycles" value="0" type="Integer" />

11.2.2 Groups
This section of the Info/Groups page lists the groups of User objects in the grid. Click Choose to
open the User Group Selection dialog box. In this dialog box, you can choose which User Groups to
display in the Explorer Panel by selecting a group and then clicking Add or Remove to move it to or
from the Source Job Groups list.

11.3 The User Policies Tab
The Policies tab of the User admin view opens a page that contains a policy viewer for each of the
policies associated with a User Grid object.

You can modify policies by using the Policy Grid object. For more information, see Section 12.1,
“The Policy Object,” on page 145.

If you click Choose on the Policy tab, a Policy Selection dialog box is launched where you can add
or remove individual policies to be applied to the selected User Grid object.

Figure 11-1 The Policy Selection Dialog Box

11.4 The User Health Debugger Tab
The Health Debugger is a common Admin view in the Development Client for most Grid objects.
For information about this tool, see Chapter A.3, “The Health Debugger,” on page 189.
The User Object 143

144 PlateS

novdocx (en) 16 A
pril 2010
11.5 The User Constraints/Facts Tab
The Constraints/Facts tab opens a page that shows all of the effective constraints and facts for a
Grid object. Each Grid object has an associated set of facts and constraints that define its properties.

By building, deploying, and running jobs on the PlateSpin Orchestrate Server, you can individually
change the functionality of any system resources by managing an object’s facts and constraints. The
Orchestrate Server assigns default values to each of the component facts, although they can be
changed at any time by the administrator, unless they are read-only. Facts with mode r/o have read-
only values, which can be viewed (that is, using the pencil icon), but changes cannot be made.

11.6 The User Action History Tab
The Action History tab is displayed in the administrative view of the User object. When you select
the Action History tab, a table displays a list of the history for provisioning actions performed on
this Grid object (assuming that it is provisionable, for example, a VM or VM template)..

The Orchestrate Server must be connected to an audit database for the Include Audit Database check
box to be available. If the Include Audit Database check box is selected in this view, the action
status is not polled. Click the refresh icon in the toolbar to retrieve and display fresh data.

For more details about the information listed on the Action History page, see “Action History in
Admin Views of the Development Client” in the PlateSpin Orchestrate 2.5 Virtual Machine
Management Guide.
pin Orchestrate 2.5 Development Client Reference

12
novdocx (en) 16 A

pril 2010
12Miscellaneous Objects Displayed
in the Explorer Tree

The Explorer panel (tree) of the PlateSpin Orchestrate Development Client Explorer displays some
miscellaneous objects of importance:

Section 12.1, “The Policy Object,” on page 145
Section 12.2, “Computed Fact Objects,” on page 145
Section 12.3, “Event Objects,” on page 146
Section 12.4, “Metrics Objects,” on page 146

12.1 The Policy Object
XML is used to define PlateSpin Orchestrate policies. A policy can be deployed to the server and
associated with any grid object. The policy element is the root element for policies. Policies
contain constraints and fact definitions for grid objects.

You can edit a policy by clicking its icon in the Explorer tree view, making your changes, then
clicking the save icon. The Where Used tab of the Policy Editor lists the jobs where the selected
policy is associated.

12.1.1 Policy Constraints
A policy can define a collection of constraints which are applied appropriately based on context. For
example, a resource constraint can limit the selection of a resource to a subset based on resource
group membership, or any number of other fact-based evaluations.

You can use /opt/novell/zenworks/zos/server/examples/customNode.policy on the
PlateSpin Orchestrate Server as an example policy file with constraints.

12.1.2 Policy Facts
The XML fact element defines a fact to be stored in the grid object’s fact namespace. The name,
type and value of the fact are specified as attributes. For list or array fact types, the element tag
defines list or array members. For dictionary fact types, the dict tag defines dictionary members.

You can see an example policy with an XML representation for all the fact types on the PlateSpin
Orchestrate Server at /opt/novell/zenworks/zos/server/examples/allTypes.policy.

12.2 Computed Fact Objects
Computed facts are used when you want to run JDL to generate the value for a fact. Although
computed facts are not jobs, they use the same JDL syntax. You can see examples of computed facts
on the PlateSpin Orchestrate Server at /opt/novell/zenworks/zos/server/examples/
activejobs.cfact and /opt/novell/zenworks/zos/server/examples/repostiory.cfact.
Miscellaneous Objects Displayed in the Explorer Tree 145

146 PlateS

novdocx (en) 16 A
pril 2010
12.3 Event Objects
An Event object in the Explorer tree represents a user-described set of rules that can be associated
with a schedule trigger or handled by long-running jobs written to respond to events.

For more information about using events, see “Using an Event Notification in a Job” in the
PlateSpin Orchestrate 2.5 Developer Guide and Reference, also see “Event Triggers” on page 155
of this guide, and Section A.2, “Health Events,” on page 189 of this guide.

12.4 Metrics Objects
The Orchestrate Metrics Facility collects, aggregates, and allows simple fact-based retrieval of
metric values by jobs and computed facts (via JDL), policy constraints, and Event triggers on a per-
resource basis.

A Metrics object is deployed in the Explorer tree. Use the right-click menu to display the “deploy”
and “undeploy” actions. Pre-defined .metric files are located in the /opt/novell/zenworks/
zos/server/components/metrics folder, or you can create a new .metric file and paste in an
XML file.

NOTE: You can also use the zosadmin deploy command to deploy a .metric file. For example:

zosadmin deploy load_one.metric

Metrics objects are listed by their deployment name, which may or may not be the same as the
name of the actual metric. This potentially allows multiple, separately deployable, RRD definitions
for a single “instantaneous” metric, with different aggregation periods defined.

For more information about using metrics, see Appendix C, “The Metrics Facility,” on page 207 of
this guide, and “Resource Metrics Facts” in the PlateSpin Orchestrate 2.5 Developer Guide and
Reference.
pin Orchestrate 2.5 Development Client Reference

13
novdocx (en) 16 A

pril 2010
13The PlateSpin Orchestrate Job
Scheduler

You can use the Job Scheduler in PlateSpin Orchestrate Server to automatically start deployed jobs
on your grid by using either time or event triggers.

You can think of the functionality provided by the time triggers as being similar to a distributed cron
system (in fact, time triggers can be described in cron syntax). This triggering, coupled with the job
control functions in PlateSpin Orchestrate, allows for the sophisticated automation of routine data
center tasks.

For example, suppose you want to periodically harvest a large log file in a coordinated way from a
farm of several hundred machines. First, you could create an PlateSpin Orchestrate job that uses the
datagrid for file movement. The job control options specify that the job should run on not more than
three machines at once and sweep across the entire grid. You would then create a schedule to run
this job at the desired interval.

As another example, you could use the Job Scheduler to trigger a discovery job every time a new
resource is added to the grid. In this case, the job developer writes the discovery job to discover and
set facts about the resource. Next, you would create a schedule to run this job on the
RESOURCE_ONLINE built-in trigger. In fact, this type of triggered job is currently used in the standard
set of deployed discovery jobs to detect specific resource CPU and OS information.

Yet another example would be to run a job on server startup that sends a notification e-mail to an
administrator.

This section includes the following information:

Section 13.1, “Understanding the Job Scheduler View,” on page 147
Section 13.2, “Walkthrough: Scheduling a System Job,” on page 164

13.1 Understanding the Job Scheduler View
This section includes information to help you understand the functions of the Job Scheduler and how
to use it to launch PlateSpin Orchestrate jobs.

Section 13.1.1, “Navigating The Job Schedules Table,” on page 148
Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 150
Section 13.1.3, “Understanding Cron Syntax in the Job Scheduler,” on page 160

Click Scheduler on the main toolbar of the PlateSpin Orchestrate Development Client to open the
Job Scheduler view.
The PlateSpin Orchestrate Job Scheduler 147

148 PlateS

novdocx (en) 16 A
pril 2010
Figure 13-1 Job Scheduler View of the Orchestrate Development Client

13.1.1 Navigating The Job Schedules Table
PlateSpin Orchestrate includes several predefined and predeployed discovery jobs that have
predefined launch schedules. Among these jobs are the cpuinfo, findapps, osinfo, and other
jobs, depending on the options (that is, the “server profile”) you chose and the configuration you
used during the installation. After installation, these jobs are listed by name in a table in the Job
Scheduler view.

Figure 13-2 The Job Schedules Table in the Job Scheduler View

By default, PlateSpin Orchestrate uses schedule names that are similar to the job name so that
schedules are easy to match (although this is not required). The schedules list shows all of the
existing job schedules that accompany predefined jobs, along with the schedules that you create in
the Job Scheduler.

NOTE: The Job Scheduler view is not a real-time monitor view of jobs, so if a job attribute (for
example, Last Job Status or Last Fire Time) has changed, it might not be displayed until you click
Refresh.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The Job Schedules Table has functionality that lets you decide how you want to display information
about the job schedules:

You can drag any column in the table to move it left or right in the table according to your
preference.
You can mouse over any column heading in the table to view tool tip text about the purpose of
the data in that column.
You can right-click any column heading in the table to open the Job Scheduler Column Editor
dialog box.

Figure 13-3 Job Scheduler Column Editor Dialog Box

You can select any column heading in this dialog box to display it in the Job Schedules Table.
The columns display the attributes of a previously configured job schedule. As the figure
shows, this dialog box also includes text that clarifies the purpose of the data in each column.

In the Job Scheduler view, there are seven function buttons next to the Job Schedules Table (see
Figure 13-2 on page 148) that let you take action on any schedule you select inside the table. (Only
one schedule at a time can be selected.)

New: Opens a dialog box where you can create a new schedule. When you create a new
schedule, the Job Scheduler adds a new line to the Job Schedules Table. When the new line is
added, you can use the Job Schedule Editor to edit the attributes of the schedule. A new
schedule must be given a unique schedule name.

The Job Scheduler forces a new schedule to be created in the Disabled state to prevent it from
running while it is being defined. You click Enable when a job is ready to be used.
The PlateSpin Orchestrate Job Scheduler 149

150 PlateS

novdocx (en) 16 A
pril 2010
Copy: Copies a schedule you have selected in the Job Schedules Table. Clicking this button
opens a dialog box where you rename the copy. If you want to create a schedule similar but not
identical to an existing schedule, use this button to save time in adding attributes to a job
schedule configuration. A copy of a schedule must be given a unique schedule name.
Deploy: Opens a dialog box where you can select a schedule (that is, a deployable .sched file)
to deploy.
Delete: Deletes the selected schedule from the Job Schedules Table. You cannot recover a
deleted job schedule.

NOTE: Deleting a schedule that was deployed as part of a .job or .sar displays a
confirmation dialog box. Deleting the schedule undeploys all contents of the .job or .sar that
contains the schedule.

Disable: Disables the selected schedule in the Job Schedules Table. The jobs associated with
the schedule are not re-run, but any currently running instances of this job continue to run.
Enable: Enables a disabled job schedule.
Run Now: Forces the specified schedule to run immediately. This updates statistics such as
Last Fire Time.

Removed Jobs or Users: Scheduler Behavior

If a job or a user is undeployed or removed from PlateSpin Orchestrate, the Job Schedules Table
continues to list the schedule previously associated to that removed grid object, but the removed grid
object no longer displays the icon that represents the object (job or user).

Figure 13-4 Some User Object and Job Object Icons Not Displayed

In the preceding figure, the CpuDiscovery schedule displays no Job icon for the cpuInfo job in the
schedules table. Even though the job has been undeployed, the schedule is still listed.

In the osinfo schedule, the system user has no User icon. That user has been removed from PlateSpin
Orchestrate.

If you choose a new user or job to be associated with a schedule, a deleted or undeployed user or job
is never displayed in the popup menu for that schedule again.

13.1.2 Creating or Modifying a Job Schedule
The Job Schedule Editor is located immediately below the Job Schedules Table in the Job Scheduler
view.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 13-5 The Job Schedule Editor in the Job Scheduler View

There are several times when you can use this part of the Job Scheduler tool:

When you create a new schedule by clicking New.
When you modify the attributes of an existing schedule (available when you select a schedule
in the table).
When you create a copy of an existing schedule by clicking Copy.

The Job Schedule Editor lets you create or modify a job schedule by specifying its attributes.

You can use the following controls and data when you create or modify a job schedule:

“Schedule Name” on page 151
“Job” on page 151
“User” on page 152
“Priority” on page 152
“Description” on page 152
“Matching Resources” on page 152
“Test Schedule Now” on page 152
“Triggers” on page 152
“Job Arguments” on page 158
“User Environment” on page 159
“Constraints” on page 160

Schedule Name

When you create a new schedule, the unique name you specify is displayed in this field. If you select
a schedule from the Job Schedules Table, the name of the schedule is displayed in this field. The
field is not editable, because schedules cannot be renamed after they are created. (You can use a
copy if this is required.)

Job

When you create a new schedule, you need to associate a deployed job with it. You can select the
job you want to run from this drop-down list.
The PlateSpin Orchestrate Job Scheduler 151

152 PlateS

novdocx (en) 16 A
pril 2010
If you want to use a previously created schedule to run a different job, you can change the job here.

User

When you create a new schedule, you need to associate a user with it. The user represents the user
for whom the job will run. The choice of user might affect the permissions, privileges and
constraints of the job. You can select the user from this drop-down list.

If you want a different user to run a job on a previously created schedule, you can change the user
here.

If you decide to change the user who runs the job, check the Priority field to make sure that the
priority you want is selected.

Priority

When you create a new schedule and associate a job and a user with it, a list of possible run
priorities becomes available in this drop-down list. The list of priorities varies, depending on the
user that is specified in the previous field. In this field, you select the priority of the job that is to be
run so that if other jobs are to start concurrently or are competing for resources, PlateSpin
Orchestrate can determine which job takes priority.

Description

For predeployed jobs, this field contains a default description of what the job’s schedule does. The
field is editable, so you can enter a description of your own for job schedules that you create.

Matching Resources

This button displays a list of resources where the job runs now or where it could run. This list is
useful for checking the context of constraints that might have been affected by a choice of user or by
manually specifying additional constraints under the Policy tab. The list is also useful to verify that
a discovery job (that is, one that is triggered by the Run on Resource Start option) runs on the
preferred set of machines.

Test Schedule Now

Click this button to test the new or modified schedule you are working with. The test runs the new or
modified schedule without permanently saving the current configuration of the schedule or
recording statistics. This control differs from the Run Now control in the Job Schedules Table, which
runs a saved (persisted) schedule, disregarding any unsaved modifications that have been made to it
in the Job Schedule Editor.

Triggers

When you click the Triggers tab in the Job Scheduler view, the following page opens:
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 13-6 The Schedule Triggers Page in the Job Scheduler

In this view, you can add or define the triggers you want to associate with job schedules. A trigger is
the signal to the Job Scheduler to initiate, or “fire” a schedule at a given time or at the occurrence of
a given event. Job Scheduler triggers can be classified with regard to two conditions: events and
time.

The Triggers table on this page has functionality that lets you decide how you want to display
information about the triggers:

You can drag any column in the table to move it left or right in the table according to your
preference.
You can mouse over any column heading in the table to view tool tip text about the purpose of
the data in that column.
You can right-click any column heading in the table to open the Triggers table column editor
dialog box.

Figure 13-7 Trigger Table Column Editor Dialog Box

You can select any column heading in this dialog box to display it in the Triggers table. The
columns display the attributes of a previously configured Triggers table. As the figure shows,
this dialog box also includes text that clarifies the purpose of the data in each column.
The PlateSpin Orchestrate Job Scheduler 153

154 PlateS

novdocx (en) 16 A
pril 2010
You can create as many triggers as you want to meet any scheduling situation you might have.
Multiple time triggers can be associated with a schedule and multiple schedules can use the same
trigger. The triggers you create are retained by the Job Scheduler for you to choose from when you
create a schedule for a job. The currently associated triggers are displayed in the list along with a
description.

Choose Triggers

This button opens a dialog box where you can choose both predefined and user defined time triggers
to associate with this job schedule.

Figure 13-8 Choose Triggers Dialog Box

In this dialog box, you can click Add to move a selected trigger to the active, scheduled triggers that
are to be associated with this job schedule. You can also click Remove to unassociate a trigger.

When a trigger is moved to the scheduled list, it becomes associated to the job schedule and it is
displayed in the Job Scheduler view.

Most example jobs in PlateSpin Orchestrate are associated with event triggers, which are shown in
the previous illustration. The dialog box can also list other job schedule triggers that are based on
time.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Event Triggers

An Event trigger is the signal to the Job Scheduler to initiate, or “fire” a job when a given event
occurs. An Event can be one of three types:

Event objects: These objects are user defined events that are fired when an event rule is
triggered. If an event object is deployed, it automatically shows in the trigger chooser as a
possible choice.
built-in events: These events are system wide events such as when a resource comes online or
when a resource health condition change occurs. Built-in events are always available as a
trigger choice. The Job Scheduler has eight possible built-In event triggers:

AGENT_VERSION_MISMATCH

RESOURCE_ONLINE

REPOSITORY_HEALTH

RESOURCE_HEALTH

SERVER_UP

USER_HEALTH

USER_ONLINE

VMHOST_HEALTH

You can select any combination of these event triggers for a single schedule.
The first trigger, AGENT_VERSION_MISMATCH, triggers the job when a PlateSpin Orchestrate
Agent of an incompatible version attempts to connect to this Orchestrate Server. It can be used
to initiate a configuration management tool for an agent software update or the job could e-mail
an administrator to report the incompatible agent. The other seven available built-in event
triggers are listed with accompanying descriptions in the dialog box.
External events: These events are fired by an outside process. These are not automatically
shown as choices in the trigger chooser, but must be defined by the trigger editor.

An event trigger can be used in conjunction with a time trigger to allow flexibility in scheduling the
job application for maximum effectiveness or convenience. Jobs triggered by events require that
their job arguments contain a dictionary named context. For example, your event-triggered job
should have this jobarg element in its policy:

<policy>
 <jobargs>
 <fact name="context" type="Dictionary"
 description="Dictionary containing the context for the event" />
 </jobargs>
</policy>

The key/values of the dictionary are dependent on the event type. For event objects, the
jobargs.context dictionary contains the matching context of the triggered rule. For built-in
events, the jobargs.context dictionary contains the key of the object type corresponding to the
built-in event and the object ID that caused the event.

For example, if the USER_ONLINE event triggers because the user named foo logs in, the
jobargs.context dictionary contains:
The PlateSpin Orchestrate Job Scheduler 155

156 PlateS

novdocx (en) 16 A
pril 2010
{ user : foo }

Likewise, if the RESOURCE_ONLINE event is triggered because the resource agent
named “vmhost1” comes online, the jobargs.context dictionary contains:

{ resource : vmhost1 }

For the AGENT_VERSION_MISMATCH event, the jobargs.context dictionary contains more
information, as shown in the following table:

Table 13-1 Dictionary Information

Time Triggers

A time trigger is the signal to the Job Scheduler to initiate, or “fire” a job when a prescheduled time
occurs. A time trigger can be used in conjunction with an event trigger to allow flexibility in
scheduling the job application for maximum effectiveness or convenience. No default time triggers
are defined in the Job Scheduler. You need to create new time triggers by clicking Edit Triggers.

Key Type

AgentBuild Long

AgentIP String

AgentId String

AgentMajor Integer

AgentMinor Integer

AgentPoint Integer

JavaMajor Integer

JavaMinor Integer

JavaPoint Integer

JavaVendor String

JavaVersion String

OsMajor Integer

OsMinor Integer

OsName String

OsPoint Integer

OsVendor String

OsVersion String

SystemArch String

UsingJRE Boolean

resource String
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Edit Triggers

Click Edit Triggers to open the Triggers dialog box.

Figure 13-9 The Triggers Dialog Box

The following controls and information are available in the dialog box:

New: Opens a secondary dialog box where you can create a new time trigger name. When you
create the trigger name, the attribute fields in the Triggers dialog box are cleared and you can
specify new attributes for the trigger. A new trigger must be given a unique trigger name.
Copy: Lets you modify an existing time trigger by giving it a new name and attributes. This
can be helpful if there are only slight differences in the new attributes. A copy of a trigger must
be given a unique trigger name.
Deploy: Opens a file chooser where you can choose an existing, stored trigger (that is, a .trig
file) to deploy.
Delete: Deletes a selected time trigger.

IMPORTANT: Deleted triggers are not recoverable. If the trigger is used by existing
schedules, it is removed from all of those schedules when it is deleted.
The PlateSpin Orchestrate Job Scheduler 157

158 PlateS

novdocx (en) 16 A
pril 2010
Trigger Name: Specifies the unique name of the trigger you are creating or modifying. This
name is displayed in the Job Scheduler if you choose to associate this trigger with a schedule.
After you create the trigger name, it cannot be modified.
Description: Specifies a description for the time trigger you are creating or modifying. The
description is optional and can be as detailed as you want.
If the number of characters in the description string exceeds the space in the Description field,
a button is enabled that opens a string editor when clicked.
Save: Clicking this icon saves the defined time trigger and its attributes.
Fire Starting In: Displays multiple fields specifying the time increment and frequency to be
used by the trigger to fire the job. If you select this type of time trigger, the Fire using CRON
Expression button becomes inactive.

NOTE: You can use the Fire Starting In control to create either a “one-shot” time trigger or a
“reoccurring” time trigger.
A one-shot time trigger fires just once after a specified period of time. To specify a one-shot
trigger, click Fire Starting in, specify the amount of time before firing, then specify 0 as the
time to Repeat Indefinitely.
A reoccurring time trigger fires after a specified period and then either fires repeatedly for an
indefinite number of times or it fires for a specified number of times. To specify a reoccurring,
indefinite trigger, click Fire Starting in, specify the amount of time before firing, then select
Repeat Indefinitely. To specify a reoccurring but finite trigger, click Fire Starting in, specify
the amount of time before firing, select Repeat Range, then specify the number of times you
want the trigger to fire.

Fire using CRON Expression: Specifies the cron expression that enables the job to fire
automatically at a specified time or date. You need to be familiar with cron to use this field.
The Examples list box of selected cron expressions and their associated descriptions is located
just below this button. You can use a listed expression as is, or use it as a template to modify
the expression to meet your needs.
If you select this type of time trigger, the Fire Starting In and the Fire Using Event buttons
become inactive.
For an example of how a cron expression can be implemented in a trigger, see “Creating and
Assigning a Time Trigger for the New Schedule” on page 169. For detailed information about
cron syntax, see “Understanding Cron Syntax in the Job Scheduler” on page 160.
Fire Using Event: Specifies a deployed event or an external event that enables the job to fire
when a specified event occurs. Deployed events are defined using an XML syntax. You can
specify a deployed event from Events (that is, listed in the Events drop down list) or you can
enter the name of an external event. For more information on creating and firing an event, see
If the number of characters in the Fire Using Event description string exceeds the space in the
field, a button is enabled that opens a string editor when clicked.

Job Arguments

This tab displays an area (in the lower left corner of the Job Schedule Editor) where possible job
arguments are listed. If you select an existing schedule in the Job Schedules Table, any optional job
arguments (jobargs) for the associated job are displayed in this area.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 13-10 The Job Arguments Area of the Job Scheduler View

The jobargs are defined by the deployed job. Some jobs might already have a default value
displayed, but others must have values specified in order for the job to be able to run.

IMPORTANT: Job arguments displayed in blue are required. You must supply data in the
accompanying fields.

A job argument defines the values that can be passed in when a job is invoked. These values let you
statically define and control job behavior. To learn more about each job argument, mouse over each
jobarg line to display tool tip text.

The Job Scheduler uses the values you enter into the fields of this area to build a jobargs namespace
in the policy for this job.

Each job argument has an accompanying Lock check box. When Lock is not selected, the
accompanying job argument uses the default value specified in the job’s policy. When Lock is
selected, the value specified in the field is locked down and overrides the default value in the policy.
A locked value continues to be used even if the policy value is modified.

You can click Restore Jobargs to restore job arguments to the values specified in the job policy. This
function removes any changes you might have specified in the Job Scheduler and deselects all Lock
check boxes.

For more information, see “Job Arguments and Parameter Lists in Policies” in the PlateSpin
Orchestrate 2.5 Developer Guide and Reference.

User Environment

This tab displays an area (in the lower left corner of the Job Schedule Editor) that includes the Pass
User Environment check box. Select this check box if you want to pass the assigned user’s
environment variables to the job when it runs. When environment variables are recorded on the user
account, selecting the Pass User Environment check box makes those environment variables
available to the job and joblet.
The PlateSpin Orchestrate Job Scheduler 159

160 PlateS

novdocx (en) 16 A
pril 2010
A user’s environment is recorded under the user.env fact on his or her account. This fact can be set
when a user logs in to PlateSpin Orchestrate and is persisted until changed. A user’s environment
variables can be uploaded with the zos command line tool at login time in one of two variations:

zos login --user=foo --env

This command uploads the entire environment to the Job Scheduler. The upload can also be
seen on the User object in the Orchestrate Development Client.
zos login --user=foo --env=PATH

When the user logs in, he or she can specify one or more environment variables to use at login.
The example above would result in just the PATH environment variable being uploaded.
Multiple environment variables can be specified by delimiting with a comma, as in the
following example:
--env=PATH,LD_PATH,ID

NOTE: The user’s environment variables can also be passed to the server when the user implements
the zos command line tool when running a job (as opposed to logging in). The command passes the
environment variable only for that particular job run.

zos run jobname --env=environment_variable

Constraints

This tab displays a constraint editor that you can use to create additional constraints for the job being
scheduled. Typically, additional “resource constraints” (such as “start”) are useful to delay the start
of a job when it is triggered.

Any XML constraints listed in this tab needs to have a top-level XML <constraints> element, as in
the following example:

<constraints>
 <constraint type="resource">
 <contains fact="resource.groups" value="myResourceGroup" />
 </constraint>
</constraints>

For more information about working with constraints, see “Scheduling with Constraints” in the
PlateSpin Orchestrate 2.5 Developer Guide and Reference.

13.1.3 Understanding Cron Syntax in the Job Scheduler
The cron triggers you can configure in the PlateSpin Orchestrate Job Scheduler use a Quartz
crontrigger class for deciding when to invoke job execution. This is based on the standard Quartz
format that you can find further described on the OpenSymphony (http://www.opensymphony.com/
quartz/wikidocs/CronTriggers%20Tutorial.html) Web site, or the KickJava (http://kickjava.com/src/
org/quartz/CronTrigger.java.htm) Web site.

This section includes the following information:

“Format” on page 161
“Special Characters” on page 161
pin Orchestrate 2.5 Development Client Reference

http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://kickjava.com/src/org/quartz/CronTrigger.java.htm
http://kickjava.com/src/org/quartz/CronTrigger.java.htm
http://kickjava.com/src/org/quartz/CronTrigger.java.htm
http://kickjava.com/src/org/quartz/CronTrigger.java.htm
http://kickjava.com/src/org/quartz/CronTrigger.java.htm

novdocx (en) 16 A
pril 2010
“Examples of Cron Syntax” on page 163
“Cron Scheduling Precautions” on page 164

Format

A cron expression is a string comprised of 6 or 7 fields separated by white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are explained in the following table:

Table 13-2 Fields in a Cron Expression

So cron expressions can be as simple as this:

* * * * ? *

Or cron expressions can be more complex, like this:

0 0/5 14,18,3-39,52 ? JAN,MAR,SEP MON-FRI 2002-2010

Special Characters

Cron syntax incorporates logical operators, special characters that perform operations on the values
provided in the cron fields.

Table 13-3 Special Characters in PlateSpin Orchestrate Cron Syntax

Field Name Mandatory? Allowed Values Allowed special
Characters

Seconds Yes 0-59 , - * /

Minutes Yes 0-59 , - * /

Hours Yes 0-23 , - * /

Day of the Month Yes 1-31 , - * ? / L W

Month Yes 1-12 or JAN-DEC , - * /

Day of the Week Yes 1-7 OR SUN-SAT , - * ? / L #

Year No EMPTY, 1970-2099 , - * /

Operator Purpose Example

asterisk (*) Specifies all possible values for a field An asterisk in the hour time field is
equivalent to “every hour.”

question mark
(?)

A question mark (?) is allowed in the
day-of-month and day-of-week fields. It
is used to specify “no specific value,”
which is useful when you need to
specify something in one of these two
fields, but not in the other.

If you want a trigger to fire on a particular
day of the month (for example, the 10th), but
you don't care what day of the week that is,
enter 10 in the day-of-month field, and ? in
the day-of-week field. See the examples
below for clarification.

dash (-) Specifies a range of values 2-5, which is equivalent to 2,3,4,5
The PlateSpin Orchestrate Job Scheduler 161

162 PlateS

novdocx (en) 16 A
pril 2010
comma (,) Specifies a list of values 1,3,4,7,8

slash (/) Used to skip a given number of values */3 in the hour time field is equivalent to
0,3,6,9,12,15,18,21. The asterisk (*)
specifies “every hour,” but the /3 means
only the first, fourth, seventh.

You can use a number in front of the slash to
set the initial value. For example, 2/3
means 2,5,8,11, and so on.

L (“last”) The L character is allowed for the day-
of-month and day-of-week fields.

Specifies either the last day of the
month, or the last xxx day of the month.

The value L in the day-of-month field means
“the last day of the month”––day 31 for
January, day 28 for February in non-leap
years. If you use L in the day-of-week field
by itself, it simply means 7 or SAT. But if you
use it in the day-of-week field after another
value, it means “the last xxx day of the
month.” For example, 6L means “the last
Friday of the month.”

TIP: When you use the L option, be careful
not to specify lists or ranges of values. Doing
so causes confusing results.

W (“weekday”) The W character is allowed for the day-
of-month field.

Specifies the weekday (Monday-Friday)
nearest the given day.

If you specify 15W as the value for the day-
of-month field, the meaning is “the nearest
weekday to the 15th of the month.” So if the
15th is a Saturday, the trigger fires on Friday
the 14th. If the 15th is a Sunday, the trigger
fires on Monday the 16th. If the 15th is a
Tuesday, it fires on Tuesday the 15th.
However, if you specify 1W as the value for
day-of-month, and the 1st is a Saturday, the
trigger fires on Monday the 3rd, because it
does not “jump” over the boundary of a
month’s days. The W character can only be
specified when the day-of-month is a single
day, not a range or list of days.

TIP: You can combine the L and W
characters for the day-of-month expression
to yield LW, which translates to “last
weekday of the month.”

Operator Purpose Example
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
NOTE: The legal characters and the names of months and days of the week are not case sensitive.
MON is the same as mon.

You can specify days in two fields: month day and weekday. If both are specified in an entry, they
are cumulative, meaning that both of the entries are executed.

Examples of Cron Syntax

The following table shows examples of full cron expressions and their respective meanings.

Table 13-4 Results of Altered Cron Syntax on Execution Times

pound sign (#) The pound sign (#) character is
allowed for the day-of-week field. This
character is used to specify “the nth” xxx
day of the month.

The value of 6#3 in the day-of-week field
means the third Friday of the month (day 6 =
Friday and #3 = the 3rd one in the month).

Other Examples: 2#1 specifies the first
Monday of the month and 4#5 specifies the
fifth Wednesday of the month. However, if
you specify #5 and there are fewer than 5 of
the given day-of-week in the month, no firing
occurs that month.

Cron Expression Example Description

0 0 12 * * ? Fire at 12:00 p.m. (noon) every day

0 15 10 ? * * Fire at 10:15 a.m. every day

0 15 10 * * ? Fire at 10:15 a.m. every day

0 15 10 * * ? * Fire at 10:15 a.m. every day

0 15 10 * * ? 2008 Fire at 10:15 a.m. every day during the year 2008

0 * 14 * * ? Fire every minute starting at 2:00 p.m. and ending at 2:59.p.m., every
day

0 0/5 14 * * ? Fire every five minutes starting at 2:00 p.m. and ending at 2:55 p.m.,
every day

0 0/5 14,18 * * ? Fire every five minutes starting at 2:00 p.m. and ending at 2:55 p.m.,
and fire every five minutes starting at 6:00 p.m. and ending at 6:55
p.m., every day

0 0-5 14 * * ? Fire every minute starting at 2:00 p.m. and ending at 2:05.p.m., every
day

0 10,44 14 ? 3 WED Fire at 2:10 p.m. and at 2:44 p.m. every Wednesday in the month of
March

0 15 10 ? * MON-FRI Fire at 10:15 a.m. every Monday, Tuesday, Wednesday, Thursday and
Friday

0 15 10 15 * ? Fire at 10:15 a.m. on the 15th day of every month

Operator Purpose Example
The PlateSpin Orchestrate Job Scheduler 163

164 PlateS

novdocx (en) 16 A
pril 2010
Cron Scheduling Precautions

You should remember the following items when you use cron scheduling:

Always check the effect of adding the ? and * characters in the day-of-week and day-of-month
fields to make sure the expected behavior fires correctly.
Support for specifying both a day-of-week and a day-of-month value is not complete (you must
currently use the ? character in one of these fields).
Be careful when setting fire times to occur between 12:00 a.m. and 1:00 a.m.— changing to or
out of Daylight Saving Time can cause a skip or a repeat in the schedule firing, depending on
whether the clock moves backward or forward.

13.2 Walkthrough: Scheduling a System Job
This section demonstrates how you can use the Orchestrate Development Client to deploy and
schedule an existing system job named auditcleaner.job. This example job is included in the
examples directory of your PlateSpin Orchestrate installation.

This section includes the following information:

Section 13.2.1, “Deploying a Sample System Job,” on page 164
Section 13.2.2, “Creating a New Schedule for the Job,” on page 167
Section 13.2.3, “Defining the New Schedule,” on page 167
Section 13.2.4, “Activating the New Schedule,” on page 174
Section 13.2.5, “Running the New Schedule Immediately,” on page 174

13.2.1 Deploying a Sample System Job
Before a job can run, the PlateSpin Orchestrate administrator must deploy it, which involves moving
it from a developed package state to a state where it is ready and available for users. Only the
administrator has the necessary rights to deploy a job.

There are four methods you can use to deploy a job:

Deploy it from the PlateSpin Orchestrate Development Client by right-clicking the Jobs
container in the Explorer panel.

0 15 10 15 * ? Fire at 10:15 a.m. on the last day of every month

0 15 10 ? * 6L Fire at 10:15 a.m. on the last Friday of every month

0 15 10 ? * 6L 2008-2011 Fire at 10:15 a.m. on every last Friday of every month during the years
2008, 2009, 2010, and 2011

0 15 10 ? * 6#3 Fire at 10:15 a.m. on the third Friday of every month

0 0 12 1/5 * ? Fire at 12:00 p.m. (noon) every five days every month, starting on the
first day of the month

0 11 11 11 11 ? Fire every November 11th at 11:11 a.m.

Cron Expression Example Description
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Deploy it from the PlateSpin Orchestrate Development Client by selecting the Actions menu in
the Orchestrate Development Client.
Deploy it from the zosadmin command line (zosadmin deploy path_to_job).
Copy the deployable component to the “hot” deployment directory under the Orchestrate
Server instance directory. Typically, this directory is located at /var/opt/novell/zenworks/
zos/server/deploy. Using this method, deployment proceeds within a few seconds.
PlateSpin Orchestrate monitors this directory.

A runnable job can also be scheduled, which means that the schedule for running the job and the
trigger or triggers that initiate or “fire” the schedule (or both) are configured and packaged with the
job.

For this walkthrough, you deploy one of several system jobs (auditCleaner.job) developed for
PlateSpin Orchestrate customers to demonstrate how system jobs are deployed and run. This job
package, which is actually a .jar archive, includes only a .policy component and a .jdl
component. It does not have a .sched component. You can use the Job Scheduler in the Orchestrate
Development Client to add the .sched component separately.

NOTE: A PlateSpin Orchestrate job developer can create and package jobs that include a .jdl file,
a .policy file, a .trig file (trigger), and a .sched file (schedule). The presence of the .sched file
in the job package is also typical of the predeployed discovery jobs installed with PlateSpin
Orchestrate, which run without intervention when the criteria for firing the schedule are satisfied.
Such jobs are visible in the Job Scheduler because they already include the .sched components.

For more information about developing jobs and schedules in a job archive, see “Job Scheduling” in
the PlateSpin Orchestrate 2.5 Developer Guide and Reference.

Although this walkthrough demonstrates only the first method listed above for deploying, the other
methods are relatively simple, so no further examples are provided to illustrate them.

1 In the Explorer panel of the PlateSpin Orchestrate Development Client, right-click the Jobs
container, then click Deploy Job to open the Select the Component File to Deploy dialog box.
The PlateSpin Orchestrate Job Scheduler 165

166 PlateS

novdocx (en) 16 A
pril 2010
2 Open the Look In drop-down list, then navigate to the location of the job you want to deploy.
Although a job developer can store PlateSpin Orchestrate jobs at any location on the network,
the sample jobs shipped with PlateSpin Orchestrate are limited to the directories where the
product is installed. For this walkthrough, navigate to the /opt/novell/zenworks/zos/
server/components/systemJobs directory.

3 Select auditCleaner.job, then click OK to deploy the job to the Jobs container.
The job appears in the all container and in the examples container in the tree.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
13.2.2 Creating a New Schedule for the Job
When a job has been deployed, you can create a schedule to specify when you want it to run. In this
walkthrough, you create a schedule for the auditCleaner job by using the Scheduler tool in the
Orchestrate Development Client.

1 From the toolbar in the Orchestrate Development Client, click the Job Scheduler icon to
open the Job Scheduler view.

2 In the Job Scheduler view, click New to open the Enter Unique Schedule Name dialog box.

3 Specify a name for the schedule you want to create for this job. For this walkthrough, specify
the name cleaner in the Schedule Name field, then click OK to return to the Job Scheduler
view.

The new schedule is highlighted in the Job Schedules Table and is flagged with a pencil icon,
signifying that the schedule has not been committed yet. Continue with Section 13.2.3,
“Defining the New Schedule,” on page 167 to define this new schedule by adding the specific
information you want.

13.2.3 Defining the New Schedule
Defining a new job schedule consists of selecting its general properties, its specific properties, and
the triggers you want to be associated with it. This section includes the following information:

“Choosing General Properties for a New Schedule” on page 167
“Creating and Assigning a Time Trigger for the New Schedule” on page 169
“(Optional) Adding Specific Parameters to the New Schedule” on page 172

Choosing General Properties for a New Schedule

After you have created a new job schedule, its name cannot be changed, but you can add properties
to it that help to identify and classify it in a general way. Use the following steps to add these
properties:

1 In the Job Schedule Editor panel of the Scheduler view, select the Job drop-down list.
The PlateSpin Orchestrate Job Scheduler 167

168 PlateS

novdocx (en) 16 A
pril 2010
2 From the list of available jobs, select auditCleaner as the job to which this schedule applies.
3 In the Job Schedule Editor, select the User drop-down list.

4 From the list of available users, select zosSystem as the user who runs this job.
The zosSystem user is the built-in user that is always present. It is commonly used for routine
jobs like this example.

5 In the Job Schedule Editor, select the Priority drop-down list.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
6 From the list of available priorities, select high as the priority for this job schedule.
The maximum selectable priority is dependent on an attribute associated with the selected user.

7 Click the Save icon on the toolbar of the Orchestrate Development Client to save the general
properties you have selected for the new schedule.
The schedule is now committed, and the attribute columns in the Job Schedules Table are
populated with the name of the job that the schedule will run, the user it will run as, the priority
at which it will run, and its current status. Because the schedule has not been activated yet, it
remains in a Disabled state.

When you have chosen the general properties of the new schedule, you can either continue by
“(Optional) Adding Specific Parameters to the New Schedule” on page 172 or by proceeding
directly to “Creating and Assigning a Time Trigger for the New Schedule” on page 169.

Creating and Assigning a Time Trigger for the New Schedule

A job already defined in a schedule can be triggered with two main themes: the occurrence of an
event or the arrival of a point in time. In this walkthrough, you define a time trigger for the cleaner
schedule.

In this example, there are no defined time triggers in the Job Scheduler, so use the following steps to
define a time trigger.

1 In the Job Schedule view, click Edit Triggers to display the Triggers dialog box.
The PlateSpin Orchestrate Job Scheduler 169

170 PlateS

novdocx (en) 16 A
pril 2010
Time triggers are shareable across schedules. After a time trigger is defined, it is added to a list
of triggers in this dialog box. You can select a predefined trigger from this list when you create
a new schedule, or you can create a new time trigger, as the next steps demonstrate.

NOTE: For detailed information about cron syntax, see “Understanding Cron Syntax in the
Job Scheduler” on page 160.

2 In the Triggers dialog box, click New to clear and activate the fields in the dialog box for the
creation of a unique time trigger.

3 In the Enter Unique Trigger Name dialog box, specify 24 hour as the unique name of this time
trigger, then click OK.

4 In the Description field, specify Runs every 24 hours at noon as the description for this
time trigger.

5 Click Fire Using CRON Expression to activate the fields for defining a cron expression.

6 Click the drop-down list of sample cron expressions, then select the default cron expression, 0
0 12 * * ?, which is listed first.
The sample expressions in the drop-down list show cron strings with accompanying
descriptions to remind you how a cron string is constructed. The examples are selectable and
editable and can be used in the schedule, just as you have done in this step.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
7 Click Save to save the trigger you just created, then click Close to return to the Job Scheduler
view.

8 From the Job Scheduler view, make sure that the cleaner schedule is selected, then click
Choose Triggers to display the Choose Triggers dialog box.

9 In the Choose Triggers dialog box, select 24 hour (the name of the trigger you created), click
Add to move the trigger definition to the Scheduled Job Triggers list, then click OK to return to
the Job Scheduler view.

NOTE: You can select and combine as many time triggers as you want to apply to a given
schedule. You can also combine time triggers with event triggers on a given schedule.

In the Triggers list of the Job Scheduler view, the 24 hour trigger is now associated with the
new schedule.

10 Click the Save icon to update the Orchestrate Server with the new schedule/trigger
association.
The PlateSpin Orchestrate Job Scheduler 171

172 PlateS

novdocx (en) 16 A
pril 2010
(Optional) Adding Specific Parameters to the New Schedule

You can now add specific parameters to the schedule to edit its job arguments, to choose whether
you want to pass the user environment variables to the schedule, or to specify policy constraints to
further focus the purpose of this schedule when it fires.

For the purpose of this walkthrough, none of these specific parameters is modified, although a
general overview of how to do so is explained.

The following specific parameters can be managed in the Job Scheduler Editor:

“Job Arguments” on page 172
“User Environment” on page 172
“Constraints” on page 173

Job Arguments

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 150, a job
argument defines the values that can be passed in to the process when a job is invoked. These values
let you statically define and control job behavior. The job arguments that appear in the Job
Arguments tab of the Schedule Editor depend on the job. The job might have no arguments.

By default, the auditCleaner job lists only one job argument, jobargs.days.

Figure 13-11 The Job Arguments Tab of the Job Schedule Editor

According to the tool tip text, this argument is the number of days of job history to keep, so this job
cleans up the history of the job in the PlateSpin Orchestrate audit database after the job reaches the
age of 60 days. Data older than 60 days is to be deleted. If you want to, you can change this
parameter, or any other parameter in a job argument.

If the default value for a job argument parameter is missing, the job might fail, so you should inspect
these parameters carefully.

User Environment

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 150, a user’s
environment variables are available in the Job Scheduler only if that user utilizes the zos command
line tool and elects to pass those environment variables to the server at login time or when he or she
runs a job (running the job creates the environment variables as facts in the job). The zos run
command passes the environment for that particular job run only.

In this walkthrough, the zosSystem user shows no user environment variables.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 13-12 The User Environment Tab of the Job Scheduler Editor, No User Environment Variables Available

Because there are no environment variables listed, there are none to pass to the schedule, so it is not
necessary to select the Pass User Environment check box. By default, this check box is not selected,
even if environment variables are present for a user specified to run the job.

Sometimes a job is written to work from a user’s environment variables. In this case, if a user has
not logged in or has not run the job from the zos command line using the necessary environment
option, the schedule must pass those variables to the job when it is invoked.

If you associated a user who had user environment variables with this schedule, you would see a list
of those environment variables as they would be passed to the job.

Figure 13-13 The User Environment Tab of the Job Schedule Editor, User Environment Variables Available

Selecting the Pass User Environment check box in this scenario would create these variables as facts
used for this job invocation.

Constraints

As explained in Section 13.1.2, “Creating or Modifying a Job Schedule,” on page 150, the
Constraints tab displays a constraint editor that you can use to create additional constraints for the
job being scheduled.

Figure 13-14 The Constraints Tab of the Job Schedule Editor
The PlateSpin Orchestrate Job Scheduler 173

174 PlateS

novdocx (en) 16 A
pril 2010
Any other constraints associated with the context of this job invocation (including but not limited to
this job), with the user you’ve selected, with that user’s group, with the jobs group, with the
resources that the job uses, or with the resource groups that the job uses, run in spite of the policy
that you define here. These additional constraints usually restrict or refine what the job does when
this schedule fires.

These constraints are passed to the job only when this schedule is invoked. For example, you could
add a start constraint to delay the start of a job, a resource constraint to run on only one of three
named machines, or a continue constraint to automatically time out the job if it takes too long to run.
Anything you can do with a regular job policy constraint, you can add as a special constraint here for
this particular schedule invocation.

Click Save icon to update the Orchestrate Server with the new schedule.

For more information about policies, see “Policies” in the PlateSpin Orchestrate 2.5 Developer
Guide and Reference.

13.2.4 Activating the New Schedule
When the new schedule has been created and its triggers defined, you need to take it from the
disabled state to an active state where it is ready to run.

1 In the Job Scheduler view, select the newly created job. The job shows that it is in a Disabled
state.

2 Click Enable to enable the schedule.

The schedule is now enabled, but has not run yet.

13.2.5 Running the New Schedule Immediately
You can trigger the schedule immediately, rather than waiting for the triggers to fire.

1 In the Job Schedules Table of the Job Scheduler view, select cleaner (the name of the schedule
you want to run), click Run Now, then click the job monitor icon on the toolbar (Jobs) to open
the Job Monitor view.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The joblet icon shows that the job is running.
2 Click the Job Scheduler icon on the toolbar to open the Job Scheduler view.

The cleaner schedule is listed as an active job. This indicates that the schedule has started the
job as anticipated.
If you click the refresh icon , you can see that the job now has a Job ID.

If the job invocation fails, as in this example, a red exclamation icon is also displayed.
The PlateSpin Orchestrate Job Scheduler 175

176 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

14
novdocx (en) 16 A

pril 2010
14The Policy Debugger

The Policy Debugger is a tabbed page available in several views of the PlateSpin Orchestrate
Development Client. This tool helps you to determine the reasons for the current state of a job. The
following figure shows the Policy Debugger tab opened in the Jobs view of the Orchestrate
Development Client.

Figure 14-1 PlateSpin Orchestrate Jobs View with the Policy Debugger Page Open

The Policy Debugger tab is also available in the VM Hosts view and in the Provisioner view of the
Orchestrate Development Client.

Section 14.1, “The Constraints Table View,” on page 177
Section 14.2, “The Facts Table View,” on page 182
Section 14.3, “Policy Debugger Use Cases,” on page 184

14.1 The Constraints Table View
The left side of the Policy Debugger page is referred to as the Constraints Table view.
The Policy Debugger 177

178 PlateS

novdocx (en) 16 A
pril 2010
Figure 14-2 The Constraints Table View

The appearance of this view can change, depending on the constraint type you select in the drop
down menu. For a description of these types, see Section 14.1.2, “The Constraint Type List,” on
page 180.

The Constraints Table View is composed of several parts:

Section 14.1.1, “The Match Context Area,” on page 178
Section 14.1.2, “The Constraint Type List,” on page 180
Section 14.1.3, “The Verbose Check Box,” on page 180
Section 14.1.4, “The Capable Resources Summary,” on page 180
Section 14.1.5, “The Constraints Column of the Constraints Table View,” on page 180
Section 14.1.6, “The Policy Column of the Constraints Table,” on page 182

14.1.1 The Match Context Area
The policy debugger provides the general identification of a job instance in the Match Context area
of the Constraints Table View. The Match Context defines everything associated with running a job
on a particular resource it references Facts, which are also referenced in Policies. The Policies define
how, when, and where the job runs.

Figure 14-3 The Match Context Area of the Constraints Table View in the Policy Debugger
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
That identifying Facts in the Match Context include:

Matrix: The icon and a text string identifies the machine that matches the grid name given to
the Orchestrate Server where this job is running.
User: The icon and a text string identifies the User object that matches the user who is running
the job.
Job: The icon and a text string identifies the deployed Job that matches the one that is
running on the grid.
Job Instance: The icon and a fully qualified text string identifies the specific Job instance
that matches the deployed job running on the grid.
Resource: The Resource drop down list shows all resources. The list appears in the Match
Context if the resource constraint type is selected. The resources in the list that are currently
offline display with a dimmed icon. If available, a listed resource has a colored dot by its side.
The color of the dot (blue or gray) and the resource type it accompanies has significance:

A blue dot with the All Resources label indicates that at least one resource matches the
constraints and is capable of servicing the job.
A gray dot with the All Resources label indicates that no resources match the constraints.
A blue dot with a named, selected resource indicates that its constraints match and it is
capable of servicing the job.
A gray dot by a named, selected resource indicates that its constraints do not match and
that it is not capable of servicing the job.

The following figure shows a list of eight resources. Four of those resources (lab.a, lab.b, lab.c
and lab.d) are online, and their constraints match so they are capable of servicing the job.

Figure 14-4 Resource Drop Down List Showing Online and Offline Resources
The Policy Debugger 179

180 PlateS

novdocx (en) 16 A
pril 2010
14.1.2 The Constraint Type List
Select one of the constraint types in the drop down list to specify a policy context. Constraint types
in the list are disabled (dimmed) if they do not apply to the job that you are debugging.

accept: accept
start: start
continue: continue
provision: provision
allocation: allocation
resource: resource
vmhost: vmhost
repository: repository
health: health

14.1.3 The Verbose Check Box
When you select the Verbose check box, the reason string specified in the policy is displayed in the
Constraints tree. For more information, see Section 14.1.5, “The Constraints Column of the
Constraints Table View,” on page 180.

14.1.4 The Capable Resources Summary
Directly under the Resource List in the constraint view, a populated string summarizes the resources
that are capable of servicing the job. For example, 4 matching Resource of 10 online
indicates that four of the ten total online resources are capable of servicing the job.

14.1.5 The Constraints Column of the Constraints Table View
The Constraints column of the constraints table view shows the logical hierarchy (that is, a “tree”
format) of the constraints that are defined by the Policies associated with the Job. You can identify
the status of the listed constraints by the icons that might be displayed in the far left column of the
table:

no icon: The constraint passes the match. It is a “true” match. The figure below shows that the
resource lab.a is available to run the job because all of its constraints match. No red icons are
displayed next to any listed constraint.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
red dot icon: The constraint does not pass the match. The figure below shows that the resource
eng.a cannot run the job because its constraints do not match.

red octagonal icon: The constraint does not pass the match and is blocking the job. The figure
above also shows the blocking constraint (red octagon).
green dot icon: A blocking constraint has been disabled so that it behaves like a match. The
figure below shows the green dot icon next to that the constraint that was formerly blocked and
can now behave as a match.

If you right-click a constraint in the table, a popup menu with three options is displayed. This menu
lets you change the status of the constraint.

Show Admin View: Select this option to open the Admin View for the specific resource
selected.
Disable Constraint: Select this option to disable (attach a green dot icon to) a constraint.
Disabling a constraint with this function effectively makes it match, a condition that can prove
useful if you want to perform a “what if” test without actually changing a policy.
Enable All Constraints: Select this option if you have disabled one or more constraints during
testing and you want to restore them to the enabled state.

Cached Constraints in the Constraints Column

When you change the constraint type in the Constraints Type List, the background of the table
changes to green for some types. These are “cached” constraints that are saved with the job after it
has completed. Their purpose is to help you debug the policy.
The Policy Debugger 181

182 PlateS

novdocx (en) 16 A
pril 2010
Figure 14-5 Cached Constraints Displayed in the Constraints Table View

14.1.6 The Policy Column of the Constraints Table
The Policy column of the constraints table displays the policy name that contributed the constraint.
Right-click a policy name to open a popup menu offering the option to open the policy editor for the
specified policy. The menu also includes constraint enabling or disabling options, just as the popup
menu for constraint column does.

Figure 14-6 The Popup Menu Launched from the Policy Column

14.2 The Facts Table View
The Facts Table view displays the facts referenced in the Constraint Tree view for a specified
Resource. Selecting a fact in the Constraint tree automatically selects that fact in the table.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure 14-7 The Constraints Table View and the Accompanying Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.

Figure 14-8 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

Section 14.2.1, “The All Facts Check Box,” on page 183

14.2.1 The All Facts Check Box
If you select the All Facts check box at the top of the Facts Table view, all of the facts (including
matrix, user, job, jobargs, jobinstance, and resource facts) associated with the Match Context are
listed.

If you select All Resources in the Match Context (see Section 14.1.1, “The Match Context Area,” on
page 178) and you also select the All Facts check box, the Facts Table view displays all the facts for
all resources for the specified Match Context.
The Policy Debugger 183

184 PlateS

novdocx (en) 16 A
pril 2010
Figure 14-9 All Facts Check Box Selected with All Resources in Match Context

14.3 Policy Debugger Use Cases
This section includes several use cases that show how the Policy Debugger works and how to use it.
The following use cases are included:

Section 14.3.1, “Use Case 1: Determining Why a Job is in a Waiting State,” on page 184

14.3.1 Use Case 1: Determining Why a Job is in a Waiting State
The objective of this use case is to run a job that sits in the waiting state and to use the policy
debugger to identify why it is in the state and to make the necessary changes to get the job to run.
The quickie.job is used along with a simple policy that specifies that the Resources that are to be
used must be in a Resource group called debugger.

Use the following steps to recreate the use case.

1 In the Orchestrate Development Client, create a user named debugger.
2 Deploy quickie.job from the /examples directory.
3 In the Orchestrate Development Client, create a schedule named quickie, specifying the

quickie job and the debugger user.
4 In the Orchestrate Development Client, create a policy and name it debuggerExample. The

policy needs to specify that the resource used belongs to the group called debugger.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
5 In the Orchestrate Development Client, associate the debuggerExample policy to the quickie
job.

6 In the Job Scheduler view of the Orchestrate Development Client, select the quickie schedule,
then click Run Now to run the quickie schedule.

7 In the Job Monitor view of the Orchestrate Development Client, select the Policy Debugger tab
and verify that the job is in the waiting state.

8 In the Constraints Table view, open the Constraint Type drop down list, then select Allocation.
9 In the Match Context area of the Constraints Table view, open the Resource drop down list,

then select any resource to refresh the Constraints Table and Facts Table views.
The Policy Debugger 185

186 PlateS

novdocx (en) 16 A
pril 2010
The Policy Debugger displays a red icon near the constraints that fail to match. The larger, red
octagonal icon shows the particular constraint that is “blocking” and preventing the job from
running on the resource. This is the constraint that is causing the job to be in a “waiting” state.
The Constraints Table also displays the policy name (debuggerExample) that is contributing
the constraint that is causing problems.

There are a few ways to get the job to run:

Create a Resource group called debugger, then place a resource in that group to satisfy the
constraint specified in the policy.
Disassociate the policy (debuggerExample) from the job (quickie).
In the Constraints Table, right-click on the blocking constraint and select Disable Constraint.
pin Orchestrate 2.5 Development Client Reference

A
novdocx (en) 16 A

pril 2010
AGrid Object Health Monitoring

This section includes the following information:

Section A.1, “Health Facts,” on page 187
Section A.2, “Health Events,” on page 189
Section A.3, “The Health Debugger,” on page 189

A.1 Health Facts
The Resource grid object, the VM host grid object, the User grid object and the Repository grid
object each has an attribute or “Fact” that denotes the health of the object.

resource.health

vmhost.health

user.health

repository.health

Empirically, object health is a simple Boolean value, with True indicating that the object is healthy.
This value can be controlled in a number of ways. An unhealthy object is displayed in the PlateSpin
Orchestrate Development Client with a red cross to signal the object’s condition.

Figure A-1 Tree View of Repository Grid Objects in the “all” Group, Some Objects Unhealthy

You can define what constitutes the health or non-health of the grid object by setting this health fact.
The health fact can be set or cleared in several ways:

Explicitly set or cleared by the administrator using tools in the PlateSpin Orchestrate
Development Client.

Select any grid object in the Development Client, then click the Info/Groups tab in the
Workspace view. This is the “info” attribute editor. The attributes on this page let you edit
facts.
The object information panel of the page has a Healthy check box that you can select or
deselect to set the health of the object.
Grid Object Health Monitoring 187

188 PlateS

novdocx (en) 16 A
pril 2010
Figure A-2 The “Healthy” Check box on the Info/Groups Page

On the Constraint/Fact fact page of a grid object, right click the xxx.health fact name,
then click Edit/View Fact to open the Edit Fact dialog box.

Figure A-3 The Edit Fact Dialog Box Displayed from the Constraint/Fact Page

You can set the health of the object by selecting or deselecting the health check box.
Changing the value in the Development Client in this way has an immediate effect unless
the value is overriden by an attached policy (this follows the normal rules of policy
inheritance).

Set by using a discovery job (a job periodically scheduled to run on resources and to explicitly
set the health fact, much like it sets other discovered facts). In this case, the discovery job
performs a setFact (xxx.health) from JDL code.
Set by using a policy. This method has little practical use except for locking the value
immediately to override the setting (that is, the typical policy behavior) on the grid object:

 <policy>
 <fact name="resource.health" value="true" type="boolean" />
 </policy>

Set by using a computed fact. This method can be used to monitor the health according to a
computed value. One applied scenario for this method might be a computed fact that performs
a statistical analysis of historical load data, perhaps provided by the Metrics facility.
Set automatically by using a health constraint. This is the most practical use and is best
illustrated with examples.
Example 1: Define resources as “unhealthy” if their 10 minute load average is greater than 5>
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010

 <policy>
 <constraint type="health">
 <lt fact="resource.metrics.loadaverage.history.10_min"
value="5.0" />
 </constraint>
 </policy>

You could attach this policy directly to the Resource grid object or to a Resource group (more
practical).
Example 2: Define a user as unhealthy if he or she has no money in their account.

 <policy>
 <constraint type="health">
 <ge fact="user.account.balance" value="0" />
 </constraint>
 </policy>

You could attach this policy directly to the User grid object, or to a User group (more
practical).
You can aggregate (that is, group together with “and” or “or”) health constraints by using
normal rules of policy aggregation.
By default, PlateSpin Control runs health constraints every 30 seconds. To alter this interval,
you must contact Novell Support.

A.2 Health Events
Each time the value of a health fact changes, an event is generated. This event can be subscribed to
by long-running Jobs (see “Receiving Event Notifications in a Running Job” in the PlateSpin
Orchestrate 2.5 Developer Guide and Reference) or the event can be used to trigger Jobs in the Job
Scheduler (see “The PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.5
Development Client Reference). The event names are different for each object type.They are listed in
the following table.

Table A-1 Event Names for Grid Objects

A.3 The Health Debugger
Several objects modeled by PlateSpin Orchestrate have a health fact that can be used to visually
show the health of the object or to trigger a job (see Chapter 13, “The PlateSpin Orchestrate Job
Scheduler,” on page 147) upon a state change. This fact can optionally be manually set, or more

Object Event Name

User USER_HEALTH

Resource RESOURCE_HEALTH

Repository REPOSITORY_HEALTH

VmHost VMHOST_HEALTH
Grid Object Health Monitoring 189

190 PlateS

novdocx (en) 16 A
pril 2010
usually automatically set through the periodic execution of the health constraint placed on that
object. When such a health constraint is active, you might need to debug to discover the reasons for
the changed state. The Health Debugger is a useful debugging tool.

The Health Debugger is a tabbed page (sometimes called an “admin view”) available in several
views of the PlateSpin Orchestrate Development Client and functions much like the more generic
“Policy Debugger.” This tool helps you to determine the reasons for the current Health of a Grid
object. The following figure shows the Health Debugger tab opened in the Resource object view of
the Orchestrate Development Client.

Figure A-4 PlateSpin Orchestrate Jobs View with the Health Debugger Page Open

The Health Debugger tab is also available in the VM Host object view, the Repository object view
and in the User object view of the Orchestrate Development Client.

Section A.3.1, “The Constraints Table Panel,” on page 190
Section A.3.2, “The Facts Table View,” on page 193

A.3.1 The Constraints Table Panel
The left side of the Health Debugger page is referred to as the Constraints Table view.

Figure A-5 The Constraints Table View
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
The appearance of this view can change, depending on the Constraint Type you select in the
Constraint drop down list. In effect, if you change from the health selection, you will be debugging
other constraints. For a description of these constraint types, see Section 14.1.2, “The Constraint
Type List,” on page 180. Different objects selected for the view change the Match Context in which
the constraint is executed, which is useful for comparing how the constraint evaluates other objects.

The Constraints Table View is composed of several parts:

“The Match Context Area” on page 191
“The Verbose Check Box” on page 192
“The Capable Objects Summary” on page 192
“The Constraints Column of the Constraints Table View” on page 192

The Match Context Area

The Health Debugger provides the general identification of a Grid object in the Match Context area
of the Constraints Table View. The Match Context defines every object that is available to the
constraint you are viewing.

Figure A-6 The Match Context Area of the Constraints Table View in the Health Debugger

In this example, the identifying Facts in the Match Context include:

Matrix: The icon and a text string identifies the machine that matches the grid name given to
the Orchestrate Server where this object exists.
Object icon: The object icon and a text string identifies the object (VM host, Repository, or that
matches the user who is running the job. If the object icon has a red cross overlaid, it is
unhealthy.
Object list: The object drop down list shows all named objects of the type selected in the
Explorer Tree. The objects in the list that are currently offline display with a dimmed icon. If
available, a listed object has a colored dot by its side. The color of the dot (blue or gray) and
the object type it accompanies has significance:

A blue dot with the All <Object Type> label indicates that at least one object in the list
matches the constraints and is healthy.
A gray dot with the All <Object Type> label indicates that no objects of this type match
the constraints.
A blue dot with a named, selected object indicates that its constraints match and it is
healthy.
A gray dot by a named, selected object indicates that its constraints do not match and that
it is not healthy.
Grid Object Health Monitoring 191

192 PlateS

novdocx (en) 16 A
pril 2010
The Verbose Check Box

When you select the Verbose check box, the reason string specified in the policy is displayed in the
Constraints tree. For more information, see Section 14.1.5, “The Constraints Column of the
Constraints Table View,” on page 180.

The Capable Objects Summary

Directly under the Object list in the constraint view, a populated string summarizes the resources
that are capable of servicing the job. For example, 11 healthy Resources of 12 online
indicates that 11 of the 12 total online Resources are healthy.

The Constraints Column of the Constraints Table View

The Constraints column of the constraints table view shows the logical hierarchy (that is, a “tree”
format) of the constraints that are defined by the Policies associated with the Job. You can identify
the status of the listed constraints by the icons that might be displayed in the far left column of the
table:

no icon: The constraint passes the match. It is a “true” match. No red icons are displayed next
to any listed constraint.

red dot icon: The constraint does not pass the match. The figure below shows that the resource
vmh5slesx cannot run the job because its health constraints do not match.

red octagonal icon: For convenience, just one of the constraints is identified as the blocking
constraint. This is the constraint that the system has determined as responsible for the constraint
as a whole to fail (note that individual constraint lines can fail without causing the the entire
constraint to fail).
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
green dot icon: A failing constraint has been disabled so that it behaves like a match (pass). The
figure below shows the green dot icon next to that the constraint that was formerly failing and
can now be forced to behave as a match.

If you right-click a constraint in the table, a popup menu with three options is displayed. This menu
lets you change the status of the constraint. Disabling a constraint is useful if you want to
temporarily relax a condition without editing or redeploying the whole policy and potentially
affecting other objects that share the policy. A disabled constraint can be re-enabled later.

Show Admin View: Select this option to open the Admin View for the specific object selected.
Disable Constraint: Select this option to disable (attach a green dot icon to) a constraint.
Disabling a constraint with this function effectively makes it match, a condition that can prove
useful if you want to perform a “what if” test without actually changing a policy.
Enable All Constraints: Select this option if you have disabled one or more constraints during
testing and you want to restore them to the enabled state.

NOTE: Health constraints are always re-evaluated in the debugger. The last system execution
(cached constraint) is not available for health constraints.

The Policy column of the constraints table displays the policy name that contributed the constraint.
Right-click a policy name to open a popup menu offering the option to open the policy editor for the
specified policy. The menu also includes constraint enabling or disabling options, just as the popup
menu for constraint column does.

Figure A-7 The Popup Menu Launched from the Policy Column

A.3.2 The Facts Table View
The Facts Table view displays the facts referenced in the Constraint Tree view for a specified object.
Selecting a fact in the Constraint tree automatically selects that fact in the table.
Grid Object Health Monitoring 193

194 PlateS

novdocx (en) 16 A
pril 2010
Figure A-8 The Constraints Table View and the Accompanying Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.

Figure A-9 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

“The All Facts Check Box” on page 194

The All Facts Check Box

If you select the All Facts check box at the top of the Facts Table view, all of the facts (including
matrix, and <object type> facts) associated with the Match Context are listed.

If you select All <Object Type> in the Match Context (see Section 14.1.1, “The Match Context
Area,” on page 178) and you also select the All Facts check box, the Facts Table view displays all
the <object type> facts for the specified Match Context of the selected object.

Figure A-10 All Facts Check Box Selected with All VM Hosts in Match Context
pin Orchestrate 2.5 Development Client Reference

B
novdocx (en) 16 A

pril 2010
BEvents

This section contains the following information:

Section B.1, “Event Object Visualization and Management in the Development Client,” on
page 195
Section B.2, “The Event Debugger,” on page 198
Section B.3, “Understanding the PlateSpin Orchestrate Events System,” on page 202

B.1 Event Object Visualization and Management
in the Development Client
The Events folder is displayed in the Explorer tree between the Computed Facts and Metrics folders.

Figure B-1 The Events Folder in the PlateSpin Orchestrate Explorer View

Although the PlateSpin Orchestrate system includes several built-in Events (see Section B.3.2,
“Built-in Events,” on page 203), these Events are not displayed in the Explorer view. Only custom
Events (defined in XML by the administrator and then deployed on the server) are displayed in the
tree.

When an Event object is deployed, its icon is displayed in the tree in the Events folder.

Figure B-2 An Event Object in the Events Folder

The icon in the Explorer tree might be overlaid with a write symbol to indicate that its XML
content has changed and needs to be saved. For more information about changing the XML content,
see Section B.1.4, “The Event Editor,” on page 197.

This section includes the following information about how the Event object is managed in the
Development Client:

Section B.1.1, “Deploying a New Rule-Based Event,” on page 196
Section B.1.2, “Deploying a Pre-written Rule-Based Event,” on page 196
Section B.1.3, “Undeploying an Event,” on page 197
Section B.1.4, “The Event Editor,” on page 197
Events 195

196 PlateS

novdocx (en) 16 A
pril 2010
B.1.1 Deploying a New Rule-Based Event
Use the following steps to create a new event.

1 In the Explorer view, right-click the Events folder, then select New Event to open the Create a
New Event dialog box.

2 Enter the name for the new Event, then click OK to create the new Event object.
PlateSpin Orchestrate then deploys the new Event object on the server, where it can be
managed. The Development Client opens the Event Editor, where you can edit the XML
definition of this Event. For more information, see Section B.1.4, “The Event Editor,” on
page 197 and Section B.3.3, “Rule-based Events,” on page 204.

B.1.2 Deploying a Pre-written Rule-Based Event
Use the following steps to deploy a pre-written Event (an XML .event file).

1 Right-click the Events container, then select Deploy Event to open the Select the Component
File to Deploy dialog box.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
2 In the dialog box, navigate to the file system location of the Event file you previously created,
or to an example .event file from /opt/novell/zenworks/zos/server/examples/
events, then click OK to deploy the pre-written Event.
When you deploy the rule-based Event, the Development Client opens the Event Editor, where
you can edit the XML definition of this Event. For more information, see Section B.1.4, “The
Event Editor,” on page 197 and Section B.3.3, “Rule-based Events,” on page 204.

B.1.3 Undeploying an Event
When an Event has been deployed, it can be undeployed. Undeploying deletes the Event object
within PlateSpin Orchestrate, but it does not delete the source .event file, which still exists and can
be redeployed.

To undeploy an Event, right-click on the Event object in the Explorer tree, then select Undeploy.
You can also simply select the object and press Delete.

B.1.4 The Event Editor
The Event Editor opens when you select a deployed Event in the Explorer tree of the Development
Client.
Events 197

198 PlateS

novdocx (en) 16 A
pril 2010
Figure B-3 The Event Editor

Inside this editor, you can make changes to the XML content of the Event. Example Events contain
comments that explain how you can use them and the behavior you can expect to see as a result of
deploying them. For the changes you make to be effective, you need to click the Save tool.

For more information about the allowed XML syntax within an Event, see Section B.3.3, “Rule-
based Events,” on page 204.

B.2 The Event Debugger
The Event Debugger is a tabbed page available from the Explorer view of an Event object when you
select an event and then click the Event Debugger tab. This tool helps you to determine the reasons
for the current state (triggered or reset) of an Event. The following figure shows the Event
Debugger view.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
Figure B-4 The Event Debugger

The information in this section describes the various parts of the debugger.

Section B.2.1, “The Constraints Table,” on page 199
Section B.2.2, “The Facts Table,” on page 201

B.2.1 The Constraints Table
The left side of the Event Debugger panel includes the Constraints Table. The rules that define the
<trigger> and <reset> of an Event are defined using the same XML constraint syntax used in
policies.

Figure B-5 The Constraints Table Area of the Events Debugger
Events 199

200 PlateS

novdocx (en) 16 A
pril 2010
The Constraints Table has several parts:

“Match Context” on page 200
“Event Type List” on page 200
“Verbose Check Box” on page 200
“Constraints List (Tree)” on page 200

Match Context

Depending on the Event, the debugger identifies the Grid objects (Job, Jobinstance, Resource,
Repository, User, or VMHost) that define the context of the trigger or reset rules specified in the
Event XML.

Figure B-6 The Match Context Area of the Constraints Table View in the Event Debugger

Event Type List

Select one of the Event types in the drop down list to debug how either the <trigger> or <reset>
rule(s) are being applied. Constraint types in the list are disabled (dimmed) if they do not apply to
the Event that you are debugging.

trigger: The rules defining the conditions (through a constraint) in which an Event is
generated.
reset: The rules defining the conditions (through a constraint) in which an Event is reset (that
is, able to be triggered again).

Verbose Check Box

When you select the Verbose check box, additional constraint information is displayed.

Constraints List (Tree)

The Constraints Tree, a column in the constraints table, lists the constraints that constitute a
particular rule in a hierarchical view.

Each constraint is flagged with an icon to signify whether it “passes” or not. A constraint flagged
with an exclamation point indicates a constraint causing the rule to not “pass.”

Right-click on a constraint to expose a menu where you can perform one of the following actions:

Show Admin View: Selects the currently evaluated Grid object in the Explorer Tree and displays its
Info/Groups administration information view.

Disable Constraint: “Passes” the constraint, regardless of how it evaluates.

Enable All Constraints: Re-enables any disabled constraints.

NOTE: The right-click menu is available only when you select specific constraints.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
B.2.2 The Facts Table
The Facts Table view displays the facts referenced in the Constraint Tree view for a specified Event.
Selecting a rule containing a particular fact in the Constraint tree automatically selects that fact (and
its current value) in the table.

Figure B-7 The Facts Table View

If you right-click a column head in this table, a menu is launched where you can select the columns
that you want to display.
Events 201

202 PlateS

novdocx (en) 16 A
pril 2010
Figure B-8 Menu Used to Select the Columns Displayed in the Facts Table View of the Policy Debugger

All Facts Check Box: If you select the All Facts check box at the top of the Facts Table view, all
facts for the selected Grid object, as well as those for the Server itself (matrix.* facts) are
displayed.

If you right-click a fact, you have the option of adding a new fact, deleting the selected fact, or
viewing/editing (if the fact is editable or can be deleted) the selected fact.

B.3 Understanding the PlateSpin Orchestrate
Events System
The PlateSpin Orchestrate Event System integrates with the Job Scheduler. Event notifications can
start jobs and can also invoke Event handler methods in long-running jobs. In turn, a job can react to
the Event by starting other PlateSpin Orchestrate actions, by modifying object attributes, or by
executing another external process.

For example, an Event notification can occur when a VM Host has exceeded its configured load
limits. This Event can start a job that migrates VMs off of the loaded VM Host or VM Hosts.

PlateSpin Orchestrate supports two Event types:

Built-in Events, such as change of status of the health of a resource's or a change in the online
status of the resource.
Rule-based Events that are triggered when the attributes of an object satisfy the rules
(constraint conditions) defining the Event.

This section includes the following information:

Section B.3.1, “Event Notification,” on page 203
Section B.3.2, “Built-in Events,” on page 203
Section B.3.3, “Rule-based Events,” on page 204
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
B.3.1 Event Notification
An Event notifies two other PlateSpin Orchestrate services– the Job Scheduler and the Job Broker.
The Job Scheduler starts jobs that are awaiting an Event to trigger them.

The Job Broker invokes a callback on any long-running job that has registered for notification of an
Event.

See “The PlateSpin Orchestrate Job Scheduler” in the PlateSpin Orchestrate 2.5 Development
Client Reference for more information about setting up a Job Schedule. Also see “Job Architecture”
in the PlateSpin Orchestrate 2.5 Developer Guide and Reference for more information about how
jobs can register for event notification.

B.3.2 Built-in Events
Built-in events occur when a managed object comes online/offline or has a health status change.

PlateSpin Orchestrate uses the following built-in Events to keep managed objects synchronized.

Table B-1 PlateSpin Orchestrate Built-in Events

For example, when a resource comes online (that is, the agent connects to server), the
RESOURCE_ONLINE Event is fired and both Scheduled Jobs with a trigger for that Event and long-
running jobs with Event handlers are notified.

The RESOURCE_ONLINE built-in Event is used by the embedded discovery jobs, such as for
discovering operating system and CPU information (osInfo and cpuInfo jobs). Both osInfo and
cpuInfo job archives (.job) include a schedule file (.sched) specifying a trigger (.trig) that
allows these jobs be started when notification of the RESOURCE_ONLINE Event occurs.

Event Name Description

AGENT_VERSION_MISMATCH Resource Agent version mismatch (agent needs upgrade)

REPOSITORY_HEALTH Repository health status has changed

RESOURCE_HEALTH Resource health status has changed

RESOURCE OFFLINE Resource Agent has logged off from server

RESOURCE_ONLINE Resource Agent has logged in to server

SERVER_UP Server has fully started

USER_HEALTH User health status has changed

USER_ONLINE User has logged in to server

VMHOST_ADDED VM Host has been added

VMHOST_HEALTH VM Host health status has changed

VMHOST_NOT_AVAILABLE No VM Host is available

VMHOST_REMOVED VM Host has been removed
Events 203

204 PlateS

novdocx (en) 16 A
pril 2010
B.3.3 Rule-based Events
Rule-based Events are defined in an XML document and deployed to the PlateSpin Orchestrate
Server and managed using the PlateSpin Orchestrate Development Client. Rules can be a simple
object attribute (fact) equivalency check or they can use AND,OR, IF, ELSE logic, among other
things, in an Event ruleset.

The rules follow the same syntax as the constraints that are defined in XML policy files for all Grid
Objects, such as Jobs, VM Hosts, etc.

The PlateSpin Orchestrate Event Service evaluates the rules; if the rules pass, an Event notification
occurs.

The XML Schema document specification can be found in <install dir>/doc/xsds/
event_1_0_0.xsd.

The Event XML specification is composed of three sections.

<context>

<trigger>

<reset>

NOTE: Both the <context> and <trigger> sections are required.

<context> section

The context section defines the context in which the Event rules are evaluated. With Events, you
specify what objects are in the Event rule context in this section. The available objects are Job,
Jobinstance, Resource, Repository, User, and VMHost. From these objects, you can specify one
object set to iterate over and optionally a single instance of the object.

<trigger> section

The trigger section defines the rules for when an Event notification occurs. The <trigger> format
is the same syntax as <constraints> used in policies.

<reset> section

The optional <reset> section defines the rules for when an Event is reset. If the <reset> rule is not
used, an Event is reset based on a timeout. The <reset> format is also the same syntax as in
<constraints> used in policies.

The resetInterval attribute is set on the <event> XML element. If "resetInterval" and
<reset> is not used, the default timeout for resetting is 10 minutes.

The following example (taken from the "vmhost.event" in <install dir>/examples/events)
defines that a notification occurs when a VM Host becomes overloaded.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
1<event>
2
3 <context>
4 <vmhost />
5 </context>
6
7 <trigger>
8 <gt fact="vmhost.vm.count" value="0" />
9 <gt fact="vmhost.resource.loadaverage" value="2" />
10 </trigger>
11
12 <reset>
13 <lt fact="vmhost.resource.loadaverage" value=".5" />
14 </reset>
15
16</event>

Lines 3-5: Defines the context for the Event’s rule evaluation.

Line 4: The context specifies for all VM Host objects, so the Event Service iterates over all VM
Hosts. On each VM Host, the <trigger> rule will be evaluated, so in this case, the Event context is
composed of one or more VM Hosts.

Lines 7-12: Defines the Trigger rule to determine if this Event is to fire notifications or not. If the
trigger rule does not pass, then no Event notifications occur.

Line 8: Consider only VM Hosts that have at least one VM instance running.

Line 9: Check the running average of the VM Host’s load average if it exceeds a threshold value. In
this case if the average is greater than 2.

Lines 12-14: Defines the Reset rule to determine if a previously triggered VM Host can be reset and
triggered again.

Line 13: Only reset if the running average of the VM Host’s load average drops below a threshold.

So when a VM Host passes the trigger rule, the VM Host does not pass the trigger rule again until
the reset rule (load average drops below threshold) passes.

See the repository.event example (<install dir>/examples/events/repository.event)
for an Event with a rule that evaluates the freespace fact on all repository objects.
Events 205

206 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

C
novdocx (en) 16 A

pril 2010
CThe Metrics Facility

The Orchestrate Metrics Facility collects, aggregates, and allows simple fact-based retrieval of
metric values by jobs and computed facts (via JDL), policy constraints, and Event triggers on a per-
resource basis. This provides aggregated metrics generated by gmond without the need for the
gmetad Ganglia service. Note that gmetad can still be used in parallel for aggregating gmond
reported metrics for visualization purposes.

Section C.1, “Metrics Facility Functionality,” on page 207
Section C.2, “Ganglia Metrics,” on page 207
Section C.3, “How Does the Metrics Facility Impact Orchestrate Server Performance?,” on
page 209
Section C.4, “RRD Definition Using Deployable .metric Files,” on page 209
Section C.5, “Query of Aggregated Metric Values,” on page 211
Section C.6, “MetricsManager MBean API,” on page 212
Section C.7, “Using the Metrics Facility in the Development Client Interface,” on page 213

C.1 Metrics Facility Functionality
The Metrics Facility provides the following functionality:

Collection of gmond provided metrics using the Orchestrate Agent .
Retrieval of instantaneous metric values via resource.metrics.<METRIC_NAME> fact space,
where <METRIC_NAME> is the name of the metric.
Deployable Round Robin Database (RRD) (data aggregation) definition using XML .metric
files, which allows flexible definition of aggregation periods. For example, using
resource.metrics.<METRIC_NAME>.10_minute.average as a 10-minute aggregation
period separate from resource.metrics.<METRIC_NAME>.1_hour.average.
Retrieval of an array of aggregated metric values using
resource.metrics.<METRIC_NAME>.xxx.values.
Zero-configuration for core Ganglia metrics. The Orchestrate Agent automatically discovers if
gmond is running on a resource, and the Orchestrate Server collects and, if a .metric file is
configured, aggregates those metrics.
Persistence of collected RRD data across server restart and high availability fail-over
conditions.

C.2 Ganglia Metrics
Not all Ganglia metrics are suitable for aggregation, such as those of “String” type. By default, only
the 24 metrics listed in the following table are supported (either of type “Real” or type “Integer”):
The Metrics Facility 207

208 PlateS

novdocx (en) 16 A
pril 2010
Table C-1 Supported Ganglia Metrics

Metric Type

bytes_in Real

bytes_out Real

cpu_aidle Real

cpu_idle Real

cpu_nice Real

cpu_system Real

cpu_user Real

cpu_wio Real

disk_free Integer

disk_total Integer

load_fifteen Real

load_five Real

load_one Real

mem_buffers Integer

mem_cached Integer

mem_free Integer

mem_shared Integer

mem_total Integer

pkts_in Real

pkts_out Real

proc_run Integer

proc_total Integer

swap_free Integer

swap_total Integer
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
C.3 How Does the Metrics Facility Impact
Orchestrate Server Performance?
The Metrics Facility balances flexibility and minimizing the impact on overall Orchestrate Server
performance. There is no continuous parsing of XML on the server. Instead, parsing of gmond-
generated XML is performed by each managed resource.

This section includes the following information:

Section C.3.1, “I/O Contention,” on page 209
Section C.3.2, “Too Many Open Files,” on page 209

C.3.1 I/O Contention
By default, RRD-based data aggregation is file-based. Because of the frequency of updates and
queries of RRD files, this poses a significant performance issue. The Metrics Facility minimizes I/O
contention by using in-memory caching and batched write operations to avoid I/O contention and
the resulting performance degradation.

C.3.2 Too Many Open Files
The PlateSpin Orchestrate Monitoring Server uses a “one RRD per resource” approach, where a
RRD contains the AVERAGE, MIN, and MAX RRAs for multiple metrics (DS). In contrast, the
Metrics Facility takes an “inside out” approach, which results in “one RRD per metric.” For 1,000
agents reporting 24 Ganglia metrics, this reduces the number of files dramatically (from 24,000 in
the “one RRD per metric, per resource” case, and 1,000 in the “one RRD per resource” case, to 24 in
the “one RRD per metric” case). This approach avoids a “too many open files” condition.

NOTE: A “too many open files” condition occurs when the default maximum file descriptors
available to a process launched from the Linux shell is exceeded.

C.4 RRD Definition Using Deployable .metric
Files
Definition of the “aggregation” functions performed by the Metrics Facility’s internal RRD data
structures are customizable using deployable XML .metric definition files. This accommodates a
flexible configuration of the following:

The Ganglia-reported metrics to include in aggregated data structures
The data aggregation periods that are of specific interest

The deployable definition files, one per metric to be aggregated, consist of the following:

The name of the “instantaneous” metric to be aggregated, for example, load_one
An optional description of the metric to be aggregated.
A “heartbeat” value that governs the updates to the contained RRAs.
One or more named Periods (corresponding to the RRAs to be created) with an optional
description.
The Metrics Facility 209

210 PlateS

novdocx (en) 16 A
pril 2010
For each Period, the number of data points to aggregate (steps), the number of aggregated data
points to archive (rows), and the “xff' (x-files factor) allowed for the metric.

NOTE: The xff determines how many of the samples can be NaN for the consolidated sample
to be considered NaN. Usually, this is set to 0.5, or 50%.).

When an RRD is defined through deployment of its definition file, three RRAs are created for each
Period: AVERAGE, MAX, and MIN. A new DS (datasource) is added to the RRD for each resource
reporting the metric to be aggregated. This requires the RRD file to be re-created each time a new
resource begins reporting a given metric and the previously aggregated values copied from the old
RRD to the new one. This approach enhances performance and flexibility, but the RRD file is not of
fixed size: Over time, the RRD grows or shrinks as new resources are added to the system or are
deleted from the Orchestrate model.

NOTE: The RRD is actually re-created with a new DS added for each new resource and the “old”
RRA’s data copied into it.

Deleting a Resource GridObject removes its DS from the RRD file (actually, from all RRDs with
metrics reported by that resource).

One optimization you can implement for storing the smallest Period (consisting of a single step) is to
create only a single RRA (vs. three), because the average of a single datapoint is equal to the
maximum and minimum of a single datapoint.

NOTE: The RRD files created by the Java rrd4j library are not binary compatible with RRD files
generated by the rrdtool used by gmetad. They are however portable across operating system
architectures (e.g., 32-bit bigendian vs. 64-bit little-endian) which is not possible with traditional
RRD files created using rrdtool.

C.4.1 XML Format for Deployable .metric Definitions
An example of the format of the deployable RRD definition is shown below.

<metric name="load_one" heartbeat="120"
 description="Ganglia oneminute load average">

 <period name="1_minute" steps="1" rows="60" xff=".5"
 description="1 hour worth of 1 minute (raw) data"/>

 <period name="5_minute" steps="5" rows="12" xff=".5"
 description="1 hour worth of 5 minute aggregations"/>

 <period name="10_minute" steps="10" rows="72" xff=".5"
 description="12 hours worth of 10 minute aggregations"/>

 <period name="1_hour" steps="60" rows="24" xff=".5"
 description="1 days worth of 1 hour aggregations"/>

</metric>
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
This example creates an RRD for the load_one metric, with four aggregation periods (RRAs)
called 1_minute, 5_minute, 10_minute, and 1_hour. The default sample (RRD update) time is
one minute, so the 10_minute aggregation period has 10 steps. 72 “rows” of aggregated datapoints
are retained in the RRA before the oldest is dropped off, representing 12 hours (12 * 60 / 10) worth
of data.

NOTE: The 1_minute period is not a true aggregation because the default sample (RRD update)
time is also one minute. In this case, the “raw” datapoints are stored for historical reference.

C.5 Query of Aggregated Metric Values
Aggregated metric values can be queried similar to the instantaneous values either from JDL, from
within a policy/event constraint, or from an array of multiple metrics values. This section includes
the following information:

Section C.5.1, “Example of a JDL Query for Aggregated Metric Values,” on page 211
Section C.5.2, “Example of a Policy Constraint or Event Constraint Using Aggregated Metric
Values,” on page 211
Section C.5.3, “Example of Using Non-aggregated (“Raw”) Historical Metric Values,” on
page 212

C.5.1 Example of a JDL Query for Aggregated Metric Values
r = getMatrix().getResource(“local_vmhost”)

print "resource.id: %s" % (r.getFact("resource.id"))

print "load_one.10_minute.average: %s" %
(r.getFact("resource.metrics.load_one.10_minute.average"))

C.5.2 Example of a Policy Constraint or Event Constraint Using
Aggregated Metric Values
 <event>
 <context>
 <vmhost />
 </context>
 <trigger>
 <gt fact="vmhost.vm.count" value="0" />
 <gt fact="vmhost.resource.metrics.load_one.10_minute.average"
value="2" />
 </trigger>
 <reset>
 <lt fact="vmhost.resource.metrics.load_one.10_minute.average"
value=".5" />
 </reset>
 </event>

The consolidation functions (AVERAGE,MAX, and MIN) are supported for each defined
aggregation period. In RRD terminology, this means that for each metric, there are three RRAs
defined for each “period” element in the .metric deployable definition.
The Metrics Facility 211

212 PlateS

novdocx (en) 16 A
pril 2010
C.5.3 Example of Using Non-aggregated (“Raw”) Historical
Metric Values
You can query for an array of “raw” values that constitute the aggregated datapoints for a given
RRA within the RRD data structure by appending .values to the factname representing the metric
(and period) of interest. For example, to print all the MIN values collected for the 10_minute
aggregation period, the JDL is

r = getMatrix().getResource(“local_vmhost”)

print "resource.id: %s" % (r.getFact("resource.id"))
print "load_one.10_minute.min.values: %s" %

(r.getFact("resource.metrics.load_one.10_minute.min.values"))

Similarly, to print the array of AVERAGE and MAX values collected, the JDL is

print "load_one.10_minute.average.values: %s" %
(r.getFact("resource.metrics.load_one.10_minute.average.values"))

print "load_one.10_minute.max.values: %s" %
(r.getFact("resource.metrics.load_one.10_minute.max.values"))

C.6 MetricsManager MBean API
The MetricsManager facility exposes a small number of methods for disabling and enabling a RRD
file creation and update, and for query of both instantaneous and aggregated metric values. The
facility also allows a UI to query for information needed for populating a pull-down list that could
include, for example, valid metric names for a specified resource or valid aggregation periods for
such a metric. The API also currently provides a way to fetch a “running average” of the raw
datapoints for a metric (a cached value that does not require a fetch operation from an RRD) and
server-side generation of a simple graph of metric data (requires a fetch from an RRD file).

This section includes the following information:

Section C.6.1, “MBean Methods Exposed by the MetricsManager Facility,” on page 212
Section C.6.2, “The MetricsDeployer Facility,” on page 213

C.6.1 MBean Methods Exposed by the MetricsManager Facility
The following table lists the MBean methods that are exposed by the MetricsManager Facility.

Table C-2 MBean Methods Exposed by the MetricsManager Facility

MBean Method Description

setMetricsEnabled() A parameter of false disables the creation or update of RRD files.

getObjectNames() Returns a list of current deployed metric definitions

update() Updates RRDs with instantaneous values collected by the Metrics Facility.

getFact() Given the fully qualified fact name, fetches the value of a specified
resource’s fact.
pin Orchestrate 2.5 Development Client Reference

novdocx (en) 16 A
pril 2010
C.6.2 The MetricsDeployer Facility
The MetricsDeployer deployment facility parses the .metric definition files and creates the
associated grid objects that are used to maintain the metadata related to the RRD used for
aggregation.

C.7 Using the Metrics Facility in the
Development Client Interface
The PlateSpin Orchestrate Development Client supports the Metrics Facility in the following ways:

Metrics object: A Metrics object is deployed in the Explorer tree. Use the right-click menu to
display the “deploy” and “undeploy” actions. Pre-defined .metric files are located in the /
opt/novell/zenworks/zos/server/components/metrics folder, or you can create a new
.metric file and paste in the XML as shown in Section C.4.1, “XML Format for Deployable
.metric Definitions,” on page 210.

Metrics objects are listed by their deployment name, which may or may not be the same as the
name of the actual metric. This potentially allows multiple, separately deployable, RRD
definitions for a single “instantaneous” metric, with different aggregation periods defined.
Metrics Editor: Selecting the Metrics object opens a free-form XML editor in the admin view
of the client. The editor is similar to the Event” editor for viewing RRD definition XML.

getMetricNames() Fetches the metric names relevant for a specified resource .

getPeriodNames() Fetches the names of periods (RRAs) defined for a specified metric.

getRunningAverage() Fetches the running average of a metric for a specified resource.

getRrdGraphic() Used by the Development Client to fetch a server-generated ImageIconInfo
object.

MBean Method Description
The Metrics Facility 213

214 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

D
novdocx (en) 16 A

pril 2010
DDocumentation Updates

This section contains information about documentation content changes that were made in this
PlateSpin Orchestrate Development Client Reference after the initial release of PlateSpin
Orchestrate 2.5. The changes are listed according to the date they were published.

The documentation for this product is provided on the Web in two formats: HTML and PDF. The
HTML and PDF documentation are both kept up-to-date with the changes listed in this section.

If you need to know whether a copy of the PDF documentation that you are using is the most recent,
the PDF document includes a publication date on the title page.

The documentation was updated on the following dates:

Section D.1, “November 29, 2010,” on page 215

D.1 November 29, 2010
Updates were made to the following sections:

Location Update Description

Table 3-1 on page 35 Added detail about additional log channels and
when messages are sent through them.

Section 12.4, “Metrics Objects,” on page 146 Added new content.

Appendix A, “Grid Object Health Monitoring,” on
page 187

Consolidated the former Appendix D with this
appendix. The content is is now included in
Section A.3, “The Health Debugger,” on page 189.

Former Appendix C, “Provisioning Actions and
History.”

Moved this content to “Provisioning Actions and
History” in the PlateSpin Orchestrate 2.5 Virtual
Machine Management Guide.

Appendix C, “The Metrics Facility,” on page 207 Added new content.
Documentation Updates 215

216 PlateS

novdocx (en) 16 A
pril 2010
pin Orchestrate 2.5 Development Client Reference

	PlateSpin Orchestrate 2.5 Development Client Reference
	1 Layout 11
	2 Orchestrate Development Client Menus and Tools 15
	3 The Orchestrate Server and the Server Admin Objects 29
	4 The Job Object 43
	5 The Resource Object 57
	6 The VM Host Object 87
	7 The Virtual Disk Object 99
	8 The Virtual NIC Object 109
	9 The Network Group and its Virtual Bridge Objects 119
	10 The Repository Object 127
	11 The User Object 137
	12 Miscellaneous Objects Displayed in the Explorer Tree 145
	13 The PlateSpin Orchestrate Job Scheduler 147
	14 The Policy Debugger 177
	A Grid Object Health Monitoring 187
	B Events 195
	C The Metrics Facility 207
	D Documentation Updates 215

	About This Guide
	1 Layout
	2 Orchestrate Development Client Menus and Tools
	2.1 The Operations Menu Bar
	2.1.1 File
	2.1.2 Edit
	2.1.3 View
	2.1.4 Actions
	2.1.5 Provision
	2.1.6 Server
	2.1.7 Windows
	2.1.8 Help

	2.2 The Orchestrate Development Client Toolbar

	3 The Orchestrate Server and the Server Admin Objects
	3.1 The Orchestrate Server Object
	3.1.1 The Orchestrate Server Info/Configuration Page
	3.1.2 The Orchestrate Server Authentication Page
	3.1.3 The Orchestrate Server Policies Page
	3.1.4 The Orchestrate Server Constraints/Facts Page

	3.2 The Server Admin Object

	4 The Job Object
	4.1 Job Groups
	4.2 The Job Info/Groups Tab
	4.2.1 Info
	4.2.2 Groups

	4.3 The JDL Editor Tab
	4.4 The Job Library Editor Tab
	4.5 The Job Policies Tab
	4.6 The Job Constraints/Facts Tab

	5 The Resource Object
	5.1 Resource Groups
	5.2 The Resource Info/Groups Page
	5.2.1 The Info Panel
	5.2.2 The Groups Panel

	5.3 The Provision Info Page
	5.4 The Resource Log Page
	5.5 The Resource Policies Page
	5.6 The Resource Health Debugger Page
	5.7 The Resource Constraints/Facts Page
	5.8 Resource Object Naming and Renaming

	6 The VM Host Object
	6.1 The Info Page
	6.1.1 Show Inherited Fact Values Check Box
	6.1.2 VM Host Information Panel
	6.1.3 Provisioning Adapter Config Panel
	6.1.4 Guest VM Monitor Information Panel

	6.2 The Policies Page
	6.3 The Health Debugger Page
	6.4 The Constraints/Facts Page
	6.5 The Action History Page
	6.6 VM Host Object Naming and Renaming
	6.7 Unique VM Host Cluster Facts
	6.7.1 Orchestrate Facts in the VM Host Cluster Object
	6.7.2 Orchestrate Facts in a VM Host Residing in a Cluster
	6.7.3 Orchestrate Facts in VMs Hosted in Clusters

	6.8 vCPU Slots for VM Hosts
	6.8.1 Configuring vCPUs on VM Hosts
	6.8.2 Configuring vCPUs on VM Host Clusters
	6.8.3 Configuring vCPUs on VMs

	7 The Virtual Disk Object
	7.1 Understanding the Virtual Disk Object
	7.1.1 Creating Or Deleting a vDisk in the Development Client
	7.1.2 Sharing Virtual Disks Among VM Hosts
	7.1.3 Moving Virtual Disks

	7.2 Viewing Virtual Disk Configuration in the Development Client
	7.2.1 The Virtual Disk Information Panel
	7.2.2 The Virtual Disk Policies Tab
	7.2.3 The Virtual Disk Health Debugger Tab
	7.2.4 The Virtual Disk Constraints/Facts Tab
	7.2.5 Virtual Disk Object Naming and Renaming

	8 The Virtual NIC Object
	8.1 Understanding the Virtual NIC Object
	8.1.1 The Purpose of the Virtual NIC
	8.1.2 Creating Or Deleting a vNIC in the Development Client

	8.2 Viewing the Virtual NIC Configuration in the Development Client
	8.2.1 The Virtual NIC Info Panel
	8.2.2 The Virtual NIC Policies Tab
	8.2.3 The Virtual NIC Health Debugger Tab
	8.2.4 The Virtual NIC Constraints/Facts Tab
	8.2.5 Virtual NIC Object Naming and Renaming

	9 The Network Group and its Virtual Bridge Objects
	9.1 Understanding the Network Group and Virtual Bridge Objects
	9.1.1 The Virtual Bridge Object
	9.1.2 The Purpose of the Virtual Bridge
	9.1.3 Creating or Deleting a vBridge in the Development Client
	9.1.4 Virtual Bridge Object Naming and Renaming

	9.2 Viewing the Virtual Bridge Configuration in the Development Client
	9.2.1 The Virtual Bridge Info/Groups Tab
	9.2.2 The Virtual Bridge Policies Tab
	9.2.3 The Virtual Bridge Health Debugger Tab
	9.2.4 The Virtual Bridge Constraints/Facts Tab

	10 The Repository Object
	10.1 Right-Click Menu Actions on the Repository Object
	10.2 Repository Groups
	10.3 The Repository Info/Groups Tab
	10.3.1 The Info Panel
	10.3.2 Best Practices for Entering Repository File Paths
	10.3.3 Groups

	10.4 The Repository Policies Tab
	10.5 The Repository Health Debugger Tab
	10.6 The Repository Constraints/Facts Tab
	10.7 The Repository Action History Tab
	10.8 Repository Object Naming and Renaming

	11 The User Object
	11.1 User Groups
	11.2 The User Info/Groups Tab
	11.2.1 Info
	11.2.2 Groups

	11.3 The User Policies Tab
	11.4 The User Health Debugger Tab
	11.5 The User Constraints/Facts Tab
	11.6 The User Action History Tab

	12 Miscellaneous Objects Displayed in the Explorer Tree
	12.1 The Policy Object
	12.1.1 Policy Constraints
	12.1.2 Policy Facts

	12.2 Computed Fact Objects
	12.3 Event Objects
	12.4 Metrics Objects

	13 The PlateSpin Orchestrate Job Scheduler
	13.1 Understanding the Job Scheduler View
	13.1.1 Navigating The Job Schedules Table
	13.1.2 Creating or Modifying a Job Schedule
	13.1.3 Understanding Cron Syntax in the Job Scheduler

	13.2 Walkthrough: Scheduling a System Job
	13.2.1 Deploying a Sample System Job
	13.2.2 Creating a New Schedule for the Job
	13.2.3 Defining the New Schedule
	13.2.4 Activating the New Schedule
	13.2.5 Running the New Schedule Immediately

	14 The Policy Debugger
	14.1 The Constraints Table View
	14.1.1 The Match Context Area
	14.1.2 The Constraint Type List
	14.1.3 The Verbose Check Box
	14.1.4 The Capable Resources Summary
	14.1.5 The Constraints Column of the Constraints Table View
	14.1.6 The Policy Column of the Constraints Table

	14.2 The Facts Table View
	14.2.1 The All Facts Check Box

	14.3 Policy Debugger Use Cases
	14.3.1 Use Case 1: Determining Why a Job is in a Waiting State

	A Grid Object Health Monitoring
	A.1 Health Facts
	A.2 Health Events
	A.3 The Health Debugger
	A.3.1 The Constraints Table Panel
	A.3.2 The Facts Table View

	B Events
	B.1 Event Object Visualization and Management in the Development Client
	B.1.1 Deploying a New Rule-Based Event
	B.1.2 Deploying a Pre-written Rule-Based Event
	B.1.3 Undeploying an Event
	B.1.4 The Event Editor

	B.2 The Event Debugger
	B.2.1 The Constraints Table
	B.2.2 The Facts Table

	B.3 Understanding the PlateSpin Orchestrate Events System
	B.3.1 Event Notification
	B.3.2 Built-in Events
	B.3.3 Rule-based Events

	C The Metrics Facility
	C.1 Metrics Facility Functionality
	C.2 Ganglia Metrics
	C.3 How Does the Metrics Facility Impact Orchestrate Server Performance?
	C.3.1 I/O Contention
	C.3.2 Too Many Open Files

	C.4 RRD Definition Using Deployable .metric Files
	C.4.1 XML Format for Deployable .metric Definitions

	C.5 Query of Aggregated Metric Values
	C.5.1 Example of a JDL Query for Aggregated Metric Values
	C.5.2 Example of a Policy Constraint or Event Constraint Using Aggregated Metric Values
	C.5.3 Example of Using Non-aggregated (“Raw”) Historical Metric Values

	C.6 MetricsManager MBean API
	C.6.1 MBean Methods Exposed by the MetricsManager Facility
	C.6.2 The MetricsDeployer Facility

	C.7 Using the Metrics Facility in the Development Client Interface

	D Documentation Updates
	D.1 November 29, 2010

