Novell exteNd Composer™
T27 Connect

www.novell.com

5.0 O

USER’S GUIDE

Novell.

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer T27 Connect User’s Guide
January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Contents

About This Guide

1

Welcome to exteNd Composer and T27 Connect

Before You Begin
About exteNd Composer Connects

Whatis the T27 CONNeCt? e e e e e e e e
About exteNd Composer's T27 COMPONENtttt e e
What Applications Can You Build Usingthe T27 Connect?ttt

Getting Started with the T27 Component Editor

Steps Commonly Used to Create a T27 Component
Creating XML Templates for Your Component

Creating a T27 Connection Resource
Connection Resources.
Constant and Expression Driven Connections

Creating a T27 Component

Creating a T27 COMPONENL. oot e e e e e e e e

About the T27 Component Editor Window
About the T27 Native Environment Pane
T27 Keyboard Support

About the Screen Object.o e

What it is
Howitworks..........................
T27-Specific Toolbar Buttons
Record Button 32
Connection Button 33
Set Screen Text Button 33
Send Key Button 33
Create Check Screen Button 34
T27-Specific Menu Bar Items

T27-Specific Context-Menu Hems. e e e e e

Native Environment Pane Context Menu. . . .
Action Pane Context Menu

Performing Basic T27 Actions
About Actions

About T27-Specific ACHONS.o e

The Set Screen Text Action..............
The Send Key Action
The Check Screen Action

Understanding the Check Screen Action 42

8

Using Actions in Record Mode.ttt e 44

T27-Specific Expression Builder EXtENSIONS it e 44
OGN e 44
Screen Methods. e 45

Multi-row Screen Selections inthe T27 Connect i 51
Selecting Continuous Data. e 51
Selecting Rectangular REQIONSot e 52

T27 Components in Action 53

The Sample Transaction. e 53

Recording @ T27 SeSSIONot e 53

Editing a Previously Recorded Action Model 60
Editing or Adding to an Existing Action 60
Deleting an ACtion e 64
Looping Over Multiple Rows in SearchofData v, 64

Testing your T27 COMPONENLottt e e e e e e e e e e e e 65

Using the Animation TOOIS e 68

Data Sets that Span SCreeNnsot e e 69
MUItIpIE SCrEENS. . . . e e 69

Dealing with Redundant Datattt e e e e e 70

Tips for Building Reliable T27 COMPONENtSt i 74

Using Other Actions in the T27 Component Editor. i 74

Handling Errors and MeSSages.ttt ittt it e e e 74

Check Screen Errors 75
Set Screen Text Errors 75

Finding a “Bad” ACtiON e 75
Performance Considerationst e 76
Logon Components, Connections, and Connection Pools 79
About T27 Terminal Session Performance. i 79
When Will | Need Logon CompoNnentS?ottt e 79
Connection Pool ArChiteCture e 80
The Logon Connection’'s Role in Pooling i e 83
How Many Pools Do | Need? e 84
Pieces Required for Pooling. 84
How Do | Implement Pooling? e 85
The T27 Logon COmMPONENt . . .ottt ettt e et e et e e e e e e e 85
Logon, Keep Alive, and Logoff Actions i 86
LOGON ACHONS . .« ot ettt e et e e e e e e e e e e e e 87
Maximizing Performance with the Logon Component 87
Keep AlIiVe ACHIONSo e 88
Maximizing Performance with Keep Alive Actions 90
Logoff ACHIONS e 91
Logon Component Life CycCle. 91
About the T27 Logon ConneCtioN oottt e e e e 92

T27 Connect User’s Guide

Many-to-One Mapping of Components to Logons 93

Connection Pooling with a Single Sign-On. e 93
Creating a Connection PoOl 94
OVBIVIBW . . . ettt e e e e e 94
Creating a Basic T27 CONNECHIONot e e e 94
Creating a Logon COmMPONENt.ottt e e e 95
Creating a Logon Connection using a Pool Connection. 97

Maximizing Performance of T27 Logon Connection 102
Static versus Dynamically Created Documents/Elements 102

Creating a Logon Connection using a Session Connection 102
Creating a T27 Component That Uses Pooled Connections 104
Maximizing Performance of T27 Terminal Components 106

Managing PooIS e 106
Using the exteNd Composer Consolet 106
Connection Pool Management and Deployed Services 110
Connection Discard Behavior. e 111

Screen Synchronization e 111

A Glossary 113
B T27 Display Attributes 115

Viewing All Character Attributes at Once 116
C Reserved Words 119

10 T27 Connect User’s Guide

About This Guide

Purpose

The guide describes how to use exteNd Composer T27 Connect, referred to asthe
T27 Component Editor. The T27 Component Editor is a separately-installed
component editor in exteNd Composer.

Audience

The audience for the guide is devel opers and system integrators using exteNd
Composer to create Web services and components which integrate T27
applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment tools. You must also have an
understanding of the T27 environment and building or using applications utilizing
T27. Familiarity with other mainframe terminal emulators, such as UTS, 3270,
5250 or VT-seriesterminals (e.g. VT100) would also be helpful asyou read
through this guide.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guideis organized asfollows:

11

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Chapter 1, Welcome to exteNd Composer and T27 User Interface, givesa
definition and overview of the T27 Connect and Component Editor and the types
of applications you may build using them.

Chapter 2, Getting Sarted with the T27 Component Editor, describes the
necessary preparations for creating a T27 component.

Chapter 3, Creating a T27 Component, describes the different parts of the
component editor.

Chapter 4, Performing T27 Actions, describes how to usethe basic T27 actions, as
well as the unique features of the T27 Connect.

Chapter 5, T27 Componentsin Action, demonstrates using T27 components and
actions using a sample application in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes
how to enhance performance through use of shared connections.

Appendix A, isaglossary.

Appendix B, T27 Attributes, and their display significance along with adiscussion
of howtousethegetattri bute().

Appendix C, Reserved Words, lists those words used only for T27 Connect.

Conventions Used in the Guide
The guide uses the following typographical conventions.
Bold typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Diaog box items

Sans-serif bold typefaceis used for:

+ Uniform Resource |dentifiers
+ Filenames
+ Directories and partial pathnames

Italic typeface indicates:

+ Variable information that you supply
+ Technical terms used for the first time
+ Titleof other Novell publications

Monospaced typefaceindicates:

12 T27 Connect User’s Guide

Method names

Code examples

System input

Operating system objects

13

14 T27 Connect User’s Guide

Welcome to exteNd Composer and
T27 Connect

Before You Begin

Welcome to the T27 Connect Guide. This Guide is a companion to the exteNd
Composer User's Guide, which details how to use all the features of exteNd
Composer, except for the Connect Component Editors. If you haven't looked at
the Composer User's Guide yet, please familiarize yourself with it before using
this Guide.

exteNd Composer provides separate Component Editors for each Connect. The
special features of each component editor are described in separate Guides like
this one.

If you have been using exteNd Composer, and are familiar with the XML Map
Component Editor, then this Guide should get you started with the T27
Component Editor.

Before you can begin working with the T27 Connect you must have installed it
into your existing exteNd Composer. Likewise, before you can run any Services
built with this Connect in the exteNd Composer Enterprise Server environment,
you must have aready installed the server-side software for this Connect into
Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the
T27 environment and the particular applications that you want to XML-enable.

About exteNd Composer Connects

exteNd Composer is built upon a simple hub and spoke architecture (Fig.1-1).
The hub isarobust XML transformation engine that accepts requests via XML
documents, performs transformation processes on those documents and
interfaces with XML -enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modules that "X ML -enable"

Welcome to exteNd Composer and T27 Connect 15

16

sources of datathat are not XML aware, bringing their data into the hub for
processing as XML. These data sources can be anything from legacy
COBOL /applications to Message Queuesto HTML pages.

Mainframes

RPC

Databases ﬁ’q’é
Enterprise

Messaging l 1 www

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each
one employsto XML-enable an information source. The integration strategies
are areflection of the major divisions used in modern systems designs for
Internet-based computing architectures. Depending on your B2B needs and the
architecture of your legacy applications, exteNd Composer can integrate your
business systems at the User Interface, Program Logic, or Datalevels. (See
below.)

T27 Connect User’s Guide

User
Interface

What is the T27 Connect?

The T27 Connect XML -enables Unisys host system data using the User Interface
integration strategy by hooking into the terminal data stream.

T27 terminals are used to interact with the popular Unisys mainframe models,
including the A Series, V Series, and ClearPath™ NX. Before personal
computers became widely available in the mid-1980s, companies relied heavily
on large mainframe systems like these to store and access vital information.

Using the T27 Connect, you can make legacy applications and their business
logic available to the internet, extranet, or intranet as Web Services. The T27
Connect Component Editor allows you to build Web Services by simply
navigating through an application as if you were at aterminal session. You will
use XML documentsto drive inquiries and updates into the screens rather than
keying, use the messages returned from application screens to make the same
decisonsasif you were at aterminal, and move data and responses into XML
documents that can be returned to the regquestor or continue to be processed. The
T27 screens appear in the Native Environment Pane of the T27 Component
Editor.

About exteNd Composer's T27 Component

Much like the XML Map component, the T27 Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection
to aUnisys T27 host application, process the data using elements from a screen,

Welcome to exteNd Composer and T27 Connect 17

and then map the results to an output DOM. You can then act upon the output
DOM in any way that makes sense for your integration application. In essence,
you're able to capture data from, or push datato, a host system without ever
having to alter the host system itself.

A T27 Component can perform simple data manipulations, such as mapping and
transferring datafrom an XML document into a host program, or perform "screen
scraping” of a T27 transaction, putting the harvested datainto an XML
document. A T27 Component has all the functionality of the XML Map
Component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

What Applications Can You Build Using the T27

Connect?

18

exteNd Composer, and conseguently the T27 Connect, can be applied to the the
following types of applications:

1 Businessto Business Web Service interactions such as supply chain
applications.

2 Consumer to Business interactions such as self-service applications from
Web Browsers.

3 Enterprise Application Integrations where information from heterogeneous
systemsis combined or chained together.

Fundamentally, the T27 Component Editor allows you to extend any XML
integration you are building to include any of your business applications that
support T27-based terminal interactions (See the exteNd Composer User's Guide
for more information.)

For example, you may have an application that retrieves a product's description,
picture, price, and inventory from regularly updated databases and displaysitina
Web browser. By using the T27 Component Editor, you can now get the current
product information from the operational systemsand the static information (e.g.,
apicture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current
information to both your internal and external users.

T27 Connect User’s Guide

Getting Started with the T27
Component Editor

Steps Commonly Used to Create a T27 Component

While there are many ways to go about creating T27 Components, the most
commonly used steps in creating a simple component are as follows:

+ Create XML Template(s) for the program.

+ CreateaT27 Connection Resource.

+ CreateaT27 Component.

+ Enter Record mode and navigate through the program using terminal
emulation available via the component editor’s Native Environment Pane.

+ Drag and drop input-document data into the screen as needed.
+ Dragand drop screen results into the output document.
+ Stop recording.

This chapter will cover thefirst two stepsin this process.

Creating XML Templates for Your Component

Although it is not strictly necessary to do so, your T27 Component may require
you to create XML templates so that you have sample documents for designing
your component. (For more information, see Chapter 5, “ Creating XML
Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documents will be designed to contain data that a
terminal operator might type into the program interactively. Likewise, the output
documents are designed to receive data returned to the screen as aresult of the
operator's input. For example, in atypical business scenario, aterminal operator
may receive a phone request from a customer interested in the price or
availability of an item. The operator would typically query the host system via
his or her T27 terminal session by entering information (such as a part number)
into aterminal when prompted. A short time later, the host responds by returning

Getting Started with the T27 Component Editor 19

data to the terminal screen, and the operator relays thisinformation to the
customer. This session could be carried out by an exteNd Composer Web Service
that uses a T27 Component. The requested part number might be represented asa
data element in an XML input document. The looked-up data returned from the
host would appear in the component’s output document. That data might in turn
be output to aweb page, or sent to another business process as XML, etc.

NOTE: Your component design may call for other xObject resources, such as
custom scripts or Code Table maps. If so, it is also best to create these objects
before creating the T27 Component. For more information, see the exteNd
Composer User's Guide.

Creating a T27 Connection Resource

Once you have the XML templatesin place, your next step will be to create a
Connection Resource to access the host program. If you try to create a T27
Component in the absence of any available Connection Resources, a dialog will
appear, asking if you wish to create a Connection Resource. By answering Yesto
this dialog, you will be taken to the appropriate wizard.

Connection Resources

20

When you create a Connection Resource for the T27 Component, you will have
what appear to be three choices: astraight Connection, aLogon Connection and a
MultiBridge Connection. Generally speaking, you will use the straight T27
Connection to connect to your host environment. The Logon Connection is used
for connection pooling, which will be explained in greater detail in Chapter 6 of
this Guide. The MultiBridge Connection is a gateway server version that
minimizes the number of connections going back to the host and also contains
added security. A MultiBridge connection would need to be specially enabled
with the help of Novell and a third party business partner. If you think that your
application needs to use a MultiBridge connection, please contact exteNd
Technical Support.

After setting up your T27 Connection Resource, it will be available for use by
any number of T27 Components that might require a host connection.

> To create a T27 Connection Resource:

1 From the Composer File menu, select New>xObject, then open the
Resour ce tab and select Connection.

NOTE: Alternatively, under Resource in the Composer window category
pane you can highlight Connection, click the right mouse button, then select
New.

T27 Connect User’s Guide

The Create a New Connection Resour ce Wizard appears.

AConnection resource is used to establish communications with an Connectar data source or with a server
using HTTP authentication. You need ta create connections for each type of data source or each HTTP server
youwish to cammunicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detall Pane and in choice lists when you are prompted for ohjects in Composer.
The name may not contain the characters: 407" < = .| Names are case insensitive.

Mame:

IT2? Connection

Description:

Furpose
Input:
Cutput:
Rermarks:

x|

Help Next Cancel

Type a Name for the connection object.
Optionally, type Description text.
Click Next. The second panel of the wizard appears.

Create a Mew Connection Resource 1'

Specify the URL forthe T27 haost. The T27 Port (hormally 23) needs to be set to the host's requirements
Select or enter a Terminal Type used during T27 negotiation. USERID and PASSWORD are availahle for
mapping in ECMAScript expressions. You may create mare than one T27 Connection. Checking Default'
makes this Connection the initial selection when creating a T2¥ Component. Use the Test button ta check
your connection.

Connection Type |T2? Connhection [~]
Host or IP Address W_my’t??connection.com [Default
T27 Port [23

Host Connection 1D I332

Screen wait (seconds) |6 0

Screen Rows |24

Screen Columns IB 0

User ID I

Password I

[Back][Finish][Cancel

]

Select the T27 Connection type from the pull-down menu. The dialog

changes appearance to show just the fields necessary for creating the T27

connection.

IntheHost or IP Addressfield, enter the physical (IP) address or hosthame

alias for the machine to which you are connecting.

Getting Started with the T27 Component Editor

21

7 Inthe T27 Port field, enter the number of the T27 port. The default port
number is 23.

8 IntheHost Connection ID field, enter an identifier string used to manage
your terminal connection to the host.

9 Inthe Screen Wait (seconds) field, enter the amount of time in seconds that
aT27 Terminal component will wait for the arrival of the next screen in the
Check Screen Action pane (this sets the default value).

10 Inthe Screen Rows field, specify the default number of rows per screen.

11 Inthe Screen Columnsfield, specify the default number of columns per
screen.

12 Enter aUser|D and Passwor d. These are not actually submitted to the host
during the establishment of a connection. They are simply defined here (the
password is encrypted.) Right-mouse-click and choose Expression if you
want to make these fields expression-driven.

NOTE: After you've entered UserID and Password info in this dialog, the
ECMAScript global variables USERID and PASSWORD will point to these
values. You can then use these variables in Set Screen Text expressions (or
as described under “Native Environment Pane Context Menu” in Chapter 3.

13 Click the Default check box if you'd like this particular T27 connection to
become the default connection for subsequent T27 Components.

14 Click Finish. The newly created resource connection object appears in the
Composer Connection Resource detail pane.

Constant and Expression Driven Connections

22

You can specify Connection parameter values in one of two ways: as Constants
or as Expressions. A constant-based parameter uses the static value you supply in
the Connection dialog every time the Connection is used. An expression-based
parameter allows you to set the value in question using a programmatic
expression (that is, an ECM A Script expression), which can result in a different
value each time the connection is used at runtime. This allows the Connection's
behavior to be flexible and vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a T27
Connection would be to define the User ID and Password as PROJECT Variables
(e.g.: PROJECT. X Path("USERCONFIG/MyDeployUser"). This way, when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

T27 Connect User’s Guide

> To switch a parameter from Constant-driven to Expression-driven:

1

2

Click the right mouse button in the parameter field you are interested in
changing.

Select Expression from the context menu and the editor button will appear
or become enabled. See below.

Create a New Connection R x|

Specify the URL for the T27 host. The T27 Port {normally 23) needs to be set to the host's requirements.
Select or enter a Terminal Type used during T27 negotiation. USERID and PASSWORD are availahle for
mapping in ECMAScript expressions. You may create mare than one T27 Connection. Checking Default'
makes this Connection the initial selection when creating a T27 Component. Use the Test button to check
your connection

Connection Type |T2? Connection ;I Test
Host or IP Address |www.myT2?Cunnect\on I Default
T27 Port [23
Host Connection ID I 124
Cut
Screen wait (seconds) IED Copy
Screen Rows |24 Paste
Screen Columns IED Select All
User ID I Pl
Find Mesk
Pazgword I
Replace. ..
Clear all
Help Constant Finish Cancel
v Expression

Click on the Expression Editor button. The Expression Editor appears.

Variahles: Functions/Methods: Operators:
<2 Input [#-Custom Scripts [#-Math
> Qutput - Document -Relational
> PROJECT [-ECMAScript =-Logical
> Repeat Aliases [#-Extended ECMAScript [#-String
#-<> Node Aliases w127
Help Validate oK Cancel

Create an expression (optionally using the pick listsin the upper portion of
the window) that evaluates to avalid parameter value at runtime. Click OK.

Getting Started with the T27 Component Editor 23

24 T27 Connect User’s Guide

Creating a T27 Component

Creating a T27 Component

As discussed in the previous chapter, before you proceed with creating a T27
component you must first prepare any XML templates needed by the component.
(For more information, see “Creating a New XML Template” in the Composer
User's Guide.) During the creation of your component, you will use these
template's sample documents to represent the inputs and outputs processed by
your component.

Also, as part of the process of creating a T27 component, you must specify aT27
connection for use with the component (or you can create a new one). See the
previous chapter for information on creating T27 Connection Resources.

> To create anew T27 Component:

1 Select File>New>xObject then open the Component tab and select T27
Terminal.

NOTE: Alternatively, under Component in the Composer window category
pane you can highlight T27 Terminal, click the right mouse button, then
select New.

2 The“Create aNew T27 Component” Wizard appears.

Creating a T27 Component 25

Create a New T27 Terminal Component x|

AT2Y Terminal Component connects to a host via the T27 protocol, processes data using elements from a
DOM, and maps the results to an output DOM. Use this wizard to create a T27 Component. Enter a Mame
and Description for this T27 companent. The name will appear in the Compaser window and in choice lists
when you are prompted for objects ofthis type as you work in Composer. The Name is required and may not
contain the characters: 4 /22 "= = | Names are case insensitive.

Mame:

ITETSampIe|

Description:

Furpose:
Input:
Output:
Remarks:

[][Next][Cancel

3 Enter aName for the new T27 Terminal Component.
4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New T27
Component Wizard appears.

Create a New T27 Terminal Component x|

Specify one or mare ¥ML Templates to help design Input to this Component arWeb Service and anly one ta
design Output. The sample XML Documents in each Template are design time aids to help you build Action
Models far the component. The samples are not actually used at runtime after deployment to your application
server. The ldentifier is fixed and represents the name used to refer to the XML Document during component
execution. Selecting Systern {ANY?} allows you to use an empty template (i.e. accept any document as Inpuf).

Input Message
Part | Template category | Template Name

|
Input |{ystem} [[[ganrvy [~

Output Message
Part | Tempiate category | Template Name

|
Output [{5vster) [[ty -]

[Back][Next][Cancel]

6 Specify the Input and Output templates as follows.

+ Typeinaname for the template under Part if you wish the nameto
appear in the DOM as something other than “Input”.

+ Select aTemplate Category if it isdifferent than the default category.

26 T27 Connect User’s Guide

9

10

*

Select aTemplate Name from thelist of XML templatesin the selected
Template Category.

To add additional input XML templates, click Add and choose a
Template Category and Template Name for each.

To remove an input XML template, select an entry and click Delete.

Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {Systeml{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

Click Next. The XML Temp/Fault Template Info panel of the New T27
Component Wizard appears.

x
Specify one or more Temp and Fault XML Templates to help design temporary parts and fault handling for
this Component or Web Service. Use Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates to serve as Fault documents to be passed backto clients under error
conditions.
Temp Message
Part | Template Category | Template Name |
Fault Message
Part | Template Category | Template Name |
|_SystemFault |{System} |:||{Faurt} |:||
Help @ [Back][Next][Cancel]

If desired, specify atemplate to be used as a scratchpad under the “ Temp
Message” pane of the dialog window. This can be useful if you need a place

to hold values that will only be used temporarily during the execution of
your component or are for reference only. Specify the templates as indicated

in Step 6 above.

Under the “ Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

As above, to add additional temp or fault XML templates, click Add and

choose a Template Category and Template Name for each. Repeat as many

times as desired. To remove an XML template, select an entry and click

Delete.

Creating a T27 Component 27

11 Click Next. The Connection Info panel of the Create aNew T27 Component
Wizard appears.

Create a New T27 Terminal Component 1[

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource object or create a new Connection
Resource ofthe same type with diferent parameters.

[Tl =ample T27 Connect

Host or IP Address I

T27 Port |

Host Connection D I

Screen wait (seconds) I

Screen Rows I
Screen Columns I
User ID I
Password I
[Back][Finish][Cancel]

12 Select a Connection name from the pulldown list. For more information on
the T27 Connection, see “ Creating a T27 Connection Resource” in Chapter
2.

13 Click Finish. The component is created and the T27 Component Editor
appears.

About the T27 Component Editor Window

The T27 Component Editor includes all the functionality of exteNd Composer’s
XML Map Component Editor. For example, it contains mapping panes for Input
and Output XML documents as well as an Action pane.

Thereis one main difference, however. The T27 Component Editor also includes
aNative Environment Pane featuring a T27 emulator. This screen appears blue
until you either click the Connection icon in the main toolbar or begin recording
by clicking the Record button in the toolbar. Either action establishesa T27
emulation session inside the Native Environment Pane with the host that you
specified in the connection resource used by this T27 component.

28 T27 Connect User’s Guide

) estteNd Composer: TestT27 [T27 Terminal: £27] i [=] |

| File Edit Wiew Component Action Animate Tools Window Help

HO -8 x

DEE@ETJAX70B% RIG Novell
[® nout Pata
£ <> WARCIFUT,
<> LooiN sALES2
L FAMILY Famiy
> 085 i)
[WAITING v
L <> COMPLETE c
L& ENVIRON Eva < -
L. <> RETACTION HOWE
K> EYEINFO 3vaINF
<> PRINTSYS s
<> HELP [TERcH
&3 QUITACTION Bve
|
B o Pats QEAEEFON
<> MARCOUTPUT
> FAMETATUS B =
<>nTIoEs [CHECK SCREEN for Expression Screen.getText(1,11,4)=="MARC
<> COMPLETEJ0BS [SET SCREEN TEXT AT (21, 14) FROM $SinputMARCINPUTFAMILY
<> BASICTEXT - Ty SEND KEY TRANSMIT
::gDo\(f:T-rE;Tcr &5 MAP Screen.getText(23,21,28) TO $OutputMARCOUTPUT FAMST,
"<>TERMS [SET SCREEN TEXT AT (21, 11) FROM "JD"
<>0L0SS Ty SEND KEY TRANSMIT
<> ACTIVETEXT -JBB, CHECK SCREEN for Expression: Screen.getText(1,11,2)=="J0"
::ADDTEKT [SET SCREEN TEXT AT (21, 11) FROM A"
"<>giaz§;igq Ty SEND KEY TRANSMIT
<> BACKUPTEXT &5 MAP Screen getText(23,35,29) TO $Output MARCOUTPUT/ACTIVE
<> CONFIGTEXT |) CALL Screen.putString(2,11,"HOME") | Jj
4 »

FInputMARCINPUT I'I'Efmma\ Mot Connected

About the T27 Native Environment Pane

The T27 Native Environment Pane provides T27 emulation of your host
environment. From this pane, you can execute a T27 session in real time,
interacting with the Native Environment Pane exactly as you would with the
screen on aterminal connected to a Unisys mainframe. You can also do the
following:

+ Usedatafrom an Input XML document (or other available DOM) asinput
for aT27 screen field. For example, you could drag a SKU number from an
input DOM into the “ part number” field of a T27 screen, which would then
guery the host and return data associated with that part number, such as
description and price.

+ Map the data from the returned T27 screen and put it into an Output XML
document (or other available DOM, e.g., Temp, MyDom, etc.).

+ Map header and detail information (such as aform with multiple line items)
from the Native Environment Pane to an XML document using an
ECMA Script expression or function.

T27 Keyboard Support

The T27 Native Environment Pane supports the use of several special attention

Creating a T27 Component 29

keysincluding: Clear Home, Local, Previous Page, Specify, Forms Mode Toggle,
Next Page, Receive and Transmit. The function for each attention key may vary
depending on the host application. These keys are mapped to the PC Keyboard as

follows:
Table 1-1:
T27 Keys PC Key
Clear Home Ctrl+Home
Local F10 or F6
Previous Page PageUp
Specify F9 or F5

Forms Mode, Toggle Esc, Alt+Sor O

Next Page PageDown
Receive F11 or F7
Transmit F12 or F8

You can either use the keys directly from the keyboard as you create your T27
Component, or you can use a keypad tool bar available from the view menu.

» How to Use the Floating Keypad:

1 Select View/Terminal Keypad from the Composer Menu. A floating
Keypad appears.

2 Click on the key you wish to invoke. If you require help, hover the mouse
over that key. Help will display the T27 keyboard equivalent for that key.
You will seethe result of the key you clicked in the Native Environment
Pane.

3 Click OK to closethe keypad. In order for the keypad to redisplay, you must
repeat step 1.

30 T27 Connect User’s Guide

Terminal Keypad E3

ey Functionsl

Clear Home Forms Mode, Toggle

Local Next Page

Prewious FPage I Receiwve I

Specify Transmit

R |

About the Screen Object

What it is

How it works

The Screen Object is abyte-array representation of the emulator screen shownin
the Native Environment Pane, with methods for manipulating the screen
contents.

The T27 component communicates with the host environment via the block
mode terminal data stream , inaT27 session. A block of data essentially
represents a screen. The host sends a screen block that is displayed in the
component. The screen is edited by the user (and ultimately by the component
you create) and the modified screen block is sent back to the host for processing
after you press an attention key. The Screen Object represents the current
screen’s block of data. For a 24 x 80 terminal screen, thisis 1,920 bytes of data.

When character data arrives from the host, appropriate updates to the Native
Environment Pane occur in real time. Those updates might be anything from a
simple cursor repositioning to a complete repaint of the terminal screen. The
screen content is, in this sense, highly dynamic.

When you have signaled exteNd Composer (viaa Set Screen Text action) that you

wish to operate on the current screen’s contents, the screen buffer is packaged into
a Screen Object that is made accessible to your component through ECM A Script.

Creating a T27 Component 31

Many times, it is not necessary for your component to “know” or understand the
complete screen contents prior to sending keystrokes back to the host or prior to
mapping datainto a prompt. But when mapping outbound from the screen to a
DOM, it can be useful to have programmatic accessto the Screen Object. To make
this possible, the Connect for T27 defines a number of ECM A Script extensions
for manipulating screen contents. These extensions are described in further detail
in the next chapter. For now, a simple example will suffice. Suppose you are
interested in obtaining astring value that occurs on the screenin row 23 at column
position 21. If the string is 28 characterslong, you could obtain its value by using
an ECM A Script expression asthe Sourcein aMap action (with an output DOM or
temp DOM as the Target):

PEABE2Q I
ER- | + Screen
- @ CHECK SCREEM for Expression. Screen.getText(1,11,4)=="MAaRC"

- BI SET SCREEN TEXT AT (21, 14) FROM $Input/MARCINPUT/FAMILY getTeXt

Ty SEND KEY TRANSMIT methOd

.55 MAP Screen.getText(23,21,28) TO $0utputMARCOUTPUTFAMSTATUS — <ff——m
@ SET SCREEN TEXT AT (21, 11) FRONM "JD"

ﬁg SEMD KEY TRAMSMIT

- @ CHECK SCREEN for Expression: Screen.getText(1,11,2)=="JD"

@ SET SCREEM TEXT AT (21, 11) FROM "A"™

ﬁ-g SEMD KEY TRANSMIT

In the example shown above, the 28 characters beginning at row 23, column 21 on
the screen would be mapped to the Output DOM, with the XPATH
/MARCOUTPUT/FAMSTATUS.

Map actions and screen methods will be discussed in greater detail in the section
on “T27-Specific Expression Builder Extensions’ in the Chapter 4.

T27-Specific Toolbar Buttons

Record Button

If you are familiar with exteNd Composer, you will noticeimmediately that the
T27 Connect includes a number of Connect-specific tool icons on the component
editor’s main toolbar. They appear as shown below.

Record icon (normal state)

®
'

Record icon (recording in progress)

32 T27 Connect User’s Guide

Record icon (disabled)

¥

The Record button allows you to capture keyboard and screen manipulations as
you interact with the Native Environment Pane. Recorded operationsareplaced in
the Action Model as actions, which you can then “play back” during testing.

Connection Button

fﬁ Connection (disconnected state)
ﬁ Connection (connected state)
ﬁ Connection (connected/disabled state)

The Connection button on Composer’s main toolbar toggles the connection state
of the component (using settings you provided during the creation of the
Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically
established, in which case the button will be shown in the “connected/disabled”
state. When you turn off recording, the connection the button will return to the
enabled state.

Set Screen Text Button

The Set Screen Text button on exteNd Composer’s main toolbar is used
to indicate that you wish to send datato the screen object. Clicking this
button will brings up the Set Screen Text dialog, allowing you to create
anew Set Screen Text Action.. (See the next chapter for adetailed discussion of
this action type.)

Send Key Button

The Send Key button on Composer’s main toolbar would be pressed

when you wish to add a Send Key Action to the Action Model. (Seethe

next chapter for a detailed discussion of this action type.) The various
T27 attention keys are discussed in the section above entitled “ T27 Keyboard
Support”.

Creating a T27 Component 33

Create Check Screen Button

The Create Check Screen button on Composer’s main toolbar isused to
IE check that theterminal screenisinthe state you expect it to be. Clicking
this button will brings up the Check Screen dialog, allowing you to
create anew Check Screen Action. (The next chapter contains a detailed
discussion of this action type.)

T27-Specific Menu Bar Items

Component Menu

Two additional items have been added to the Component drop down menu for the
T27 Connect. These are Start/Stop Recording and Connect/Disconnect
(depending on your current status).

Sart/Sop Recording—This menu option manages the automatic creation of
actions as you interact with a host program. Sart will enable the automatic
creation of actions as you interact with the screen and Stop will end action
creation.

Connect/Disconnect—This menu option allows you to control the connection to
the host. When you are recording or animating, a connection is automatically
established (and consequently, the connection icon is shown in the
“connected/disabled” state). However, this menu choice is useful if you are not
recording and you merely want to establish a connection for the purpose of
navigating the T27 environment.

T27-Specific Context-Menu ltems

The T27 Connect a so includes context-menu items that are specific to this
Connect. To view the context menu, place your cursor in either the Native
Environment pane or the Action pane and click the right mouse button.

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will seea
contextual menu. The menuitemswill begreyed out if you are not in record mode.
In record mode, the context menu has the foll owing appearance:

34 T27 Connect User’s Guide

Set Screen Text: USERID
Set Screen Text: PASSWORD

Screen Text...

Check Screen...

The four commands work as follows:

Set Screen Text: USERID—Automatically sends User ID information to the
host, based on the value you supplied (if any) for User ID in the T27 Connection
Resource for this component. Also creates the corresponding Set Screen Text
action in the Action Model.

Set Screen Text: PASSW ORD—Automically transmits Password information to
the host, based on the Password you supplied (if any) in the T27 Connection
Resource for this component. Also creates the corresponding Set Screen Text
action in the Action Model.

Set Screen Text...—Createsanew Set Screen Text dialog, allowing you to create
anew Set Screen Text Action. (Seethe next chapter for adetail ed discussion of the
use of this command).

Check Screen...—Brings up the Check Screen dialog, allowing you to create a
new Check Screen Action. (Thiswill be discussed in greater detail in the next
chapter.)

Action Pane Context Menu

If you click the right mouse button when the mouse is located anywhere in the
Action pane, a context menu appears as shown.

Creating a T27 Component 35

Mew Action Set Screen Text

Edit Action Check Screen
Dizable Action Advanced »
Toggle Breakpoint Data Exchange »
Process 4
Cut Repeat 3
Copy Comment. .. Ctri+E
Component... CErieT
Delete Decision, .. Ctri+D
Find... Declare Alias...
Find Mezxt Function... Ctri+l
Replace. .. Log... Ctri+L
Map... CEri+M
Send Mail...
Switch. ..
Todo...

The T27-specific functions of the context menu items are as follows:

Set Screen Text—Allows you to create a Set Screen Text action to send data to
the host. A dialog appears, allowing you to specify what you want to send to the
host as well as determining the screen position where the informatin will be
received. (See the next chapter for a detailed discussion of the use of this
command.)

Check Screen— Allows you to create a new Check Screen action which is used
to make sure the appropriate screen is present before the component continues
processing. A dialog appears, allowing you to specify various go-ahead criteria
aswell asa Timeout value. (The next chapter contains a detailed discussion of
the Check Screen action.)

36 T27 Connect User’s Guide

Performing Basic T27 Actions

About Actions

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chaptersin the
Composer User's Guide devoted to Actions.

Within the T27 Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sourcesis created as part of an
Action Model. The Action Model performs al data mapping, data
transformation, data transfer between hosts and XML documents, and data
transfer within components and services.

An Action Model is made up of alist of actions that work together. As an
example, you might design an Action Model that would read some invoice data
from afile and then transform the data in some way before placing it in an output
XML document.

The Action Model mentioned above would be composed of severa actions.
These actions would:

+ Usean XML document containing a sku number as input to perform aT27
transaction which retrieves the invoice data for that sku from an inventory
database that resides on your Unisys host

+ Maptheresult to atemporary XML document
+ Convert anumeric code using a Code Table
+ Map the result to an Output XML document

About T27-Specific Actions

As mentioned in the previous chapter, the T27 Connect includes three actions
that are specific to the T27 environment: Set Screen Text, Send Key and Check
Screen.

Performing Basic T27 Actions 37

T27 Action Description

Set Screen Text Allows the user to specify what data is transmitted to
the host and at what screen position it will be
received. The string is formed from Map actions, user
keystrokes or it may come from an ECMAScript
Expression. The Set Screen Text action can be
created manually, but will more often be generated
automatically when the user types into the screen or
maps data to the current prompt.

Send Key Sends a T27-specific attention key to the host system.
The Send Key action can be created manually by
clicking an icon, or automatically when the user
presses one of the mapped keys or selects it from the
T27 keypad.

Check Screen Allows the component to stay in sync with the host
application. This action signals the component that
execution must not proceed until the screen is in a
particular state (which can be specified in the Check
Screen setup dialog), subject to a user-specified
timeout value.

The purpose of these actionsisto allow the T27 component (running in adeployed
service) to replicate, at runtime, the terminal/host interactions that occur inaT27
session. The usage and meanings of these actions are described in further detail
below.

The Set Screen Text Action

The Set Screen Text action encapsulates “ keystroke data’ (whether actually
obtained from keystrokes, or through a drag-and-drop mapping, or viaan

ECMA Script expression built with the Expression Builder) that will be sent to
the host in a single transmission at component execution time. When the Set
Screen Text action executes, the data will appear on the host system screen. The
datawill not, however, be sent to the host until an attention key of some sort is
sent using the Send Key Action..

The Set Screen Text action can be created in severa ways:

+ InRecord mode, just begin typing on the Native Environment Pane.
Keystrokes are automatically captured to a new Set Screen Text action.

+ Right-mouse-click anywhere in the Action Model; a contextual menu
appears. Select New Action and Set Screen Text.

38 T27 Connect User’s Guide

In the main menu bar, under Action, select New Action and Set Screen
Text.

While you are in Record mode, with your cursor in the Native Environment
Pane, right-click then select Set Screen Text.

> To create a Set Screen Text action using menu commands:

1

Right-mouse-click anywhere in the Action Model and select New Action,
then Set Screen Text, from the contextual menu (or use the Action menu as
described above). The Set Screen Text dialog will appear.

Set Screen Text E

Source

€ ¥Path: |Input LI ¥ Expression:

LEE [

Screen position to receive source expression data;

R |21 kE -
Col |12 k -
Help Apply OK Cancel

To map a DOM element’s contents to the buffer, click the XPath radio
button, then select a DOM from the pulldown list and type the appropriate
XPath node name in the text area (or click the Expression icon at right and
build the node name using the Expression Builder).

To specify the buffer’s contents using ECMA Script, click the Expression
radio button, as shown on the screen above, then use the Expression Builder
dialog to create an ECM A Script expression that evaluates to a string.

To specify the Row at which to receive data, type avaue in the field. By
default, the number you type will be a constant. The down arrow next to the
k (constant) allows you to toggle back and forth between entering a constant
and an ECMA Script expression.

To specify the Column at which to receive data, type avaluein the field. By
default, the number you type will be a constant. The down arrow next to the
k (constant) allows you to toggle back and forth between entering a constant
and an ECMA Script expression

Click OK.

Performing Basic T27 Actions 39

NOTE: When a Set Screen Text action is created automatically for you while
recording your session, all of your subsequent keystrokes will be captured to the
buffer until you press an attention key or select one from the Send Key dialog.

The Send Key Action

The Send Key action does simply that - it sends an attention key to the host. This
action will generally follow a Set Screen Text action so that the information you
wish to transmit to the host gets there. When the Send Key action executes, the
data you specified in the Set Screen Text action are actually transmitted to the
host. Some Send Key actions, of course, stand alone and can be pressed at any
time to receive specific information, clear the screen or navigate to different
areas.

The Send Key action can be created in several ways:

+ InRecord mode, press one of the PC keys designated as an attention key (see
the previous chapter for a discussion of these keys) to have the attention key
executed at the current cursor position.

+ From the drop down menu, select View, Terminal Keypad, click on an
attention key and click OK to have the attention key executed at the current
Ccursor position.

+ Click on the Send Key icon in the main toolbar to bring up the Send Key
dialog box.

> To create a Send Key action using the main toolbar icon:

1 With focus on the action after which you would like your Send Key action to
appear, click onthe Send Key icon in the main toolbar. The Send Key dialog
will appear.

40 T27 Connect User’s Guide

2 Fromthe Key Value drop down, select the attention key you would like to
send to the host. Remember that the function for each attention key may vary
depending on the host application.

3 If youwish the key to execute at a position other than the current
row/column location, check the Override Cursor Position box. This will
enable the Row and Column position fields.

4 To specify the Row at which to transmit the key, type avaluein thefield. By
default, the number you type will be a constant. Alternatively, you can click
on the Expression builder to enter the row in the form of an ECMA Script
expression.

5 To specify the Column at which to transmit the key, type avaluein thefield.
By default, the number you type will be a constant. Alternatively, you can
click on the Expression builder to enter the column in the form of an
ECMA Script expression.

6 Click OK.

The Check Screen Action

Because of the latency involved in T27 sessions and the possibility that screen
datamay arrivein an arbitrary, host-application-defined order, it is essential that
your component can depend on the terminal screen being in agiven state beforeit
operates on the current screen data. The Check Screen action makesit possible for
your component to stay “in sync” with the host. You will manually create Check
Screen actions at various pointsin your Action Model so that precisely the correct
screens are acted on at precisely the right time(s).

Performing Basic T27 Actions 41

To create anew Check Screen action, you can do one of the following:

+ Click onthe “Create Check Screen Action” button on the main toolbar, or

+ Perform aright mouse click inside the action list, then select New Action
and Check Screen from the contextual menu, or

+ Inthe component editor’s main menu bar, select Action, then New Action,
then Check Screen

+ Whileyou arein Record mode, with your cursor in the Native Environment
Pane, right-click then select Check Screen.

NOTE: You will most often use the toolbar button when you are in Record mode.

> To create a Check Screen action using a menu command:

1 With your cursor positioned in the Action Model on the action item after
which you want your new item to appear, perform aright mouse click. Then
select New Action and Check Screen from the contextual menu (or use the
Action menu in the main menu bar as described above). The Check Screen
dialog appears.

Check Screen |

Screen Wait {in seconds)
200

Screen Evaluation Expression
Screen.gefTex(1,11,4)== MARC] [E

Help OK Cancel

2 Specify a Screen Wait value in seconds. (See discussion below.)

Specify a Screen Evaluation Expression by typing onein directly or
clicking on the Expression Builder icon to create one. (See discussion
below.)

4 Click OK.
Understanding the Check Screen Action

It isimportant that the execution of actionsin your Action Model not proceed until
the host application isready, and all screen datahave arrived (that is, the screenis
in aknown state).

42 T27 Connect User’s Guide

Screen Wait

Expression

Your component must have some way of “knowing” when the current screen is
ready. The Check Screen Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog istwofold:

+ It alowsyou to specify await time for program synchronization.

+ Italowsyou to specify an expression which will be used as a criterion to
judge whether the screenisin a state of readiness at execution time.

The Screen Wait value (in seconds) represents the maximum amount of time that
your component will wait for screen datato arrive and meet thereadinesscriterion
specified in the expression. If the available screen data do not meet the readiness
criteria before the specified number of seconds have elapsed, an exceptionis
thrown.

NOTE: Obviously, since the latency involved in a T27 session can vary greatly
from application to application, from connection to connection, or even from screen
to screen, a great deal of discretion should be exercised in deciding on a Screen
Wait value. Careful testing of the component at design time as well as on the server
will be required in order to determine “safe” Screen Wait values.

The default Screen Wait valueis determined by what you entered when setting up
your T27 Connection Resource.

To determineyour “go-ahead” criterion, you can click the Expression radio button
in the Check Screen Action dialog and enter an ECM A Script expression in the
associated text field. The expression you create will usually check onthe existence
of some specific data at alocation in the Screen Object buffer. At runtime, if the
expression evaluates as “true,” the screen will be considered ready; but not
otherwise. An example of such an expression would be:

Screen. get Text (1, 11,4) == “MARC’

Expressions are discussed in detail below.

Performing Basic T27 Actions 43

Using Actions in Record Mode

The easiest way to create an Action Model for your component isto use Record
mode. When you build an Action Model in thisway, anew Set Screen Text action
is created for you automatically as soon as you begin typing or drag an element
from the Input DOM into the appropriate field onscreen. All you need thendois
send the appropriate attention key, wait for the next screen to arrive from the host,
add a Check Screen action to make sure you are on the right screen and begin the
process again, repeatedly. In this fashion, a sequence of Set Screen Texts, Send
Keys and Check Screens actions can be built very quickly and naturally.

Working in record mode will be discussed further in Chapter 5, in the section
entitled “Recording a T27 Session.

T27-Specific Expression Builder Extensions

Login

44

The Connect for T27 exposes severa T27-specific ECMA Script variables and
object extensions, which are visible in Expression Builder picklists. The T27-
specificitemsare listed under the nodelabelled “T27.” There aretwo child nodes:
Login and Screen Methods. Seeillustration below.

E Enter expression for calculating row
Wariahles: FunctionsMethods: Operators:;

©-<2 Input &-Custom Scripts &-Math

=<2 Output #-Document #-Relational

<> PROJECT [-ECMAScript -Logical

<> Repeat Aliases ¥ Extended ECMAScript - String

&< Node Affyses 5127

ok

H-Screen Methods

Help Validate OK Cancel

picktree nodes T27-specific

T27 Connection Resources have two global variables that are accessible from
Expression Builder dialogs: USERID and PASSWORD. These properties

T27 Connect User’s Guide

(available under the Login node of the T27 picktree) specify the User ID and
Password values that may be requested by the host system when you connect.
You can map these variables into the terminal screen, which eliminates the need
for typing user and password information explicitly in amap action.

NOTE: You can also create a Set Screen Text action where the XPath source is
defined as $PASSWORD.

Screen Methods

When an Expression Builder window is accessed from a Map or Function action
in the T27 Component, the picklists at the top of the window expose special T27-
specific ECMA Script extensions, consisting of various methods of the Screen
object.

Hover-helpisavailableif you let the mouse loiter over agiven picktreeitem. (See

illustration.)
x|
Wariahles: Functions/Methods: Operators:

i e s
Document

CMASCcript
#-Extended ECMAScript
=127

H-Login

E-Screen Methods
----- getattribute{aRow,
----- getCursorCol()
----- getCursorRow(}

-S> Node Mliases

----- getNextMessaged)
----- getPrompt()

----- getStatusLine()
----- getText{aRow, aCol
----- getTextFromRectan

String gefText{CObject aRow, Object aColumn, Object aLength;)
exterd Composer extension method.
Returns text string found at position aRow and aCaolumn far aLength characters.
- setMessageCapture_|

- typeKeys(asKeyTex =
4 3

Screen.sethessageCaptureCnd

In addition, you can obtain more complete online help by clicking Help in the
lower |eft corner of the dialog.

The Screen abject offers methods with the following names, signatures, and usage
conventions:

Performing Basic T27 Actions 45

getAttribute(nRow, nColumn)

getCursorCol(void)

Returns datatype: int

This method returns the display attribute value of the character at the screen
position given by aRow, aColumn. The complete set of possible display attribute
valuesislisted in Appendix B, “ T27 Display Attributes’. An exampleof using this
method is:

if (Screen.getAttribute(5, 20) ==34) // if character at row
5, col 20 is protected and bold
/1 do sonething

Returns datatype: int

This method returns the current column position of the cursor inthe T27 emulator
screen (Native Environment Pane). Column pasitions are one-based rather than
zero-based. In other words, in 24x80 mode, this method would return avaluefrom
1to0 80, inclusive.

getCursorRow(void)

getCols(void)

Returns datatype: int

This method returns the current row position of the cursor in the T27 emulator
screen (Native Environment Pane). Row positions are one-based rather than zero-
based. In other words, in 24x80 mode, this method would return avaluefrom 1to
24, inclusive.

Returns datatype: int

This method returnsthe native horizontal dimension of the current screen. (Dueto
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program isin 24x80 mode, this method will
return 80. Toloop over all columnsof ascreen, regardlessof itsnative dimensions,
you could do:

for (var i = 1; i <= Screen.getCols(); i++)

{
var nyCol = Screen.getTextAt(i, 1, Screen.getCols());
/1 do sonmething with myCol

46 T27 Connect User’s Guide

getNextMessage(void)

getPrompt(void)

getRows(void)

Returns datatype: string

Theresult of this method, when placed in avariable, returns the string
representing the next captured message. Theset MessageCapt ur eOn()
method (see below) must be set in order for this method to return anything. In
addition to these, there are two other messaging methods: hasMor eMessages()
and set MessageCapt ur ek f () . Below is an example demonstrating how the
four of them might all be used together:

function msgChecker (t heScreen)
{
t heScr een. set MessageCapt ureOn();

whil e (theScreen. hasMbor eMessages())

{
al ert (t heScr een. get Next Message());
}
t heScr een. set MessageCapt ureOf f () ;

Returns datatype: string

Theresult of this method, when placed in avariable, returns the string
representing all charactersin the cursor’srow, starting at column 1 and continuing
to, but not including, the value returned by get Cur sor Col () —in other words,
everything from the beginning of the line to the current cursor position. Asan
example:

var pronpt =Screen. get Pronpt () ;
al ert(pronpt);

NOTE: The string returned may or may not actually be a host prompt.

Returns datatype: int

Performing Basic T27 Actions 47

This method returns the native vertical dimension of the current screen. (Due to
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program isin 24x80 mode, this method will
return 24. To loop over all rows of a screen, regardless of its native dimensions,
you could do:

for (var i = 1; i <= Screen.getRows(); i++)
{
var myRow = Screen.getText(i, 1, Screen.getRows());

/1 do sonething with myRow

}
var whol eScreen = Screen.getText(1, 1 + 24 * 80); // ERROR

getStatusLine(void)

Returns datatype: string

The result of this method, when placed in avariable, returns an ECMA Script
String that representsthe black statusline at the bottom of the Native Environment
Pane. This status line is only enabled following a Check Screen action.

If youwished to create an al ert stating the current status of the screen, for example,
you could create a function action like the following:

var screenStatus = Screen. get StatusLine();

al ert(screenStatus);

getText(nRow, nColumn, nLength)

48

Returns datatype: String

This method returns an ECMA Script String that represents the sequence of
characters (of length nLengt h) in the current screen starting at the row and
column position specified. Note that nRow and nCol unm are one-based, not zero-
based. A zero value for either of these parameters will cause an exception.

To put the first half of the 20th row of a 24x80 screen into avariable, you would
do:

var myRow = Screen. get Text(20, 1, 40);

Theget Text () techniqueisused internally both for drag-and-drop Map actions
involving screen selections (described in “ Selecting Continuous Data” further
below) and in the Check Screen action.

T27 Connect User’s Guide

NOTE: If the amount of data selected by the function's arguments goes past the
end of a screen line, no newlines or other special characters are inserted into the
string.

getTextFromRectangle(nStartRow, nStartColumn,nEndRow, nEndColumn)

Theget Text Fr onRect angl e() method returns a single String consisting of
substrings (one per row) comprising all the characters within the bounding box
defined by the top left and bottom right row/column coordinates specified as
parameters. So for example, in 24x80 mode, you could obtain the upper left
quarter of the screen by doing:

var toplLeftQuadrant =
Scr een. get Text FronRect angl e(1, 1, 12, 40) ;

Theget Text Fr onRect angl e() method isused internally in drag-and-drop
Map actions involving rectangular screen selection regions created using the
Shift-selection method (see” Selecting Rectangular Regions” below).

Note that the string returned by this method contains newline delimiters between
substrings. That is, there will be one newline at the end of each row’s worth of
data. The overall length of the returned string will thus be the number of rows
times the number of columns, plus the number of rows. For example,

Scr een. get Text FronRect angl e(1, 1, 4, 4) . | engt h will equal 20.

hasMoreMessages(void)

ThehasMr eMessages() method returnstrueif more messages are availableto
obtain viathe get Next Message() method, described above. This method is
demonstrated along with the other messaging methods in the

get Next Message() method, described above.

putString(nRow, nColumn, textString)

Theput St ri ng() method allows you to send data to a specific row/column
location on the screen programmatically, without explicitly creating a Set Screen
Text action. Example:

var goHone = "HOWE";

Screen. put String(2,14, goHonme); // send string to screen

putStringInField(nFieldNumber, textString)

Theput St ri ngl nFi el d() method allowsyou to send datato aspecific field on
the screen programmatically, without explicitly creating a Set Screen Text action.
Inthe MARC system, for example, there are typically two fields, the Action: field
on the second line, and the Choice: field on the 21st line. The example below
would have the same effect as the putString one above:

Performing Basic T27 Actions 49

var goHone = "HOWE";
Screen. putStringlnField(1, goHone); // send string to screen
setMessageCaptureOff(void)

The set MessageCapt ur eX f () method turns off the message capture feature
(seeset MessageCapt ur eOn() below):

setMessageCaptureOn(void)

The set MessageCapt ur eOn() method turns on the message capture feature so
that all host messages are stored for retrieval by the caller. Thismethod is
demonstrated along with the other messaging methods in the

get Next Message() method, described above.

typeKeys(String keys)

Thet ypeKeys(Str) method allowsthe keystroke you represent by string to be
emulated on the screen. The specified string will be placed at the current cursor
position on the screen. A function containing the following text would have the
same effect as a SendK ey action:

Screen. typekeys("[Transnmit]")

50 T27 Connect User’s Guide

Multi-row Screen Selections in the T27 Connect

In record mode, it is possible to select multiple rows of datain a continuous
stream, for purposes of dragging out to a DOM.

Selecting Continuous Data

When you drag across multiple rows of data without holding the Shift key down,
all charactersfrom theinitial screen offset (at the mouse-down event) to the final
screen offset (at mouse-up) are selected, as shown in the graphic below. (The
selected text is “reversed out.” A partial row has been selected, followed by two
complete rows, followed by another partial row.

TELCHAEHU 2R 43

You will notice that asyou drag, the component editor window’s statusline in the
lower | eft-hand corner reports the beginning and ending rows and columns of your
selection. If you were to drag this selection out of the Native Environment Pane,
into aDOM, a Map action would be generated as follows:

...... % MAF Screen.getText{10,17,281) TO $0utput MARCOUTPUT/ TEACHTEXT
Notice that the get Text () method is used. This means the captured screen
charactersform one string, which is mapped to Output/M ar cOutput/Teachtext.
No newlines or other special characters areinserted into the string. (Any blank
spaces highlighted in darker blue on the screen shown are simply represented as
space charactersin the string.)

Performing Basic T27 Actions 51

Selecting Rectangular Regions

52

Sometimes you may not want the selection behavior described above. In certain
cases, screen data may be grouped into zones with their own natural boundaries.
For example, in the screen shown previously, you may want to capture (for drag-
out purposes) just the five termsin the bottom left without their definitionsand a
lot of blank space. To do this, first hold the Control key down, then drag your
mouse across the portion of the screen that you want to select. The selected areais
highlighted and the appropriate row/column start and end points are displayed in
the status line of the component editor’s window, as below:

In thisinstance, when you drag the rectangular highlight region out of the Native
Environment Pane, into a DOM, the resulting Map action usesthe

get Text Fr onRect angl e() method described above. Theresulting action looks
like:

- ﬁ MAP Screen.getTextFromRectangle{15,11,19,15) TO $Output MARCOUTPUT/TEACH

This method operates in a different fashion from get Text () , because the string
returned by get Text Fr onRect angl e() iswrapped at therectangl€’sright edge.
Newlines are inserted at the wrap points as discussed in the API description of
get Text Fr onRect angl e() , further above.

T27 Connect User’s Guide

T27 Components in Action

The Sample Transaction

For demonstrati on purposes, this guide usesamenu-driven systeminterface called
MARC, Menu-Assisted Resource Control, offered for demonstration purposes by
athird party. The transactions shown here in the form of screen captureswill be
representative of the type of transactions commonly used by operators on T27
terminals.

Recording a T27 Session

The T27 Component differs from other componentsin that amajor portion of the
Action Model is built for you automatically. This happens as you interact with
the host in the Native Environment pane as part of alive T27 session. Composer
records your interactions as a set of auto-generated actionsin the Action Model.
Typically, in other exteNd Composer components (such as a JDBC Component),
you must manually create actions in the Action Model, which then perform the
mapping, logging, transformation, communication, and other tasks required by
the component or service. By contrast, when you create a T27 Component, you
record reguests and responses to and from the host, which end up as actionsin
the Action Model. In addition, you can add standard actions (Map, Log,
Function, etc.) to the Action Model just the same as in other components.

NOTE: In order to successfully build a T27 Component, you should be familiar
with the specifics of the host application you intend to use in your XML integration
project.

The following example demonstrates several common tasks that you will
encounter in building T27 Components, such as:

+ Automatic creation of Set Screen Text actions
+ Automatic creation of Send Key actions

T27 Components in Action 53

+ Automatic reation of Check Screen actions
+ Drag-and-drop mapping of Input DOM elements to T27-screen prompts

+ Drag-and-drop mapping from the Native Environment Screen to the Output
DOM

+ Theuse of ECMA Script expressions to manipul ate Screen object elements

The following example starts with an input XML document that contains several
transactional commands for the MARC system to process. The goal of this
particular component isto process these commands on MARC to determine the
last job completed and place the name of that job in the Output DOM.

> To record a T27 session:

1 CreateaT27 Component per the procedure shown in Chapter 3, “Creating a
T27 Component”.

2 Once created, the T27 Component Editor window appears, with the words
“T27 Terminal” in the center of the Native Environment Pane, indicating
that no connection has yet been established with a host.

¥ exteNd Composes: TestT27 [T27 Terminal: New T27 Component]]

54

File Edit Yiew Component Action Animate Tools Window Help mEO0 -8 x
CDEZRED00Xs0/B% RS Novell
18 Input Data
-S> MARCINEUT
LSS0 SALES?
(L2085 C
?--<>JOB\NQU\RY (SALESZ)MARC WWFL
B ~ > HELP [TEACH
> RETACTION HOME
L3 QUITACTION BYE
& ouiput Data CT EEEYX X
<> MARCOUTPUT [kievw 127 Component
> BYSINFO Unisys N+4200:49817 COREMCP

%--<>COMF‘LETEJOBS
&> 8UCCESS
L3 JOBNUM

HOB *SYSTEMIJOBFORMATTER

(SALESZIMARC WWFL

3 Click the Record button. You are automatically connected to the host that
you selected in the Connection Resource for the component. Aninput screen

appears in the Native Environment pane as shown below.

T27 Connect User’s Guide

W esteNd Composer: TestT27 [T27 Terminal: New 127 Component]

File Edit View Component Action Animate Tools Window Help

UEEE8»00X+70 &% REG

E Input

Data

=] <>MARC\NPU'E
LaBTEEINT
LR > J0BS
LR > JOBINQUIRY
> HELP
<> RETACTION
- -<> QUITACTION

SALES2

1

(SALES2)MARC WFL

TEACH

HOME

BYE

 Output

Data

£ <> MARCOUTPUT
LR > SYSINFO
%> COMPLETEJOBS
€3> gUCCESS

Unisys MX4200:49817 COREMCP

OB *SYSTEMIOBFORMATTER

(SALESZ)MARC WFL

SEABREFEEFON

_loix
[0 -8 x

Novell

leve T27 Component

<> joBNUM

|Cunne:l\un established ‘He:uvdmg.

4 Dragthe MARCINPUT/LOGIN node from the Input DOM to the first field
in the Native Environment Pane. (Don’'t worry about exact placement within
thefield.) “SALES2” (without quotation marks) appears as your usercode
and anew Set Screen Text action appears automatically in the Action Model.

5 Again, drag the MARCINPUT/LOGIN node from the Input DOM, but this
time placeit in the second field in the Native Environment Pane. (“ SALES2”
will not appear in the password field because it is a protected field on this
screen.) A second Set Screen Text action appears automatically inthe Action
Model. If you examine the two actions, you will notice that they differ only
in their row/column placements.

D@EABEEOI

- New T27 Component
. [y SET SCREEN TEXT AT (10, 44) FROM "sales2”

...... {"EISET SCREEM TEXT AT (12, 44) FROM "sales2"

6 Pressthe F12 Key. You will seethat a Send Key Transmit Actionisadded to
your Action Model.

T27 Components in Action 55

T3 SEND KEY TRANSMIT

7 Inresponse to the Set Screen Text and Send Key Actions, the T27 screen
redraws itself into the Home Menu:

B 127 Terminal: T27Component

- MERU-233ISTED EESOURCE CONTEOL 16:10:16

dew b0 PArent [Ovnd

8 Asdiscussed above in Chapter 4, “The Check Screen Action” itisawise
idea to make sure you are on the correct screen before proceeding. To do
this, begin by dragging your cursor over the word “MARC” in the upper left-
hand corner. Notice that the status line of the component editor window in
the lower left corner will indicate the row and column location where the
word starts and ends. Using your right mouse button in the Native
Environment pane, click Check Screen. A Check Screen action including a
Screen.getText method automatically appears, verifying that the word
“MARC” does appear where expected on the screen.

Check Screen

Screen ‘Wait (in seconds)

|5n

Screen Evaluation Expression

|Screen.getText(1,11,4)=="MARC" [74
Help oK Cancel

56 T27 Connect User’s Guide

10

11

12

Decide whether the default Screen Wait time (in this case 60 seconds) is
going to be adequate for this Check Screen action. The MARC program has
arelatively quick response time. (Even so, careful testing of the component
should be done in order to verify that this timeout valueis safe.) Click on
OK to enter the Check Screen action into your Action Model.

Now, let's map something from the Native Environment panel back to the
Output DOM. Suppose you are interested in verifying what type of Unisys
mainframe you' re working on. The lower |eft-hand corner of the emulator
screen tells you this information. Click and Drag your cursor from the word
Unisys to the beginning of the word MARC. Again, as you click and drag,
the onscreen row/column coordinates of the selected area are displayed in
the statusline.

Drag the information you have highlighted into the SY SINFO node of the
Output DOM. A new Map Action appears in the Action Model:

,% MAP Screen.getText{23,2,28) TO $Output MARCOUTPUT/SYSINFO

Having verified that you are on the correct screen and using the correct
system, you can begin typing some commands. Click anywhere in the
“Choice:” field of the T27 environment pane and type JD.

NOTE: Unisys commands are often case-sensitive and are often entered in
ALL CAPS.

A new Set Screen Text action appears automatically in your component’s
action list. Noticethat the letters‘ JD’ are already in the action along with the
screen coordinates for the field.

..... @ CHECK SCREERM for Expression: Screen.getText(1,11,2)=="JD"

Being a T27 connection, nothing will happen until you press the Transmit
key, so press F12 again to add another Send Key Transmit action to the
model.

In response to the *JD’ command you transmitted, the host program sends a
new menu screen shown below.

T27 Components in Action 57

58

13

14

15
16

17

Asaways, it isagood idea to make sure you are on the expected screen, so
highlight the letters “JD” at the top of the screen and right click to create
another Check Screen Action to evaluate your screen’s readiness to continue.
In this example, the expression will be set to:

Screen. get Text (1, 11, 2) == “JD
Click OK and your Check Screen action appears in the action list.

Drag the MARCINPUT/JOBS node from the Input DOM to the Choice;
field in the Native Environment Pane. “C” (without quotation marks)
appearsin the field and anew Set Screen Text action appears automatically
in the Action Model. In thismenu, “C” is an abbreviation for “Completed
Jobs”.

Add another Send Key Transmit by pressing F12.

Add another Check Screen Action to ensure that you are in the correct menu.
Thistime, check for the word “OUTPUT":

Screen. get Text (1, 11, 6) == “COUTPUT”

In the Native Environment Pane, select the name of the first completed job
by highlighting the terminal-screen text in row 8 from column 35 to
wherever the text ends, by clicking and dragging the mouse. The text will
appear highlighted.

T27 Connect User’s Guide

OUTPUT - MAR MAND OUTEUT

18 Lift your finger off the mouse button and place the mouse over the selected
text. Click-drag the selection to the Output DOM
MARCOUTPUT/COMPLETEJOBS node. The selected text isinserted
into the DOM at the desired location, and anew Map Action is generated in
the Action Model automatically.

19 Click the Record button to turn recording off.
20 Save your component.

If you were sucessfully ableto follow all the steps outlined above, your complete
Action Model would now look like this:

SEEBE2O I

= T2¥Component

..... [SET SCREEM TEXT AT (10, 48) FROM $Input MARCINPUT/LOGIN

..... [SET SCREEM TEXT AT (12, 48) FROM $Input MARCINPUT/LOGIN

...... @ SEMND KEY TRANSMIT

..... @ CHECK SCREEM for Expression: Screen.getText{1,11,4)=="MARC"
...... S MAF Screen.getText(23,2,28) TO $Output MARCOUTPUT/SYSINFO

..... [SET SCREEM TEXT AT (21, 19) FROM " JD™

...... ?g SEND KEY TRANSMIT

..... @ CHECK SCREEM for Expression: Screen.getText{1,11,2)=="JD"

..... [SET SCREEM TEXT AT (21, 18) FROM $InputMARCINPUTIJOBS

...... @ SEND KEY TRANSMIT

..... @ CHECK SCREEM for Expression: Screen.getText(1,11,6)=="0UTPUT"
...... % AP Screen.getText(8,35,24) TO $0utput MARCOUTPUT/.COMPLETEJOBS

T27 Components in Action 59

Obviously, thisisafairly simple component.that does not accomplish much real
work. In using Composer to build T27 components, your initial recorded
component may only be a starting point. For thisreason, it isimportant to study
how to edit existing action models.

Editing a Previously Recorded Action Model

You will encounter times when you need to edit a previously recorded action
model. Unlike the situation with other components, editing a T27 Component
requires extra attention. When a T27 Component executes, it plays back a
sequence of actionsthat expect certain screens and data to appear at certain times
in order to work properly. So when editing a component you must be careful not
to make the action model sequence inconsistent with the host program execution
sequence you recorded earlier (i.e., don't break it!).

In general, to ensure successful edits, the following recommendations apply:

+ Exercise extreme care when using Cut, Copy, and/or Paste to delete, move,
or replicate actionsin your Action Model. Actions that were created
automatically during a“Record” session will often create data dependencies
that are easily overlooked in the editing process.

+ When you need to use drag-and-drop to add new Map actionsto your Action
Model, click the Start Animation button in the Action Pane toolbar and step
to the line of interest in your Action Model; then Pause animation and turn
on Record mode. At this point, you can safely drag to and from the screen.
Following this procedure will prevent your Action Model from getting out of
sync with the host or conflicting with previously mapped DOM data.

Editing or Adding to an Existing Action

60

Thefollowing procedurewill explain how to change an existing action or add new
actionsto a previously recorded session.

» To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The
component appears in the T27 Component Editor window.

T27 Connect User’s Guide

¥ exteNd Composer: TestT27 [T27 Teminal: T27Component] [—[O]]

File Edit View Component Action Animate Tools Window Help

@800 X085 RS

E-) Input Pata

- K> MARCINP
------ > LOGIN[SALES?2
L 0BS |G
------ > JOBIN{(SALES)MARC 'WFL
- HELP [TEAGH
------ > RETACHOME
L3 QUITA(BYE

EO -8 x
Novell

T27 Terminal

@ output Data -« BEE2N
- > MARCOUT]
[EMT 27Component =
1> BYSINAUNISYS NX4200:49817 COREMGR
______ <> cOMPIJOD *SvSTEMUOBFORMATTER [\ cHECK SCREEN for Expression: Screen.getTest(1,11,4)=

> SUCCHSALESIMART WFL

g MAP Screen.getText(23,2,28) TO $Output MARCOUTPUT!S
...... <3 10BN

@ SET SCREEM TEXT AT (21, 15) FROM “JD™
1;% SEND KEY TRANSMIT
[, CHECK SCREEN for Expression: Screen.getText(1,11,2)=
@ SET SCREEN TEXT AT (21, 18) FROM $inputMARCINPUT/,
‘;g BEND KEY TRAMNSMIT
R CHECK SCREEN for Expression: Screen.getText(1,11,6)=
&5 MAP Screen.getText(9,35,24) TO SOUtput MARCOUTPUTIC
/7 While you are NOT in the JD menu, do the following
@ WHILE Screen.getText(1,11,2) 1= "D’
=--Loop Action

ity (™

I‘rermma\. Mot Connected

0

Ready

2 Navigate to the action in the Action Model where you'd like to make your

edit or after which you' d like to add additional actions and highlight that
action.

QEAEEE2SI

R CHECK 3CREEM for Expression: Screen.getText{1,11,2)=="JD"

@l SET SCREEN TEXT AT (21, 18) FROM $inputMARCINPUT/JOBS

1?3 SEMD KE* TRANSMIT

[CHECK SCREEN for Expression: Screen.getText{1,11,6)=="0UTPUT"

&5 MAP Screen.getText(,35,24) TO $Output MARCOUTPUT/COMPLETEJOBS
e WHILE rowindex < 14 INDEXED BY rowlindex

E}--Loop Actions

() CALLvar myJob = Screen.getText(rowindex+8,35,17)
57T} IF myJob.toString{) == Input XPath{"MARCINPUT/JOBINQUIRY™)
5--TRUE

E=3MAP Screen.petText{ rowindex + 8 35,1

.. B Break

FALSE

utput MARCOUTPUT/SUCCESS

3 Click the Toggle Breakpoint button (or press F2). The highlighted action
becomes red (Animation will be discussed in further detail below).

T27 Components in Action 61

Start Animation

Toggle Breakpoint

C-@W@QH

@ CHECK SCREEM for Expression: Screen.getText(1,11,2)=="JD"
[SET SCREEN TEXT AT (21, 18) FROM $inputiMARCINPUT/JOBS
@ SEMD KEY TRANSMIT

@ CHECK SCREEM for Expression: ScreengetText(1,11,6)=="0UTPUT"

55 MAP Screen.getText(8,35,24) TO $OutputMARCOUTPUTICOMPLETEJOBS
e YWHILE rowlndex < 14 [NDEXED BY rowindex

5. Loop Actions

..ﬁ:a CALL var myJob = Screen.getTextirowlndex+8,35,17)

T, IF myJoh.toString() == Input.XPath{"MARCINPUT/JOBINOUIRY™)

- TRUE
g AP Screen.getText{ rowindex + 8, 35,17) TO $0utput.

[Iﬁ Braak

MARCOUTPUT/SUCCESH

4 Click the Sart Animation button. The animation tools (in the Actions
pane’s tool bar) become enabled.

5 Click the Sep to Breakpoint/End button. The Action Model executesall of
the actions from the beginning of the Action Model to the breakpoint you set
in step 3 above.

Step to Breakpoint/End

oEBEE2eI
- T2FComponent

..... @ SET SCREEM TEXT AT £10, 49) FROM $inputMARCINPUTLOGIN

..... [SET SCREEN TEXT AT (12, 49) FROM $inputMARCINPUTLOGIN

...... T SEMD KEY TRANSMIT

..... @ CHECK SCREEM for Expression: Screen.getText{1,11,4)=="MARC"
...... % MAP Screen.getText(23,2,28) TO $0utput MARCOUTPUT/SYSINFO
..... [SET SCREEM TEXT AT (21, 19) FROM "JD*

...... % SEMD KEY TRANSMIT

[NN P P Slalat Y I SN UNIOR SIS _SERpSoRars JURry Y [I I S T]

6 Pressthe Pause Button:

T27 Connect User’s Guide

Pause

emEE=o 1l

=1 T2¥Component

..... @ SET SCREEM TEXT AT {10, 49) FROM $input MARCINPUTLOGIN

..... [SET SCREEN TEXT AT (12, 49) FROM $inputMARCINPUTLOGIN

...... ?g SEND KEY TRANSMIT

..... @ CHECK SCREER for Expression: Screen.getText(1,11,4)=="MARC"
...... % MAP Screen.getText(23,2,28) TO $Output MARCOUTPUT/SYSINFO
..... [} SET SCREEN TEXT AT (21, 19) FROM “JD™

...... ?g SEMD KEY TRANSMIT

..... @ CHECK SCREEHN for Expression: Screen.getText(1,11,2)=="JD"

7 Inthe Component Editor tool bar, click the Record button.

Record button

¥ cateNd Composer: TestT27 [127 Teminal: 7Component]

File Edit View Component Action Animal Toole Window Help
DER@E8s0AXFOo0BG RG
KB Input [Data
- <> MARCINP!
<> LOGIN|SALES2
<> goBs o
1> JOBINQIEALES IMARC WFL
| <> HELP [TEAGH
<> RETACHOME
L3> QUITAGEVE

& ouput ata ‘E’ BEEI

B> MARCOL!
L€ gysIN{Unisys NX4200.49817 COREMCP

Component -
B3\ CHECK SCREEN for Expres sion: Sereen.getText(1,11,4)=="MARC"

5 MAP Screen.getText(23,2,28) TO $Output MARCOUTPUTSYSINFO

SET SCREEN TEXT AT (24, 15) FROM *JD"

T SEND KEY TRANSMIT
B, CHECK SCREEN for Expression: SereengetText(1,11,2)=="ID"

SET SCREEN TEXT AT (24, 18) FROM $inputMARCINPUTLIOBS

T SEND KEY TRANSMIT

B\ CHECK SCREEN for Expression: Sereen.getText(1,11,6)=="0UTPUT"

8 Edit the action to make any changes you wish to the current line by right-
clicking on the action and selecting Edit Action. Or, if you wish to add new
actions, use Composer's drag and drop features to add new Map actions that
interact with the screen. The new actionswill be added directly under the
highlighted line.

9 Turn off recording. (Toggle the Record button.)
10 Test your component.

T27 Components in Action 63

Deleting an Action

Thefollowing procedure explains how to delete an action in apreviously recorded
session

> To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the right mouse
button. Select Deletefrom the menu. You may also highlight theline and pressthe
Delete button on your keyboard.

...... % WMAP Screen.getText{8,35,24) TO $OutputMARCOUTPUT/COMPLETEJOBS
E|e WHILE rowlndex < 14 INDEXED BY rowlndex

{5.--Loop Actions
...... T CALLvar myJob = Screen.getText{rowindex+8,35,17)
E|71:' IF myJob.toString() == Input. XPath("MARCINPUT/JOBINQUIRY™)
=.. TRUE

% MAF Screen.getText({ rowlndex + 8, 35,17) TO $OutputMARCOUTPL

% AP Screen.getText{rowindex+8,4,4) TO $Completed/JobNumber
Jelete
[y SET SCREEN TEXT AT (8, 5) FROM ™
Find...

MNew Action »
Edit Action

Disable Action
Toggle Breakpaint
Cut

Copy

Find Mext

el

npletedidobMumber Replace...

Looping Over Multiple Rows in Search of Data

64

In the MARC example (above), the goal wasto find out what jobs had been
completed and map the name of the most recent of those jobsto the Output DOM.
The name of thisjob could have been used as input to another component or to a
web service.

By simple visual inspection of the OUTPUT menu of the terminal emulator
screen, it's easy to see that several jobswere complete, not just the one mapped in
the example. Suppose you wanted know the job numbers, names and times of
completionfor all jobs? To do this, you would need to iterate through several lines
of theterminal screen, placing the key values in the Output DOM. This could be
accomplished using a Repeat/While loop, which is explained in detail in Chapter
8 of the Composer User Guidein the section titled “ The Repeat While Action.”
Often, in T27 components you will find that you need to perform some form of
looping in order to read the values from the terminal window. Make sure you are
very familiar with this chapter of the User Guide.

T27 Connect User’s Guide

Below is an example of a completed Action Model containing a Repeat/While
loop that fillsin an Output DOM with several values obtained from the terminal
window. In the example above, you used drag and drop to place asingle value
from thelist of completed jobsinto asingle pre-exising node in the Output DOM.
Here, each job has been placed init’s own node along with some sub-nodeswhich
could also be used as attributes.

SEBERS I
..... [} SET SCREEM TEXT AT (10, 48) FROM $Input MARCINPUT/LOGIN
..... [} SET SCREEM TEXT AT (12, 44) FROM $Input MARCINPUT/LOGIN
...... 'Eg SEMD KEY TRANSMIT
..... @ CHECK SCREEN for Expression: Screen.getText(1,11,4)=="MARC"
...... S MAP Screen.getText{23,2,28) TO $Output MARCOUTPUT/SYSINFO
..... [} SET SCREEM TEXT AT (21, 15) FROM "JD™
...... 'Eg SEMD KEY TRANSMIT
..... @ CHECK SCREEM for Expression: Screen.getText(1,11,2}=="JD"
..... [SET SCREEM TEXT AT (21, 18) FROM $input MARCINPUT/JOBS
...... @ SEMD KEY TRANSMIT
..... @ CHECK SCREEN for Expression: Screen.getText({1,11,6)=="0UTPUT"
...... % MAP Screen.getText(9,35,24) TO $0utputMARCOUTPUT/COMPLETEJOBS
Be WHILE rowindex < 14 INDEXED BY rowindex
5 Loop Actions
......f(;q CALL var jobnum = Screen.getTextirowindex+8,1,5)
ﬁ AP jobnum TO Output.createXpath{"MARCOUTPUT/JOBNUM" + rowindex)
......f{,\q CALL var tasknum = Screen.getText{rowindex+8,10,4);
ﬁ AR tasknum TO Output.createXpath("MARCOUTPUT/ TASKHNUM™ + rowindex)
g CALLvar timecomp = Screen.getTextirowindex+8,15,5)
ﬁ MAF timecomp TO Qutput.createXpath{"MARCOUTPUT/TIME™ + rowindex)
_.ffx) CALL var jobname = Screen.getText{rowindex+8,35,35)
% MAF jobname TO Qutput.createXpath(”MARCOUTPUT/JOBNAME" + rowindex)

Testing your T27 Component

As mentioned previously, Composer includes animation tools that allow you to
easily test your component. There is also an Execution button on the UTS
Component Editor tool bar, which allows you to execute the entire Action Model
and verify that your component works as you intend. While testing, pay close
attention to your Screen Wait Time valuesin al Check Screen actions to make
sure they are appropriate and that Set Screen Text and other actions work as
intended.

T27 Components in Action 65

66

» To execute a T27 Component:

1 OpenaT27 Component. The T27 Component Editor window appears.

Execute button

¥ exteNd Composer: TestT27 [T27 Terminal: T27Component]

File Edit ¥iew Component Action Animate Tools Window Help :=]

D800 Xx+0 8% R G

'é Input [Data

-S> MARCINP

€2 LOGIN|SALES2

L<>JoBs c

B <> JOBINQISALESTIMARC WiFL

L <> HELP [TEACH

. <> RETAGHOME

<> auUITalavE

/L an LOEENCP

SERFEEGI

'é Output Data
<>
L. SYSINIURisys NX4200:49817 COREMCP

i E CHECK SCREEM for Expressian:Screen.geﬂextu,11,6)::"0UTPUT";|

55 MAP Screen.getText(9,35,24) TO $Output MARCOUTPUTICOMPLETE)

...... /7 While you are NOT in the JD menu, do the Tollowing
- @ WHILE Screen.getText(1,11,2) = J0*
= -Loop Action

... /f Begin a SwitchiCase statement checking for the + or REturn:
& 7B SWITCH Screen.getText(2,11,1
5 CASE: "+"

I Wsas are o tho firot or middin ceranne sarifs that itk

2 Select the Execute button. All the actions in the Action Model executein
order. If the component executes successfully, a message appears as

follows.

Mossage |

Execution completed

3 Click OK.

T27 Connect User’s Guide

After executing the component, you may want to double check the contents of
your DOMsto be sure all of the appropriate data mappings occurred as expected.
To make all data elementsvisible, select Expand XML Documents from the
View menu. This expands all of the parents, children, data elements, etc. of the
DOM trees, so that you can easily see the results of execution of the component.
If your execution had a problem, you can use the Animation tools to pinpoint
where the difficulty occurred. This processis described in the next section.

T27 Components in Action 67

Using the Animation Tools

68

In the Action Model, you'll find animation toolsthat allow you to test a particular
section of the Action Model by setting one or more breakpoints. The
Toggle/Breakpoint tool was introduced briefly in the section above, “Editing or
Adding to an Existing Action” but all the animation tools will be explored in
more detail below. Using these tools, you can run through the actions that work
properly, stop at the actionsthat are giving you trouble, and then troubleshoot the
problem actions one at atime.

»The following procedureis abrief example of the functionality of the animation
tools. For acomplete description of all the animation tools and their functionality,
please refer to the exteNd Composer User's Guide.

» To run a T27 Component using Animation Tools:

1 OpenaT27 Component. The component appearsin the T27 Component
Editor window.

NOTE: Animation and Recording are mutually exclusive modes in the
component. In order to record during animation, you must either pause, or
stop animation and then turn on record mode.

2 Click the Sart Animation button in the Action Model tool bar, or press F5
on the keyboard. All of the tools on the tool bar become active, and a
connection is established with the host. The Native Environment Pane
becomes active.

3 Click the Sep Into button. The first Check Screen action becomes
highlighted.

DEEE2I
=B W Step Into
@ SET SCREER TEXT AT (10, 49) FROM $Input MARCINPUTLOGIN
@ SET SCREER TEXT AT (12, 43) FROM $InputMARCINPUTLOGIN
@ SEMD KEY TRANSMIT

@ CHECK SCREEN for Expression: Screen.getText(1,11,4)=="MARC"
.53 WAP Screen.getText(23,2,28) TO $Output MARCOUTPUT/SYSINFO
@ SET SCREEMN TEXT AT (21, 19) FROM "JD™

Ty SEND KEY TRANSMIT

@ CHECK SCREEM for Expression: Screen.getText(1,11,2)=="JD"
@ SET SCREEN TEXT AT (21, 18) FROM $input MARCINPUT/JOBS

E‘-g SEMD KEY TRANSMIT

@ CHECK SCREEM for Expression: Screen.getTest(1,11,6)=="0UTPUT"

% MAP Screen.getText(8,35,24) TO $Output MARCOUTPUT/COMPLETEJOBS
8 Wl E rawindey < 44 INOEYED BY rowindoy

T27 Connect User’s Guide

4 Click the Sep Into button again. The Check Screen action (above) executes
and the next action becomes highlighted.

Click the Sep Into button repeatedly to execute actions one-by-one.

Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) asdesired to
control the execution of the component. Note that you can set abreakpoint at
any time during execution by clicking the mouse on an action line and
hitting F2 or using the Set Breakpoint button.

7 Once animation is complete, the following message appears.

Animation I

Animation completed.

Data Sets that Span Screens

T27-based computing differs from other types of computing (including other
terminal-based interactions) in the following ways:

+ Retrieval of data sets may require repeated roundtrip communications with
the Unisys host. One query may bring many screens' worth of data, which
must be captured through multiple “page forward” commands, etc.

+ Information that spans screens may be (and often is) partially duplicated on
the final screen.

These factors can make automating a T27 interaction (viaan Action Model)
challenging. Suggestions on how to deal with these issues, aswell asan example,
are given below.

Multiple Screens

A common requirement in T27 computing isto capture a data set that spans
multiple screens. If thisisthe case, most Unisyshostswill display a“+” signinthe
Action field to indicate that the data continues on the next screen.

It is not always obvious how many screens worth of data there may be.
Generally, the only clue that you have may be the presence of athe + sign in the
Action field which changes to “ Return” when you reach the final screen.

T27 Components in Action 69

Thepoint isthat if your query resultsin (potentially) more than one screen’sworth
of information, you must be prepared to iterate through all available screensusing
aRepeat/While action, and stop when no additional screensareavailable. Youwill
have to supply your own custom logic for deciding when to stop iterating. Your
logic might depend on one or more of the following strategies:

+ Determine the total number of screensto visit by “scraping” that
information, if available, off the first screen.

+ Divide“total records’ (if thisinformation is available) by the number of
records per screen (if thisis known in advance), and add one.

+ Visit screens one-by-one and break when a blank record is detected.

+ Visit screens one-by-one until aspecia string (such as“End” or “Go Back”)
is detected.

+ Visit screens one-by-one until two consecutive identical screens have been
encountered.

Obviously, the strategy you usewill depend on theimplementation specifics of the
host application in question.

Dealing with Redundant Data

70

In T27 host applications, it's common for the final screen of a multiscreen result
set to be “ padded” with datafrom the previous screen. In thisway, the appearance
of afull screenis maintained.

Consider the following two screen shots. The top one shows the first screen’s
worth of information after transmitting a command that returns two screens of
information. Noticethe + signin the Action field of thefirst screen indicating that
thereis more data to follow.

T27 Connect User’s Guide

OUTFUT - MARC COMMERD OUTEUT

]
Hire [0 BEturn COvnd STore + -

54

OPMAKD, HANTL.ER

Pressing the Transmit Key (or F12), brings up the second screen. Thereare several
things to notice about this second (and, in this case, final) screen:

*

The + signin the Action: field has been replaced by the word “REturn”.
Sending the Transmit Key here would return you to the Job and Task Display
Menu.

The second screen shows exactly the same records asthefirst one, except for
job number 2111/2111, which drops off to make room for four of the 1621
jobs because the second screenislimited to listing 17 lines of jobs. (Thefirst
screen had only 14 lines of data, because there were three lines worth of
header information). The majority of this screen is showing us redundant
data.

Another + sign appears on the screen, this timein marking the fourth-to-last
job on the screen. MARC provides us with a convenient way to see where
the list splits and where the data ceases to be redundant.

T27 Components in Action 71

72

ONTIMUATION - MARC CORPAAND OUTFUT 1k
o .
0 BEturn Clwnd 3Tore + - [(Fress SPCEW for Help)

ALE.
ALE.
ALE.
ALE.
ALE.
ALE
ALE.
ALE.
ALE.
ALE.
ALE.
ALE
ALE.
ALE.
ALE.
ALE.
(SALE

In most cases, you will not want to capture this sort of redundant data. Fortunately,
MARC makesit fairly ssmpleto detect and rej ect redundant records by placing the
+sign at thefirst column totheleft in thelist where the databeginsto be new. This
can be used along with ECM A Script as an easy and convenient way of
maintaining unduplicated lists. The basic steps to do this would be:

*

*

*

Enter a Repeat/While loop checking the name of the screen.

Create a Switch Statement depending on whether the screen is continued or
not.

Within each case of the Switch Statement, enter a Repeat While loop and
fetch each record to place it into a variable as shown in the example above.

After theloop is complete, send a Transmit Key to go on to the next screen.

A completed Action Model which scrolls through two screens of data and
eliminates redundancies would look something like the one bel ow.

NOTE: In order to accomodate the large size of this screen, this action model
picks up where the one in “Recording a T27 Session” earlier in this chapter left off.

T27 Connect User’s Guide

g WMAP Screen.getText(9,35,24) TO $Output MARCOUTPUT/COMPLETEJOBS
#f \While you are NOT in the JD menu, do the following
E e WHILE Screen.getText{1,11,2) !="JD"

&--Loop Actions
/f Begin a SwitchiCase statement checking for the + or REturn:
B 9WITCH Screen.getText(2,11,1)

5. CRSE: "+"
- /f Wyou are on the first or middle screens, verify that with a Check Screen:

..JH@ CHECK 5CREEN for Expression: Screen.getText(1,11,6)=="0UTPUT"
/¥ There are 21 rows of data on the first screen, with 8 rows of header info.
- /# Since we start counting at 0, we need to iterate 13 times (21-8)

e \WHILE rowindex <= 13 INDEXED BY rowindex

[=--Loop Action
// Remember to always account for the 8 rows of header info on iteration

i f{x) CALLvar j = Screen.getText(r 8,35,35)
g AP jobname TO Output.createXpath{"MARCOUTPUT/JOBNAME™ + rowindex)
- /# Another check screen check here, and act on it once we determine...
@ CHECK SCREERN for Expression: Screen.getText(1,11,6)=="0UTPUT"
21Ty IF Screen.getText(1,11,6/=="0UTPUT"
= TRUE
/¥ Kwe are onthe right screen, we want to get to the next screen by Transmitting.
% SEMD KEY TRANSMIT
... CHECK SCREEN far Expression: Screen.getText(1,11,4)=="CONT"

=5 FALSE
5/ LG "Wirong screen. Verify Screen Wait times.” TO System Qutput using Log Level &

E Break
.- CASE: "R"

.. /i werify that we are on the Next Screen
D CHECK SCREER for Expression: Screen.getText{1,11,4}=="CONT"
=] e WHILE rowindex < 21 INDEXED BY rowindex
= Loop Action
¢ /7 Find out where non-redundant data starts by looking for the + sign
.- 7Ty IF Screen.getTextirowindesx, 1,1)=="+"
5 TRUE
¢ fig) GALL newrow=rowindex
& FALSE
: Ii" LOG "Continue™ TO System Cutput using Log Level 5
@ CHECHK BCREEM for Expression: Screen.getText(1,11,4)=="CONT"
/¥ There are 21 rows of data in the second screen, including 4 rows of header info
/7 Subtract the row number where new data starts from the total number of rows on the second screen.

=] e WHILE rowindex <= (20 - newrow) INDEXED BY rowindex
= Loop Action

T) CALL var jobnum = Screen.getTextirowindex+newrow,4,5)

g AP johnum TO Output.createXpath{"MARCOUTPUT/JOBNUM" + rowindex+newrow)
-f(x) CALL var tasknum = Screen.getText{rowindex+newrow,10,4);

g AP tasknum TO Output.createXpath{"MARCOUTPUT/ TASKNUM" + rowindex-+newrow)
f{xj CALL var timecomp = Screen.getText(rowindex+newrow,15,5)

& mAP timecomp TO Output.createXpathi"MARCOUTPUT/TIME" + rowindesx+newrow)

i) CALL var jiok = Screen.getText{rowind ow,35,35)
. g AP jobname TO Output.createXpath("MARCOUTPUT/JOBNAME™ + rowindex +hewrow)

& SEND KEY TRANSMIT
D CHECK SCREEM for Expression: Screen.getText{1,11,2)=="JD"

- Default
\i‘f’ L3 "Unknown Screen ™ TO Systemn Output using Log Level &

T27 Components in Action

Tips for Building Reliable T27 Components

Thefollowing tips may be helpful to you in building reliable T27 Components.

*

*

*

Always follow a Set Screen Text Action with a Send Key Action.
Always follow your Send Key Action with a Check Screen Action.

Remember that the default Screen Wait values used in Check Screen actions
are set when you initialy created your Connection resource. To change the
default Screen Wait time, you must change the property of the Connection
Resource.

Remember also that Screen Wait timeout values may need to be increased,
for load-sensitive applications. Careful testing will reveal these sorts of
problems.

Be careful when editing a previously recorded Action Model. Deleting or
modifying asingle Set Screen Text Action can (and will!) throw your entire
Action Model off course.

Using Other Actions in the T27 Component Editor

In addition to the Set Screen Text, Send Key and Check Screen actions, you have
all the standard Basic and Advanced Composer actions at your disposal as well.
The completelisting of Basic Composer Actions can befound in Chapter 7 of the
Composer User’s Guide. Chapter 8 contains alisting of the more Advanced
Actions available to you.

Handling Errors and Messages

Intesting aT27 Component, you may encounter errorsrelating to Set Screen Text,
Send Key and/or Check Screen actions. The result isadialog similar to the
following:

74

Warning

Errar executing component: Unisys Compaonent Exception {0}

dtl0z2004

Det

OK

This section discusses possible error conditions and how to deal with errors like
these.

T27 Connect User’s Guide

Check Screen Errors

Most of the errors you are likely to encounter at execution time will berelated to
Check Screen actions. Generally speaking, your Check Screen errorswill be
timeout errors which means that the go-ahead criteriayou specified in the Check
Screen setup dialog were not met within the Screen Wait imeout period. Clicking
the Details button on the error dialog will verify this. Therefore, you should first
try to determine whether slow host response might be the real problem (in which
case, the solution isto increase the Screen Wait time for the Check Screen action
in question). If the error still occurs after the Screen Wait time has been increased,
then you can be sure the error is due to an incorrect or inappropriate go-ahead
condition in your Check Screen action.

“Screen Check Expression {0} was evaluated as false”

This error happens when the ECM A Script expression you used for your Check
Screen go-ahead happens to eval uate as false at execution time. Once again, it's
important to realize that this sort of error can be triggered simply on the basis of
slow host response (timeout). When the host isslow to respond, it meansthat your
ECMA Script expression will be evaluated on the basi s of whatever isinthe screen
buffer as of the moment of timeout. If no data (or insufficient data) have arrived,
the expression is bound to evaluate as false.

To fix this sort of problem, either increase the Screen Wait time for this Check
Screen action (if you suspect that the problem ishost latency) or try modifying the
logic inyour ECMA Script expression.

Set Screen Text Errors

Errors generated by Composer from Set Screen Text action will, in general, be
rare. Thisis because you are given agreat deal of leeway in your ability to send
whatever you like to the screen. Where you will more often run into trouble ison
the application side. Unisys hosts are very particular about the input they will
accept. If the text you send in your Set Screen Text action is not what the host
expects, you will receive host-side errors and the rest of your Composer Action
model will not proceed as expected. The way to avoid problems here is to make
sure that for every Set Screen Text/Send Key action combination, there is always
a corresponding Check Screen action.

Finding a “Bad” Action

When you have alarge Action Model (containing dozens or hundreds of Set
Screen Text, Send Key and Check Screen actions), simply locating the action
that’sresponsiblefor an error can be achallenge. Oneway to find the problematic
actionisto:

T27 Components in Action 75

1 Select and Copy some of the text in the error dialog. (Click the Details
button if need be, to expose the full error description. Highlight the rel evant
text, such as cursor coordinates. Then use Control-C to Copy.)

Click inside the Action Model.
Use Control-F to initiate a search.

Paste the error text into the search dialog.

aua b WN

Execute the search.

Of coursg, if you have multiple Check Screen actionsthat are based on identical
go-ahead criteria, the foregoing technique won't necessarily be helpful. If that's
the case, set abreakpoint at the midpoint of your Action Maodel, and run the
component. If the error doesn’t occur, move the breakpoint to a spot halfway
between the original breakpoint and the end of the action list. (Otherwise, if the
error does happen, set the breakpoint at a spot one quarter of the way down from
the top of the action list.) Run the component again. Keep relocating the
breakpoint, each time halving the distance between the last breakpoint or the top
or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy,
you should be able to debug an Action Model containing 128 actionsin just 7
tries.)

Performance Considerations

76

You can perform second-based timing of your Action Model’s actions by
wrapping individual actions (or block of actions) in timing calls.

> To time an Action:

1 Click intothe Action Model and place a new Function Action immediately
before the action you wish to time. (Right-mouse-click, then New Action >
Function.)

2 Inthe Function Action, enter an ECMA Script expression of the form:
startTi me = Number (new Dat e)
3 Insert anew Function Action immediately after the action you wish to time.
4 Inthe Function Action, enter an ECMA Script expression of the form:
endTi ne = Nunber (new Dat e)

5 CreateaMap Action that mapsendTi ne — start Ti me to atemporary
DOM element. (Right-mouse-click, New Action > Map.)

6 Runthe Component. (Click the Execute button in the main toolbar.)

T27 Connect User’s Guide

If you do extensive profiling of your Action Model, you will probably find that the
overwhelming majority of execution timeis spent in Check Screen actions. Two
implications of thisworth considering are:

+ ECMAScript expressions (in Map and/or Function actions) will seldom, if
ever, be a performance consideration for the component as awhole.

+ Overall component performance rests on careful tuning of Screen Wait
timeout values in Check Screen actions.

Finally, remember that testing is not truly complete until the deployed service has
been tested (and proven reliable) on the app server.

For additional performance optimization through the use of shared connections,
be sure to read the next chapter, on Logon Components.

T27 Components in Action 77

78 T27 Connect User’s Guide

Logon Components, Connections,
and Connection Pools

This section discusses certain features avail able in the T27 Connect designed to
maximize performance of deployed services.

About T27 Terminal Session Performance

The overall performance of any service that uses back-end connectivity isusually
dependent on thetime it takes to establish a connection and begin interacting with
the host. Obtaining the connection is “expensive” in terms of wait time. One
strategy for dealing with thisis connection pooling, a scheme whereby an
intermediary process (whether the app server itself, or some memory-resident
background process not associated with the server) maintains a set number of
preestablished, pre-authenticated connections, and oversees the “ sharing out” of
these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and
authenticating to a host. But in terminal-based applications, a considerable
amount of time can be spent “drilling down” through menu selections and
navigating setup screens in order to get to the first bonafide application screen of
the session. So even when connections are reused through pooling, session-prolog
overhead can be a serious obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a
special kind of component (called alogon component) that can maintain an open

connection at a particular “drill-down” point in aterminal session, so that clients
can begin transactions immediately at the proper point in the session.

When Will | Need Logon Components?

Logon Components are useful in several types of situations:

Logon Components, Connections, and Connection Pools 79

+ When you have aneed for multipletiers of pooling based on multiple
security challenges within your system. (For example, users may need one
set of logon credentials to get into the network, another to get into the
mainframe, and another to get into database.) Serial 10g-in requirements may
dictate the use of multiple logon components.

+ When your service needs stateful “session-based” connections.

+ When you need the performance advantages available through connection
pooling.

If performance under load is not a high-priority issue and your connectivity needs
are relatively uncomplicated, you may not need to use Logon Components at all.
But thereisno way to know if performanceis adequate merely by testing services
at design time, on adesktop machine.

Components and services built with the T27 Component Editor may appear to
execute quickly at design time (in Animation Mode, for example). But in real-
world conditions—which isto say under load, with dozens or even hundreds of
requests per second arriving at the server—session overhead can be a significant
factor in overall transaction time. The only way to know whether you need to use
the special performance enhancement features described in this chapter isto do
load testing on a server, under test conditionsthat mimic real-world “ wor st case”
conditions.

Connection Pool Architecture

80

When you install the Connect for T27, three types of Connection Resources are
added to the Connection creation wizard:

+ T27 Connection
+ aT27 MultiBridge Connection

+ T27 Logon Connection (henceforth referred to as a Logon Connection)

The T27 MultiBridge Connection isaserver version that minimizesthe number of
connections going back to the host and also contains added security. The T27
Connectionisatrue termina connection and (when used by a T27 component)
can establish a session with a host system. Thisis the connection-type that has
been used throughout this Guide.

T27 Connect User’s Guide

T27 T27 FEC

Terminal + Connection |—s -
Component Resource

Component Connection Host

The T27 connection resource is designed to make an individual connection to the
host on an as-needed basis. The connection is made just-in-time and discarded as
soon asthe client isdone. It is not reused in any way.

The Logon Connection, on the other hand, is different. It defines a pool of User
IDs and passwords, each of which can make its own connection. The Logon
Connection also serves as an indirection layer to alow clients to connect to the
host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon
Component. (A Logon Connection always uses a L ogon Component to get to the
actual connection.) The architecture is shown in the graphic below.

T27
Component

Logon
Connection

Logon
Component

Connection
Resource

Logon Components, Connections, and Connection Pools 81

A Connection Resourceis awaysrequired in order to get to the host. (Thisistrue
for any Composer servicethat uses T27 components.) For simplicity, thisdiagram
shows the Connection Resource going directly to the host; in the real world, there
may be intervening delegation layers for security purposes.

The Logon Component contains Actions (an action model) designed to find a
particular screen of interest in the host program. This drill-down location is the
effective entry point of the transaction for any upstream process that uses this
Logon Component. You can think of the Logon Component as a go-between
between the physical connection (represented by the Connection Resource) and
the logic layer (represented by the T27 Component itself.

In order for a T27 Component (at the top of the diagram) to use a Logon
Component, it needsto enlist the aid of a Logon Connection resource. The Logon
Connection is the bridge between the T27 Component and the Logon Component.

The kinds and responsihilities of the various objects discussed above are
summarized in the following table.

Object Role

T27 Connection Allows a connection to be established with a
Resource host system.

Logon Component Specialized type of component in which the

action model contains Logon, Keep Alive, and
Logoff action blocks. This component can
maintain a connection at a particular launch
screen in a host program.

Logon Connection Specialized type of Connection Resource that
associates a pool of UserIDs and passwords
with a given Logon Component type. At
runtime, connections are established for client
processes on demand (and reused), with one
Logon Component instance per connection.
Every connection in the pool provides ready
access to a given point (a particular launch
screen) in the host program, thanks to the
associated Logon Component (see above).

T27 Terminal Contains the action model that comprises the
Component business logic for a particular T27 interaction
(or transaction).

82 T27 Connect User’s Guide

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection
resource in that it manages pooling (the sharing of connection instances and
Logon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open)
connections at runtime, it also increases the effective bandwidth of a deployed
service. Consider the simple case where you’ ve designed a T27 component that
uses aregular connection resource. In creating the connection resource, you will
have specified a UserID and password for the resource to use so that at runtime,
the component can log in to the host. When an actual running instance of your
component isusing that connection, no other instance of the component canlogin
to the host using that same set of credentials. The bandwidth of your serviceis
limited to one connected instance at atime.

With a Logon Connection, on the other hand, numerous host connections can be
maintained in a“live’ state so that multiple instances of your component can
access the host (each on its own connection) without waiting. Throughput is
dramatically increased.

The diagram below shows one possible runtime case where three component
instances (two instance of T27 Terminal Component A and one instance of T27
Terminal Component B) are executing on the server. Instance 1 of Component A
isusing UserID ‘E’ to obtain aconnection. This component has its own dedicated
instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and is relinquishing its
connection (established through credentials defined by UID ‘F'). Note that
because connection pooling isin effect, Component B’s downstream resources (its
Logon Component instance, M2, and its Connection instance, S2) are not simply
discarded; they remain live. Asaresult, Terminal Component A2 isableto obtain
(reuse) the M2/S2 resource instances that were previously held by Terminal
Component B.

Logon Components, Connections, and Connection Pools 83

T27 Terminal Logon

Component A, g . Connection D c"“u‘;g_i"z“ 5y
Connection Pool
T27 Terminal
ComponentB (e z s
onnection
UID 5 In=ctive Host £ .

T27 Terminal |Reyze UID H Inactive
Component &; [TIDF *4

Inthisdiagram, Logon Connection D isassociated with four connections based on
four UIDs (user IDs or credentials: A-thru-F). Oneisin use; another (UID ‘F’) is
alive but not being used; and two are inactive but available (i.e., valid UIDs have
been assigned, so these two connections can be made live at any time).

How Many Pools Do | Need?

It's possible for several different T27 components to draw from the same
connection pool. It's also possiblefor different componentsto draw from different
pools. This means different Logon Connections.

Animportant factor in deciding how many Logon Connection resources (in effect,
how many pools) your service needs is the number of different start screens (or
entry point screens) needed by the various componentsin your project. Suppose
Terminal Component A needsto beginitswork at a particular starting screenina
host application, but you’ ve aso designed another component—Terminal
Component B—that needsto start on adifferent screen. Components A and B will
need separate L ogon Connections, and the separate L ogon Connectionswill point
to separate L ogon Components. (In any given connection pool, Composer objects
are shared in such away that every user of the pool must start at the same screen.)

Pieces Required for Pooling

84

The combination of aL ogon Connection, aL ogon Component, and its Connection
Resource form the basis of a connection pool. Starting from the host layer and
working up the chain:

+ The Connection Resource defines the most basic parameters necessary for
establishing a connection with the Unisys host. When connection pooling is
in effect, runtime instances of this object are kept alive and reused.

T27 Connect User’s Guide

+ TheLogon Component defines the set of steps (actions) necessary to get to a
particular entry point in the host program. (At runtime, an instance of this
component will actually carry out those stepsin order to arrive at, and
maintain ready-to-use, a particular screen location in the host program.)
When connection pooling isin effect, instances of this object are kept alive
and reused.

+ TheLogon Connection is a special type of resource that contains all the
information needed to define a connection pool. Thisresourceis designed to
encapsul ate pool-management info and does not establish host connections
directly; instead, it delegates those responsibilities to the Logon Connection
(which delegates them, in turn, to the appropriate Connection Resource).

How Do | Implement Pooling?

To create the various pieces required for pooling, you'll go through the following
basic steps (each of which will be discussed in greater detail in the sectionsto
follow):

1 First, you'll create abasic T27 connection resource, as demonstrated in
Chapter 2 of this Guide.

2 Next, you'll create a Logon Component that uses the connection resource
defined in Step 1. As part of this process, you'll create an action model
designed to navigate to a certain point in the host program.

3 You will create a Logon Connection resource, which is a specialized type of
connection resource that relies on a Logon Component (from Step 2) to
make the basic connection (through the resource defined in Step 1).

4 Findly, you'll create a T27 Terminal Component and associate it with the
Logon Connection resource of Step 3.

These steps are described in detail starting with the discussion in “ Creating a
Connection Pool” further below. Before going to that section, however, you
should become familiar with the design principles behind the Logon Component
(and also the Logon Connection). We'll start with the Logon Component, sinceit’'s
impossible to create a Logon Connection without using a Logon Component.

The T27 Logon Component

The Logon Component isaspecial type of component: It hasan Action Model, yet
can be used as a connection resource aswell. The Action Model of thistype of
component is designed to manage a connection that will be used by multiple T27
Terminal Components. In most respects, the Logon Component isthe same asa
T27 Terminal component. The differences are:

Logon Components, Connections, and Connection Pools 85

1 InaLlogon Component, the Action Model is organized around connection-
management tasks. Those tasks are implemented via special actions: the
Logon Action, KeepAlive Action, and Logoff Action.

2 A Logon Component is not invoked directly by another component or
service. Itsinvocation is under the control of a Logon Connection.

NOTE: A Logon Component must and can only be used in conjunction with
a Logon Connection.

Instead of calling the Logon Component directly, using (for example) a
Component Action, you will associate the Logon Component with a special
connection resource called a Logon Connection. When your T27 Terminal
Component executes, it executes viathe Logon Connection, whichin turn
executes the Logon Component.

Logon, Keep Alive, and Logoff Actions

86

The Logon Component provides several screen-management capabilitiesthat are
important factorsin overall performance. These capabilities are implemented in
terms of Logon, Keep Alive, and Logoff actions:

+ Logon Actions—These actions navigate through the host environment and
park at adesired launch screen in the host system. The connection is
activated using UserlDs from the pool. The T27 Terminal components that
subsequently reuse the connection have the performance benefit of already
being at the launch screen and won't incur the overhead of navigating to the
launch screen as if they had come in under their own new session.

+ Keep Alive Actions—These actions do two important tasks. First, they
prevent the host from dropping a connection if it is not used within a
standard timeout period defined by the host. Second, these actions must
insure that the connection is always positioned at the “launch screen in the
host, even after performing the Keep Alive actions needed to prevent the
connection from dropping (the first important task).

+ Logoff Actions—These actions exit the host environment in a manner you
prescribe for all the connections made by User IDs from the pool, when a
connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For
now, it's enough to know that these three action groupings are created for you
automatically whenyou first create alL ogon Component. Notethe (empty) Logon,
Keep Alive, and Logoff action blocks in the action model shown bel ow:

T27 Connect User’s Guide

SEBEZO I
= T27 Logon Pool Component
& a® LOGON
dj KEEP ALIVE
e Keep Alive Actions
. @s LOGOFF
..Log Off Actions

LOGON Actions

Actions you place in the LOGON group are primarily concerned with signing
into the host security screen and then navigating through the host menu system to
alaunch screen where each T27 component's Action Model will start. It isimpor-
tant that any T27 component using a L. ogon component be able to start execution
at the same common screen. Otherwise, the performance gains of avoiding navi-
gation overhead won't be realized and more importantly, the odd T27 component
won't work.

You can create actions under the L ogon Actions block the same way asyou would
in an ordinary T27 Terminal Component—namely by using the Record feature to
create (in real time) whatever actions are necessary in order to enter sign-on info
such asUser ID and Password (aswell asyour initial menu choicesto arrive at the
launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon
Connection Pool. (See the discussion in “Creating a Logon Connection using a
Pool Connection” below.) To do this, you need to map the two special system
variables called USERID and PASSWORD to the appropriate fields on the screen.
By specifying these two variables, you make it possible for exteNd Composer to
automatically locate and use values from the next active and free Pool slot.

The launch screen is acommon point of execution for all the T27 Terminal
Components that use the User 1D pool provided by aLogon Connection. The
Logon actionsin aLogon Component (which are executed only once when anew
connection is established) let the calling component—your T27 Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and
end with a Check Screen Action as shown in the screen below.

Logon Components, Connections, and Connection Pools 87

SEBERFII
-
By LOGON
|-E:-|....Lug On Actions
@ CHECK SCREEM for Expression: Screen.getText(6,34,8)=="Welcome.”
@ SET SCREEN TEXT AT (10, 44) FROM USERID
@ SET SCREEN TEXT AT (12, 44) FROM PASSWORD
?§ SEMND KEY TRANSMIT
@ CHECK SCREEM for Expression: Screen.getText{1,11 ,4) == "MARC"

Thefinal Check Screen action in the Logon block guarantees that control is not
turned over to the T27 Component before the screen of interest has arrived in the
connection. Without this, the T27 Component could start at an invalid screen,
throw an exception, and possibly corrupt atransaction.

NOTE: You may notice when animating a Logon Component that the ending
Check Screen is skipped. This is normal design-time behavior. In a production
environment , the actions in a Logon Component always execute in an interleaved
manner with a T27 Terminal Component. Animating a Logon Component from start
to finish actually creates an abnormal sequence of events that would result in two
Check Screens being processed in succession, which is not allowed.

The performance benefit comesinto play as aresult not only of connection reuse
but launch-screen reuse. For example, if aUser ID pool of three entriesisfully
used and (ultimately) reused by the execution of a component fifteen times, the
overhead of navigating to amenu item that executes the transaction of interest will
occuro nly three times. Likewise, there will only be three logons to the host
because the Logon actions at the top of aLogon Component are executed only
once—when a new connection is activated (not when it isreused). Thisiskey to
obtaining maximum performance in a high-transaction-volume production
settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors
that may be recoverable. Otherwise, the UserID trying to establish the failed logon
will be discarded from the pool, decreasing the potential pool size. The pool size
will remain smaller until you manually reset the discarded connections using the
exteNd Composer Enterprise Server Console for T27. Refer to “Managing Pools”
in this Chapter for more details.

Keep Alive Actions

88

The KEEP ALIVE block iswhere you will place actions that “ ping the host” in
whatever way necessary to keep the connection alive so that it can be reused.

T27 Connect User’s Guide

Keep Aliveactionsusually involve sending an Attention key, such as <Transmit>,
to the host at some specified interval. However, if after sending the Attention key
the screen changes to some screen that is different than the launch screen, you
must be sure to return the Logon Component to the launch screen in the Keep
Alive section. Failure to do so will leave the next component at an incorrect
screen, causing it to fail.

KEEP ALIVE
5 Keep Alive Actions
@ CHECHK SCREEM for Expression: Screen.getText(2,2 ,7) == "Action:"
. Ty SEND KEY TRANSMIT
@ CHECK SCREEN far Expression: Screen.getText{?,2 , 7y == "Action:"

The Pool Info dialog of the Logon Connection setup dialog (see discussion in
“Creating a Logon Connection using a Pool Connection” below) is where you
control how often the Keep Alive actions will execute. If you specify in your
Logon Connection pool that you would like to keep afree connection active for
three minutes, but the host will normally drop a connection after two minutes of
inactivity, you can specify keyboard actionsto take place at 30-second intervalsto
let the host know the connection is still active.

Pool Info |

Fool size specifies the total number of connections that can be established. Keep
Alive, Inactivity and Entry wait parameters set the timings associated with each
cannection. Selecting "Cwerride UID/PWDE" allows you to specify different logons. The
userid and password from the hase connection will be used if no override is
specified. Specify Reuse Connection to verify that the proper Screen state is present
hefore 3 connection can be reused.

Keep Alive (minutes)

Foo

Keep Alive {minutes) |2

Inactivity Lifetime (minutes) |BD

Entry wait (seconds) IBD

User D Isalesz
Password |“““
Owertide UID/PWD [|
Fool Host Connection IDs [

Use Sequential Connections [

Reuse connection only [
if expression is true

Help Cancel

Logon Components, Connections, and Connection Pools 89

Keep Alive actions will be executed multiple times, at intervals defined by the
Keep Alive parameter defined on the Pool Info dialog of the Logon Connection.

Thelnactivity Lifetime parameter (just below Keep Alive on the Pool Info dialog)
tells Composer how long it should wait, in the event the connection is not actually
used by a T27 Terminal Component, before relinquishing the connection.

NOTE: The execution of the Keep Alive actions of a Logon Component will not
cause the Inactivity Lifetime clock to reset in the Logon Connection. Only a T27
Terminal component’s execution will reset the Inactivity Lifetime. In other words, if
a live connection is never actually used (but is merely kept alive by “Keep Alive”
actions), then it will time out according to the Inactivity Lifetime value in the Pool
Info dialog. But if the connection is used (by a T27 component) before it times out,
the timer is reset at that point.

Thelast action inside a Keep Alive block should be an empty but “enabled”
navigation action. If a user disables thislast action, animation will not work
properly dueto two consecutive empty navigation actionsoccurring. For example,
if an action in Logon and thefirst action in Keep Alive are disabled, an error
occurs.

Maximizing Performance with Keep Alive Actions

90

Check Screen actions must occur at the beginning and end of the Keep Alive
section.

Not only must the Keep Alive section prevent the connection from closing, but it
must make sure that the proper launch screen is present when the execution is
completed. Therefore, the first Check Screen checks to make sure that during the
time the connection was available but not in use, an unexpected screen didn’t
arrive from the host. The ending Check Screen prevents the premature rel ease of
the connection to the next T27 Component. See below for atypical Keep Alive
block.

| KEEP ALIVE

= Keep Alve Actions

..... /7 Incase an unexpected screen arrived during the Keep Alive Sleep time, a Check Screen
..... /{ checks for the Action: field before executing Keep Alive Actions

..... @ CHECK SCREEM for Expression: Screen.getText(2,2 ,7) == "Action:"

...... T SEND KEY TRANSMIT

..... // DoacCheck Screen again to make sure we are still at the right field.
..... ElThis is skipped during runtime to prevent 2 Check Screens in a row
..... [\ CHECK SCREEM for Expression: Screen.getText(2,2 ,7) == "Action:"

T27 Connect User’s Guide

Logoff Actions

Logoff actions essentially navigate the User ID properly out of the host system
after atimeout.

Logoff actions execute once for a given connection, and only when a connection
times out (i.e. the Inactivity Lifetime expires) or the connection is closed viathe
T27 Server console.

Ina“best practices’ sense, it's vitally important to make Logoff Actions
bulletproof. If an exception occurs during execution of the Logoff actions, exteNd
Composer will break its connection with the host, freeing the UserI D in the pool.
But the UserID may still be active on the host. Until the host killsthe UserID (from
inactivity), a subsequent attempt by the pool to log on with that UserID may fail,
unless you' ve coded your logon to handle the situation. Logon failures cause the
UserlD to be discarded from the pool, reducing the potential pool size and
performance overall. Aswith Logon and Keep Alive actions, theway to guarantee
you are on the proper screen at the end of the logoff isto end with a Check Screen.

Logon Component Life Cycle

EachtimeaUser ID isactivated from the Logon Connection Pool, an instance of
the corresponding L ogon Component is created and associated with that User ID.
Then the Logon actions are executed until the desired launch screen isreached. At
this point the T27 Terminal component execution begins. When it isfinished
another T27 Terminal component using the same Logon Connection may begin
executing, starting at the same launch screen.

If no other component requests the connection, then the connection-instance in
guestion enters an active but free state (an “idle state”) defined by the Inactivity
Lifetime and KeepAlive settings on the Pool Info dial og of the L ogon Connection.
If the Keep Alive period (e.g., 2 minutes) is shorter than the I nactivity Lifetime
(e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep Alive
actions will be executed, preventing a host timeout and dropped connection; and
the Keep Alive Period begins anew.

A Logon Component’s execution lifetime is dependent on the activity of the
Logon Connection that usesit. Aslong as one entry in the Logon Connection pool
is active, then one instance of the Logon Component will bein memory in alive
state. A Logon Component instance will go out of scope (cease executing) when
the last remaining pool entry expires due to inactivity. The only other way to stop
execution of aLogon Component is through the T27 Console on the Server.

Logon Components, Connections, and Connection Pools 91

About the T27 Logon Connection

92

The Logon Connection is not atrue connection object like a T27 Connection
Resource, but a pointer to a Logon Component (which in turn connects to a host
either through a conventional Connection Resource or yet more intervening
Logon Connection/Logon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes
User IDs and passwords, plus pool settingsinvolving the time interval between
retries on discarded connections, etc. Another function of the Logon Connection
isthat it ensures the use of different instances of the same Logon Component for
all the User IDs for which connections are made.

Thedialogsyou'll usein setting up apool of User IDsfor alL ogon Connection are
shown in the following set of illustrations. Arrows denote the buttons that lead to
continuation dialogs.

Header Info Cunnetnnn\nm'
1 il
Connection Type |T27 Logon Connection MU 5t Pool Userids and Passwords
Connect¥ia [T27 Lagon MR
User D Fassword
Pool Gonnections & Paol Info... 1 lohn]
Session Comnectons € L Pa [
3 |Gearge prere

Pool size specifies the tatal numbe
Hlive, Inacivity and Enfry wait parar
connection. Selecting "Override Ul
userid and password from the bas
specified. Specify Reuse Connecti
before a connecfion can be reuset

Puiszf Help 0K Cancel

Help Keep Alive {minutes) IZ

Inacthity Lifetime (minutes) lﬁﬂ—
Entry it (seconds) [0
UseriD lsa\esZ—
Password l”””—
Override UDPWD 2 Getuseiids..
Pool Hast Carnecian Ds [~
Use Bequential Connections [

Reuse connection only [
if expression is frue

Help Ok Cancel

T27 Connect User’s Guide

Every Logon Connection is associated with a given Logon Component. In
addition, the Logon Connection provides the following User ID pool
functionality:

1 It alowsthe specification of multiple User IDs in advance ensuring that
clients are able to secure a connection when one is needed

2 ltalowsthereuse of aUser ID/connection onceit is established to €liminate
repeated user authentications and disconnects

3 Italowsasingle User ID to use multiple connections if thisis supported by
the host system

4 It keeps a connection active to prevent host timeouts during inactive periods
5 It letsyou specify when to remove a connection from the active pool

6 Itsetsatimeout period to use for afully active pool to provide afree
connection

7 Itletsyou specify error handling dependent on the state of the Logon
Component used by the Logon Connection

Many-to-One Mapping of Components to Logons

In order for multiple instances of a T27 Terminal component or different T27
Terminal components to use a the same Logon Connection, the following
conditions must be met:

1 AlltheT27 Termina components must use the same Connection Resource
(thereby sharing the Unisys Host, Port and data encoding parameters)

2 All the T27 Terminal components must have acommon launch screen in the
host system from which they can begin execution (see “Creating a Logon
Component” below for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multiple logins from asingle user ID, you
may have circumstances where you wish to pool the single User ID. This can be
accomplished by performing the following steps:

+ Specify aUser ID/Password in the Connection Resource used by the Logon
Component.

+ Onthe Pool Info dialog of the Logon Connection, specify aPool Size greater
than 1.

+ Do NOT check the Override the UID/PWD setting in the Pool Info dialog
of the logon Connection.

Logon Components, Connections, and Connection Pools 93

These steps will cause each pool slot to use the User ID and Password contained
in the Connection object and not use the user 1Ds from the pooal.

Creating a Connection Pool

Overview

When creating a T27 Terminal component, you normally first create the
Connection object it needsfirst. Similarly, when creating the objects comprising a
Connection Pool, you must create certain objects first, starting (in essence) at the
host and working your way backwards to the T27 Terminal Component that will
access the host.

A typical sequence of steps for creating a Connection Pool is:

Step One:
Create a basic host
Connection Resource

Step Two:
Create Logon Component
that uses basic Connection

Step Three:
Create Logon Connection
that uses Logon Component

Step Four:
Create standard Components
using Logon Connection

Creating a Basic T27 Connection

Thisstepissimple. Create anew Connection Resource as described in “To create
aT27 Connection Resource:” on page -20. Even though you will be using User
IDs and Passwords defined in the Logon Connection later, you should still define
one in the Connection as well. Thiswill be needed when you define the Logon
Component in the next step. Alternatively, you can simply use an existing
Connection Resource.

94 T27 Connect User’s Guide

Creating a Logon Component

> To create a T27 Logon Component:

1

From the Composer File menu, select New>xObject, then open the
Component tab and select T27 L ogon.

The Header Info panel of the New xObject Wizard appears.

Create a New T27 Logon Component []

AT2Y Logon Camponent connects to a host via the T27 protocol, processes data using elements fram a
DOM, and maps the results to an output DOM. Use this wizard to create a T27 Component. Enter a Name
and Description for this T27 component The name will appear in the Composer window and in choice lists
when you are prompted for objects ofthis type as you wark in Composer. The MName is required and may not
contain the characters: L f: 7 " = = . | Mames are case insensitive.

Mame:

T27Logon

Description:

Furpose:
Input:
Cutput:
Remarks:

Help Next Cancel

Type a Name for the connection object.
Optionally, type Description text.
Click Next and the Connection Info panel appears.

Create a Mew T27 Logon Component [x}

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource object ar create a new Connection
Resource ofthe same type with different parameters.

Connection QS
Multibridge Host or IP Address Iw\MnN.ctc-core.com
Multibridge Port [23

Test |

|»

Multibridge Config Mame |Defau|t
Multinridge Station Mame |DEFAULT

T27 Multibridge Config Name

Screen wait (seconds) IED

Screen Rows |24

Screen Columns IBD

User|D |SaI952

Help Back Finish Cancel

Logon Components, Connections, and Connection Pools

95

96

5 Select aConnection from the drop down list (thiswill be the standard

connection, not the logon connection at this point).

6 Click Finish and the Logon Component Editor appears.

File Edit View Component Action Animate Tools Wi Help [moO - & x
ODEEEx0AXsL0B% RG Novell
@ PROJECT Data

=< > USERCONFIG
<> PROJECT_CONFIG

T27 Terminal

JERF2 I

= T27 Logon Pool Component
@D LOGON
=) KEEF ALIVE
.. Keep Alive Actions
& @ LOGOFF
i Log Off Actions

NOTE: Recording actions follows a series of steps. The cursor must be
positioned over LOGON; turn Record on, and when you are done, turn
Record off. Position the cursor to Keep Alive, turn Record on, and when you
are done, turn Record off. Position the cursor to Logoff, turn Record on, then
when you are done, turn Record off.

Record Logon Actions for logging into the host and navigating to the launch
screen using the same Recording techniques described in Chapter 5 of this
Guide.

Edit the Logon Map actions that enter aUser ID and Password to instead use
the special USERID and PASSWORD variables described in the section
titled "T27 Specific Expression Builder Extensions” in Chapter 4 of this
Guide.

T27 Connect User’s Guide

9 Create the needed Check Screen and Send Key actionsin the KEEPALIVE
section of the Action Model (a quick way to do thisisto copy an existing
action, highlight the appropriate action, paste, and then modify if
necessary).

& [E8) KEEP ALIVE

. Keep Alive Actions
@ CHECK SCREEM for Expression: Screen.getText(2,2 ,7) == "Action:"
Ty SEND KEY TRANSMIT
@ THECK SCREEM for Expression: Screen.getText(2,2 ,7) == "Action:"

10 Record LOGOFF actions for properly exiting the host
11 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection

> To create a T27 Logon Connection:

1 From the Composer File menu, select New>xObject, then open the
Resour ce tab and select Connection, or you can click on theicon. The
Header Info panel of the New xObject Wizard appears.

Create a New Connection Resource il

A Connection resource is used ta establish communications with an Connectar data source orwith a server
using HTTP authentication. You need ta create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer,
The name may not contain the characters:1f: 7" == | Mames are case insensitive.

MName:

ITQ? Connection

Description:

Furpose
Input:
Cutput
Remarks:

Help Next Cancel

2 TypeaName for the connection object.
3 Optionaly, type Description text.
4 Click Next and the Connection I nfo panel appears.

Logon Components, Connections, and Connection Pools 97

98

Create a New Conneclion Resource [X]

Selecta T27 Logon Companent far each poal entry's connection. Each T27 Component using this Logan
Caonnection will use a previously established connection or create a new connection hased on pool
information specified in Pool Info dialog. Checking 'Default' makes this Connection the initial selection when
requesting a T27 Logon Component.

Test

Connect¥ia [T27 Logon LI [Default

Cannection Type

Poal Connections Pool Infa...

Session Connections ©

Help Back Finish Cancel

5 For the Connection Type select "T27 Logon Connection” from the drop
down list.

6 IntheLogon Via control, select the Logon Component you just created.
7 Click on the Pool Info button and the Pool Info dialog appears.

. . X
Fool size specifies the total number of connections that can be established. Keep
Alive, Inactivity and Entry wait parameters set the timings associated with each
connection. Selecting "Override UIDIPYWD" allows you to specify diferent logons. The
usetid and password fram the hase connection will be used if no override is
specified. Specify Reuse Connection to verify that the proper Screen state is present
hefore a connection can he reused.

Pool size |2

Keep Alive {minutes) |2

Inactivity Lifetime {minutes) |60

Entry wait (seconds) |60
User|D |Sa|e:32

Password |*‘“***

Override UIDIPWD [|

Pool Host Connection IDs [|

Use Seguential Connections [
Reuse connection only [
if on is true
RS |Screen.getText(2,2 7y =="Action" 174

Help oK Cancel

T27 Connect User’s Guide

8

10

11

12

Enter a Pool Size number. This represents the total number of connections
you wish to make available in this pool. For each connection, you will be
expected to supply a UserlD/Password combination later.

Enter a K eepAlive time period. This number represents (in minutes) how
often you wish to execute the Keep Alive actions in the associated L ogon
Component whenever the connection is active but free (i.e. not being used
by a T27 component). The number you enter here should be less than the
Screen Wait Timeout period defined on the host for an inactive connection.

Enter an I nactivity Lifetime. This number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to itsinactive statein the
pool, it will incur the overhead of logging in and navigating host screens
when it isre-activated.

Enter an Entry Wait timein seconds. This time represents how long a T27
component will wait for afree connection when al the pool entries are
active and in use. If thistime period is reached, an Exception will be thrown
to the Application Server.

Checking Override UID/PWD means you wish to specify User

I D/Password combinations for use in the connection pool. When checked,
this activates the Set Userids button. Click on the button to display the Set
USERIDs and PASSWORDS dialog.

Set Pool Userids and Passwords B
Add =
P Gp == i
/ User D Password
1 JM FEEEEEEEE
Delete 2 Faul FrnnE
Geaorge TEEEE
4 Ringo frasxssn
Paste
Help oK Cancel

OntheToolbar there are threeicons: Add which adds an empty row, Delete, which
deletes a highlighted row and Paste which allows you to copy/paste information
from a spreadsheet into the table. For more on this, see the following Note.

Logon Components, Connections, and Connection Pools 99

100

NOTE: Alternate and faster ways to enter data are to copy data from a spread
sheet and paste it into the table. Make sure your selection contains two columns.
The first column must contain UserID; the second Password. Open the
spreadsheet, copy the two columns and as many rows as needed. Open the table
and immediately press the Paste icon located on the toolbar. You can also copy
data from tables in a Microsoft Word® document using the same technique.

13 Enter as many USERID/PASSWORD combinations until you reach the size
of the pool you specified and click OK. Pool size will be adjusted depending
upon how many rows you entered.

14 Click OK to dismissthe“Set User IDs and Passwords’ dialog and return to
the Pool Info dialog.

15 Optionally click the Pool Host Connection | Ds checkbox in the Pool Info
diaog if you intend to manage terminals by identifier strings. When
checked, this activates the Set Host Connection |Ds button. Click on the

button to display the dialog.
|
qp o= 0
Host Connection 1D
1
2
Help Cancel

On the Toolbar there are three icons: Add which adds an empty row, Delete,
which deletes a highlighted row and Paste which allows you to copy/paste
information from a spreadsheet into the table.

16 Enter asmany Terminal 1Ds as needed in the dialog and click OK when
complete.

17 Optionally click the Use Sequential Connections checkbox if you want
Composer to establish connections in the same order that User |Ds were
listed in the “ Set User IDs and Passwords’ dialog. Connectionswill be made
in numerical sequence.

T27 Connect User’s Guide

18 Optionally check the Reuse connection only if expression istrue control.
Thiscontrol allows you to enter an ECM A Script expression that evaluatesto
true or false based on some test of the launch screen. The purpose of the
expression isto check to make sure the launch screen is the proper one each
time anew T27 Component is about to reuse an active free connection.
Under circumstances unrelated to your Composer service, it's possible that
the launch screen will be replaced by the host with a different screen. For
instance, if there is a system ABEND on the host, the launch screen in the
Logon Component may be replaced by a System Message screen.

NOTE: For instructions on how to create this expression, see the discussion on
“Handling Errors and Messages” in Chapter 5 of this Guide. Also refer to
“Maximizing Performance of T27 Logon Connection” below.

Thefollowing ais a sample Custom Script used to seeif aparticular screenis
present. If itisnot, the script writes amessage to the consol e stating that the screen
isbad and the logon connection isbeing released. Thisfunctioniscalled fromthe
“Reuse connect only if expressionistrue’ control on the Pool Info dialog.

function checkValidLaunchScreen(ScreenDoc)
{
var screenText = ScreenDoc. XPath("SCREEN").item(0).text
if((screenText.indexOf("MENU") I= -1 || screenText.indexOf("APLS") I=-1) &&
(screenText.indexOf("COMMAND UNRECOGNIZED") ==-1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") = -1))
{

return true;

}

else

{
java.lang.System.out.printin("Warning - Releasing logon connection at bad screen”);

java.lang.System.err.printin("Warning - Releasing logon connection at bad screen");
return false;

}

19 Click OK to return to the Connection Info panel.
20 Click on Finish and the Logon Connection is saved.

Logon Components, Connections, and Connection Pools 101

Maximizing Performance of T27 Logon Connection

To prevent T27 Components from beginning execution on a connection that may
have been left on aninvalid screen by a previous T27 component, the Logon
Connection Resource alowsthe connection itself to check for the presence of the
launch screen. Thisis accomplished by using the option titled “ Reuse connection
only if expressionistrue’ on the Pool Info dialog of the Logon Connection. The
screen test you specify hereis executed each time a T27 Component completes
execution. If the test fails, exteNd Composer will immediately disconnect from
the host, possibly leaving adangling Userl D on the host. As noted before, the host
will eventually kill the user, but the UserlD may be discarded from the pool if itis
accessed again before being killed, thereby reducing the pool size and
consequently overall performance.

Another reason to use the “ Reuse connection only if true” option isthat you can
perform very detail ed tests against the screen to make sureit isyour launch screen.
While Map Screen actions do perform a screen check, they only look at the
number of fieldsin the terminal data stream. In most cases, thisis sufficient.
However, it is possible two different screens can have the same number of fields
inwhich casethe expression based test that examinesthe content of the screen will
produce more rigorous results. A best practices approach mandates that you use
thisfeature all the time.

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have aneed to place various control,
auditing, and/or meta-datain an XML document. This document may or may not
bein addition to the actual elements/documentsbeing processed (i.e. created from
an information source). If this document structure and datais dynamically created
by multiple Map actions (i.e. over 100) performance of the component and
therefore the entire service may suffer. To boost performance, create the portion of
the document structure without the dynamic content ahead of time, then load it
into the Service at runtime viaan XML Interchange action and retain the Map
actionsfor dynamic content. This can boost performance as much as 30% in some
Cases.

Creating a Logon Connection using a Session
Connection

Sometimes, you may want the extralevel of control over session parameters that
a L ogon Connection affords, without necessarily wanting to use pooling. In this
case, you can follow the procedure outlined below.

102 T27 Connect User’s Guide

» To create a T27 Logon Connection:

1 From the Composer File menu, select New>xObject, then open the
Resour ce tab and select Connection, or you can click on theicon. The
Header Info panel of the New xObject Wizard appears.

Create a New Connection Resource ﬂ

A Connection resource is used to establish communications with an Connector data source or with a semer
using HTTF authentication. You need to create connections for each type of data source or each HTTF server
wau wish to communicate with. Enter a name and, aptionally, a description far this Connection. The name
will appear in the Compaser Detail Pane and in choice lists when you are prompted for objects in Compaoser.
The name may not contain the characters:\/ . ?" == | Names are case insensitive.

MName:

ITE? Connection

Description:

Furpoze:
Input:
Qutput:
Remarks:

Help Next Cancel

2 TypeaName for the connection object.
3 Optionaly, type Description text.

4 Click Next and the Connection I nfo panel appears.

Create a Mew Connection Resource BH

Select a T27 Logon Component for each pool entry's connection. Each T27 Component using this Logan
Cannection will use a previously established connection or create a new connection based on pool
information specified in Poal Info dialog. Checking 'Default' makes this Connection the initial selection when
requesting a T27¥ Logon Component.

Connection Type |T2? Logon Connection j Test

CaonnectVia |T2? Logan [Default

Foal Connections ©

Session Connections

Help Back Finish Cancel

Logon Components, Connections, and Connection Pools 103

5 For the Connection Type select “ T27 Logon Connection” from the drop
down ligt.

6 Inthe Connect Via control, select the Logon Component you just created.
7 Click the Session Connectionsradio button and then on Session Info button.

Session Info B

Keep Alive sets the interval after which Keep Alive action will be executed on
connection, while it's sitting idle. Inactivity lifetime sets the tirme limit for connection to
he idle. Specify Reuse Connection to verify that the proper ScreenDoc state is
present befare a connection can he reused.

Keep Alive {minutes) |2

Inactivity Lifetime {minutes) IBD
Reuse connection anly [
if expression is true
! |Screen.getText(2,2,?) =="Action" @’

Help [+] 4 Cancel

8 TheKeep Alive (minutes) number represents (in minutes) how often you
wish to execute the Keep Alive actions in the associated L ogon Component
whenever the connection is active but free (i.e. not being used by a T27
Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

9 Thelnactivity Lifetime (minutes) number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to itsinactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it isre-activated.

10 Click in the checkmark box if you want to Reuse connection only if
expression istrue. If you choose to do so, the expression field automatically
displays and you can click on the expression icon to display theif the
expression istrue dialog.

Creating a T27 Component That Uses Pooled
Connections

At this point, you are ready to create a T27 Component that can use the Connec-
tion Pool. For the most part, you will build the component as you would a hormal
T27 component, the only difference being the Connection you specify on the

104 T27 Connect User’s Guide

connection panel of the New Component Wizard. (You' Il specify aLogon Con-
nection instead of aregular T27 Connection.)

» To create a T27 Component:

1 From the Composer File menu, select New>xObject, then open the
Component tab and select T27. The Header Info panel of the New xObject
Wizard appears.

Create a New T27 Terminal Component 5'

AT2Y Terminal Component connects to a hostvia the T27 protocol, processes data using elements from a
DM, and maps the results to an output DOM. Use this wizard to create a T27 Compaonent. Enter a Mame
and Description for this T27 component. The name will appear inthe Composer window and in choice lists
when you are prompted for objects ofthis type as you work in Composer. The Mame is required and may not
contain the characters:\ /.7 "= = . | Mames are case insensitive.

Mame:

|T2?Samp|e

Description:

Furpose:
Input:
Cutput
Remarks:

) et) caneet

Type a Name for the component.

Optionally, type Description text.

Click Next and the XML Property Info panel appears.

Select the necessary I nput and Output Templates for your component.
Click Next and the Connection Info panel appears.

Select the Logon Connection you created and click on Next. The Component
editor appears.

8 Build the component as described in “To create anew T27 Component:” on
page -25.

N o o b~ WN

Logon Components, Connections, and Connection Pools 105

Maximizing Performance of T27 Terminal Components

Once the launch screen is obtained by the logon Component’slogon actions, it is
handed to the T27 Terminal Component that uses the connection. Then the T27
Terminal component (when finished executing) leaves the screen handler back at
the launch screen. If the T27 Component finishes without being on the launch
screen,(i.€. it releases the connection back to the pool with aninvalid screen) then
it ispossible that al subsequent T27 Components that use the connection may
throw exceptions rendering the connection useless. It also will degrade overall
performance and possibly cause data integrity problems within the component
processing.

Once again, to ensure that the launch screen is present, the last action to execute
ina T27 Component must be a Check Screen that checks for the launch screen.
This can betricky if your component has many decision paths that may
independently end component execution. You must be sure that each path ends
with a Check Screen action.

Managing Pools

Using the exteNd Composer Console

106

T27 Connection Pools can by managed through the T27 Console Screen.

> How to Access the Console

1 Ifyouareusing the Novell exteNd Application Server, log on to your Server
viayour web browser using http://localhost/Silver M aster 50 (or whatever
is appropriate for the version in use). In this example, Novell exteNd App
Server 5.0 is used.

T27 Connect User’s Guide

SilverMaster4(

exteldComposer
filerename

helloworld
robots. Lyt
Silverlasterdd
S3ilveritream
XCTutorial

NOTE: If you are not using the exteNd app server, enter a URL of this form:
http://<hostname>:<port>/exteNdComposer/Console
2 Click on the exteNd Composer link. You should see the main console page:

Logon Components, Connections, and Connection Pools 107

steMd Composer Server Console - Microsolt Internet Explorer [_ O] %]
Edit Wiew Favortes Tool: Help
S Q@ i <3 - £ .
Back Formard Stop Refresh Home Search Favortes Histam Mail Print Edit
Address I@ hitp: #/lacalhost fextel dComposer/Console j @Eu | Links **
exteNd Composer =
[=] [l = Novell
About Products: Il General Properties and Settings
3270 Wi Free Memary: 10 Mb
Ront Log Level: 5
Apply Log Level
CICSRPC
DG Cache Status
e Expressions Cached: 32
- »Path Modes Cached: 14
Furctions/Code Tables Cached: 0
500 Component Types Cached: 1
HTML Total Components Cached: 2
Clear Cache
JDBC
JMS Cache Tuning
PROCESS Expression / xPath Caching: & 0n O 0ff
Component Cache Expiny: 720
SAP
Total Component Cache Size: 250
ez Apply Cache Tuning
{#flogon @19%-2002 Serstrean Software LLC 2003/04/20 120839
TELNET
Tandem
El
|&] Done [| [E&Localimanet 7

3 Click onthe T27 link in the left (nav) frame and the T27 Console General
Properties Screen will come into view.

108 T27 Connect User’s Guide

exteNd Composer Server Console - Microsoft Internet Explorer M=l E3

File Edit W“iew Favoites Took Help ‘
8 = »
. s O N A 4 4o o
Back e Stop Refresh Home Seaich Favoites History tdail Frint
Address I@ http AAncalhost /exteN dComposer/ Console j @ Go | Links *
exteNd Composer
=]
= B T
General Properties Novell exteNd Composer _
L
| Yersion 4
About Products:
S Hovell® exteNd™ Composer
5250 Enterprse Server
CICSRPC T27 Connect
DG Wersion 4.2 (1)
EDI @ 199-2003 SilverStream Software LLC
HP3000 License key: EAE9F61C3500000001
-
JDBC
JmS

4 Click the Console button. A browser popup window (the T27 Connection

Pool Management Screen) should appear.

exteNd Composer

@ Novell.

T27 Console - Miciozoft Internet Explorer [_ (O] %]

T27 Connection Pool Manager

Pool Description Max In Avail Discarded Pool Actions
Name Use

=27 T27 Logon Reset Discarded| Reset
pooled Connection & ! ! @ bl E=El) [REnE
Refresh Console

Pool Initialization

To initialize & Logon Connection Pool, enter its deployment context, "connection”,
and connection name in the field below,
<deployment context>/connection/<connection name:s

|e.g. comftestconnection/mylogonlnicxrml

Initialize Pool

Logon Components, Connections, and Connection Pools

109

5 Toinitialize aLogon Connection Pool, enter its deployment context, the
word "connection”, and the actual connection namein the text field near the
bottom of the screen. (Seeillustration above.) Then click the Initialize Pool
button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more
information.

6 Optionaly click the Refresh Console button to update the view.

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the
connection(s) with the T27 Connect. The screen contains atable listing the Pool
Name, Description of the connection, the maximum number of connectionsin the
pool, the number of connectionsin use, the number of connections available, the
number of connections discarded. It also contains several buttons allowing you to
perform various actions related to connection pooling, which are outlined in the
table below.

Table 1-2:

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

Refill (Pool) Refills the pool with the maximum number of
connections

Additional Buttons on T27 Connection Pool Manager Console

Refresh Shows the current status of the connection pool
Console
Initialize Pool Initializes a Logon Connection Pool by entering a

relative path to the deployed lib directory. Thiswill
not work unless the deployed jar is extracted. Click
on the SUBMIT button when finished.

110 T27 Connect User’s Guide

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more
than one user to access aresource, or set of resources, at once. The way a
connection is established begins with the logon component picking the User ID
and Password from the table. If the connection fails, then it is discarded for this
User ID and Password and tries another until a connection is established. The
failure of oneconnection doesn't necessarily prevent asuccessful connection from
being established.

The Connect for T27 addresses the “ one bad apple” problem by discarding any
connection that can’t be established (for whatever reason: bad user 1D, timed-out
password, etc.) and reusing the others. When a connection is determined to be
unusable, the Connect for T27 will write a message to the system log that says:
“Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

Screen synchronization has special ramifications for users of pools. If asituation
arisesin which a user |eaves a connection without the screen returning to its
original state, the next user will begin a session with the screen in an unexpected
stateand an error will occur. To prevent this, thereisascreen expression which the
user can specify inthe connection pool. It isimportant that the last actioninaT27
Component be a Send Key action that will result in the session ending with the
correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the T27
Terminal component waits until the launch screen arrives before giving up the
connection. (This should happen automatically, when you create the Send Key
action, but nevertheless, the last action should be the Check Screen.)

If you want to check, at runtime, for the presence of abad screen at the end of a
user session, include a Function Action at the end of your component’s action
model that executes afunction similar to the one shown below:

i f((Screen.getText(1,11,4)=="MARC' ||
Screen. get Text(2,2,7) == "Action:") &&
(Screen. get Text FronmRect angl e(1, 1, 24, 80) . i ndexCf (" COMVAND
UNRECOGNI ZED') == -1 ||
Scr een. get Text FronRect angl e(1, 1, 24, 80) . i ndexOf (" UNSUPPOR
TED FUNCTION') == -1))

{

java.lang. Systemout.println("OK to
exit");

Logon Components, Connections, and Connection Pools 111

112

// OQtherwise, wite error nessages to Sys.out
el se

{
java.l ang. System out. println("Warni ng -
Rel easi ng | ogon connection at bad screen");

}

In this particular example, this function checks the screen text for either the
MARC header or the Action: field and also makes sure it doesn’t see the words
“COMMAND UNRECOGNIZED” or “UNSUPPORTED FUNCTION.” If thisis
the case, it will write an error to the log.

T27 Connect User’s Guide

Glossary

ANSI

American National Standards Institute.

Check Screen

An action that action signals the component that execution must not proceed until the screenisina
particular state, subject to a user-specified timeout value.

Connection Pooling

An arrangement whereby an intermediary process (whether the app server itself, or some memory-
resident background process not associated with the server) maintains aset number of preestablished,
pre-authenti cated connections, and overseesthe “ sharing out” of these connectionsamong client apps
or end users.

Dumb Terminal

A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum
necessary to communicate with amore powerful host machine.

ECMAScript

Any JavaScript-like language that conforms to European Computer Manufacturers Association
standard No. 262.

Native Environment Pane

A paneinthe T27 Component Editor that provides an emulation of an actual T27 terminal session.

Screen Object

Represents the current T27 screen display

Send Key

An action that represents pressing a T27-specific attention or function key.

Glossary 113

114

Set Screen Text

An action that appearsin the Action Model whenever thereis map to the screen or keys entered on the
screen.

T27

A terminal originally developed by the Burroughs Corporation, later purchased by Unisys. Used to
interact with mainframe computersincluding the A Series, V Series and ClearPath™ NX.

Terminal Emulation

A program that allows a personal computer to act like a (particular brand of) terminal, e.g.
aT27. The computer thus appears as a terminal to the mainframe (host) computer and
accepts the same escape sequences and other attention keys for functions such as cursor
positioning and clearing the screen.

Unisys

Designers, manufacturers and marketers of computer-based information systems and
related products and services. The T27 mainframe terminal was originally developed by
Burroughs Corporation, which became part of Unisysin 1986. Mainframe computer
models, including the A Series, V Series, and ClearPath™ NX run T27 terminal emulation

T27 Connect User’s Guide

T27 Display Attributes

TheScreen. get Attri but e() method will return one of the values shown

bel ow, representing the current attribute state of the onscreen character at the
given location. The attributes listed below are just the most common and any
combination of what is stated bel ow could, theoretically occur. Basically,

underlined, bold, blinking and reverse charactersreturn astandard integer. Thisis

then added to the hexadecimal number indicating whether the field is secure,

protected, selected and/or vertical.

Number Attribute

0 standard (can type into - e.g., entry field)
16 (0X10) secure (can type into - e.g., passwords)
32 (0X20) protected (cannot type into)

33 (0X20)+1

protected and underlined

34 (0X20)+2

protected and bold

36 (0X20)+4

protected and blinking

40 (0X20)+8

protected and reverse

48 (0X10)+(0X20)

secure and protected

64 (0X40)

selected

80 (0X40) + (0X10)

selected and secure

96 (0X20)+(0X40)

selected and protected

98 (0X20)+(0X40)+2

selected, protected and bold

0X100

vertical

T27 Display Attributes

115

Viewing All Character Attributes at Once

Usingthe Scr een. get At t ri but e() method, you can easily write afunction
that captures all attributes (at all screen locations) at once. The following

ECMA Script function, for example, can be used at design time to display screen
attributesin an alert dialog.

function showAttributes(nyScreen)

{
var attribs = new String(); // create enpty string
/1 lterate over all rows and col umms:
for (var i =1; i <= nyScreen.getRows(); i++, attribs += "\n")
for (var k = 1; k <= nyScreen. getCol s(); k++)
attribs += " " + myScreen.getAttribute(i,k);
}

/1 display the results:
al ert(showAttributes(Screen));

Thefollowing illustration shows a T27 screen:

LOGOW - Merm-Zsrirted Besource Control

lelcome.

Pleare enter your usercode

...and your password I I

Theillustration below shows the result of applying the showAt t ri but es()
function to the screen (the illustration had to be cropped as the right/left margin
would have gone outside the boundaries of the page):

116 T27 Connect User’s Guide

34 34
3232323232 32
33
3232323232 323232323232 323232323232 32323232 3232323232323232
323232323232 32 323232323332 3232323232 323232323232 3232323232
3232323232 32
3232323232 32323232323232323232 323232323232 3232323232323232
3232323232 323232323232 323232323232 32323232 3232323232323232
3232323232 32323232323232323232323232 323232 3232323232323232
3232343232323232320000000000000000000323232343232323232
3232323232 32323232323232323232 323232323232 3232323232323232
3232323232323248 48161616 1616161616161616161616 161616 16 16 48
3232323232 32323232323232323232323232 323232 3232323232323232
3233232323232 3232323232 323232323232 3232323232323232323232
3232323232 32323232323232323232 323232323232 3232323232323232
3232323232 323232323232 323232 32323232 323232323232 3232323232
3232323232 32323232323232323232323232 323232 3232323232323232
3233232323232 3232323232 323232323232 3232323232323232323232
3232323232 32323232323232323232 323232323232 3232323232323232
3232323232 323232323232 323232 32323232 323232323232 3232323232
3232323232 32323232323232323232323232 323232 3232323232323232
33
3232323232 32323232323232323232 323232323232 3232323232323232
3232323232 32323232323232323232 323232323232 3232323232323232

T27 Display Attributes

117

118 T27 Connect User’s Guide

Reserved Words

Thefollowing termsarereserved wordsin exteNd Composer for T27 Connect and
should not be used as labels for any user-created variables, methods, or objects.

-USERID
+PASSWORD
PROJECT

«Screen

«getAttribute

-getCols

«getCursorCaol
-getCursorRow
-getNextM essage
«getPrompt

-getRows
«getStatusLine

«getText
-getTextFromRectangle
-hasMoreM essages
-putString
-putStringinField

+setM essageCaptureOff
+setM essageCaptureOn
«typeKeys

Reserved Words

119

120 T27 Connect User’s Guide

Index

A

Action

Check Screen 36
Action Model

example 72

examples 59, 60

looping and repeating 60

testing 65, 68
Action pane context menu 36
Actions

Check Screen 56

deleting 64

SendKey 33

Set Screen Text 33, 36, 55
Animation

starting 68

stepinto 68

toggle breakpoint 61
Animation Tools 68
applications 18
Architecture 15

connection pool 80

C
case-sengitivity 57
Check Screen Action 35, 56
errorsrelatedto 75
performance 106
tips 74
Check Screen Actions 36
Component Editor Window 28
Components
executing 66
selecting a Connection 28
stepsincreating 19, 25
testing 65
tipsfor building 74
Connecting 33
and disconnecting 34
Connection Button 33
Connection Discard Behavior 111

Connection Pool

stepsfor creating 94
Connection Pool Architecture 80
Connection Pool Console, refreshing 110
Connection Pools

implementing 85

stepsincreating 94
ConnectionPools

status 110
Connection Resource 80, 94

creating 20

stepsincreating 20
Connections

logon 92

maximum 110

resetting discarded 110
constant-based parameters 22
context menuitems 34
Control key down, dragging with 52
Create Check Screen Button 34
Creating a Connection Pool 94
Creating aLogon Connection 97
Creating a Logon Connection using a Pool

Connection 97
Creating a Logon Connection using a Session
Connection 102

D

deleting an action 64
Dragging and dropping to DOMs 55

E

ECMAScript 22, 77
Entry Wait, pools 99
erors 74
connection 110
Executing acomponent 66
expression-based parameters 22

F
Floating Keypad 30

121

G M

getTextFromRectangle() 52 Managing Pools 106
Maximizing Performance with KEEP ALIVE
Actions 90
H Maximizing Performance with the Logon
) Component 87
Host Connection ID 22, 100 MultiBridge Connection 20
Lo N
Inactivity Lifetime Native Environment Pane 28
pools 99

A . newlines, in rectangular screen selections 52
session connection 104

Initialize Pool 110

O
K Overridethe UID/PWD 93
KEEPALIVE 88
Keep Alive 104
session connection 104 P
KeepAlive parameters, constant vs expression-based 22
pools 99 Password 22
KEEPALIVE Actions Set Screen Text automatically 35
recording 96 Performance 76, 79, 106
KeepAlive Actions 86 logon connection and pools 102
Keyboard 30 Pool Infodialog 98
keypad 30 pools 98
checking status 110
implementing 85
L initializing 110

managing 106

launch screen 86 maximum connections 110

Logoff action 86 refilling 110
LOGOFF Actions resetting 110
recording 96 Pool Size 99
Logon action 86
LOGON Actions
recording 96
Logon Actions 87 R
Logon Component readiness criteria and the Check Screen Action 58
definition 85 Record Button 32
Logon Components Recording 32,53
creating 95 adding to apreviousrecording 60
Logon Connections 20, 80 and animating 68
session connections 102 editing after recording 60
Loopinginan Action Model 60 start/stop 34

122

turning off 59 record 32

rectangular onscreen selections 52 Send Key button 33
Redundant Data, dealing with 70 Set Screen Text 33
Refill Pool 110 toolbar buttons 32

Refresh Consolel 110
Reset Discarded 110
Reset Pool 110 U

row/column placement 56])
Unisys mainframes 17

Userid
Set Screen Text automatically 35
S USERID/PASSWORD 99
screen, T27 terminal 31 Userids 22
Screen Object, definitionof 31
Screen Synchronization 111
Screen Wait time 22, 57, 74 \V/
Send Key Action . .
tips 74 variables, Userid and Password 22

Send Key Button 33
Session Connections 102
Set Screen Text 35
Set Screen Text Action 35, 36, 55
errorsrelatedto 75
tips 74
Set Screen Text Button 33
shift-drag selection technique 52
Single Sign-On and connection pools 93
Start Animation 68
Static versus Dynamically Created
Documents/Elements 102
statusline, in Native Environment Pane 48
status line, marking row/column placement 56
Step Into 68

T

T27, definitionof 17
T27 Connectiontypes 80
T27 terminal screen 31
Temp XML Document 27
Terminal Keypad 30
Toggle Breakpoint 61
toolbar

connection 33

Create Check Screen Button

Actions
Create Check Screen 34

123

124

	Contents
	1 Welcome to exteNd Composer and T27 Connect 15
	2 Getting Started with the T27 Component Editor 19
	3 Creating a T27 Component 25
	4 Performing Basic T27 Actions 37
	5 T27 Components in Action 53
	6 Logon Components, Connections, and Connection Pools 79
	A Glossary 113
	B T27 Display Attributes 115
	C Reserved Words 119

	Welcome to exteNd Composer and T27 Connect
	Before You Begin
	About exteNd Composer Connects
	What is the T27 Connect?
	About exteNd Composer's T27 Component
	What Applications Can You Build Using the T27 Connect?

	Getting Started with the T27 Component Editor
	Steps Commonly Used to Create a T27 Component
	Creating XML Templates for Your Component
	Creating a T27 Connection Resource
	Connection Resources
	Constant and Expression Driven Connections

	Creating a T27 Component
	Creating a T27 Component
	About the T27 Component Editor Window
	About the T27 Native Environment Pane
	T27 Keyboard Support
	About the Screen Object
	What it is
	How it works

	T27-Specific Toolbar Buttons
	Record Button
	Connection Button
	Set Screen Text Button
	Send Key Button
	Create Check Screen Button

	T27-Specific Menu Bar Items
	T27-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	Performing Basic T27 Actions
	About Actions
	About T27-Specific Actions
	The Set Screen Text Action
	The Send Key Action
	The Check Screen Action
	Understanding the Check Screen Action

	Using Actions in Record Mode

	T27-Specific Expression Builder Extensions
	Login
	Screen Methods

	Multi-row Screen Selections in the T27 Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	T27 Components in Action
	The Sample Transaction
	Recording a T27 Session
	Editing a Previously Recorded Action Model
	Editing or Adding to an Existing Action
	Deleting an Action
	Looping Over Multiple Rows in Search of Data

	Testing your T27 Component
	Using the Animation Tools
	Data Sets that Span Screens
	Multiple Screens

	Dealing with Redundant Data
	Tips for Building Reliable T27 Components
	Using Other Actions in the T27 Component Editor
	Handling Errors and Messages
	Check Screen Errors
	Set Screen Text Errors

	Finding a “Bad” Action
	Performance Considerations

	Logon Components, Connections, and Connection Pools
	About T27 Terminal Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The T27 Logon Component
	Logon, Keep Alive, and Logoff Actions
	LOGON Actions
	Maximizing Performance with the Logon Component

	Keep Alive Actions
	Maximizing Performance with Keep Alive Actions

	Logoff Actions
	Logon Component Life Cycle

	About the T27 Logon Connection
	Many-to-One Mapping of Components to Logons
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic T27 Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Maximizing Performance of T27 Logon Connection
	Static versus Dynamically Created Documents/Elements

	Creating a Logon Connection using a Session Connection
	Creating a T27 Component That Uses Pooled Connections
	Maximizing Performance of T27 Terminal Components

	Managing Pools
	Using the exteNd Composer Console

	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	Glossary
	T27 Display Attributes
	Viewing All Character Attributes at Once

	Reserved Words
	Index

