
Novell
exteNd
Director
5.0 www.novell.com

CONTENT MANAGEMENT GUIDE



Legal Notices
Copyright © 2003 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on 
a retrieval system, or transmitted without the express written consent of the publisher. This manual, and any portion 
thereof, may not be copied without the express written permission of Novell, Inc.
Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and 
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, 
Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation 
to notify any person or entity of such revisions or changes.
Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any 
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the 
right to makes changes to any and all parts of Novell software, at any time, without any obligation to notify any person or 
entity of such changes.
Copyright © 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved. 
Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall 
at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action 
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You shall not 
remove any copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce 
such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in 
the Software.
Patent pending.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Director Content Management Guide
December 2003

Online Documentation:  To access the online documemntation for this and other Novell products, and to get 
updates, see www.novell.com/documentation.



Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.
Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC. 

Third-Party Trademarks
Acrobat, Adaptive Server, Adobe, AIX, Autonomy, BEA, Cloudscape, DRE, Dreamweaver, EJB, HP-UX, IBM, 
Informix, iPlanet, JASS, Java, JavaBeans, JavaMail, JavaServer Pages, JDBC, JNDI, JSP, J2EE, Linux, Macromedia, 
Microsoft, MySQL, Navigator, Netscape, Netscape Certificate Server, Netscape Directory Server, Oracle, PowerPoint, 
RSA, RSS, SPARC, SQL, SQL Server, Sun, Sybase, Symantec, UNIX, VeriSign, Windows, Windows NT
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided  that the 
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following 
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: 
"This product includes software developed by the Apache Software Foundation  (http://www.apache.org/)."
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments 
normally appear.
4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote  products derived 
from this software without prior written permission. For written  permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache",  nor may "Apache" appear in their name, without prior 
written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL  THE APACHE SOFTWARE FOUNDATION 
OR ITS CONTRIBUTORS BE LIABLE FOR ANY  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 
OR CONSEQUENTIAL DAMAGES  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS OR SERVICES; LOSS OF  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR  TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  OF THE USE  OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Autonomy
Copyright ©1996-2000 Autonomy, Inc.
Title for Your Book 3



Castor
Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.
Redistribution and use of this software and associated documentation ("Software"), with or without  modification, are 
permitted provided that the following conditions are met:
1. Redistributions of source code must retain copyright statements and notices. Redistributions must also contain a copy 
of this document.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "ExoLab" must not be used to endorse or promote products derived from this Software without prior written 
permission of Intalio Inc. For written permission, please contact info@exolab.org.
4. Products derived from this Software may not be called "Castor" nor may "Castor" appear in their names without prior 
written permission of Intalio Inc. Exolab, Castor and Intalio are trademarks of Intalio Inc.
5. Due credit should be given to the ExoLab Project (http://www.exolab.org/).
THIS SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY  EXPRESSED OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE  DISCLAIMED. IN NO EVENT 
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY  DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES  (INCLUDING, BUT NOT LIMITED TO, 
PROCUREMENT OF SUBSTITUTE GOODS OR  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT LIABILITY, OR  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indiana University Extreme! Lab Software License
Version 1.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided  that the following 
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following 
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This 
product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." 
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments 
normally appear.
4. The names "Indiana University" and "Indiana University Extreme! Lab" must not be used to endorse or promote 
products derived from this software without prior written permission. For written permission, please contact 
http://www.extreme.indiana.edu/.
5. Products derived from this software may not use "Indiana University" name nor may "Indiana  University" appear in 
their name, without prior written permission of the Indiana University.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS 
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 
EVEN IF  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following 
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following 
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that 
follows these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this software without prior written 
permission. For written permission, please contact license@jdom.org.
4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior 
written permission from the JDOM Project Management (pm@jdom.org).
In addition, we request (but do not require) that you include in the end-user documentation provided with  the 
redistribution and/or in the software itself an acknowledgement equivalent to the following: "This product includes 
software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at  http://www.jdom.org/images/logos.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,  INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY  AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL  THE JDOM AUTHORS OR THE PROJECT 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT,  INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS OR SERVICES; LOSS OF  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED AND ON  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS  
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology 
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of  the Phaos software.

Sun
Sun Microsystems, Inc. 
Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems,  JavaBeans, Enterprise JavaBeans, 
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC,  Java, HotJava, HotJava Views, Visual Java, Solaris, 
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows,  PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, 
SunCore, SolarNet, SunWeb, Sun  Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, 
Ultraserver, Where The  Network Is Going, SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual 
Java, and  NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other  
countries.

W3C
W3C® SOFTWARE NOTICE AND LICENSE
This work (and included software, documentation such as READMEs, or other related items) is being  provided by the 
copyright holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree that 
you have read, understood, and will comply with the following terms and conditions.
Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any 
purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the 
software and documentation or portions thereof, including modifications:
1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software 
Short Notice should be included (hypertext is preferred, text is permitted) within the body of any redistributed or 
derivative code. 
Title for Your Book 5



3. Notice of any changes or modifications to the files, including the date changes were made. (We  recommend you provide 
URIs to the location from which the code is derived.) 
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT  HOLDERS MAKE NO 
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING  BUT NOT LIMITED TO, 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY  PARTICULAR PURPOSE OR THAT THE USE 
OF THE SOFTWARE OR DOCUMENTATION WILL  NOT INFRINGE ANY THIRD PARTY PATENTS, 
COPYRIGHTS, TRADEMARKS OR OTHER  RIGHTS.
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR  
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR  DOCUMENTATION.
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software 
without specific, written prior permission. Title to copyright in this software and any  associated documentation will at all 
times remain with copyright holders.



Contents
About This Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

PART I CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1 About the Content Management Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

About content management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
About content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
About documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Content and pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Subsystem infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Physical infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logical infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Defining content structure and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Classifying content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Content life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Checking out documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Publishing a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Subsystem support functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Integration with other subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Developing Content Management Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
About the CM API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Getting a content manager object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Changing repository data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

About the CM subsystem infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Managing fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Adding a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Adding a field to a portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Listing fields using different filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Managing document types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Adding a document type with associated fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Managing layout styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
User agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Adding a layout style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Adding a layout document and a layout document descriptor . . . . . . . . . . . . . . . . . . . . . . . .42
Changing a layout style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Managing folders and categories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Adding a category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Navigating the CM hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7



3 Managing Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
About documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Accessing the CM API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Adding documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Adding a document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Adding multiple documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Specifying field values for a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Getting fields for the document type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Getting a field object by name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Setting a field value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Getting all fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Getting field values for a single field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Specifying layout sets for documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
When to use a layout set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Methods for managing layout sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Creating links between documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Two types of document relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Hierarchical linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Adding a child document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Compound linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Linking a child document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Updating a link with a new document version  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Getting linked parent documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Getting linked child documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Modifying and publishing documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Tracking document status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Methods for source control and publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Displaying documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
HTML content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
XML content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Composite documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

4 Securing Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
About access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CM user groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
ACL-based security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Element types and associated permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ContentAdmin group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Methods for managing access control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Accessing ACLs for existing elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Specifying ACLs for new elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Inheriting ACLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Accessing ACLs for ContentAdmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Restricting element access to administrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Examples of adding ACLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Example of handling a security exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
exteNd Director Content Management Guide8



5 Managing Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
About tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Installed tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Custom tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

About how tasks are registered and configured  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
tasktypes.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Default_tasklist.xml. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
services.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Customizing an installed task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Creating and implementing a new task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Custom task sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

NewDocumentNotifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PeriodicNewDocumentNotifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Working with task events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Task event types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Registering for a task event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Enabling or disabling a task event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Managing Content Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
About caching in CM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Summary of CM caching information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Caching behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Caching of folders, categories, and document metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
About document content and versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Controlling caching in the DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Importing and Exporting Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
About importing and exporting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Using the import/export facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
About the export facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Export process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
About the import facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Import process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Customizing imports and exports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Customizing the data export descriptor (DED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Customizing the data import descriptor (DID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Accessing the import and export API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Working with Content Management Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
About CM events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CM event types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Registering for CM events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Registering for events on directory elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Specifying event types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Using the event helper class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Event registration examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Enabling CM events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
exteNd Director Content Management Guide-9

Contents 9



PART II WEBDAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9 Using WebDAV Clients with exteNd Director for Collaborative Authoring . . . . . . . . . . . . . 127

What is WebDAV?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Information elements for distributed Web authoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
WebDAV extensions to HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

About exteNd Director’s WebDAV support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
What you can do with the exteNd Director WebDAV subsystem . . . . . . . . . . . . . . . . . . . . . 130
How exteNd Director stores content from WebDAV clients  . . . . . . . . . . . . . . . . . . . . . . . . . 130
How exteNd Director secures content from WebDAV clients . . . . . . . . . . . . . . . . . . . . . . . . 131
How exteNd Director manages versioning for WebDAV clients . . . . . . . . . . . . . . . . . . . . . . 131

Installing the exteNd Director WebDAV subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Deploying the exteNd Director WebDAV subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Before you deploy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Setting up the client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Supported WebDAV methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Public WebDAV server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10 Building Your Own WebDAV Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
About the WebDAV client API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Why build your own WebDAV client? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Configuring your environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Using the WebDAV client API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

WebDAV requests and responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Working with resources, collections, and properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Helper methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Utility methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Programming practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Programming practices using helper methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Programming practices using utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Issuing WebDAV requests from a Java client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Adding a category reference to a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Copying a resource or collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Creating a new collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Creating a new document from a custom template  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Deleting a document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Getting a resource or collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Getting header information from a resource or collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Getting methods that can be called on a resource or collection . . . . . . . . . . . . . . . . . . . . . . 162
Getting properties defined on a resource or collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Locking a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Moving a resource or collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Removing a category reference from a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Removing all category references from a document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Renaming a resource or collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Setting the value of a custom field in a document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
exteNd Director Content Management Guide10



Unlocking a document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Updating a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11 Working with WebDAV Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
About WebDAV events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Event types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Registering for WebDAV events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Enabling WebDAV events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

PART III CMS ADMINISTRATION CONSOLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12 About the CMS Administration Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

What CM tasks you can do with the CMS Administration Console . . . . . . . . . . . . . . . . . . . . . . . 189
How to access the CMS Administration Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
The main CMS Administration Console page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Interactive controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13 Setting Up the Required Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Creating folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Creating document types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Creating fields and adding them to a document type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

About fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Creating and manipulating fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Writing JavaScript for document types and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14 Setting Up the Optional Infrastructure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Creating display styles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

About display styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Specifying a style sheet for a document type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Creating taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Creating categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

15 Creating Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
About content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Creating documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Creating a document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
Specifying a folder for a new document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Using Auto Create to create a document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Using the CMS Administration Console’s HTML Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Creating relationships between documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

16 Maintaining Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Previewing content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Editing content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Modifying properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
exteNd Director Content Management Guide-11

Contents 11



Assigning a document’s folder, categories, and taxonomies  . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Modifying display styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Editing document types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Editing document fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Setting document expiration dates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Deleting content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Deleting folders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Deleting taxonomies and categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Deleting documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Deleting display styles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Deleting document types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Deleting and removing document fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

17 Administering Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
About content administration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Checking documents in and out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

What happens during checkout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
What happens during checkin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Checkin and checkout procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Administering version control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

18 Searching Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Setting up the CMS Administration Console search facility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Using the search facility in the CMS Administration Console . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Search options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

19 Managing Content Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
About content security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Flow of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Permissions for content access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
User permissions required for CM operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Cascading security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Setting security on CM elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

20 Importing and Exporting Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
About the import and export facilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Summary of CMS Administration Console import and export behavior  . . . . . . . . . . . . . . . . . . . 288
Exporting content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Exporting from the toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Exporting from a Property Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Customizing exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Importing content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Configuring the import process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Importing from the toolbar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Importing from a Property Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Structure of the data import or export archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
exteNd Director Content Management Guide12



Best practices and prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Planning for large-scale import/export operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Security considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

21 Administering Automated Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
The task display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Starting and stopping tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

PART IV APPLICATIONS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
22 Content Query Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

About Content Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Using the Content Query action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

PART V REFERENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
23 Content Management Tag Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Alphabetical list of tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
checkIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
checkOut  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
findDocuments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
getChildDocuments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
getContent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
getDirectory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
getDirectoryList. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
getDocType  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
getDocument  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
getFieldInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
getFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
getLinkedDocuments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
getVersionHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
publish  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
unCheckOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
updateDocument  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
exteNd Director Content Management Guide-13

Contents 13



exteNd Director Content Management Guide14



About This Book
Purpose 

This book shows how to use the Content Management (CM) subsystem of Novell® 
exteNd Director™.

Audience

This book is for anyone who creates, manages, and accesses content in the CM 
subsystem, whether via the CM API or the CMS Administration Console.

Prerequisites

This book assumes you are familiar with the Java programming language, the Internet, 
and Web applications. 

Learning materials on these topics are readily available from a variety of public and 
commercial sources.
15



16 exteNd Director Content Management Guide



I
 Concepts PART I
Describes the fundamentals of the Content Management (CM) subsystem and 
API programming

• Chapter 1, “About the Content Management Subsystem”
• Chapter 2, “Developing Content Management Infrastructure”
• Chapter 3, “Managing Documents”
• Chapter 4, “Securing Content”
• Chapter 5, “Managing Tasks”
• Chapter 6, “Managing Content Caching”
• Chapter 7, “Importing and Exporting Content”
• Chapter 8, “Working with Content Management Events”





1
 About the Content Management 
Subsystem Chapter 1
This chapter provides an overview of the Content Management (CM) subsystem and 
includes the following topics:

About content management
Subsystem infrastructure
Content life cycle
Subsystem support functions
Integration with other subsystems

About content management
The CM subsystem provides a repository for documents, enabling you to create and 
version documents, manage document security, search the repository, and so on. The 
CM subsystem provides Web CM capabilities such as style and layout management 
and document publishing and expiration. 

The CM API and CMS Administration console provide interfaces to the CM 
subsystem that assist you in managing Web content. Other front-end applications can 
use the CM subsystem as a general document management system. For example, you 
could use a WebDAV application and the CM subsystem to manage CAD files or legal 
documents. 
19



About content
What is meant by content? Content is defined as information that is viewed or 
downloaded by users of your exteNd Director application. The content managed by the 
CM subsystem is retrieved dynamically for online viewing or downloading when end 
users access your exteNd Director application. 

The CM subsystem can store any type of content that can be digitized. It might store:

Text documents, with XML or HTML tagging or in any word processing format
Image files, such as GIF, JPG, QuickTime, and any other format
Sound files
Executable files
Any other type of binary data

You can also store documents that support your content, such as:

XSL style sheets
XML DTDs
Other content resources

It is up to you to store content in formats that are appropriate to your online application. 
A document doesn’t have to be a complete item that would be displayed as is. A 
document can be a piece of data that you want to combine with other documents before 
displaying it, or some code resource that allows you to get data. For example, a 
document’s content could be an URL, a set of URLs, a SQL statement, a paragraph, or 
an image.

About documents
The center of the CM subsystem is the document. Each document is described by a set 
of metadata that is a definition or description of data—in other words, data about data. 
In the CM subsystem, a document consists of all information required to maintain 
content (including the document’s metadata, content, and versions) and all 
specifications for categorization, display characteristics, linked documents, access 
control, and so on. 

A checkout/checkin system protects documents while you are changing them, and 
versioning allows you to maintain a history of content changes. 

Publishing a document lets you choose a particular version of the document’s content 
to make public. Once a version is published, you can define a fixed lifetime after which 
the version expires and can be archived and deleted. 

For more information, see Chapter 3, “Managing Documents”.
20 exteNd Director Content Management Guide



Content and pages
It is important to distinguish the type of content managed by the CM subsystem from 
the pages managed by the Portal subsystem. Pages constitute the structure of the 
application, defining the graphical user interface (GUI) that helps users navigate the 
site. Pages contain portlets—the building blocks of an exteNd Director portal 
application. It is within portlets that application developers write code to search for and 
retrieve content managed by the CM subsystem in response to rules and real-time user 
interactions. Typically, pages change infrequently—while content is more dynamic. 

The CM subsystem enables you to manage content structure, display style, versioning, 
categorization, and security to facilitate the retrieval—and preserve the integrity—of 
information presented to end users of your application. The Portal subsystem manages 
the actual application, including the interface and architecture in which this content is 
presented.

For more information about pages and the Portal subsystem, see the section on 
portal concepts in the Portal Guide.

Subsystem infrastructure
The CM subsystem infrastructure establishes the criteria for organizing, displaying, 
managing, and securing your content. It is designed to support the basic unit of 
content—the document.

There are two levels of infrastructure: physical and logical. You must set up the 
physical infrastructure before you can create documents. Optionally, you can also 
define a logical infrastructure anytime.
exteNd Director Content Management Guide-21

About the Content Management Subsystem 21

pgPartPortalConcepts.html


Physical infrastructure
The physical infrastructure organizes the storage of documents in physical memory. 
This infrastructure consists of these components:

There is a hierarchical relationship between folders and documents:

The top-level container is the root folder, which can contain one or more folders. A 
root folder is essentially just a specialized type of folder, one with no parent. In turn, 
folders can contain one or more documents or other folders. Each document resides in 
one (and only one) folder. 

Component Description

Root folder

Folder

Document
22 exteNd Director Content Management Guide



Logical infrastructure
The logical infrastructure organizes documents into logical groupings that can be used 
to provide a user’s view of content. There are several elements:

Element Description Required or optional?

Field Extension metadata content that can be 
shared by multiple documents. 

Documents can have one field, multiple 
fields—or none at all.

Optional

Document 
type

The basic classification mechanism for 
documents. Document types act as 
templates and provide groupings of fields.

Every document must be associated with a 
document type. 

The CM subsystem attaches a default 
document type to all documents, but you can 
override this default.

Required

Display 
style

A classification for the look and feel of a 
document. This is sometimes called a layout 
style. 

Every document type can be associated with 
a display style for which you can define 
application-specific XML specifications for 
rendering documents uniquely for particular 
user agents. 

The CM subsystem attaches a default 
display style to all document types, but you 
can override this default.

Optional

Taxonomy A classification system often used in Web 
portal design to describe categories and 
subcategories of content found on a Web 
site. 

Documents do not need to be classified 
under a taxonomy.

Category A descriptive name used to group documents 
logically. 

Documents do not need to be categorized.
exteNd Director Content Management Guide-23

About the Content Management Subsystem 23



Document types, fields, and display styles define the structure and layout of 
documents, as described in “Defining content structure and layout” on page 24. 
Taxonomies and categories classify documents for search and retrieval, as described in 
“Classifying content” on page 25.

Defining content structure and layout
Before you create documents, the structure of the content must be defined. Before you 
publish documents, the look and feel of the content must be defined to determine how 
the information will appear to users of the Web site. Typically, a content administrator 
oversees these tasks by developing the fields, document types, display styles, folders, 
and categories described under “Logical infrastructure” above.

Content developers associate document types and display styles with the documents 
they create by following this pattern:

1 Create a document type.
2 Create an instance of the document type and then create an XSL style sheet based 

on the content of that document. 
3 Upload this XSL style sheet into a display style defined for the document type.

All documents you create based on the document type will contain the content 
structure and layout defined in the document type’s display style. 

Document types

A content administrator can create any number of document types, which consist of 
fields of information that dictate the structure of documents. 

The CM subsystem provides default document types that can be accessed and modified 
by content administrators. In the CM API, the default document type is called Default; 
in the CMS Administration Console, it is called _PmcSystemDefaultType. These 
document types can be used to enforce a corporate standard for content or to create 
content in the absence of any custom document types.

Display styles

The CM subsystem comes with a default display style that is applied to all document 
types unless you override it with custom display styles. 

Content administrators can define custom display styles that use one or more XSL style 
sheets developed in external editors and then uploaded to the CMS Administration 
Console. Each XSL style sheet specifies how to render content for a particular user 
agent, such as Microsoft Internet Explorer and Netscape Navigator.
24 exteNd Director Content Management Guide



When you have specified your display styles appropriately, the CM subsystem 
automatically matches the desired style to the user agent that is active in real time.

Classifying content
You can create content without classifying it; but if your exteNd Director application 
allows users to select categories of information, a content administrator may want to 
create categories for grouping documents in a logical fashion. That way portlets can 
more easily access the documents specified by users as they interact with the Web site.

For example, suppose an exteNd Director application developer creates a portlet that 
lists URLs that link to specific documents. If documents are classified by category, the 
portlet can link to all documents of a particular category by looking for a parameter 
called category passed on the URL.

There is a hierarchical relationship between categories and documents:

The top-level container is the root category, which can contain one or more categories. 
In turn, a category can contain one or more documents or other categories. A single 
document can be associated with any number of categories—or with no categories at 
all.
exteNd Director Content Management Guide-25

About the Content Management Subsystem 25



Content life cycle
The CM subsystem maintains a history of all document changes. The version history 
for a document might look like this:

Checking out documents
When you check out a document, it becomes locked; no one else can check it out until 
you check it in or cancel the checkout. (Exception: the CM subsystem allows 
administrators to remove locks on documents if that becomes necessary.) 

When you check in a document whose content has changed, a new version of that 
content is created. If you change the metadata but not the content, no new version is 
created when you check in the document. The metadata is updated but not versioned.

Publishing a document
When a document has been approved, its content can be published as the officially 
released version of the document. When an application requests a document, the 
published version is the one provided. 

The published version is not necessarily the latest one, however. Modifications can 
continue as content developers check out the most recent version of the document. 
Publishing a document creates a stable version of the document for the public. 

Version 
ID

MIME 
type Content data Size Date Modifier Comment

3 text/html [content v3] 47K 6/16/00 bbrown New facts

2 text/html [content v2] 45K 6/11/00 bbrown Fleshed-out 
content

1 text/html [content v1] 24K 6/10/00 ssmith Created
26 exteNd Director Content Management Guide



Subsystem support functions
The CM subsystem includes built-in support for these functions:

Integration with other subsystems
You can integrate CM with any other exteNd Director subsystem, including:

Function Description For more information see

Content caching CM function that allows you to 
configure caching for different 
elements

Chapter 6, “Managing 
Content Caching”

Task 
management

CM function for configuring 
background execution of specific 
operations such as publishing 
documents

Chapter 5, “Managing 
Tasks”

Content import 
and export

Facilities for importing and 
exporting content in and out of 
the CM subsystem

Chapter 7, “Importing and 
Exporting Content”

Related 
subsystem Description For more information see

Search Supports conceptual and 
keyword searching of document 
content and metadata.

Chapter on conceptual searching 
in the Content Search Guide

Security Used to secure access to CM 
subsystem elements.

Chapter 4, “Securing Content”

Workflow Used to access CM documents 
in workflow applications.

Chapter on the Content Life 
Cycle application in the Workflow 
Guide
exteNd Director Content Management Guide-27

About the Content Management Subsystem 27

srcConfigure.html
wfAppContent.html
wfAppContent.html


28 exteNd Director Content Management Guide



2
 Developing Content Management 
Infrastructure Chapter 2
This chapter describes how to set up and manage the infrastructure for the Content 
Management (CM) subsystem using the CM API. It has these sections:

About the CM API
About the CM subsystem infrastructure
Managing fields
Managing document types
Managing layout styles
Managing folders and categories
Navigating the CM hierarchy

NOTE:  This chapter describes an exteNd Director API that allows you to build your 
own CM application. exteNd Director also provides the CMS Administration Console, 
which you can use to create, maintain, administer, and secure all content for your 
exteNd Director application. 

For more information, see Chapter 13, “Setting Up the Required Infrastructure” 
and Chapter 14, “Setting Up the Optional Infrastructure”.
29



About the CM API 
You can use the CM API to build a system tailored to your business process. By writing 
portlets, you can build a complete interface that includes such functionality as:

Adding and managing documents
Checking out documents for editing
Versioning documents 
Approving document versions for publication
Building layout styles for XML content
Providing comprehensive searching functionality of content and metadata
Providing security for content objects

The CM API provides complete programmatic access to the document repository. 

Getting a content manager object 
Methods of the EbiContentMgmtDelegate interface provide access to the most of the 
objects in the CM subsystem.

For all the examples in this chapter, you must use this code somewhere in your portlet 
to get a reference to the content manager delegate:

EbiContentMgmtDelegate defaultCmgr = 
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

if (cmgr != null) 
... // do content-related processing

else
System.out.println("Failed to get Content Manager");

Using delegates Delegates are objects that provide a layer of abstraction for main 
exteNd Director manager objects (such as the Content Manager object). Using 
delegates removes the need for coding things like local and remote access to exteNd 
Director services.

From a best-practices standpoint, you should always use delegates rather than 
accessing exteNd Director manager objects directly.

Changing repository data
In the simplest case, the basic procedure for working with objects in the repository is:

1 Use a get method of EbiContentMgmtDelegate to get an object from the 
repository.

2 Use methods of that object to modify it.
30 exteNd Director Content Management Guide



3 Use an update method of EbiContentMgmtDelegate to put the changed object 
back in the repository, or use the update method on the object itself if it is 
available.

Some objects are more complex. The rest of this chapter describes how to work with 
many of these objects, with code examples. 

About the CM subsystem infrastructure
Before creating documents in the CM subsystem, you must set up the content 
infrastructure, which includes the criteria by which you organize the documents. The 
infrastructure includes fields, document types, layout styles, folders, and categories:

Item Description For more information

Fields A field allows you to provide application-
specific information about documents, also 
called extension metadata. Each 
document type can have zero or more 
fields. Each document may have one or 
more values per field, and null values are 
allowed.

“Managing fields” on 
page 32

Document 
types

The document type is the basic 
classification mechanism of the system. 
You would classify documents as a 
particular type when they have similar 
formatting and subject matter. A document 
type has a list of fields and a default layout 
style.

 “Managing document 
types” on page 35

Layout 
styles

A document type can have a default layout 
style. Specific documents can have their 
own layout styles or sets of styles.

“Managing layout 
styles” on page 38

Folders Folders allow you to group documents for 
administrative purposes. For example, you 
can assign confidential documents to a 
folder that has restricted access. Folders 
can be nested.

“Managing folders and 
categories” on 
page 43

Categories You can use categories as another way of 
organizing documents. Typically, 
categories are the user’s view of the 
content repository, organized by subject 
matter. Categories can be nested.

“Managing folders and 
categories” on 
page 43
exteNd Director Content Management Guide-31

Developing Content Management Infrastructure 31



Managing fields
All documents have a basic set of metadata, such as title, author, abstract, published 
version, and so on. You can also define custom metadata fields to store application-
specific data for each document type. Fields are appropriate for any piece of data for 
which all the documents have a value. For example, movie reviews have a director, 
cast, release date, and rating. Books have an author, publisher, publish date, and 
number of pages. Reviews of travel destinations have country, cost category, and 
quality rating.

Fields are also useful for finding documents. For each document type, a set of fields 
identify the pertinent, searchable information for the subject matter of that document 
type. Fields can be searched quickly via a database lookup, in contrast to searching the 
document content text. 

For example, for a document type of MovieReview, you might create several fields as 
shown below:

NOTE:  In this example, Genre and Runtime could have multiple values.

Data types EbiDocField defines several data types to be used for fields. This table 
categorizes the available types:

Field name Data type Sample value

Genre FT_STRING Drama, Romance

Tagline FT_STRING In a perfect world...they never would have 
met

User Rating FT_STRING 4.9/10 (1083 votes)

Runtime FT_STRING USA:133 / UK:132 / Finland:133 / Japan:132

Year of Release FT_INT 2000

Type of data Available data types defined in EbiDocField

Character data FT_CHAR, FT_STRING

Numeric FT_BIGDECIMAL 
FT_DOUBLE, FT_FLOAT
FT_INT, FT_LONG, FT_SHORT

Boolean FT_BOOLEAN

Date and time FT_DATE, FT_TIME, FT_TIMESTAMP

Binary FT_BYTE, FT_BYTEARRAY
32 exteNd Director Content Management Guide



Metadata for fields You already know that fields store metadata about a document. 
You can also store data about the field itself. You can use this extension metadata to 
store a list of appropriate values, a prompt to use in forms, an image for the field, or 
other information appropriate to your application. The data is a byte array.

Fields and document types When you create a document type, you specify the 
set of fields it uses. You can use a field with more than one document type.

Fields and values For each document of a particular document type, all the 
associated fields must have at least one value, specified via an EbiDocExtnMetaInfo 
object. The value can be null. You assign the field values to the document as a set via 
an EbiDocExtnMeta object. EbiDocExtnMeta holds an EbiDocExtnMetaInfo object 
for each field associated with the document type. You call getFieldValues() to get an 
array of values for a field. The values can be returned as Strings, or they can have the 
field’s data type.

These methods in EbiContentMgmtDelegate let you add and modify fields:

For information about using fields with document types, see “Managing 
document types” on page 35.

Method Returns Description

addDocumentField() EbiDocField Adds a field to the CM 
subsystem. You specify the 
name, data type, supporting 
data for the field, and an ACL 
(access control list). The last 
two arguments can be null.

getDocumentFieldByID() EbiDocField Gets a field by ID.

getDocumentFieldByName() EbiDocField Gets a field by name.

updateDocumentField() void After calling methods to modify 
an EbiDocField object, updates 
the content repository with the 
changes.

removeDocumentField() void Removes a field from the 
system. 

getDocumentFields() and 
getFilteredDocumentFields()

Collection of 
EbiDocField

Gets a Collection of all the fields 
in the CM subsystem. The 
filtered version omits fields to 
which the current user has no 
READ access. The unfiltered 
version gets all fields, 
regardless of access rights.
exteNd Director Content Management Guide-33

Developing Content Management Infrastructure 33



Adding a field
This example provides a method called addField() that adds an extension metadata 
field:

public void addField(EbiContentMgmtDelegate cmgr, EbiContext 
context)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        String fieldName = "Rating";
        String valueType = EbiDocField.FT_STRING;
        String extnMeta = "This is a Rating field...";
        cmgr.addDocumentField(
            context,                   // Context
            fieldName,                 // Field name
            valueType,                 // Value data type
            extnMeta.getBytes(),       // Extension metadata
            null);                     // ACL
    }

Adding a field to a portlet
This example shows how to add a field to a portlet’s processAction(0 method. It gets 
the name and data type the user entered in an HTML form and adds a field. A message 
about success or failure is stored in the context object to be displayed when the portlet 
content is generated.

public void processAction (ActionRequest request, ActionResponse 
response){

String name = request.getParameter(FORM_NAME);
String datatype = request.getParameter(FORM_DATATYPE);
String valuelist = request.getParameter(FORM_LIST);

EbiContentMgmtDelegate cmgr = ...; // get content manager

try
{

cmgr.addDocumentField(context,name,datatype,valuelist,null);
context.setValue(

this.getPortletName() + KEY_STATUS,
"Field " + name + " successfully added.");

}
catch (Exception e)
{

context.setValue(
this.getPortletName() + KEY_STATUS,
"Field " + name + " not added.");

}
}

34 exteNd Director Content Management Guide



Listing fields using different filters
This example provides a method called listFields() that gets existing document fields 
by filtering the results in different ways.

The listFields() method needs to have access to a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments. The context object provides information about the user’s security 
privileges. The listFields() method passes the context object to the 
getFilteredDocumentFields() method to return only those fields for which the user has 
READ access:

public void listFields(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get all the existing fields (note: no security checking is done here)
        Collection allFields = cmgr.getDocumentFields(context);
        Iterator iterAllFields = allFields.iterator();
        while (iterAllFields.hasNext())
        {
            EbiDocField field = (EbiDocField)iterAllFields.next();
            System.out.println(field + "\n\n");
        }

        // Get all the fields that belong to doctype 'MovieReview'
        EbiDocType docType = cmgr.getDocumentTypeByName(context,"MovieReview");
        Collection docTypeFields = cmgr.getDocumentFields(context,docType.getDocTypeID());

        // Get all the fields to which the user has Read access
        Collection filteredFields = cmgr.getFilteredDocumentFields(context);

        // Get all the Read-accessible fields that belong to doctype 'MovieReview'
        Collection filteredDtFields = cmgr.getFilteredDocumentFields(context, 
docType.getDocTypeID());
    }

Managing document types
A document type identifies a particular type of content. Typically, you create document 
types for groups of documents that have similar content. The documents share the 
same set of fields that describe that content and, for XML content, the same layout 
styles to display the content.

After you have created a document type, you can modify its name and description. To 
do so, get an EbiDocType object, call setDocTypeName() or setDescription(), then call 
updateDocumentType() to put the changed type back into the content repository.
exteNd Director Content Management Guide-35

Developing Content Management Infrastructure 35



TIP:  You can also associate layout styles with the document type. For information, see 
“Managing layout styles” on page 38.

These methods in EbiContentMgmtDelegate let you add and modify document 
types: 

Method Returns Description

addDocumentType() EbiDocType Adds a document type to the 
system. You specify a name, 
description, and the list of 
metadata fields associated with 
the type. The system gives the 
type a numeric ID.

getDocumentType() EbiDocType Gets a document type by name 
or ID.

updateDocumentType() void After calling methods to modify 
an EbiDocType object, updates 
the content repository with the 
changes.

removeDocumentType() boolean Removes a document type from 
the system. If documents of that 
type exist, you must delete them 
before you can delete the type.

getDocumentTypes() and 
getFilteredDocumentTypes()

Collection of 
EbiDocType

Gets a Collection of EbiDocType 
objects. The filtered version 
omits types to which the current 
user has no READ access. The 
unfiltered version gets all types, 
regardless of access rights.
36 exteNd Director Content Management Guide



These methods of EbiContentMgmtDelegate manage the association between 
document types and fields:

Adding a document type with associated fields 
This example provides a method called addDocType() that adds a document type 
called Movie Review and associates it with several existing fields. The addDocType() 
method needs to have access to a content manager (EbiContentMgmtDelegate) and 
context object (EbiContext), which are passed in as arguments.

public void addDocType(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get several fields by name
        EbiDocField fldDir = cmgr.getDocumentFieldByName(context, "Director");
        EbiDocField fldGenre = cmgr.getDocumentFieldByName(context, "Genre");
        EbiDocField fldYear = cmgr.getDocumentFieldByName(context, "Year");
        EbiDocField fldCast = cmgr.getDocumentFieldByName(context, "Cast");
        // Get the field IDs
        String[] fieldIDs = {
            fldDir.getFieldID(),
            fldGenre.getFieldID(),
            fldYear.getFieldID(),
            fldCast.getFieldID() };

Method Returns Description

addFieldToDocumentType() void Adds a field to the document 
type. For existing documents, 
the values for the field are null.

removeFieldFrom-
DocumentType()

boolean Removes the association 
between a field and a 
document type. Deletes the 
field values for documents of 
that type.

getDocumentFields() and 
getFilteredDocumentFields()

Collection of 
EbiDocField

Gets the document fields for a 
document type. The filtered 
version omits fields to which the 
current user has no READ 
access. The unfiltered version 
gets all fields for the type, 
regardless of access rights.

getDocumentTypesWithField() 
and getFilteredDocument-
TypesWithField()

Collection of 
EbiDocType

Gets a Collection of all the 
document types that use a 
particular field.
exteNd Director Content Management Guide-37

Developing Content Management Infrastructure 37



        // Add the doctype
        EbiDocType dt = cmgr.addDocumentType(
            context,                            // Context
            "Movie Review",                     // Doctype name
            "Movie Review document type",       // Description
            fieldIDs,                           // Associated fields
            null);                              // ACL for the doctype
        System.out.println("The new doctype: " + dt);
    }

Managing layout styles
Layouts are XSL specifications for rendering a document. The document might be 
XML or some other format that can be processed by XSL. The actual layout 
specification is stored as the content of a document in the repository. The CM 
subsystem has a document type called Document Layout already installed for layout 
documents. You can use it or add your own document types for layouts.

What you can do After you have added a layout document, you can check it out, 
modify it, and check it in. That means a particular layout document can have multiple 
versions. You can publish one of those versions. 

You can group several layouts together under the umbrella of a layout style. The 
various layouts in the layout style can handle the rendering of the document for 
different clients (also called user agents), such as browsers, PDAs, and other display 
devices. The association of a layout document with a user agent is handled by a layout 
document descriptor. 

Layout styles and document types A layout style is associated with a document 
type. When you display a document of that type, the system searches the layout 
document descriptors in the style to find the one for the user agent, as specified in the 
portlet’s context object. 

A layout style with multiple layout document descriptors can process content for 
various clients. When you want to display a document of the particular document type, 
you call getDocumentLayout(); the system gets the current user agent from the context 
object to select the appropriate layout.
38 exteNd Director Content Management Guide



Here is the group of objects that provide XSL processing for a content document:

NOTE:  In addition to layout styles for document types, you can define a layout set for 
a specific document. A layout set is a custom combination of layout documents for a 
single content document. This specialized functionality is appropriate for special types 
of documents. When you are producing many documents of the same type, you will 
typically stick with layout styles for the document type. For more information, see 
“Specifying layout sets for documents” on page 60.

To set up layout styles for a document type:

1 Add one or more layout styles for the content document type.
2 Specify one of the styles as the default for that document type.
3 Add one or more layout documents whose XSL is designed for the expected 

content. The versions can arrange the content differently or tailor the content for 
different clients.

4 Add layout document descriptors that tie the layout documents to a client and a 
layout style.
exteNd Director Content Management Guide-39

Developing Content Management Infrastructure 39



These methods in EbiContentMgmtDelegate let you add and modify layout styles 
and their associated objects:

Method Returns Description

addDocumentLayoutStyle() EbiDoc-
LayoutStyle

Adds a new Document Layout 
Style for the specified Document 
Type.

getDocumentLayoutStyle() EbiDoc-
LayoutStyle

Gets the details of a particular 
layout style.

updateDocumentLayout-
Style()

void Updates the information for a 
layout style in the CM subsystem.

removeDocumentLayout-
Style()

boolean Removes a layout style from the 
system. 

addLayoutDocument-
Descriptor()

EbiLayout-
DocDescriptor

Adds a layout document 
descriptor, associating a layout 
document with a layout style and 
user agent.

getLayoutDocument-
Descriptor()

EbiLayout-
DocDescriptor

GetS a layout document 
descriptor object.

updateLayoutDocument-
Descriptor()

void Updates a layout document 
descriptor with a new user agent.

removeLayoutDocument-
Descriptor()

boolean Removes a layout document 
descriptor.

getLayoutDocument-
Descriptors()

Collection of 
EbiLayout-
DocDescriptor

Gets the layout document 
descriptors associated with a 
layout style.

getDocumentLayout() EbiDoc-
Version-
Descriptor

Gets the layout document 
appropriate for the current 
document and user agent. This is 
the actual XSL you use to 
process the content document.

getDefaultDocument-
LayoutStyle()

EbiDoc-
LayoutStyle

Gets the layout style that is the 
default for a document type.

getDocumentLayout-
Styles() and getFiltered-
DocumentLayoutStyles()

Collection of 
EbiDoc-
LayoutStyle

Gets all the layout styles 
associated with a document type. 
The filtered version omits styles 
to which the current user has no 
READ access. The unfiltered 
version gets all styles for the 
type, regardless of access rights.
40 exteNd Director Content Management Guide



User agents 
A user agent identifies itself in the HTTP header it sends to the server. exteNd Director 
stores the identifying string in the context object. The string used by a browser varies 
according to the browser version. Here are some examples: 

User Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)
User Agent: Mozilla/4.5 (Macintosh; U; PPC)
User Agent: Mozilla/4.7 [en] (WinNT; I)
User Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT) 3.1

You will need to use these strings in EbiLayoutDocumentDescriptor objects.

For more information on user agents, see the HTTP 1.1 specification.

Adding a layout style 
This example provides a method called addLayoutStyle() that adds a layout style for 
a document type called Movie Review. The addLayoutStyle() method needs to have 
access to a content manager (EbiContentMgmtDelegate) and context object 
(EbiContext), which are passed in as arguments:

public void addLayoutStyle(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get the doctype for which the style is to be added
        EbiDocType dtMovieReviews = cmgr.getDocumentTypeByName(context, "Movie Review");

        // Add the new style
        EbiDocLayoutStyle style = cmgr.addDocumentLayoutStyle(
            context,                                             // Context
            dtMovieReviews.getDocTypeID(),                       // Doctype ID
            "MovieReviewStyle-PicOnLeft",                        // Style name
            "Layout style for movie reviews, with pic on left",  // Style descr
            true,                                                // Is default style
            null);                                               // ACL for style
        System.out.println("The new style: " + style);
    }
exteNd Director Content Management Guide-41

Developing Content Management Infrastructure 41

new http://www.w3.org/Protocols 


Adding a layout document and a layout document descriptor 
This example provides a method called addLayoutDocAndDescriptor() that adds a 
layout document and a layout descriptor. The layout descriptor associates the layout 
document with the layout style from the previous example. The 
addLayoutDocAndDescriptor() method needs to have access to a content manager 
(EbiContentMgmtDelegate), context object (EbiContext), layout file name, and layout 
style, which are passed in as arguments:

public void addLayoutDocAndDescriptor(
        EbiContentMgmtDelegate cmgr, EbiContext context, String layoutFileName, String 
layoutStyleID)
        throws
            EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException, FileNotFoundException, IOException
    {
        // Read in the XSL for the layout
        FileInputStream fis = new FileInputStream(layoutFileName);
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        byte[] value = new byte[4096];
        while (true)
        {
            int bytes = fis.read(value);
            if (bytes < 1)
                break;
            baos.write(value, 0, bytes);
        }
        byte[] content = baos.toByteArray();
        baos.close();

        // Get the document layout doctype
        EbiDocType dtLayout = cmgr.getDocumentTypeByName(context, "Document Layout");
        // Get the Layouts folder
        EbiDocFolder layoutFolder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
            context, "MyApp/Layouts", EbiDocFolder.EL_DOC_FOLDER);

        // Add the layout document
        EbiAddDocumentParams params = cmgr.createAddDocumentParams();
        params.setName("ReviewLayout-POL");
        params.setDocTypeID(dtLayout.getDocTypeID());
        params.setFolderID(layoutFolder.getID());
        params.setAuthor("JSmith");
        params.setTitle("ReviewLayout-POL");
        params.setSubtitle("This is the layout with picture on left");
        params.setMimeType("text/xsl");
        params.setContent(content);
        params.setComment("Initial revision.");
        // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder
        EbiDocument layoutDoc = cmgr.addDocument(context, params);
        System.out.println("New layout doc: " + layoutDoc);

        // Publish the new layout document
        cmgr.publishDocumentContentVersion(context, layoutDoc.getID(), 1, true, true);
42 exteNd Director Content Management Guide



        // Figure out what user agent this layout is intended for
        String userAgent = "User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)";

        // Associate the new layout document with the specified layout style
        EbiLayoutDocDescriptor ldd = cmgr.addLayoutDocumentDescriptor(

    context,               // Context
    layoutStyleID,         // Layout style ID
    layoutDoc.getID(),     // Layout document ID
    userAgent);            // User agent

    }

Changing a layout style 
This example presents a method called changeLayoutStyle() that gets the default style 
for a document type and changes it so that it is not the default. The 
changeLayoutStyle() method needs to have access to a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments:

public void changeLayoutStyle(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        EbiDocType dtMovieReview = cmgr.getDocumentTypeByName(context, "MovieReview");
        EbiDocLayoutStyle style = cmgr.getDefaultDocumentLayoutStyle(context, 
dtMovieReview.getDocTypeID());
        style.setDefault(false);
        cmgr.updateDocumentLayoutStyle(context, style);
    }

Managing folders and categories
Folders and categories are ways of organizing documents. A document belongs to one 
folder and can belong to many categories. Typically, you would use folders to group 
documents for administrative purposes, such as all documents for a project or 
documents that have access restrictions. You can use categories to organize documents 
as an end user might view them, typically by subject matter. 

The system has a root folder and root category already created—called Root Folder 
and Root Category. The content manager provides the getRootFolder() and 
getRootCategory() methods to get EbiDocFolder and EbiDocCategory objects for 
them. 
exteNd Director Content Management Guide-43

Developing Content Management Infrastructure 43



The default directory type for folders and categories is 
EbiDirectory.DIR_TYPE_DEFAULT. The root and system types apply to the root 
folder and root category. You can also define your own folder types. For information, 
see EbiDirectory in the API Reference.

These methods of EbiContentMgmtDelegate let you manage folders and categories: 

Method Returns Description

addFolder() EbiDocFolder Creates a new folder.

copyFolder() EbiDocFolder Copies one folder into another.

getFolder() EbiDocFolder Gets a folder by name or ID.

moveFolder() EbiDocFolder Moves one folder into another.

updateFolder() void Updates a folder in the content 
repository after making changes to 
its properties via the EbiDocFolder 
object.

removeFolder() boolean Removes a folder. If the folder 
contains documents and 
subfolders, you can set the force 
argument to remove them too. The 
user must have WRITE 
permissions on all the subfolders 
and documents; otherwise, a 
security exception is thrown. If 
force is false, the folder can’t be 
removed until the contents are 
deleted. 

getRootFolder() EbiDocFolder Gets the top-level folder.

addCategory() EbiDocCategory Creates a new category.

copyCategory() EbiDocCategory Copies one category into another.

getCategory() EbiDocCategory Gets a category by name or ID.

moveCategory() EbiDocCategory Moves one category into another.

updateCategory() void Updates a category in the content 
repository after making changes to 
its properties via the 
EbiDocCategory object.

removeCategory() boolean Removes a category.

getRootCategory() EbiDocCategory Gets the top-level category.
44 exteNd Director Content Management Guide

../javadoc/com/sssw/cm/api/EbiDirectory.html


Adding a category 
This example presents a method called addCategory() that gets the information 
required for creating a new category, then adds the new category as a subcategory of 
the specified parent. The addCategory() method needs to access a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments:

public void addCategory(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Locate the parent category
        EbiDocCategory categParent = (EbiDocCategory)cmgr.lookupDirectoryEntry(
            context, "MyApp/Shopping", EbiDocCategory.EL_DOC_CATEGORY);
        EbiDocCategory categChild = cmgr.addCategory(
            context,                            // Context
            categParent,                        // Parent category
            "Clothing",                         // Tew category name
            EbiDirectory.DIR_TYPE_DEFAULT,      // type of the new category
            "This is the clothing-related category", // Description
            null);                              // ACL for the new category
        System.out.println("New category added: " + categChild);

addDocument-
CategoryReference()

void Adds a document to a category.

removeDocument-
CategoryReference()

boolean Removes a document from the 
category.

getDocumentCategory-
References() and 
getFilteredDocument-
CategoryReferences()

Collection of 
EbiDocCategory

Gets the categories to which the 
document belongs. The filtered 
version omits categories to which 
the current user has no READ 
access. The unfiltered version 
gets all categories for the 
document, regardless of access 
rights.

Method Returns Description
exteNd Director Content Management Guide-45

Developing Content Management Infrastructure 45



Navigating the CM hierarchy
Once your directory hierarchy is established, you can get a listing of the contents of a 
directory and examine the properties of individual entries. 

This section describes some ways to use the methods and classes that navigate the 
directory hierarchy. Both categories and folders implement the functionality for 
directory manipulation found in their superinterface EbiDirectory. Folders, categories, 
and documents also implement EbiDirectoryEntry and share methods for getting 
information about the contents of a directory.

Methods These methods are useful in navigating categories and folders:

getRootCategory() and getRootFolder() of EbiContentMgmtDelegate get the 
top of a directory hierarchy.
getDirectoryList() and getFilteredDirectoryList() of 
EbiContentMgmtDelegate return a collection of EbiDirectoryEntry objects. You 
can specify whether the list includes subdirectories, documents, or both.
isDirectory() of EbiDirectoryEntry reports whether an entry is a directory or a 
document.
lookupDirectoryEntry() of EbiContentMgmtDelegate gets an 
EbiDirectoryEntry object for a category, folder, or document based on a path 
built from the names of the parent objects in the hierarchy. 
getEntry() of EbiContentMgmtDelegate gets an entry by name in the specified 
directory.

Example This example builds an XML DOM tree of nested categories, starting 
with the root category. The root category is a category element within Categories; 
subcategories of the root and further nested levels are category elements also. The 
name and ID for each category are attributes.

The code creates the Categories container element and gets the root category of the tree 
you want to build. It then calls addNode() to find and add its subcategories. The 
variable dom is the DOM object and root is the root element of the DOM.

Element categories = dom.createElement("Categories");
root.appendChild(categories);

EbiDocCategory category = cmgr.getRootCategory(context);
if (category == null)

System.out.println("root category is null");
else
{

Element rootCategory = dom.createElement("category");
categories.appendChild(rootCategory);
rootCategory.setAttribute("id", category.getID());
rootCategory.setAttribute("name", category.getName());
addNode(rootCategory, category, dom, context, 

cmgr, "category");
}

46 exteNd Director Content Management Guide



The addNode() method gets the subcategories of a particular category and adds them 
as child elements. It is called recursively to add additional levels of nested 
subcategories if they exist:

public void addNode(org.w3c.dom.Element element, 
EbiDirectoryEntry directoryEntry, org.w3c.dom.Document document, 
EbiContext context, EbiContentMgmtDelegate cmgr, String 
elementName)
{

try 
{

Collection collection = cmgr.getFilteredDirectoryList(
context, (EbiDirectory) directoryEntry, true, false);

Enumeration list = Collections.enumeration(collection);
if (list != null)
{

Element child;
while (list.hasMoreElements())
{

EbiDirectoryEntry subdirEntry =
(EbiDirectoryEntry) list.nextElement();

child = document.createElement(elementName);
child.setAttribute("id", subdirEntry.getID());
child.setAttribute("name", subdirEntry.getName());
element.appendChild(child);
addNode(child, subdirEntry, document,

context, cmgr, elementName);
}

}
}
catch (Exception e) 
{

e.printStackTrace();
}

}

exteNd Director Content Management Guide-47

Developing Content Management Infrastructure 47



48 exteNd Director Content Management Guide



3
 Managing Documents Chapter 3
This chapter describes how to manage documents using the Content Management 
(CM) API. It has these sections:

About documents
Adding documents
Specifying field values for a document
Specifying layout sets for documents
Creating links between documents
Modifying and publishing documents
Displaying documents

NOTE:  Most of the document management tasks described in this chapter can also be 
accomplished using the CMS Administration Console. 

For more information, see Chapter 15, “Creating Content”. and Chapter 16, 
“Maintaining Content”.

About documents
A document in the CM subsystem may represent a simple, finite piece of content such 
as an image, or it may be a complex entity that comprises other documents. A 
document can be any data that you want to use directly or indirectly in your exteNd 
Director application. 

The CM subsystem uses metadata fields to describe a document. There are standard 
fields for every document, such as name, title, author, and abstract. You can also 
associate content-related fields with a document type. This extension metadata can 
hold additional searchable information specific to that document type.
49



A document object can be associated with an EbiDocContent object that holds the text 
or binary data, but a document doesn’t need to have a content object. The metadata for 
the document may store all the information you need. For a short text document, you 
could store the entire text in the abstract field. If the document doesn’t have content, 
specify null for the MIME type and content. 

The supplied content, if any, becomes the first version of the document. If you want to 
publish the content, you can call publishDocumentContentVersion() anytime or rely on 
your scheduled task to publish it. Documents without content cannot have versions 
(including a published version), but you could use another field (such as status) to label 
a document as publicly available. 

Accessing the CM API 
The EbiContentMgmtDelegate interface provides access to most of the document-
related methods in the CM subsystem. 

For information, see “About the CM API” on page 30.

Adding documents
To add a document, you create an EbiAddDocumentParams object and set various 
parameters. The next table explains the default values for the required parameters: 
name, document type, folder, and extension metadata, if any—as well as other 
parameters for which the default value has a particular meaning. Any other metadata 
fields that aren’t explicitly set are null:

Parameter Description and default values

Name A name for the document, used when specifying a path for 
the document in the folder structure. The default name is 
the UUID assigned to the document when it is added.

Document type ID The ID of the document type for this document. The default 
is the system’s Default document type.

Folder ID The folder that contains this document. The default is the 
system’s root folder.

Extension metadata If the document belongs to a document type that has at 
least one associated extension metadata field, you must 
call the setExtensionMetaData() method to provide values 
for the fields.

For information, see “Specifying field values for a 
document” on page 54.
50 exteNd Director Content Management Guide



Adding a document
This code example presents a method called addDocument() that illustrates how to 
add a document of type Movie Review. This method sets all required document 
parameters—document type, name, title, author, and parent folder—as well as some 
optional parameters. 

The new document does not contain extension metadata fields, nor does it have a 
parent document. The addDocument() method sets the content of the new movie 
review document explicitly and stores it in the byte array content. 

The addDocument() method needs to access a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments.

Note that the addDocument() method does not set the ACL for the new document. This 
means that the ACL is null and the document inherits the ACL of its folder:

public void addDocument(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get the doctype
        EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");

        // Get the folder
        EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
            context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);

        // Get the content
        String movieContent = "This movie has exceeded all expectations!....";
        byte content[] = movieContent.getBytes();

        EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();
        docParams.setName("Star Trek Movie Review");

Publish date A timestamp specifying when the document’s current 
version should be published. The default value of null 
means publish as soon as possible.

Expiration date A timestamp specifying when the document should be 
removed from the published area. The default value of null 
means never expire.

Access control list An ACL specifying access rights to the document. 

The ACL is null by default. In this case, the document 
inherits the ACL of its folder. If the folder doesn’t have an 
ACL, there are no restrictions for the document.

Parameter Description and default values
exteNd Director Content Management Guide-51

Managing Documents 51



        docParams.setDocTypeID(type.getDocTypeID());
        docParams.setFolderID(folder.getID());
        docParams.setAuthor("Night Ghost");
        docParams.setTitle("Star Trek Movie Review");
        docParams.setSubtitle("Generations");
        docParams.setAbstract("This reviewer loves the movie!........");
        docParams.setMimeType("text/xml");
        docParams.setContent(content);
        docParams.setComment("Initial revision.");

        // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

        EbiDocument doc = cmgr.addDocument(context, docParams);
        System.out.println("Added new movie review: " + doc);

        // Publish the new document
        cmgr.publishDocumentContentVersion(context, doc.getID(), 1, true, true);
    }

Adding multiple documents
This code example presents a method called addMultipleDocuments() that converts 
a set of files into new documents of type Movie Review and adds them to the CM 
subsystem. 

This method sets all required document parameters—document type, name, title, 
author, and parent folder—as well as some optional parameters. 

Note that the addMultipleDocuments() method executes the following shared logic 
outside the for loop for efficient processing:

Sets the shared parameters author, comment, and MIME type
Calls the getDocTypeByName() and createAddDocumentParams() methods

The new documents do not contain extension metadata fields, nor do they have parent 
documents. The addMultipleDocuments() method reads in the content of each new 
movie review from its file of origin and stores the data in the byte array content.

As for security, the addMultipleDocuments() method does not set the ACL for the new 
documents. This means that the ACL is null and the documents inherit the ACL of their 
folder.

The addMultipleDocuments() method needs to access a content manager 
(EbiContentMgmtDelegate), context object (EbiContext), and the directory where the 
files of interest are stored. All of these entities are passed in as arguments:

public void addMultipleDocuments(
        EbiContentMgmtDelegate cmgr, EbiContext context, String dirName)
        throws
            EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException,
52 exteNd Director Content Management Guide



            FileNotFoundException, IOException
    {
        // Get the doctype
        EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");

        // Get the folder
        EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
            context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);

        // Instantiate a document addition parameters object
        EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();

        // Set all the String parameters to be reused
        String author = "NightGhost";
        String mimeType = "text/xml";
        String comment = "Initial revision.";

        File dir = new File(dirName);
        File[] files = null;
        if (dir.exists() && dir.isDirectory())
            files = dir.listFiles();
        else
            throw new EboApplicationException(null, "Invalid directory name '" + dirName 

+ "'.");

        // Turn each file in the specified directory into a new movie review document
        for (int i = 0; i < files.length; i++)
        {
            if (files[i].isDirectory())
                continue;
            FileInputStream fis = new FileInputStream(files[i]);
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            byte[] value = new byte[4096];
            while (true)
            {
                int bytes = fis.read(value);
                if (bytes < 1)
                    break;
                baos.write(value, 0, bytes);
            }
            byte[] content = baos.toByteArray();
            baos.close();

            String name = files[i].getName();

            docParams.setName(name);
            docParams.setDocTypeID(type.getDocTypeID());
            docParams.setFolderID(folder.getID());
            docParams.setAuthor(author);
            docParams.setTitle(name);
            docParams.setMimeType(mimeType);
            docParams.setContent(content);
            docParams.setComment(comment);
            docParams.setPublishImmediately(true);
exteNd Director Content Management Guide-53

Managing Documents 53



            // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

            EbiDocument doc = cmgr.addDocument(context, docParams);

        }
    }

Specifying field values for a document
When you add a document, you must create a set of field values that match the fields 
defined for the document’s type. Each field can have one or more values, and null 
values are allowed. The fields and their values are called extension metadata, in 
contrast to the standard metadata defined for an EbiDocument object (such as title, 
author, abstract, and status).

You manage the extension metadata via two objects:

After you create an EbiDocExtnMetaInfo object for a specific field, you set the values 
for the field as an array, even if there is only one value. The type of the array must 
correspond to the data type of the field.

After you’ve created an EbiDocExtnMetaInfo object for each field and added it to the 
EbiDocExtnMeta object, call setExtensionMetaData() for EbiAddDocumentParams to 
associate it with the document you are adding.

Getting fields for the document type 
To find out what fields to specify for a document, you can get a collection of 
EbiDocField objects for the document type. This example presents a method called 
getDocTypeFields() that gets all the document type fields to which the user has READ 
access.

The getDocTypeFields() method needs to access a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments:

public void getDocTypeFields(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException

Object Description

EbiDocExtnMeta A holder for all the extension metadata for all the fields

EbiDocExtnMetaInfo Associates a field with a set of values
54 exteNd Director Content Management Guide



    {
        EbiDocType docType = cmgr.getDocumentTypeByName(context, "Movie Review");
        if (docType != null)
        {
            Collection fields = cmgr.getFilteredDocumentFields(context, 
docType.getDocTypeID());
            System.out.println("Fields: " + fields);
        }
    }

Getting a field object by name 
You can also get individual fields by name. This example presents a method called 
getField() that gets the field named Director.

The getField() method needs to access a content manager (EbiContentMgmtDelegate) 
and context object (EbiContext), which are passed in as arguments:

public void getField(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        EbiDocField fldDirector = cmgr.getDocumentFieldByName(context, "Director");
        System.out.println("Director field: " + fldDirector);
    }

Setting a field value 
This example presents a method called setFieldValues() that performs the following 
tasks:

Creates an EbiDocExtnMeta holder and EbiDocExtnMetaInfo objects for the 
Director and Genre fields
Associates the EbiDocExtnMeta object with an EbiAddDocumentParams object 
that it uses to add the new document to the content respository

The values for each field are passed as String arrays.

Note that the setFieldValues() method does not set the ACL for the new document. 
This means that the ACL is null and the document inherits the ACL of its folder.

The setFieldValues() method needs to access a content manager 
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as 
arguments:

public void setFieldValues(EbiContentMgmtDelegate cmgr, EbiContext context)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get the doctype
        EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");
exteNd Director Content Management Guide-55

Managing Documents 55



        // Get the folder
        EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
            context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);
        // Instantiate a document addition parameters object
        EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();

        // Create the extension metadata holder object
        EbiDocExtnMeta meta = cmgr.createExtnMeta();

        // Specify the extn metadata field values for 'Director'
        EbiDocField fldDirector = cmgr.getDocumentFieldByName(context, "Director");
        EbiDocExtnMetaInfo miDirector = cmgr.createExtnMetaInfo(fldDirector);
        String[] directors = { "Andy Wachowski", "Larry Wachowski" };
        miDirector.setFieldValues(directors);
        meta.setExtnMetaInfo(miDirector);

        // Specify the exnt metadata field values for 'Genre'
        EbiDocField fldGenre = cmgr.getDocumentFieldByName(context, "Genre");
        EbiDocExtnMetaInfo miGenre = cmgr.createExtnMetaInfo(fldGenre);
        String[] genres = { "Action", "Thriller", "Sci-Fi" };
        miGenre.setFieldValues(genres);
        meta.setExtnMetaInfo(miGenre);

        // Get the content
        String movieContent = "This movie has exceeded all expectations!....";
        byte content[] = movieContent.getBytes();

        // Set the extension metadata into the doc params object
        docParams.setExtensionMetaData(meta);

        docParams.setName("The Matrix (1999)");
        docParams.setDocTypeID(type.getDocTypeID());
        docParams.setFolderID(folder.getID());
        docParams.setAuthor("Night Ghost");
        docParams.setTitle("The Matrix (1999)");
        docParams.setMimeType("text/xml");
        docParams.setContent(content);
        docParams.setComment("Initial revision.");

        // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

        EbiDocument doc = cmgr.addDocument(context, docParams);

        // Publish the new document
        cmgr.publishDocumentContentVersion(context, doc.getID(), 1, true, true);
    }
56 exteNd Director Content Management Guide



Getting all fields 
This example presents a method called getExtnMeta() that gets all the extension 
metadata fields for a specified document. The method uses the EbiDocExtnMeta 
object as a holder for the document’s fields. This object provides methods for getting 
information about the fields, such as names and values.

The getExtnMeta() method needs to access a content manager 
(EbiContentMgmtDelegate), context object (EbiContext), and the document of 
interest—all of which are passed in as arguments:

public void getExtnMeta(EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        // Get the extension metadata holder for the document
        EbiDocExtnMeta extnMetaData = cmgr.getDocumentExtnMeta(context, docID);
        System.out.println("Extension metadata: " + extnMetaData);

        // Enumerate the field names
        Iterator fieldNames = extnMetaData.getFieldNames().iterator();
        while (fieldNames.hasNext())
            System.out.println("Field: " + (String)fieldNames.next());

        // For each extension meta info
        for (int i = 0; i < extnMetaData.size(); i++)
        {
            EbiDocExtnMetaInfo mi = extnMetaData.getExtnMetaInfoByIndex(i);
            System.out.println("MetaInfo " + i + ": " + mi);

            String fieldName = mi.getFieldName();
            System.out.println("Field name: " + fieldName);

            Collection fieldValues = mi.getFieldValues(false);
            System.out.println("Values: " + fieldValues);
        }
    }

Getting field values for a single field 
This example presents a method called getExtnMeta() that gets an 
EbiDocExtnMetaInfo object for a single field.

The getExtnMeta() method needs to access a content manager 
(EbiContentMgmtDelegate), context object (EbiContext), and the document and field 
of interest—all of which are passed in as arguments:

public void getExtnMeta(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        String docID, String fieldID)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
exteNd Director Content Management Guide-57

Managing Documents 57



    {
        EbiDocExtnMetaInfo info = cmgr.getDocumentExtnMetaInfo(
            context, docID, fieldID);
        System.out.println("Meta Info: " + info);
    }

From the EbiDocExtnMetaInfo object you can get a Collection of the values for the 
field (the values of the array that set the field). A boolean argument lets you specify 
whether the data type of the returned values is String or the actual data type of the field.

This statement gets the values of the EbiDocExtnMetaInfo object as Strings:

Collection valueStrings = info.getFieldValues(true);

Methods for managing documents

This table lists methods that let you manage documents, edit the metadata, and get 
documents: 

Method Returns Description

createAddDocument
Params()

EbiAdd-
DocumentParams

Creates an empty object to 
hold the data needed to add 
a document, including 
metadata, extension 
metadata, content, and 
ACL. You use the 
EbiAddDocumentParams 
object with the 
addDocument() method.

addDocument() EbiDocument Adds a document to the 
content repository. Content 
for the document is 
optional.

copyDocument() EbiDocument Copies a document to a 
folder or to a parent 
document.

getDocument() EbiDocument Gets a document object for 
a specified document ID.

moveDocument() EbiDocument Moves a document to a 
folder or to a parent 
document.
58 exteNd Director Content Management Guide



updateDocument() void Updates the information 
about a document in the 
content repository using 
changes made to 
EbiDocument.

removeDocument() boolean Removes a document and 
all its versions from the 
system.

addDocumentCategory-
Reference()

void Adds a document to a 
category. A document can 
belong to many categories.

removeDocument
Category-Reference()

boolean Removes a document from 
a category.

getDocumentExtnMeta() EbiDocExtnMeta Gets a holder for the 
extension metadata objects 
associated with each field 
of the document. Its 
methods let you get the 
values for individual fields.

getDocumentExtnMeta-
Info()

EbiDocExtnMeta
Info

Gets the extension 
metadata object for a field 
of the document.

getDocumentsByType() 
and getFilteredDocuments-
ByType()

Collection of 
EbiDocument

Gets a collection of the 
documents of a particular 
document type. The filtered 
version omits documents to 
which the current user has 
no READ access. The 
unfiltered version gets all 
documents for the type, 
regardless of access rights.

getLatestDocumentContent-
Version()

EbiDocVersion Gets the most recent 
version of a document.

getDocumentContent-
Version()

EbiDocVersion Gets a version of a 
document.

getDocumentContent-
Versions()

Collection of 
EbiDocContent

Gets all the versions of a 
document.

publishDocumentContent-
Version()

void Publishes a version of a 
document.

Method Returns Description
exteNd Director Content Management Guide-59

Managing Documents 59



Specifying layout sets for documents
Typically, the layout styles associated with the document type are adequate for 
displaying your document (as described in “Managing layout styles” on page 38). 
When you have hundreds of documents (news stories, press releases, editorials, 
reviews), you don’t want to design custom XSL for each one. One design or a few 
alternative designs are enough; you can associate one or more layout styles with a 
document type. 

When to use a layout set
When you want to lock in a particular layout for an individual document, you can 
specify a layout set for that document. A layout set uses a specific layout style, selected 
from the ones that are valid for the document’s type. The layout set uses one or more 
of the layout document descriptors associated with that style. In the set you can use 
whatever version of the layout document is currently published or you can select a 
specific version. The set needs to includes layout document descriptors for whatever 
clients will view the content. The XSL in the layout documents associated with the 
descriptors render the document.

What a layout set is good for A layout set is meant for locking in a presentation 
so that the document always looks the same. As layout styles for a document type 
evolve with new versions, the presentation of an individual document will change. Use 
a layout set when it is important to preserve the original presentation. 

getContent() EbiDocContent Gets the published content 
for a document. If the 
document is not published, 
returns null.

unpublishDocumentContent() boolean Removes a document’s 
content from the published 
area. 

The content for all 
document versions remains 
intact.

Method Returns Description
60 exteNd Director Content Management Guide



What a layout set is less appropriate for The layout set is less appropriate for 
giving a document a unique look. It may be more appropriate to add a new document 
type. However, you can also add a custom style to the document type in order to make 
a special layout available for the document. If you don’t want to be constrained to 
styles for the document type, you could design your application to locate style 
documents another way—for example, via a custom field. However, you would want 
to make sure your custom system has the flexibility for getting different XSL for 
different clients.

Methods for managing layout sets
These methods of EbiContentMgmtDelegate manage layout sets: 

To associate a layout set with a new document, call the setLayoutSet() method of 
EbiAddDocumentParams.

To change the XSL documents in the layout set of an existing document, call 
getDocumentLayoutSet(), call methods of EbiDocLayoutSet to make changes, and 
then call updateDocumentLayoutSet().

NOTE:  Currently, you cannot add a layout set to a document if it didn’t have one when 
it was added.

Method Returns Description

createDocLayoutSet() EbiDocLayoutSet Creates an empty layout set. 
It is associated with a 
document when you call 
addDocument().

getDocumentLayoutSet() EbiDocLayoutSet Gets the layout set for a 
document.

removeDocumentLayoutSet() boolean Removes the layout set from 
the document.

updateDocumentLayoutSet() void Updates the layout set with 
new layout style and layout 
style descriptor information.
exteNd Director Content Management Guide-61

Managing Documents 61



Creating links between documents 
You can specify relationships between documents by specifying that one document is 
a child of another. 

This section includes these topics:

Two types of document relationships
Hierarchical linking
Adding a child document
Compound linking
Linking a child document
Updating a link with a new document version
Getting linked parent documents
Getting linked child documents

Two types of document relationships
The content repository supports two types of document relationships—hierarchical 
and compound

Document 
relationship Description

Hierarchical Where each document in the hierarchy stores the ID of its parent 
document. A document has only one parent. The value –1 
identifies the top document in a chain of links. The chain can be 
an indefinite number of levels deep.

Hierarchical linking is designed for a threaded discussion and 
similar structures. 

Compound Where a link object identifies the originator of the link (parent) 
and the target of the link (child). A parent can have many child 
documents, and a child can have many parents.

Compound linking is designed for building composite documents, 
where many pieces of content are brought together in a single 
presentation page. For example, child documents might include 
sections of a report, a list of cross-references that is appended to 
a document, or images to be displayed in a page.
62 exteNd Director Content Management Guide



You can use linked documents in many ways. A parent document might serve as a 
container of child documents, where each subsection of the document is produced by a 
different author. Documents could be linked in a chain to identify a message thread. 
Links could point to nontext documents that are stored separately, such as images or 
sound files.

CAUTION:  When specifying either hierarchical or compound links, you are not 
prevented from creating circular links, where a parent document is also a child of its 
child document. If you do this, proceed with caution: circularity may confuse both 
programmer and end user. It is up to you to understand the link structure of your 
repository when you process the content. 

Hierarchical linking 
Hierarchical linking lets you create a threaded discussion. The following diagram 
shows two views of a threaded discussion. Each reply has one parent, and each 
message can be the parent of several replies. The top message in each chain has no 
parent.

When a user submits a reply, the application uses the ID of the original message as the 
parent of the new reply document:
exteNd Director Content Management Guide-63

Managing Documents 63



Methods for hierarchical linking

These methods of EbiContentMgmtDelegate are useful in managing hierarchical links: 

In addition, when you have an EbiDocument object, you can get and change the parent 
document ID, via getParentDocID() and setParentDocID(). After changing the ID, call 
updateDocument() to put the changes in the repository.

Adding a child document 
This example presents a method called addChildDocument() that creates a child 
document as a reply in a message thread. Inside a while loop, the method navigates the 
thread to the top message, and then uses its title to construct the name and subtitle of 
the reply.

The addChildDocument() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), the parent document, a 
message subject, and a reply—all of which are passed in as arguments:

public void addChildDocument(
        EbiContentMgmtDelegate cmgr, EbiContext context, String 
folderID,
        String parentID, String subject, String reply)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        EbiAddDocumentParams params = 
cmgr.createAddDocumentParams();
        params.setName("Reply to " + threadTitle);
        EbiDocType doctype = cmgr.getDocumentTypeByName(context, 
"Discussion");
        if (doctype != null)
            params.setDocTypeID(doctype.getDocTypeID());
        params.setFolderID(folderID);
        params.setAuthor(context.getUserID());
        params.setTitle(subject);

Method Returns Description

addDocument() EbiDocument When adding a document, you can make 
it a child document by specifying a parent 
ID. If the parent ID is –1, the document 
has no parent.

getChildDocuments() 
and getFilteredChild-
Documents()

Collection of 
EbiDocument

Gets child documents that have a parent 
ID of the specified document. The filtered 
version omits documents to which the 
current user has no READ access. The 
unfiltered version gets all child 
documents, regardless of access rights.
64 exteNd Director Content Management Guide



        params.setSubtitle(threadTitle);
        params.setMimeType("text/plain");
        params.setContent(reply.getBytes());
        params.setParentID(parentID);
        cmgr.addDocument(context, params);

    }

Compound linking 
Compound linking lets you create a network of interrelated documents. You might use 
it to create a composite document out of many contributed pieces, such as sections 
(written by different authors), images, cross-references, and other information. 

For more information, see “Composite documents” on page 74.

The following diagram shows a network of documents that are used by two different 
parent documents; some of the material is shared by both:

Access to documents you want to link To create a link, you must check out both 
the parent and child documents, add the link, and then check in both documents. 

XML for composite documents It is easy to program the display of a composite 
document when the content type is XML. Your portlet inserts each child document as 
a node in the DOM with an appropriate element name. An XSL style sheet specifies 
how those elements are displayed. You don’t have to insert the child documents into 
existing content in any particular order. The order is determined by the style sheet. By 
selecting different style sheets, you can change the way the different elements are 
displayed and whether they are included at all. 

For information about style sheets for document types, see “Managing layout 
styles” on page 38. To specify styles for individual documents, see “Specifying layout 
sets for documents” on page 60.
exteNd Director Content Management Guide-65

Managing Documents 65



For example, suppose you have a Movie Review document type and the paragraphs of 
the review are its content. Child documents for the review could include an image from 
the movie and biographies of the cast. In the displayed HTML, the biographies could 
be displayed on the same page or they could be links to another HTML page. You could 
have different style sheets that determine which way to display the biographies and 
whether the image is on the left or the right.

Methods for compound linking

NOTE:  When adding, removing, and changing links, you must check out the parent 
and child documents.

These methods of EbiContentMgmtDelegate are useful in managing compound links: 

Method Returns Description

addDocumentLink() EbiDocLink Adds a link between two 
documents. For the child version ID 
argument, you can specify a 
specific version or –1 to use the 
published version.

getDocumentLink() EbiDocLink Gets a link object, given the parent 
and child IDs.

removeDocumentLink() boolean Removes a link.

updateDocumentLink() void Allows you to change the version of 
the child document the link uses.

getLinkChildDocuments() 
and getFilteredLinkChild-
Documents()

Collection of 
EbiDocument

Gets the link objects for the child 
documents that are linked to the 
specified parent document. The 
filtered version omits documents to 
which the current user has no 
READ access. The unfiltered 
version gets all documents 
regardless of access rights.

getLinkParentDocuments() 
and getFilteredLinkParent-
Documents()

Collection of 
EbiDocument

Gets the document objects for the 
parent documents to which the 
specified child document is linked. 
The filtered version omits 
documents to which the current 
user has no READ access. The 
unfiltered version gets all 
documents regardless of access 
rights.
66 exteNd Director Content Management Guide



Linking a child document 
This example presents a method called addDocLink() that adds a link between a 
parent document and a child document.

The addDocLink() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), the parent and child 
documents, and the child document version—all of which are passed in as arguments.

public void addDocLink(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        String linkParentDocID, String linkChildDocID, int 
linkChildVersionID)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        EbiDocLink lnk = cmgr.addDocumentLink(
            context, linkParentDocID, linkChildDocID, 
linkChildVersionID);
    }

Updating a link with a new document version 
This example presents a method called updateDocumentContentAndLink() that 
creates and publishes a new version of a child document, then updates the link from the 
parent to point to the new version. 

If a new version of the child document is published later, this link continues to point to 
the old version. A link between parent and child must exist. If not, you need to use 
addDocumentLink() instead of updateDocumentLink().

The updateDocumentContentAndLink() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), the parent and child 
documents, document content, and a MIME type—all of which are passed in as 
arguments:

public void updateDocumentContentAndLink(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        String linkParentDocID, String linkChildDocID,
        byte[] linkChildDocContent, String linkChildDocMimeType)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        // Create a new version of the link child document
        int newVersionID = cmgr.checkinDocument(
            context,                   // Context
            linkChildDocID,            // Docid of link child
            linkChildDocMimeType,      // Mime type
            linkChildDocContent,       // New content
            "new version",             // Check-in comment
            false);                    // Whether to keep doc

 // checked out
exteNd Director Content Management Guide-67

Managing Documents 67



        // Publish it
        cmgr.publishDocumentContentVersion(
            context, linkChildDocID, newVersionID, true, true);

        // Now update the link to point to the new version
        cmgr.updateDocumentLink(
            context,                   // Context
            linkParentDocID,           // Link parent docid
            linkChildDocID,            // Link child docid
            newVersionID);             // New version id
    }

Getting linked parent documents 
This example presents a method called getLinkParentDocuments() that gets the 
parent documents that are linked to a specified child.

By calling getFilteredLinkParentDocuments(), the code retrieves only documents to 
which the user has READ access.

The getLinkParentDocuments() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), and the child document 
of interest—all of which are passed in as arguments:

public void getLinkParentDocuments(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        String linkChildDocID)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        Collection linkParentDocs = 
cmgr.getFilteredLinkParentDocuments(context, linkChildDocID);
        System.out.println("Parent docs: " + linkParentDocs);
    }

Getting linked child documents 
This example presents a method called getLinkChildDocuments() that gets the child 
documents that are linked to a specified parent.

By calling getFilteredLinkChildDocuments(), the code retrieves only documents to 
which the user has READ access.
68 exteNd Director Content Management Guide



The getLinkChildDocuments() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), and the parent document 
of interest—all of which are passed in as arguments.

public void getLinkChildDocuments(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        String linkParentDocID)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        Collection linkChildDocs = 
cmgr.getFilteredLinkChildDocuments(context, linkParentDocID);
        System.out.println("Child docs: " + linkChildDocs);
    }

Modifying and publishing documents
The CM subsystem includes functionality that supports checkout, checkin, versioning, 
and publishing.

Much of the information in the CM subsystem is data about documents. However, 
when you start using the checkout and checkin methods, you also get multiple versions 
of document content. Each time a document is checked in, a new version is created. 
When a document is published, there is also a released version of the content, which 
comes from the set of versions. You can continue creating new versions, while the 
publicly available version remains stable.

The diagram that follows shows the relationship between an EbiDocument object, 
which holds the document metadata, and its version objects. The content for each 
version is stored in an EbiDocVersion object. When you select a version for publishing, 
that version’s content is copied to an EbiDocContent object.

NOTE:  It is important to remember that only the content has multiple versions. There 
is only one version of the document’s metadata.
exteNd Director Content Management Guide-69

Managing Documents 69



You might program portlets for source control and publishing to accomplish tasks like 
these:

Tracking document status
To find out if a document is published, you call the EbiDocument method 
getPublishStatus(). If it returns null, then the document has no published content. 

A publish date does not automatically reflect the time the document was published. It 
just indicates when it should be published; for example, a publish date of null means 
publish immediately. However, your publishing portlet can set the publish date if you 
want to track the date a document became available.

The document’s status field is available for your own document tracking. You can 
establish your own application-specific set of status values and update the document’s 
status field to reflect its progress through your document processing procedures. For 
example, you could specify submitted, reviewed, approved, rejected, published, 
unpublished, archived, and purged as status values for your application.

Task Information

Add a new document to 
the system

If the document is added with accompanying content, 
the system creates a first version.

Check out a document When a user checks out the document, your portlet 
copies the content to an appropriate editing 
environment.

Check in a document When the user checks in the document, the system 
creates a new version.

Publish documents You might have a scheduled task that checks publish 
dates and calls publishDocumentContentVersion() 
when a document’s publish date is passed.

Unpublish documents You might have a scheduled task that removes a 
published version when the expiration date has 
passed. The task might move the document to an 
archive folder, purge it from the system, or set its 
publish date so another version can be published 
later.

Review the checkin 
comments for a 
document’s versions.

—

70 exteNd Director Content Management Guide



Setting document status This example presents a method called 
setDocumentStatusToRejected() that sets a document’s status to rejected—perhaps 
to indicate that the document has been rejected by a content administrator and requires 
further changes before it can be published. Note that after setting status, you must call 
the updateDocument() method for the change to take effect.

The setDocumentStatusToRejected() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), and the document of 
interest—all of which are passed in as arguments:

public void setDocumentStatusToRejected(
        EbiContentMgmtDelegate cmgr, EbiContext context, String 
docID)
        throws EboUnrecoverableSystemException, 
EboSecurityException, EboItemExistenceException
    {
        EbiDocument doc = cmgr.getDocument(context, docID);
        doc.setStatus("rejected");
        cmgr.updateDocument(context, doc);
    }

Methods for source control and publishing
These methods of EbiContentMgmtDelegate are available for source control and 
publishing: 

Method Returns Description

checkoutDocument() boolean Checks out a document to the current 
user (specified in the context 
argument). This method locks the 
document. To get the content for 
editing, use other methods—such as 
getDocumentContentVersion().

checkinDocument() int Checks in a new version of the 
document with data for the content. 
Only the user who checked out the 
document can check it in. The user is 
implicit in the context argument.

uncheckoutDocument() boolean Releases the lock set by the current 
user.

unlockDocument() boolean An administrative method that allows 
you to release a document lock that 
was set by any user.
exteNd Director Content Management Guide-71

Managing Documents 71



Displaying documents
Portlets in your online application get a document’s metadata and content, retrieve 
linked content, and use the associated layout styles to display the document to the user.

HTML content 
If the content type of a document is HTML and it has no linked documents, the portlet 
might simply get and set the content, as shown below:

EbiContentMgmtDelegate cm = null;
try {

cm = 
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

} catch (EboFactoryException ebfe) {
throw new EboUnrecoverableSystemException(ebfe, 
"Unable to get ContentManager");

}
try {

EbiDocument doc = (EbiDocument)
cm.lookupDirectoryEntry(context, "MyFolder/TDBDoc1",
EbiDocument.EL_DOCUMENT);
EbiDocContent content = cm.getContent(context, doc.getID(), 

true);

rollbackDocument-
Content()

void Rolls document content from the 
latest version back to the specified 
one.

publishDocument-
ContentVersion()

void Publishes a specific version of the 
specified document.

getContent() EbiDocContent Gets the published content object for 
a document. You can choose 
whether it includes the actual data. If 
it does, get the byte array of data by 
calling getData() of EbiDocContent.

getDocumentContent-
Version()

EbiDocVersion Gets a version of a document. You 
can choose whether it includes the 
actual data. If it does, get the byte 
array of data by calling getData() of 
EbiDocVersion.

unpublishDocument-
Content()

boolean Removes the published content for a 
document. 

Method Returns Description
72 exteNd Director Content Management Guide



if (content != null)
{

     PrintWriter writer = response.getWriter();
byte [] html = content.getData();
String shtml = new String(html);
writer.print(shtml);

}

} catch (EboItemExistenceException eiee)
{

throw new EboUnrecoverableSystemException(eiee, 
"Unable to get Content");

} catch (EboSecurityException ese)
{

throw new EboUnrecoverableSystemException(ese, "Security 
exception");
}

XML content 
If the content of a document is an XML String and it has no linked documents, the 
portlet could get the content and the document layout (also as an XML String) and use 
the layout XSL to transform the XML. 

This concept is illustrated in the displayContent() example method shown below. In 
this example, methods in com.sssw.fw.util.EboXmlHelper convert a String to a DOM 
and apply an XSL transformation to a DOM. The displayContent() method accesses a 
content manager (EbiContentMgmtDelegate), the context object (EbiContext), and the 
document of interest—all of which are passed as arguments:

public void displayContent(
        EbiContentMgmtDelegate cmgr, EbiPortalContext context, String docID)
        throws EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException
    {
        EbiDocument doc = (EbiDocument)cmgr.lookupDirectoryEntry(
            context, "MyFolder/TDBDoc1", EbiDocument.EL_DOCUMENT);
        EbiDocContent doccnt = cmgr.getContent(context, doc.getID(), true);
        if (doccnt != null)
        {
            byte[] xml = doccnt.getData();
            EbiDocVersionDescriptor layoutver = cmgr.getDocumentLayout(
                context, docID, EbiContentMgmtDelegate.COMPARE_ALL, true);
            EbiDocVersion layoutcnt = cmgr.getDocumentContentVersion(
                context, layoutver.getDocumentID(), layoutver.getDocumentVersionID(), 
true);
            byte[] xsl = layoutcnt.getData();
            String sxml = new String(xml);
            String sxsl = new String(xsl);

            String content = EboXmlHelper.processXML(
                EboXmlHelper.getDOM(sxml), EboXmlHelper.getDOM(sxsl));
exteNd Director Content Management Guide-73

Managing Documents 73



            // Set type according to results of xsl transformation
            response.setContentType(EbiPortletConstants.MIME_TYPE_HTML);
            // Use a PrintWriter to render
            writer.print(content);
        }
    }

Composite documents
A composite document could be constructed in many different ways. It is up to your 
portlet to gather the pieces and put them together in an appropriate way. Typically, you 
would build an XML DOM for the composite document and add elements for each 
piece. For a simpler composite document where the pieces are HTML fragments, you 
might concatenate them into a larger HTML fragment. 

To illustrate the process of building an XML DOM, suppose you are displaying a 
movie review, a document of type Movie Review. The content of the movie review 
document is the text paragraphs of the review. The document’s metadata provides the 
title, author, and other information specific to the Movie Review type, such as genre, 
director, year of release, and cast. Child documents refer to an image of the movie and 
cast biographies. To display all the data, the portlet builds an XML DOM of the pieces 
and provides an XSL style sheet for display specifications.

You will want to plan an XML structure for defining the XSL and building the DOM 
in the portlet’s code. You may want to formalize that structure in a DTD. The XML 
structure might look like this (shown without closing tags):

<REVIEW>
<TITLE>
<AUTHOR>
<GENRE>
<DIRECTOR>
<CAST>

<CASTMEMBER>
<CASTPICTURE>
<BIO>

</CASTMEMBER>
<CASTMEMBER>

<CASTPICTURE>
<BIO>

</CASTMEMBER>
</CAST>
<CONTENT>

</REVIEW>
74 exteNd Director Content Management Guide



The coding steps might be:

1 Get the EbiDocument object.
2 Get the metadata you want displayed (such as title, author, director, and genre) 

and add elements for each one. Element names might be TITLE, AUTHOR, and 
so on. The data values could be attributes or text nodes of the elements.

3 Get the cast metadata and add a CAST element, with child CASTMEMBER 
elements for each one. 

4 Get the content data. Add a CONTENT element for the review paragraphs (the 
document content) and add the content data as a text node of the element.

5 Call getLinkChildDocuments() to get the linked child documents.
6 For each linked document, get the MIME type and other information to 

determine the document’s purpose:
For an image from the film, add a MOVIEPICTURE element whose 
attributes have information needed by the XSL to build an image link.
For a cast biography, find the corresponding CASTMEMBER element and 
add a child BIO element. Depending on the page design, you could insert 
information to build a link or include the paragraphs.
For a picture of a cast member, find the CASTMEMBER element and add a 
CASTPICTURE element with information to build an image link.

7 When the XML DOM is complete, call methods of the context object to set the 
MIME type and the content.
exteNd Director Content Management Guide-75

Managing Documents 75



76 exteNd Director Content Management Guide



4
 Securing Content Chapter 4
This chapter describes how to use ACL-based security to authorize access to Content 
Management (CM) subsystem elements. It has these sections:

About access control
ACL-based security
Methods for managing access control
Examples of adding ACLs
Example of handling a security exception

NOTE:  Most of the security tasks described in this chapter can also be accomplished 
using the CMS Administration Console. 

For more information, see Chapter 19, “Managing Content Security”.

About access control 

The CM subsystem supports ACL-based security, as described in “ACL-based 
security” on page 78. You can specify access restrictions based on user ID or group 
membership on most objects in the CM subsystem. You can use access restrictions to:

Prevent changes after your infrastructure of document types, folders, and 
categories has been set up
Prevent inadvertent deletion of objects
Protect documents or other objects from being seen by unauthorized users
77



CM user groups
A comprehensive security policy must set different permissions for different user roles. 
Typical roles in the CM subsystem are:

When setting up users and groups for exteNd Director, you will want to consider how 
your users fall into these roles and create appropriate groups. You can use those user 
IDs and groups to create ACLs that implement your security. You might create a master 
ACL that you can get and reuse throughout the CM subsystem.

You can set up users and groups using the Director Administration Console (DAC).

For more information, see the chapter on using the Directory section of the DAC 
in the User Management Guide.

ACL-based security
You specify access restrictions on CM objects by using an access control list (ACL). 
To provide support for ACLs, exteNd Director implements the java.security.acl.Acl 
interface. Each of the securable elements has a set of supported access right types, or 
permissions. The supported permissions are defined as String constants in each 
object’s interface.

This section describes using ACLs to specify access restrictions on CM objects.

For general information about using ACLs in exteNd Director applications, see 
the chapter on ACL-based security in the User Management Guide

Role Description

Author Has read and write access for documents; has read, write, and list 
access for folders and categories.

Publisher Has publish access for documents; has list access for folders and 
categories.

Administrator Has all access rights to all objects. Users are considered 
administrators when the ACL assigned to the EbiContentAdmin 
interface gives them at least one of the permissions. See 
“ContentAdmin group” on page 80.
78 exteNd Director Content Management Guide

usSecurityACL.html
usPACDirectory.html


Permissions 
The permissions defined for the CM subsystem include:

Element types and associated permissions
The table that follows lists the subsystem securable element types (not including some 
securable superinterfaces) and permissions they support:

Permission Description

PROTECT Allows the users and groups in the ACL to change permissions on 
the object.

READ Allows the users and groups in the ACL to view the object or get the 
metadata for an object.

WRITE Allows the users and groups in the ACL to make changes to the 
object, by updating the object programmatically or by checking in a 
new version of a document. A user who has been denied WRITE 
access cannot check out a document.

LIST Allows the users and groups in the ACL to view a list of the objects 
that this object contains. This includes the documents and subfolders 
of a folder, the documents and subcategories of a category, and the 
documents associated with a document type.

PUBLISH For documents, allows the users and groups in the ACL to change 
the published status of the document. They can publish it and 
remove it from the published area.

Object Access right types

EbiContentAdmin PROTECT, READ, WRITE

EbiDocType PROTECT, READ, WRITE, LIST

EbiDocField PROTECT, READ, WRITE

EbiDocCategory PROTECT, READ, WRITE, LIST

EbiDocFolder PROTECT, READ, WRITE, LIST

EbiDocument PROTECT, READ, WRITE, PUBLISH

EbiDocLayoutStyle PROTECT, READ, WRITE

EbiLayoutDocDescriptor PROTECT, READ, WRITE
exteNd Director Content Management Guide-79

Securing Content 79



ContentAdmin group
The EbiContentAdmin interface represents the built-in content administrator group. 
Users added to this group have specified access to subsystem management and 
administration. Here are the available permissions:

Methods for managing access control
The EbiContentMgmtDelegate interface provides access to most of the security-
related methods in the CM subsystem.

Accessing ACLs for existing elements
These methods of EbiContentMgmtDelegate let you set security for objects: 

Permission Description

PROTECT Set ACLs for the ContentAdmin type.

READ Get subsystem elements (folders, categories and documents) in the 
CM subsystem

WRITE Add subsystem elements to the CM subsystem

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL for a securable 
element: category, field, folder, 
layout style, layout document 
descriptor, document type, or 
document.

setAcl() void Assigns an ACL to a securable 
element.

removeAcl() boolean for success Removes the ACL currently set for 
an element.

isAuthorized() boolean Checks whether the user identified 
in the context object is authorized 
for the specified type of access for 
an object.

getAllAccessible() Collection From a list of securable elements, 
filters out the ones that are 
accessible to the user whose 
context is passed in.
80 exteNd Director Content Management Guide

../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html


Specifying ACLs for new elements
For securable elements, you can specify an ACL when you create the object. It is an 
argument of the object’s add method on the EbiContentMgmtDelegate — 
addDocument(), addFolder(), and so on.

For a code example, see “Examples of adding ACLs” on page 82.

Inheriting ACLs
For the following objects: if you don’t specify an ACL when you create them, the 
settings of their containers are copied to the new object:

After the object is created, there is no further connection to the container’s ACL. 
Changes to a container’s ACL have no effect on the contained objects.

For other object types: if you don’t specify an ACL, they have an empty ACL. 

getAdminElement() EbiContentAdmin Gets the Content Admin element 
holding the ACL that identifies the 
users and groups that have 
administrator access to content 
objects.

See “Accessing ACLs for 
ContentAdmin” on page 82.

hasAdminAccess() boolean This is a shortcut for isAuthorized() 
and is invoked with a reference to 
the Content Admin element.

New Copy the ACL of their

Folders Parent folder

Documents Folder

Layout descriptors Layout style

Method Returns Description
exteNd Director Content Management Guide-81

Securing Content 81



Accessing ACLs for ContentAdmin 
These methods on EbiContentAdmin allow you to access ACLs for the ContentAdmin 
group:

Restricting element access to administrators
You can restrict access for any CM element to Content Admin users using the 
setRestrictedAccess() method. Specify the permission you want to restrict. For 
example, if you restrict access to a folder for the WRITE permission, only members of 
the ContentAdmin group have WRITE access to the element. 

NOTE:  The restricted access right takes precedence over any other ACL associated 
with the restricted element.

Here are the related methods on the EbiSecurityManager interface:

Examples of adding ACLs
This example presents a method called demonstrateSecurity() that illustrates the 
following techniques:

Adding READ access to the ContentAdmin element associated with a principal 
(the identity assigned to a user as a result of authentication)
Adding a folder with an ACL

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL currently set for the 
ContentAdmin element.

setAcl() void Assigns an ACL to the Content 
Admin element.

removeAcl() boolean for success Removes the ACL currently set for 
the Content Admin element.

isUserAuthorized() boolean Checks if the current user is listed 
in the Content Admin ACL.

Method Returns Description

setRestrictedAccess() boolean for 
success

Restricts specified access for an element 
to system administrators

check 
RestrictedAccess()

boolean Checks whether an element has 
restricted access
82 exteNd Director Content Management Guide

../javadoc/com/sssw/cm/api/EbiContentAdmin.html
../javadoc/com/sssw/fw/security/api/EbiSecurityManager.html


Adding a folder with no ACL
NOTE:  In this case the folder inherits the ACL from its parent.

Adding an ACL to an existing folder

The demonstrateSecurity() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), and a principal—all of 
which are passed in as arguments:

public void demonstrateSecurity(
        EbiContentMgmtDelegate cmgr, EbiContext context,
        Principal principal)
        throws
            EboUnrecoverableSystemException, EboSecurityException, 
EboItemExistenceException, EboFactoryException, NotOwnerException
    {
        EboPermission readPerm = EboPermission.getPermission(
            context.getEbiSession(), EboPermission.READ);
        EboPermission writePerm = EboPermission.getPermission(
            context.getEbiSession(), EboPermission.WRITE);

        // Add READ access to the Content Admin element to the passed-in principal
        EbiContentAdmin adminElement = cmgr.getAdminElement(context);
        Acl admAcl = cmgr.getAcl(context, adminElement);
        AclEntry aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry();
        aclEntry.setPrincipal(principal);
        aclEntry.addPermission(readPerm);
        admAcl.addEntry(principal, aclEntry);
        cmgr.setAcl(context, adminElement, admAcl);

        // Add a folder with an ACL
        Acl acl = com.sssw.fw.factory.EboFactory.getAcl();
        aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry();
        aclEntry.setPrincipal(principal);
        aclEntry.addPermission(readPerm);
        aclEntry.addPermission(writePerm);
        cmgr.addFolder(
            context,
            cmgr.getRootFolder(context),
            "Movie Reviews",
            EbiDocFolder.DIR_TYPE_DEFAULT,
            "Folder for movie reviews",
            acl);

        // Add a folder with no ACL -- it will inherit the ACL
        // from its parent folder (if there is an ACL set on the parent)
        EbiDocFolder frFolder = cmgr.addFolder(
            context,
            cmgr.getRootFolder(context),
            "Financial Reports",
            EbiDocFolder.DIR_TYPE_DEFAULT,
            "Folder for financial reports",
            null);
exteNd Director Content Management Guide-83

Securing Content 83



        // This code adds an ACL to an existing folder.
        cmgr.setAcl(context, frFolder, acl);
    }

Example of handling a security exception
This example presents a method called demonstrateHandleExceptions() that 
illustrates how to handle a security exception (and other exceptions as well).

This code publishes version 2 of a document whose ID is assigned to the variable 
docid. The publishDocumentContentVersion() method will throw an 
EboSecurityException if the user is not allowed to publish the specified document. 
This example handles the exception by adding an error message to the context object. 
The portlet can then include the error message in its generated content so the user 
knows what went wrong.

The demonstrateHandleExceptions() method needs to access a content manager 
(EbiContentMgmtDelegate), the context object (EbiContext), and the document of 
interest—all of which are passed in as arguments.

public void demonstrateHandleExceptions(
        EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
    {
        try
        {
            cmgr.publishDocumentContentVersion(context, docID, 2, true, true);
        }
        catch (EboSecurityException se)
        {
            se.printStackTrace();
            String msg = "Security violation: " + se.toString();
            context.setValue("error", "User does not have access. " + msg);
        }
        catch (EboUnrecoverableSystemException use)
        {
            use.printStackTrace();
            String msg = "Unrecoverable exception: " + use.toString();
            context.setValue("error", msg);
        }
        catch (EboItemExistenceException iee)
        {
            iee.printStackTrace();
            String msg = "Item existence exception: " + iee.toString();
            context.setValue("error", msg);
        }
    }
}

84 exteNd Director Content Management Guide



5
 Managing Tasks Chapter 5
This chapter describes how tasks work in the Content Management (CM) subsystem 
and explains how to reconfigure installed tasks and write and implement custom tasks. 
It contains the following sections:

About tasks
About how tasks are registered and configured
Customizing an installed task
Creating and implementing a new task
Custom task sample code
Working with task events

You also can use the CMS Administration Console to manage tasks. For more 
information, see Chapter 21, “Administering Automated Tasks”.

About tasks
An exteNd Director task is a background job or process that you can configure to run 
at a specified time or specified times. Typically, a task carries out a specific CM 
operation, such as publishing documents.

Using tasks A task must be enabled before it can be used in a deployed exteNd 
Director application. A list of enabled tasks appears in the Task section of the CMS 
Administration Console. You can start and stop the tasks that appear in this list while 
an application is running
85



Types of tasks There are two types of exteNd Director tasks: periodic and 
scheduled. Periodic tasks are configured to run at regular intervals (specified in 
milliseconds). Scheduled tasks are configured to run at specific dates and times. A task 
can be scheduled, periodic, or both.

Installed tasks
The following tasks are installed with the CM subsystem:

Configurability These installed tasks are highly configurable (in a set of three XML 
files) and can be adjusted to meet the specific needs of your application. For example, 
you might provide a task such as the publisher or the janitor with a query that defines 
the scope of its operation. Such a query would specify the set of documents on which 
the task was to operate.

For information on which files you need to edit to reconfigure an installed task, 
see “About how tasks are registered and configured” on page 87. For an example, see 
“Customizing an installed task” on page 89.

Custom tasks
You may not be able to meet the needs of some applications just by reconfiguring the 
installed tasks. In such cases you can also create new, application-specific tasks.

When you create a task, you:

Register its type, name, description, and configuration information
Create Java classes to provide the task’s functionality and register these classes.

Task name Description 

publish Publishes a specified set of documents.

expire Expires a specified set of documents.

janitor Removes a specified set of documents.

synch Synchronizes CM data with the Search subsystem engine, which by 
default is based on the Autonomy Dynamic Reasoning Engine 
(DRE); updates to CM data are propagated to the DRE.

NOTE:  The synch task appears in the Task section only when the 
CM subsystem’s Search synchronization mode is set to batch. In 
immediate synchronization mode, the CM subsystem automatically 
performs search synchronization operations.

default For debugging and demonstration purposes. This task is not 
automatically implemented in a deployed application.
86 exteNd Director Content Management Guide



 For information on the files you need to edit to register and configure a new 
task—and register the Java classes you create for it, see “About how tasks are 
registered and configured” next.

About how tasks are registered and configured
Tasks—and the Java classes associated with them—are registered and configured in 
three XML files in your project’s 
library/ContentMgmtService/ContentMgmtService.spf/ContentMgmtService-conf 
directory:

tasktypes.xml
The entries in tasktypes.xml establish the name and description of each task and 
identify each task as either periodic or scheduled (or both). The structure of this file 
must conform to framework-task-type_3_0.dtd in your project’s 
library/FrameworkService/FrameworkService.spf/DTD directory.

Here is an excerpt from tasktypes.xml, showing how the file is structured and how the 
default, synch, and publish installed tasks are initially defined:

<framework-task-types>
<!-- PERIODIC TASK TYPES -->
   <periodic>
      <task-type>
         <type-name>default</type-name>
         <type-descr>The Default Periodic Task</type-descr>
      </task-type>
      <task-type>
         <type-name>synch</type-name>
         <type-descr>Periodic CM/Search Engine Synchronization 
Task</type-descr>
      </task-type>
      <task-type>
         <type-name>publish</type-name>
         <type-descr>Periodic Document Publish Task</type-descr>
      </task-type>

XML file What it does

tasktypes.xml Establishes the names and descriptions of tasks and 
identifies them as periodic or scheduled

Default_tasklist.xml Configures tasks

services.xml Associates tasks (and other exteNd Director functions) with 
their respective Java classes
exteNd Director Content Management Guide-87

Managing Tasks 87



      ...
   </periodic>
<!-- SCHEDULED TASK TYPES -->
   <scheduled>
   ...
   </scheduled>
</framework-task-types> 

Default_tasklist.xml
The entries in Default_tasklist.xml configure each task in conformance with 
contentmgmt-task-list_3_0.dtd in your project’s 
library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Here is an excerpt from Default_tasklist.xml showing how the file is structured and 
how the periodic-publish task is configured:

<contentmgmt-task-list>
   ...
   <periodic-publish>
      <task-name>Default Repository Document Publish</task-name>
      <description>The Default Repository Document Publish 
Task</description>
      <since-last>false</since-last>
      <enabled>true</enabled>
      <interval>
         <millis>86400000</millis>
         <exact>false</exact>
      </interval>
      <do-all-not-yet-published>false</do-all-not-yet-published>
      <do-all-unpublished>false</do-all-unpublished>
      <do-all-ready>false</do-all-ready>
      <force-publish>false</force-publish>
   </periodic-publish>
   ...
</contentmgmt-task-list>

Naming convention Note that the tag name for the periodic-publish task is 
constructed from its type (periodic) and its name (publish) as defined in tasktypes.xml, 
connected by a hyphen. This is a required naming convention for the 
Default_tasklist.xml file.

Enabling or disabling a task Note that to enable a task, you set the content of the 
<enabled> tag to true. To disable a task, you set this value to false. 
88 exteNd Director Content Management Guide



services.xml
The services.xml file includes entries that associate tasks (and other exteNd Director 
functions) with their respective Java classes. The structure of this file must conform to 
framework-services_3_0.dtd in your project’s 
library/FrameworkService/FrameworkService.spf/DTD directory.

Here is an excerpt from services.xml showing how the periodic-publish task is 
handled:

<service>
<interface>com.sssw.cm.periodic-publish</interface>
<impl-class>com.sssw.cm.task.impl.EboDocPeriodicPublishTask</impl-
class>
<description>Periodic CM Document Publish Task</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>

Graphical view exteNd Director also provides a graphical view of this file where 
you can add new entries.

New tasks only You will need to add new entries to services.xml only if you create 
new tasks.

Customizing an installed task
You customize an installed task by editing its configuration in the Default_tasklist.xml 
file. 

In the following example, a document query has been added to the definition of the 
periodic-publish task. The query is specified in the <content-search> element. 

The added code (shown in bold) configures the periodic-publish task to publish all 
documents whose STATUS has been set to Reviewed:

<periodic-publish>
   <task-name>Default Repository Document Publish</task-name>
   <description>The Default Repository Document Publish 
Task</description>
   <since-last>false</since-last>
   <enabled>true</enabled>
   <interval>
      <millis>86400000</millis>
      <exact>false</exact>
   </interval>
   <do-all-not-yet-published>false</do-all-not-yet-published>
   <do-all-unpublished>false</do-all-unpublished>
exteNd Director Content Management Guide-89

Managing Tasks 89



   <do-all-ready>false</do-all-ready>
   <force-publish>false</force-publish>
   <content-search>
      <where-clause>
         <eq>
            <var>STATUS</var>
            <val>Reviewed</val>
         </eq>
      </where-clause>
   </content-search>
</periodic-publish>

For a complete description of the elements and values you can use to construct a 
document query within a task’s definition, see the definition of the <content-
search> element in contentmgmt-task-list_4_0.dtd.

Need to redeploy You must redeploy your application EAR for any task 
configuration changes to take effect.

Creating and implementing a new task
The following procedure is based on the example of creating a new task named new-
doc-notifier that checks for new documents and notifies a list of recipients about the 
new documents by e-mail.

To create and implement a new task:

1 Register your task type.
To do so, modify the tasktypes.xml file. You can register the task as scheduled, 
periodic, or both scheduled and periodic. In this example, the new task is 
periodic: 

<periodic> 
   ............. 
   <task-type> 
      <type-name>new-doc-notifier</type-name> 
      <type-descr>Periodic CM task for notifying of any new 
documents.</type-descr> 
   </task-type> 

2 Register your task in the tasklist.
To do so, add a new element to the Default_tasklist.xml file: 

<periodic-new-doc-notifier>
   <task-name>New Document Notifier</task-name>
   <description> Periodic CM task for notifying of any new 
documents.</description> 
   <since-last>false</since-last> 
   <enabled>true</enabled> 
90 exteNd Director Content Management Guide



   <interval> 
      <millis>86400000</millis> 
         <exact>false</exact> 
   </interval> 
   <!-- any other XML that is specific to the custom task goes 
here... -->
   <!-- for instance, there may be a node here defining the list 
of email recipients. -->
   <recipients>
      <recipient>user@myco.com</recipient>
      <recipient>user2@myco.com</recipient>
      <recipient>user3@myco.com</recipient>
   </recipients>
      <mail-smtp-host>smtp_host@myco.com</mail-smtp-host>
      <subject>New documents have been added</subject>
      <text>The following new documents have been added:</text>
</periodic-new-doc-notifier>

Naming convention Note that the name of the XML tag surrounding the task 
definition (<periodic-new-doc-notifier>) must be constructed from the 
task’s type (periodic or scheduled) and the task’s name in Default_tasklist.xml. 
This naming convention is required.
exteNd Director Content Management Guide-91

Managing Tasks 91



3 Write Java classes for the new task.
The generic exteNd Director task management API is provided in the 
com.sssw.fw.task.api package. This package contains very general interfaces for 
tasks, task types, and task management:

EbiTask
EbiScheduledTask
EbiPeriodicTask
EbiTaskType
EbiTaskManager 

The CM subsystem subclasses those interfaces in its own task management 
package (com.sssw.cm.task.api). It provides its own EbiTask and 
EbiTaskManager along with EbiTaskMgmtDelegate, all three of which should be 
used for managing tasks. This package also contains generic interfaces for 
document publishing, expiration, removal, and synchronization between the CM 
subsystem and the Search subsystem engine.
When writing your own custom task, you should implement one of the following 
interfaces:

com.sssw.fw.task.api.EbiPeriodicTask
com.sssw.fw.task.api.EbiScheduledTask

In the code for the new-doc-notifier example, the NewDocumentNotifier class 
extends com.sssw.cm.task.impl.EboTask and encapsulates the details of the 
task’s duties and how they are carried out. The PeriodicNewDocumentNotifier 
class is the periodic subclass of the NewDocumentNotifier class.

For a complete listing of the Java code for the new-doc-notifier example, 
see “Custom task sample code” on page 93. 
92 exteNd Director Content Management Guide



4 Register the new task’s Java class.
To do so, add an entry to the services.xml file under <!-- Task management 
related objects -->:

<!-- Periodic tasks --> 
........................ 
   <service> 
      <interface>com.myco.cmtask.api.periodic-new-doc-
notifier</interface> 
      <impl-
class>com.myco.cmtask.impl.PeriodicNewDocumentNotifier</impl-
class> 
      <description>The periodic new document notifier 
class.</description> 
      <max-instances>0</max-instances> 
      <startup>M</startup> 
   </service> 

Naming convention Note that in order for the object to be factoried and 
instantiated correctly, the interface naming should correspond to the task kind 
and type. For example, periodic and new-doc-notifier map to periodic-new-
doc-notifier in the <interface> node value. 

5 Prepare for your custom task to be loaded and instantiated correctly:
5a Place your custom task class or classes into a separate JAR.
5b Add the JAR to your exteNd Director EAR.
5c In the PMC WAR of your application, add the custom class JAR to the 

Class-Path section of the META-INF/MANIFEST.MF file. 
This ensures that class loading works correctly and that users can manage 
the custom tasks in the Task section of the CMS Administration Console.

6 Build and deploy your application.
7 Start the task:

7a In a browser window, launch the CMS Administration Console and log in.
7b Click the Tasks button to enter Tasks mode.
7c In the Tasks Pane, click to select your task and then click the Start button.
TIP:   To stop a task, click the Stop button.

Custom task sample code
This section provides a listing of the Java code for the NewDocumentNotifier class 
discussed in Step 3 above.

This section also includes the code for the PeriodicNewDocumentNotifier class, which 
is the periodic subclass of the NewDocumentNotifier class.
exteNd Director Content Management Guide-93

Managing Tasks 93



NewDocumentNotifier
package com.myco.cmtask.impl;
 
// Java imports
import java.io.*;
import java.sql.Timestamp;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;
 
// FW imports
import com.sssw.fw.api.*;
import com.sssw.fw.exception.*;
import com.sssw.fw.log.*;
import com.sssw.fw.task.exception.*;
import com.sssw.fw.util.*;
 
// CM imports
import com.sssw.cm.api.*;
import com.sssw.cm.factory.*;
import com.sssw.cm.task.api.*;
import com.sssw.cm.task.impl.EboTask;
 
// Other imports
import org.w3c.dom.*;
 
abstract public class NewDocumentNotifier extends EboTask
{
    //
    // Constants
    //
 
    protected static final String RECIPIENTS = "recipients";
    protected static final String RECIPIENT = "recipient";
    protected static final String SMTP_HOST = "mail-smtp-host";
    protected static final String SUBJECT = "subject";
    protected static final String TEXT = "text";
    protected static final String SENDER = "sender";
    protected static final String NEWLINE = "\n";
    protected static final String MAIL_SMTP_HOST = 
"mail.smtp.host";
    protected static final String LINE_SEPARATOR = 
"line.separator";
 
    // These actually belong in a resource bundle...
    protected static final String ERROR = "An error occurred while 
executing the New Document Notifier task.";
    protected static final String DEFAULT_SUBJECT = "New documents 
have been added";
    protected static final String DEFAULT_TEXT = "The following 
documents have been added:";
94 exteNd Director Content Management Guide



    protected static final String DEFAULT_SENDER = 
"notifier@myco.com";
    protected static final String LOCATION = "Location: ";
    protected static final String TITLE = "Title: ";
    protected static final String AUTHOR = "Author: ";
 
    //
    // Member variables
    //
 
    protected EbiLog m_log;                  // Our log
    protected ArrayList m_recipients;        // Notification 
recipients
    protected String m_smtpHost;             // SMTP host
    protected String m_subject;              // Message subject
    protected String m_text;                 // Message text
    protected String m_sender;               // Sender
    protected String m_lineSep;              // Line separator
 
    // Constructor
    public NewDocumentNotifier()
    {
        // Use the CM log
        m_log = EboLogFactory.getLog(EboLogFactory.CM);
 
        m_recipients = new ArrayList();
 
        m_subject = DEFAULT_SUBJECT;
 
        m_text = DEFAULT_TEXT;
 
        m_sender = DEFAULT_SENDER;
    }
 
    // Initialization from XML
    public void fromXML(Node node)
    {
        // Rely on the superclass to get all the general task

// settings
        super.fromXML(node);
 
        try
        {
            NodeList nodes = node.getChildNodes();
            if (nodes != null)
            {
                // Process the nodes
                for (int i = 0; i < nodes.getLength(); i++)
                {
                    Node child = nodes.item(i);
                    String nodeName = child.getNodeName();
 
                    if (child.getNodeType() == Node.ELEMENT_NODE)
                    {
exteNd Director Content Management Guide-95

Managing Tasks 95



                        // Recipient list
                        if (RECIPIENTS.equals(nodeName))
                            processRecipientList(child);
 
                        // SMTP host
                        else if (SMTP_HOST.equals(nodeName))
                            m_smtpHost = getElementValue(child);
 
                        // Message subject
                        else if (SUBJECT.equals(nodeName))
                            m_subject = getElementValue(child);
 
                        // Base message text
                        else if (TEXT.equals(nodeName))
                            m_text = getElementValue(child);
 
                        // Sender
                        else if (SENDER.equals(nodeName))
                            m_sender = getElementValue(child);
                    }
 
                } // End for each node
            }
        }
        catch (Exception ex)
        {
            EboExceptionHelper.handleException(
                ex,         // The exception
                m_log,      // Our log to write exception into
                false,      // Don’t print stack trace to console
                false);     // Don’t rethrow as a runtime exception
        }
    }
 
    // Process the list of recipients provided in the XML task 
definition
    protected void processRecipientList(Node node)
    {
        NodeList nodes = node.getChildNodes();
        if (nodes != null)
        {
            // Process the nodes
            for (int i = 0; i < nodes.getLength(); i++)
            {
                Node child = nodes.item(i);
 
                if (child.getNodeType() == Node.ELEMENT_NODE)
                {
                    String nodeName = child.getNodeName();
                    if (RECIPIENT.equals(nodeName))
                    {
                        String recipient = getElementValue(child);
                        if (!EboStringMisc.isEmpty(recipient))
                            m_recipients.add(recipient);
96 exteNd Director Content Management Guide



                    }
                }
            }
        }
    }
 
    // Extract a node value from a Node
    public static String getElementValue(Node node)
    {
        // Entities are often considered separate text nodes; 

 // for example, Jim&apos;s wagon is represented by three
        // text nodes "Jim", "&apos;",and "s wagon". Thus all 
        // children need to be concatenated in order to retrieve
        // the proper text node value.
 
        String nodeValue;
        if (node.hasChildNodes())
        {
            Node curNode = node.getFirstChild();
            nodeValue = EboStringMisc.m_emptyStr;
            while (curNode != null)
            {
                nodeValue = nodeValue + curNode.getNodeValue();
                curNode = curNode.getNextSibling();
            }
        }
        else
            nodeValue = EboStringMisc.m_emptyStr;
        return nodeValue;
    }
 
    // Carry out the task
    public void doTask() throws EboTaskException
    {
        try
        {
            super.doTask();
 
            EbiContentManager cmgr = 
EboFactory.getDefaultContentManager();
            EbiDocQuery query = 
(EbiDocQuery)cmgr.createQuery(EbiDocQuery.DOC_QUERY);
 
            // If we're to only get the data that's changed since 
            // The time that the task was last run
            if (getSinceLast())
            {
                // Figure out the start of the interval
                Timestamp fromTime = getFromTime();
 
                // Figure out the end of the interval
                Timestamp toTime = new Timestamp((new 
Date()).getTime());
 

exteNd Director Content Management Guide-97

Managing Tasks 97



                EbiQueryExpression expr = null;
                EbiQueryExpression expr2 = null;
 
                // Augment the where clause with the time interval
                if (fromTime != null)
                    expr = query.whereCreateDate(fromTime, 
EbiDocQuery.ROP_GREATER, false);
                if (toTime != null)
                    expr2 = query.whereCreateDate(toTime, 
EbiDocQuery.ROP_LEQ, false);
 
                // Set the augmented where clause into the query
                if (expr != null && expr2 != null)
                {
                    expr.andExpression(expr2);
                    query.setWhere(expr);
                }
            }
            // Otherwise, we'll process all the documents
 
            // Get the list of documents
            Collection documents = 
cmgr.findElementsFiltered(m_context, query);
 
            // Send the e-mail notifications
            sendNotifications(documents);
        }
        catch (Exception ex)
        {
            throw new 
com.sssw.fw.task.exception.EboTaskException(ex, ERROR);
        }
    }
 
    // Send the e-mail notifications to our recipients
    protected void sendNotifications(Collection documents)
        throws EboUnrecoverableSystemException, 
EboSecurityException,
            MessagingException
    {
        if (!documents.isEmpty())
        {
            String msgText = getEmailMessageBody(documents);
 
            // For each recipient
            for (int i = 0; i < m_recipients.size(); i++)
            {
                String recipient = (String)m_recipients.get(i);
                send(
                    m_sender,    // From
                    recipient,   // To
                    m_smtpHost,  // Host
                    m_subject,   // Subject
                    msgText);    // Yext
98 exteNd Director Content Management Guide



            }
        }
    }
 
    // Generate an e-mail
    // "The following documents have been added:
    //
    // <doc 1>
    // <doc 2>
    // .......
    // <doc N>"
    protected String getEmailMessageBody(Collection documents)
        throws EboUnrecoverableSystemException, 
EboSecurityException
    {
        String lineSeparator = getLineSeparator();
        StringBuffer buf = new StringBuffer(m_text);
        buf.append(lineSeparator);
        buf.append(lineSeparator);
 
        Iterator iter = documents.iterator();
        while (iter.hasNext())
        {
            EbiDocument doc = (EbiDocument)iter.next();
            buf.append(getDocumentDescriptor(doc));
            buf.append(lineSeparator);
            buf.append(lineSeparator);
        }
 
        return buf.toString();
    }
 
    // Send an e-mail
    protected static void send(
        String from,
        String to,
        String host,
        String subject,
        String msgText)
        throws MessagingException
    {
        Properties props = System.getProperties();
        props.put(MAIL_SMTP_HOST, host);
        Session session = Session.getDefaultInstance(props, null);
 
        // Create a message
        Message msg = new MimeMessage(session);
        msg.setFrom(new InternetAddress(from));
        InternetAddress[] address = { new InternetAddress(to) };
        msg.setRecipients(Message.RecipientType.TO, address);
        msg.setSubject(subject);
        msg.setSentDate(new Date());
        msg.setText(msgText);
        Transport.send(msg);
exteNd Director Content Management Guide-99

Managing Tasks 99



    }
 
    // Generate a document descriptor
    // Location: <...>
    // Title: <...>
    // Author: <...>
    protected String getDocumentDescriptor(EbiDocument doc)
        throws EboUnrecoverableSystemException, 
EboSecurityException
    {
        String lineSeparator = getLineSeparator();
        StringBuffer buf = new StringBuffer(LOCATION);
        buf.append(doc.getURL(false));
        buf.append(lineSeparator);
        buf.append(TITLE);
        buf.append(doc.getTitle());
        buf.append(lineSeparator);
        buf.append(AUTHOR);
        buf.append(doc.getAuthor());
        return buf.toString();
    }
 
    // Figure out the line separator to use
    protected String getLineSeparator()
    {
        if (m_lineSep == null)
            m_lineSep = System.getProperty(LINE_SEPARATOR, 
NEWLINE);
        return m_lineSep;
    }
 
    abstract protected Timestamp getFromTime();
}

PeriodicNewDocumentNotifier
package com.myco.cmtask.impl;
 
// Java imports
import java.sql.Timestamp;
 
// Framework imports
import com.sssw.fw.task.api.*;
import com.sssw.fw.task.impl.*;
 
// CM imports
import com.sssw.cm.api.*;
import com.sssw.cm.task.api.*;
 
// Other imports
import org.w3c.dom.*;
 
public class PeriodicNewDocumentNotifier
100 exteNd Director Content Management Guide



    extends NewDocumentNotifier
    implements EbiPeriodicTask
{
    //
    // Protected data
    //
 
    protected long      m_interval; // Interval, if any
    protected boolean   m_exact;    // Run asap or x millis after 

 // current time
 
    //
    // Constructor
    //
 
    public PeriodicNewDocumentNotifier()
    {
    }
 
    public boolean isExact()
    {
        return m_exact;
    }
 
    public long getInterval()
    {
        return m_interval;
    }
 
    public void setExact(boolean exact)
    {
        m_exact = exact;
    }
 
    public void setInterval(long millis)
    {
        m_interval = millis;
    }
 
    public void fromXML(Node node)
    {
        super.fromXML(node);
        EboTaskHelper.getPeriodicDataFromXML(this, node);
    }
 
    public String toString()
    {
        return super.toString() +
            ", Interval (millis)=" + m_interval +
            ", Exact=" + m_exact;
    }
 
    protected Timestamp getFromTime()
    {
exteNd Director Content Management Guide-101

Managing Tasks 101



        // For an interval-based task, the 'from' time is 'none' if 
        // the task has not run once yet; otherwise it's
        // task_first_scheduled_time + interval*times_task_ran
        return (m_timesRan < 1) ? null :
                new Timestamp(
                    m_launchTime.getTime() + m_interval * 
(m_timesRan - 1));
    }
}

Working with task events
Task events are an extension of the exteNd Director event model framework, 
consisting of state change events, event producers, and event listeners (including 
vetoable listeners). This section includes these topics:

Task event types
Registering for a task event
Enabling or disabling a task event

This section assumes familiarity with exteNd Director event model and event 
handling. For more information, see the section on working with events in Developing 
exteNd Director Applications.

Task event types
The API defines a set of state change events related to task management operations. 
Event IDs are exposed on the individual event classes as well as on the 
com.sssw.fw.task.event.api.EbiConstants interface:

Task operation Event ID constant

Task added EVENT_ID_TASK_ADDED

Task completed EVENT_ID_TASK_COMPLETED

Task disabled EVENT_ID_TASK_DISABLED

Task enabled EVENT_ID_TASK_ENABLED

Task failed EVENT_ID_TASK_FAILED

Task started EVENT_ID_TASK_STARTED

Task stopped EVENT_ID_TASK_STOPPED

Tasks listed EVENT_ID_TASKS_LISTED
102 exteNd Director Content Management Guide

cdEventHandling.html


Generic state change events In addition, there are generic state change constants 
representing types of changes defined in 
com.sssw.fw.event.api.EboStateChangeEvent.

Registering for a task event

To register a task event listener:

Use either the addStateChangeListener() or the addVetoableStateChangeListener 
method on the task manager object 
(com.sssw.cm.task.api.EbiTaskMgmtDelegate).

You can register for a specified type or types of events using this version of 
addStateChangeListener():

public boolean addStateChangeListener(
   BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs.

Use the event IDs specified in com.sssw.fw.event.api.EbiConstants. For example, this 
code registers for the task started, stopped, and completed operations:

EbiTaskMgmtDelegate tmgr = new EbiTaskMgmtDelegate();
EbiStateChangeListener listener = new EbiStateChangeListener();
// Instantiate a Java BitSet and populate it
BitSet events = new BitSet();
events.set(EbiConstants.EVENT_ID_TASK_STARTED);
events.set(EbiConstants.EVENT_ID_TASK_STOPPED);
events.set(EbiConstants.EVENT_ID_TASK_COMPLETED);
// add listener
tmgr.addStateChangeListener(events, listener);

Enabling or disabling a task event

To enable or disable task events:

1 Open the config.xml for the Framework subsystem in your exteNd Director 
project.

2 Find this property:
com.sssw.fw.task.events.enable

3 Set the value to true for enable or false for disable. 
4 Redeploy your project.
exteNd Director Content Management Guide-103

Managing Tasks 103

locator cdLocator.html#Frameworksubsystemconfiguration file


104 exteNd Director Content Management Guide



6
 Managing Content Caching Chapter 6
This chapter describes caching in the Content Management (CM) subsystem and 
includes these topics:

About caching in CM
Summary of CM caching information
Controlling caching in the DAC

About caching in CM
Several CM elements are cached by default while an exteNd Director application is 
running. Caching can increase the efficiency of an application (because the application 
makes fewer SQL queries of the database).

For most of these elements, you can configure your exteNd Director EAR to override 
the default settings for caching.

NOTE:  If you make any changes to the caching settings, you must redeploy your 
exteNd Director EAR for the changes to take effect.
105



Summary of CM caching information

Caching behavior
The table below provides the following information on caching behavior for several 
elements of documents in the CM subsystem:

Element—The name of the CM element
CM API object name—The com.sssw.cm.api interface name that corresponds 
to the CM element
CM cache holder used—The name of the cache holder used for the element
Default behavior—The default caching behavior for the element
Setting in the CM config.xml file—The setting to change to alter the default 
behavior

For information, see the section on reconfiguring your EAR project in 
Developing exteNd Director Applications.

Element
CM API object 
name CM cache holder used

Default
behavior Setting in CM config.xml

Extension 
metadata 
fields

EbiDocField ContentMgmtService/-
CacheHolder/Fields

Cached com.sssw.cm.cacheFields

Document 
types

EbiDocType ContentMgmtService/-
CacheHolder/DocTypes

Cached com.sssw.cm.cacheDocTypes

Folders EbiDocFolder ContentMgmtService/-
CacheHolder/Folders

Cached com.sssw.cm.cacheFolders

Categories EbiDocCategory ContentMgmtService/-
CacheHolder/Categories

Cached com.sssw.cm.cacheCategories

Document 
metadata

EbiDocument ContentMgmtService/-
CacheHolder/Documents

Always 
cached

None

Document 
contents

EbiDocContent None Never 
cached

None

Document 
content 
versions

EbiDocVersion None Never 
cached

None
106 exteNd Director Content Management Guide

cdConfigServicesEdit.html


Caching of folders, categories, and document metadata
Folders, categories, and document metadata, when cached, are cached by both UUID 
and URL.

Document metadata is always cached.

About document content and versions
Document contents and versions of document content are not cached, because some 
cached content might require excessively large amounts of memory.

Controlling caching in the DAC
Another place you can control the caching process is on the Cache tab of the 
Configuration section of the DAC. For example, you can flush a single cache or all 
caches at once. This can be helpful when you are doing diagnostic work on a running 
exteNd Director application.

 For more information on controlling caching in the DAC, see the discussion of 
the Cache tab in Developing exteNd Director Applications.
exteNd Director Content Management Guide-107

Managing Content Caching 107

cdConfigServicesNew.html


108 exteNd Director Content Management Guide



7
 Importing and Exporting Content Chapter 7
This chapter describes the import and export facilities provided with the exteNd 
Director Content Management (CM) subsystem. It has these sections:

About importing and exporting
About the export facility
About the import facility
Customizing imports and exports

About importing and exporting
The CM subsystem includes facilities for importing and exporting data between 
databases or within a single database. 

Uses for the import and export facilities include:

Moving or copying folders, categories, and documents within a repository
Moving CM data between different stages of development
Integrating with third-party vendors
Backing up and restoring CM data
Debugging and data analysis

This chapter describes how the import and export functions work and how you can 
customize them.
109



Using the import/export facilities
You can use the import/export facilities in the CMS Administration Console to 

import and export content. 

For more information, see Chapter 20, “Importing and Exporting Content”.

About the export facility
The export facility comprises these elements:

Export facility element Description

Export component(s) A portal portlet (or other UI element) that gets the data 
export descriptor (DED) selected by the user and lets 
the user save the CM archive generated by the 
EbiExporter object. 

NOTE:  This function is provided in the CMS 
Administration Console. 

Data export descriptor 
(DED)

An XML descriptor that defines the export data selected 
by the user.

For more information, see “Customizing the data 
export descriptor (DED)” on page 113.

EbiExporter Contains the API for exporting CM data. This object 
queries the CM repository for data based on the scope 
specified in the DED and then packages the result into a 
CM archive.

CM export servlet Provides a connection between the EbiExporter object 
and the exporter portlet. This object passes the DED 
from the portlet to the exporter API and then gets the CM 
archive from the exporter and returns it to the portlet.

CM archive A ZIP file that contains the CM export data and a default 
data import descriptor (DID) for subsequent use with the 
import facility.

For a description of the archive contents, see 
“Structure of the data import or export archive” on 
page 297.
110 exteNd Director Content Management Guide



Export process
Here is how the export process works:

1 The export process begins when a portlet gets the selected DED and passes it to 
the CM export servlet. 

2 The export servlet forwards the DED to an object that implements the 
EbiExporter API. 
NOTE:  The servlet provides remote access to the EbiExporter API; however, the 
portlet could call the API directly.

3 The CM exporter API uses the DED to create a query representing all data and 
infrastructure the user has identified and executes the query against the CM 
database.

4 The CM database responds to the query by returning a raw result set.
5 The CM exporter API formats the raw query result into a structured ZIP archive 

file containing the content and data descriptors and returns the archive to the 
export servlet.

6 The export servlet returns the ZIP file to the portlet as bytes of content with a 
MIME type of application/zip.

7 The export portlet gets the ZIP file and saves it in a disk location specified by the 
user.
exteNd Director Content Management Guide-111

Importing and Exporting Content 111



About the import facility
The import facility is made up of these elements:

Import process
Here is how the import process works:

1 The import process begins when a portlet allows the user to select the CM 
archive containing the DID.
The CM archive is generated by the export facility.

2 The import portlet posts the ZIP file to the CM import servlet via HTTP.
NOTE:  The servlet provides remote access to the EbiImporter API; however, the 
portlet could call the API directly.

3 The import servlet passes the ZIP file to the CM importer as an input stream.

Import facility element Description

Import component(s) A portal portlet (or other UI element) that provides the UI 
for the user to select import data. This import function is 
provided in the CMS Administration Console. 

Data import descriptor 
(DID)

An XML descriptor based on the contents of the CM 
archive generated by the exporter. 

For more information, see “Customizing the data 
import descriptor (DID)” on page 114.

EbiImporter Contains the API for importing CM data. It extracts the 
DID from the CM archive and uses it to insert data into 
the target database.

CM import servlet Provides a connection between the EbiImporter and the 
CMS Administration Console. This object passes the 
CM archive to the importer API and creates an XML 
document that enumerates any warnings and failures 
encountered in the import process.
112 exteNd Director Content Management Guide



4 The CM importer extracts the DID from the ZIP and uses it to transfer the data 
from the ZIP file to the underlying content repository. 

5 The CM importer returns a summary of its execution to the CM import servlet.
6 The import servlet creates an XML document that represents successes, 

warnings, and failures that were encountered during the import process.
7 The import servlet returns the XML document to the portlet, which generates a 

report for the user.

Customizing imports and exports
You can customize data imports and exports several ways:

Customizing the data export descriptor (DED)
The data export descriptor (DED) is an XML file you can use to:

Set configuration options for data export
Specify what CM data will be placed in your export archive

Format for entries The entries in your DED must conform to the DTDs in your 
project’s library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Sample DED files There are several sample DED files in your project’s 
library/ContentMgmtService/ContentMgmtService.spf/DTD directory. Each of these 
samples represents a typical export scenario:

Operation Customizing option

For an export Providing a custom DED file before executing an export

For an import Editing the generated DID before executing an import

Adding or deleting items from the CM archive before 
executing an import 

For an export or an 
import

Providing your own logic by implementing the import and 
export APIs

Sample file Demonstrates how to

contentmgmt-export-
descr_5_0_sample.xml

Export all data out of the CM system

Specify options for the operation
exteNd Director Content Management Guide-113

Importing and Exporting Content 113

locator cdLocator.html#ContentManagementDTDs


Customizing the data import descriptor (DID)
The data import descriptor (DID) is an XML file you can use to: 

Set configuration options for data import
Set overwrite options for each type of CM data
Specify the target folder for the import

Format for entries The entries in your DID must conform to contentmgmt-
import-descr_5_0.dtd in your project’s 
library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Sample DID file There is a sample DID file in your project’s 
library/ContentMgmtService/ContentMgmtService.spf/DTD directory that shows 
how to set all available import options:

contentmgmt-import-descr_5_0_sample.xml

Accessing the import and export API
In most cases, editing the descriptors or the CM archive should provide most of the 
flexibility you need. However you can access the import and export API directly for 
tasks ranging from ad hoc imports and exports to writing your own facility. 

Potential uses of the functionality provided by EbiImporter and EbiExporter include:

Importing preexisting documents into a new exteNd Director CM system
Backing up and restoring CM data
Replicating data between two CM systems
Moving and copying data within a single CM system

For more information, see the online API documentation for EbiExporter and 
EbiImporter.

contentmgmt-export-
descr_5_0_sample2.xml

Export specific infrastructural data out of the CM 
system

contentmgmt-export-
descr_5_0_sample3.xml

Export specific infrastructural data out of the CM 
system

Export dependent items in the element hierarchy

contentmgmt-export-
descr_5_0_sample4.xml

Export all documents and supporting infrastructure 
using default configuration options

contentmgmt-export-
descr_5_0_sample5.xml

Export certain elements of documents that satisfy a 
query conforming to contentmgmt-docmeta-
search_5_0.dtd

Sample file Demonstrates how to
114 exteNd Director Content Management Guide

new ../javadoc/com/sssw/cm/api/EbiExporter.html
new ../javadoc/com/sssw/cm/api/EbiImporter.html
locator cdLocator.html#ContentManagementDTDs


8
 Working with Content Management 
Events Chapter 8
This chapter describes how to handle events related to Content Management (CM) 
subsystem operations and activities. It has these sections:

About CM events
Registering for CM events
Enabling CM events

This chapter assumes familiarity with exteNd Director event model and event 
handling. For more information, see the chapter on working with events in Developing 
exteNd Director Applications.

About CM events
CM events are an extension of the exteNd Director event model framework, consisting 
of state change events, event producers, and event listeners (including vetoable 
listeners). The API for CM events is defined in these packages:

com.sssw.cm.event.api
com.sssw.cm.event.util

CM event types
The API defines a set of state change events related to CM operations on documents, 
folders, and other elements—as well as general activities like data import/export. 
Event IDs are exposed on the individual event classes as well as on the 
com.sssw.cm.event.api.EbiConstants interface. In addition, there are state change 
constants defined in com.sssw.fw.event.api.EboStateChangeEvent.
115

cdEventHandling.html


Here is a list of events defined for the CM subsystem:

Event type Operation Event constant

Category added EVENT_ID_CATEGORY_ADDED

contents listed EVENT_ID_CATEGORY_CONTENTS_LISTED

copied EVENT_ID_CATEGORY_COPIED

moved EVENT_ID_CATEGORY_MOVED

removed EVENT_ID_CATEGORY_REMOVED

document removed EVENT_ID_DOC_REMOVED_FROM_CATEGORY

metadata retrieved EVENT_ID_CATEGORY_RETRIEVED

metadata updated EVENT_ID_CATEGORY_UPDATED

Data export/import data exported EVENT_ID_DATA_EXPORTED

data imported EVENT_ID_DATA_IMPORTED
116 exteNd Director Content Management Guide



Document added EVENT_ID_DOC_ADDED 

added to category EVENT_ID_DOC_ADDED_TO_CATEGORY

checked in EVENT_ID_DOC_CHECKED_IN 

checked out EVENT_ID_DOC_CHECKED_OUT

copied EVENT_ID_DOC_COPIED

moved EVENT_ID_DOC_MOVED

published EVENT_ID_DOC_PUBLISHED

removed EVENT_ID_DOC_REMOVED

retrieved EVENT_ID_DOC_RETRIEVED

rolled back EVENT_ID_DOC_ROLLED_BACK

unchecked out EVENT_ID_DOC_UNCHECKED_OUT

unlocked EVENT_ID_DOC_UNLOCKED

unpublished EVENT_ID_DOC_UNPUBLISHED

updated EVENT_ID_DOC_UPDATED

link added EVENT_ID_DOC_LINK_ADDED

link removed EVENT_ID_DOC_LINK_REMOVED

link retrieved EVENT_ID_DOC_LINK_RETRIEVED

link updated EVENT_ID_DOC_LINK_UPDATED

links listed EVENT_ID_DOC_LINKS_LISTED

Document type added EVENT_ID_DOC_TYPE_ADDED

removed EVENT_ID_DOC_TYPE_REMOVED

retrieved EVENT_ID_DOC_TYPE_RETRIEVED

updated EVENT_ID_DOC_TYPE_UPDATED

listed EVENT_ID_DOC_TYPES_LISTED

fields listed EVENT_ID_DOC_TYPE_FIELDS_LISTED

Event type Operation Event constant
exteNd Director Content Management Guide-117

Working with Content Management Events 117



Field added EVENT_ID_DOC_FIELD_ADDED

added to document 
type

EVENT_ID_DOC_FIELD_ADDED_TO_TYPE

listed EVENT_ID_DOC_FIELDS_LISTED

removed EVENT_ID_DOC_FIELD_REMOVED

removed from 
document type

EVENT_ID_DOC_FIELD_REMOVED_FROM_TYPE

retrieved EVENT_ID_DOC_FIELD_RETRIEVED

updated EVENT_ID_DOC_FIELD_UPDATED

Folder added EVENT_ID_FOLDER_ADDED

contents listed EVENT_ID_FOLDER_CONTENTS_LISTED

copied EVENT_ID_FOLDER_COPIED

moved EVENT_ID_FOLDER_MOVED

removed EVENT_ID_FOLDER_REMOVED

retrieved EVENT_ID_FOLDER_RETRIEVED

updated EVENT_ID_FOLDER_UPDATED

Layout document 
descriptor

added EVENT_ID_LLD_ADDED

listed for a style EVENT_ID_LLDS_LISTED

removed EVENT_ID_LLD_REMOVED

retrieved EVENT_ID_LLD_RETRIEVED

updated EVENT_ID_LLD_UPDATED

Layout style added EVENT_ID_DOC_LAYOUT_STYLE_ADDED

removed EVENT_ID_DOC_LAYOUT_STYLE_REMOVED

retrieved EVENT_ID_DOC_LAYOUT_STYLE_RETRIEVED

updated EVENT_ID_DOC_LAYOUT_STYLE_UPDATED

styles listed EVENT_ID_DOC_LAYOUT_STYLES_LISTED

Directory entry lookup by absolute path (URL) EVENT_ID_LOOKUP_BY_ABSOLUTE

by ancestor and relative 
path

EVENT_ID_LOOKUP_BY_RELATIVE

Event type Operation Event constant
118 exteNd Director Content Management Guide



Registering for CM events
This section includes these sections:

Registering for events on directory elements
Specifying event types
Using the event helper class
Event registration examples

Registering for events on directory elements
Event support in the CM subsystem provides convenience methods for registration of 
listeners based on CM categories, folders, and documents. The methods are available 
on an EbiContentMgmtDelegate object:

CM repository added EVENT_ID_REPOSITORY_ADDED

listed EVENT_ID_REPOSITORIES_LISTED

removed EVENT_ID_REPOSITORY_REMOVED

retrieved EVENT_ID_REPOSITORY_RETRIEVED

updated EVENT_ID_REPOSITORY_UPDATED

Query/search document query 
executed

EVENT_ID_DOC_QUERY_EXECUTED

document search query 
executed

EVENT_ID_DOC_SEARCH_QUERY_EXECUTED

Security access checked EVENT_ID_ACCESS_CHECKED

admin access checked EVENT_ID_ADMIN_ACCESS_CHECKED

access removed EVENT_ID_SECURITY_REMOVED

access retrieved EVENT_ID_SECURITY_RETRIEVED

access set EVENT_ID_SECURITY_SET

Listener convenience method What it subscribes to

addCategoryStateChangeListener() All category events

addDocumentStateChangeListener() All document events

Event type Operation Event constant
exteNd Director Content Management Guide-119

Working with Content Management Events 119



For example, here is how to subscribe to all events that relate to folder operations:

EbiContentMgmtDelegate cmgr =
  com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();
cmgr. addFolderStateChangeListener (myStateChangeListener);

Specifying event types
You can register for specified type(s) of events using the framework version of 
addStateChangeListener(), available on EbiContentMgmtDelegate:

public boolean addStateChangeListener(
   BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs. The CM API provides some helper methods for 
specifying a bit set, as described in “Using the event helper class” next.

You can also filter events that occur on either a specific directory entry or a directory 
and entries underneath it (recursively). In order to register for events that occur within 
a certain directory entry scope, add the listener using this method:

public boolean addStateChangeListener(
   BitSet events, EbiDirectoryEntry entry, int depth, 

       EbiStateChangeListener listener)

addFolderStateChangeListener() All folder events

addVetoableCategoryStateChangeListener() All category events, with ability to 
veto operation

addVetoableDocumentStateChangeListener() Subscribes to all document 
events, with ability to veto 
operation

addVetoableFolderStateChangeListener() Subscribes to all folder events, 
with ability to veto operation

Method 
parameter What it means

events Bit set of event IDs

entry Directory entry (a folder, a category, or a document) 

Listener convenience method What it subscribes to
120 exteNd Director Content Management Guide



Using the event helper class
The com.sssw.cm.event.util.EboEventHelper class provides utilities for managing 
event sets. It includes these methods:

Event registration examples

Listen on one event for all elements  This example adds a listener for the 
“create” state change event on all elements:

EbiContentMgmtDelegate cmgr =
   com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = EboEventHelper.getEventIDSet(
  com.sssw.fw.event.api.EboStateChangeEvent.SC_CREATE);
cmgr.addStateChangeListener(events, MyListener);

depth How deep event tracking should go:

0 means that state changes that occur only on the entry itself 

1 means that state changes that occur to the entry and its children

-1 means that state changes that occur to the entry and any of its 
descendant

Any other depth specifies that state changes that occur on the entry 
and its descendants to that depth in the entry hierarchy are to be 
tracked

listener A new listener object

Event helper method What it does

getFullEventIDSet() Returns a bit set containing the full set of CM 
events exposed on all CM element types

getEventIDSet(String elType) Returns a bit set containing the full set of CM 
events exposed on a specified CM element type

getEventIDSet(int 
stateChangeID)

Returns a bit set for all events that map to a given 
state change type

adjustEventIDSet() Given a bit set for event IDs, turns on or off the bits 
for CM events of the specified state change type

Method 
parameter What it means
exteNd Director Content Management Guide-121

Working with Content Management Events 121



Listen on all events for two element types  This example adds a listener for all 
changes on document types and fields only; note the use of adjustEventIDSet():

EbiContentMgmtDelegate cmgr =
   com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events =
   EboEventHelper.getEventIDSet(EbiDocType.EL_DOC_TYPE);
EboEventHelper.adjustEventIDSet(events, 
   EbiDocField.EL_DOC_FIELD, true);
cmgr.addStateChangeListener(events, Mylistener);

Listen on multiple events for all elements This example adds event types by 
instantiating a new bit set; this is the technique to use for specifying multiple sets of 
events:

EbiContentMgmtDelegate cmgr =
   com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = new BitSet();
events.set(com.sssw.cm.event.api.EbiConstants.
  EVENT_ID_ACCESS_CHECKED);
events.set(com.sssw.cm.event.api.EbiConstants.
  EVENT_ID_ADMIN_ACCESS_CHECKED);
events.set(com.sssw.cm.event.api.EbiConstants.
  EVENT_ID_SECUIRTY_RETRIEVED);

cmgr.addStateChangeListener(events, Mylistener);

Listen on all events except for a specified element type This example shows 
how to use the boolean argument on adjustEventIDSet() to turn off an event set:

EbiContentMgmtDelegate cmgr =
   com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = EboEventHelper.getFullEventIDSet();
EboEventHelper.adjustEventIDSet(events, EbiDocType.EL_DOC_TYPE, 
false);
cmgr.addStateChangeListener(events, Mylistener);
122 exteNd Director Content Management Guide



Enabling CM events
To enable or disable CM events:

1 Open config.xml for CM your exteNd Director project.
2 Find this property:

com.sssw.cm.events.enable.Default

3 Set the value to true for enable or false for disable. 
4 Redeploy your project.
exteNd Director Content Management Guide-123

Working with Content Management Events 123

locator cdLocator.html#ContentManagementsubsystemconfiguration files


124 exteNd Director Content Management Guide



II
 WebDav PART II
Describes how to set up and use a WebDav client with the Content 
Management (CM) subsystem

• Chapter 9, “Using WebDAV Clients with exteNd Director for Collaborative 
Authoring”

• Chapter 10, “Building Your Own WebDAV Client”
• Chapter 11, “Working with WebDAV Events”





9
 Using WebDAV Clients with exteNd 
Director for Collaborative Authoring Chapter 9
This chapter describes the exteNd Director WebDAV subsystem, which provides 
support for the Web Distributed Authoring and Versioning (WebDAV) 
communications protocol. Using this protocol, the WebDAV subsystem allows you to 
access server-side content in the exteNd Director Content Management (CM) 
subsystem from third-party or custom WebDAV client applications. 

This chapter includes the following topics:

What is WebDAV?
About exteNd Director’s WebDAV support
Installing the exteNd Director WebDAV subsystem
Deploying the exteNd Director WebDAV subsystem
Setting up the client
Supported WebDAV methods
Public WebDAV server

What is WebDAV?
The WebDAV protocol extends the Hypertext Transfer Protocol (HTTP) to support 
asynchronous collaborative authoring on the Web. 

As the standard protocol that allows Web browsers to communicate with Web servers, 
HTTP has transformed the Web into a readable medium by allowing users to view and 
download individual static documents as read-only information. However, HTTP falls 
short of supporting write operations such as simultaneous editing of multiple resources 
on the Web.
127



WebDAV goes the next step by providing extensions to HTTP that create a distributed 
writable Web environment. Using WebDAV, multiple users can create content locally 
or remotely using WebDAV-enabled authoring tools, then save content directly to an 
URL on an HTTP server.

This section provides a brief overview of WebDAV. 

For more detailed information on WebDAV, search on the Web for rfc2518—the 
WebDAV specification. The following URL provided helpful information at the time 
this chapter was published:

http://asg.web.cmu.edu/rfc/rfc2518.html

Information elements for distributed Web authoring 
The WebDAV protocol provides methods that act on Web resources, collections, and 
properties—key information elements used in distributed Web authoring:

WebDAV extensions to HTTP 
The WebDAV protocol provides extensions to HTTP through a set of open standards 
that can be used by any distributed authoring tool. These extensions support the 
following key requirements for collaborative authoring on the Web:

Element Definition Examples

Resource Any piece of information that is stored on a 
Web server and whose location is described 
by an URL

Web pages, 
documents, and 
bitmap images

Collection A resource that serves as a container for other 
resources, including other collections. 
Collections provide a paradigm for grouping 
and searching resources

Folders and 
directories

Property 
(metadata)

Descriptive information that is associated with 
Web resources but not stored as part of their 
content

Author, title, 
publication date, 
and expiration date

Authoring requirement How WebDAV meets the requirement

Overwrite protection Mediates concurrent access to content by multiple 
authors by providing resource locking for write 
operations

Properties Provides methods for creating, modifying, reading, 
and deleting properties
128 exteNd Director Content Management Guide

new http://asg.web.cmu.edu/rfc/rfc2518.html


About exteNd Director’s WebDAV support 
The exteNd Director WebDAV subsystem is designed to work with any WebDAV-
compliant client application.

Works with WebDAV-compliant authoring tools When you install the exteNd 
Director WebDAV subsystem, you can create content in your preferred WebDAV-
compliant authoring tool and still take advantage of the standard document 
management capabilities of the exteNd Director CM subsystem on your server—
functions such as checkin, checkout, and versioning.

Includes WebDAV client API While most third-party WebDAV clients support 
these standard document management functions, they do not support the more 
sophisticated features of the CM subsystem, such as categorization and document 
creation using custom templates. To bridge this gap, the WebDAV subsystem also 
includes a WebDAV client API that provides classes and methods for accessing these 
custom features from your own client applications. 

For more information about the WebDAV client API, see Chapter 10, “Building 
Your Own WebDAV Client”.

Namespace manipulation Supports copying and moving multiple Web resources 
by manipulating names and directories within the 
namespaces of URLs

Collections Provides methods for creating and deleting 
collections, adding members to a collection, removing 
members from a collection, and listing members of a 
collection

Version management Supports the storage of resource revisions for later 
retrieval; automatic versioning records successive 
modifications to a resource

Access control Limits the access rights of a particular authenticated 
principal to a given resource

Authoring requirement How WebDAV meets the requirement
exteNd Director Content Management Guide-129

Using WebDAV Clients with exteNd Director for Collaborative Authoring 129



What you can do with the exteNd Director WebDAV subsystem
When you install the WebDAV subsystem, you will be able to perform the following 
functions remotely from your WebDAV client application:

Save your content in the content repository
Get the latest version of your content from the content repository for editing
Lock content for editing in the content repository and know that your changes 
will not be overwritten by another author
Unlock content so that it is available to other authors for editing
Copy and move content across collections within the hierarchical physical 
infrastructure of the content repository
Delete content from the content repository
Make new collections in the content repository
Retrieve resources and collections from the server
Upload resources and collections from the client to the server

WebDAV-enabled clients implement these functions in different ways. Consult your 
client documentation to learn how to use specific third-party tools with the WebDAV 
protocol.

For more information about the WebDAV methods exteNd Director supports, 
see “Supported WebDAV methods” on page 134.

How exteNd Director stores content from WebDAV clients
When you save content created using a third-party WebDAV client to the exteNd 
Director content repository, the content is stored as a system resource. The repository 
handles system resources by storing a default set of properties (or metadata) along with 
content. The following table describes these properties and how default values are 
assigned:

Property Default value

Name Name of file (with extension if provided)

NOTE:  Some WebDAV clients require you to specify 
extensions for files to indicate the appropriate content editor

Author Identifier of user who is logged in

Date created Date uploaded

Abstract None

Publish date Null, which means publish as soon as possible

Expiration date Null, which means never expire
130 exteNd Director Content Management Guide



You can change or assign values to these properties in the exteNd Director CM 
subsystem programmatically or using the CMS Administration Console. Some 
WebDAV-enabled authoring tools also allow you to edit property values on the client 
side.

For more information about using the CMS Administration Console, see 
Chapter 12, “About the CMS Administration Console”.

When content is stored as a system resource, it cannot be associated with any custom 
document types or categories that have been defined in the CM subsystem. To create 
content that is more tightly integrated with these CM subsystem features, you can:

Build your own WebDAV client application using a client API provided with the 
exteNd Director WebDAV subsystem

For more information about the WebDAV client API, see Chapter 10, 
“Building Your Own WebDAV Client”.
Use the CM API or the CMS Administration Console to create a document of a 
particular type in the CM subsystem on the server. You can then edit this content 
inside a WebDAV-compliant client, preserving the original document type.

How exteNd Director secures content from WebDAV clients
The exteNd Director WebDAV subsystem requires you to provide a valid user ID and 
password to the WebDAV client. These values are used to authenticate your access 
privileges when you attempt to access secure content in the content repository from 
your WebDAV client.

Users do not see resources for which they do not have read access.

For more information, see “Setting up the client” on page 133.

How exteNd Director manages versioning for WebDAV clients
When a WebDAV client requests a resource from the server, the WebDAV subsystem 
returns the latest version from the content repository—though not necessarily the 
published version. For example, a WebDAV client cannot retrieve the published 
version of content if it is not the latest version.

When the WebDAV client uploads and checks in a resource, the WebDAV subsystem 
creates a new version and publishes it in the content repository.

Checked out by None

Property Default value
exteNd Director Content Management Guide-131

Using WebDAV Clients with exteNd Director for Collaborative Authoring 131



Installing the exteNd Director WebDAV subsystem
You install the WebDAV subsystem when you create a project in exteNd Director using 
the EAR Wizard. 

If you have not created an exteNd Director EAR project that includes the 
WebDAV subsystem, follow the procedure that follows. 
If you have, you are ready to deploy the WebDAV subsystem and can skip to 
“Deploying the exteNd Director WebDAV subsystem” below the procedure.

To install the WebDAV subsystem:

1 Make sure you have installed exteNd Director.
2 Follow the instructions for creating a new exteNd Director EAR project in the 

chapter on configuring and deploying exteNd Director applications in 
Developing exteNd Director Applications.
During this process you choose between two setup options: Typical and Custom. 
If you select Typical setup, the WebDAV subsystem is installed automatically as 
part of the exteNd Director EAR with the following defaults:

If you opt for Custom setup, you must include the WebDAV subsystem explicitly 
and then customize these parameters as needed.

3 After creating the EAR project, select Archive Layout and look for 
WebDAVService.war.

4 Expand WebDAVService.war, navigate to WEB-INF/lib, and double-click 
WebDAVService.jar to view the WebDAV subsystem classes you have just 
installed in your exteNd Director EAR project.

Now you are ready to deploy the WebDAV subsystem to your J2EE application server.

Parameter Default

Service Context Root WebDAVService

Servlet Path main

Require locks for update operation disabled
132 exteNd Director Content Management Guide

cdConfigServicesNew.html


Deploying the exteNd Director WebDAV subsystem
You deploy the WebDAV subsystem by deploying the EAR in which it resides.

Before you deploy
Before deploying the exteNd Director WebDAV subsystem, you must have installed 
the following software:

A J2EE application server
A WebDAV-enabled client authoring tool

If you are deploying to the Novell exteNd™ Application Server, you must also create a 
new (empty) database.

For a list of supported application servers and databases, see the exteNd Director 
Release Notes.

Setting up the client
After you deploy the WebDAV subsystem, you can connect a WebDAV-enabled client 
to the exteNd Director content repository. To establish this connection, you must 
provide the following parameters to the client:

User ID and password that are valid for exteNd Director (not a server user ID and 
password)
URL that references the directory on the WebDAV server you want to connect to
The structure of the URL for the Novell WebDAV server is:

http://server name/database name/EAR namespace/service context 
root/servlet path/

The structure of the URL for WebLogic or WebSphere WebDAV servers is:
http://server name/EAR namespace/service context root/servlet 
path/

For example, if your Novell exteNd Application Server is localhost, database 
name is Director, EAR namespace is DirectorEAR, service context root is 
WebDAVService, and servlet path is main, the URL should look like this:

http://localhost/Director/DirectorEAR/WebDAVService/main/

To learn how to provide these parameters and connect to a site (in this case the 
exteNd Director content repository) using the WebDAV protocol, consult client 
documentation.
exteNd Director Content Management Guide-133

Using WebDAV Clients with exteNd Director for Collaborative Authoring 133



Supported WebDAV methods
The exteNd Director WebDAV subsystem supports the following WebDAV methods. 
To learn how to perform these functions from your WebDAV-enabled authoring tool, 
consult client documentation:

Method Description

PROPFIND Retrieves properties on resources and collections from the server. 
This action is generally transparent to the user; WebDAV client 
tools use this method to get and display properties such as name, 
type (of resource), date modified, and checked out by.

PROPPATCH Sets and/or removes properties on server-side resources and 
collections identified by the Request-URI. This action is generally 
transparent to the user; WebDAV client tools use this method to 
modify properties such as name, type (of resource), date 
modified, and checked out by.

COPY Copies resources and collections on the server—along with their 
properties—without causing name conflicts. When you copy a 
collection, all of its members are also copied.

DELETE Deletes resources or collections on the server.

GET Retrieves resources and collections from the server, as identified 
by the Request-URI. Some WebDAV-enabled clients 
automatically check out resources for you before downloading 
them from the server; other clients require you to perform two 
separate operations—first check out the resource, then get it.

HEAD Functions like GET, but retrieves only header information (without 
a response message body).

LOCK Creates a lock specified by the lockinfo XML element on the 
Request-URI. The lockinfo element specifies the scope, type, and 
owner of the lock. The exteNd Director CM subsystem uses just 
one type of lock—the exclusive lock, to enforce pessimistic 
concurrency.

The scope of a lock spans the entire state of the resource, 
including its body and associated properties.

Some WebDAV-enabled clients automatically lock resources 
before you check them out; other clients require you to explicitly 
lock a resource as a separate operation.
134 exteNd Director Content Management Guide



Public WebDAV server
Novell provides a WebDAV server—deployed and publicly available—against which 
you can test your WebDAV clients. This server provides the features of the Novell 
WebDAV implementation.

CAUTION:  Do not use this server for production applications. Novell cannot be 
responsible for content uploaded by anonymous users, and periodically purges user 
data.

To access the Novell public WebDAV server (general steps):

1 Access the server from your WebDAV client using this URL:
http://webdav.silverstream.com/Director/WebDAVService/main

2 When prompted, provide these credentials:

UNLOCK Removes the lock identified in the Lock-Token request header of 
the Request-URI. This action unlocks all resources included in the 
lock.

Some WebDAV-enabled clients automatically unlock resources 
after you check them in; other clients require you to explicitly 
unlock a resource as a separate operation.

MKCOL Creates collections on the server.

MOVE Moves resources and collections on the server without creating 
name conflicts.

PUT Uploads resources and collections from the client to the server.

OPTIONS Returns all methods that can be called on resources and 
collections specified in the Request-URI. For example, if the 
resource is a document, OPTIONS returns LOCK, UNLOCK, 
OPTIONS, GET, PUT, MOVE, DELETE, COPY, PROPFIND, and 
PROPPATCH.

Credential Value

User ID devcenter

Password rocks

Method Description
exteNd Director Content Management Guide-135

Using WebDAV Clients with exteNd Director for Collaborative Authoring 135



To access the Novell public WebDAV server from a Windows 2000 SP2 client:

1 Start My Network Places.
2 Double-click Add a Network Place.

The Add Network Place Wizard opens.
3 Enter the URL for the public WebDAV server:

http://webdav.silverstream.com/Director/WebDAVService/main

The wizard prompts you for credentials.
4 When prompted, provide these credentials:

5 Click OK.
The wizard prompts you for a server connection name.

6 Enter a name—for example, Public WebDAV Server—and click Finish.
The connection to the public WebDAV server is established.

Credential Value

User name devcenter

Password rocks
136 exteNd Director Content Management Guide



10
 Building Your Own WebDAV Client Chapter 10
This chapter describes an API provided with the exteNd Director WebDAV service for 
developing a custom WebDAV client that takes advantage of the specialized features 
of the exteNd Director Content Management (CM) subsystem to create and administer 
content. 

The chapter covers the following topics:

About the WebDAV client API
Why build your own WebDAV client?
Configuring your environment
Using the WebDAV client API
Programming practices using helper methods
Programming practices using utility methods
Issuing WebDAV requests from a Java client

About the WebDAV client API
The WebDAV client API is based on the Jakarta Slide content management framework 
and is designed to work with the exteNd Director CM subsystem. Slide is a low-level 
framework that can be used to develop a consistent interface for manipulating binary 
content in a variety of data stores using the WebDAV protocol.

Java client applications can access the Slide content management framework directly 
through a set of Java classes that implement WebDAV methods and other low-level 
logic in these functional areas:

Managing the namespace (for creating, moving, copying, and deleting content)
Updating content and metadata
137



Locking and unlocking content
Securing content

The exteNd Director WebDAV client API adds a level of abstraction by providing 
wrapper classes around the Slide client API. These classes contain helper and utility 
methods that encapsulate the low-level Slide methods and add logic that tightly 
integrates with the specialized capabilities of the exteNd Director CM subsystem. For 
example, you can build a WebDAV client that assigns categories to documents, 
associates custom metadata with content, and creates content using custom templates 
called document types as defined in the CM subsystem.

 For more information about Slide, see the Jakarta Slide project Web site. The 
following URL was valid at the time this chapter was published:

http://jakarta.apache.org/slide/

Why build your own WebDAV client?
With so many commercial and open source WebDAV client applications now 
available—and more on the way—why build your own WebDAV client to work with 
the exteNd Director CM subsystem? 

Here is a key reason: to tailor an application to your unique authoring needs in terms of 
creating, updating, and managing content using the exteNd Director CM subsystem. 
With this objective in mind, the WebDAV client API allows you to develop 
applications that are more robust than most commercial and open-source WebDAV 
clients, because it provides:

Simplified access to all WebDAV methods, including PROPPATCH
An interface to the comprehensive content management features of the CM 
subsystem, including the ability to create documents using custom templates and 
manipulate custom metadata separately from content

Configuring your environment
To use the WebDAV client API, you must add the following JAR files to your project 
classpath:

JAR file Description

WebDAV_slide.jar Contains relevant Slide client API classes

WebDAVClient.jar Contains exteNd Director WebDAV client API classes
138 exteNd Director Content Management Guide

new http://jakarta.apache.org/slide/


These JAR files are installed with exteNd Director in the following location in the 
exteNd Director installation directory:

eXtendDirector\utilities\Client

To run a WebDAV client, you must add the following JAR files to your client’s 
classpath at runtime:

For example: to run a WebDAV Java client program called getDocuments, enter these 
commands—substituting your own installation directory paths: 

>set classpath=D:\Director_install\eXtendDirector\utilities\Client\WebDAVClient.jar;D:\
Director_install\eXtendDirector\utilities\Client\WebDAV_slide.jar;.;D:\Director_install\
eXtendDirector\lib\xerces.jar;D:\Director_install\eXtendDirector\lib\xalan.jar;D:\
Director_install\eXtendDirector\lib\FrameworkService.jar;d:\Director_install\eXtendServer\
lib\servlet.jar

>java -cp %classpath% getDocuments

Using the WebDAV client API
You use the WebDAV client API to design a custom authoring tool with WebDAV 
access to the exteNd Director CM subsystem for managing collaborative interactions 
with your content.

You need to build your own user interface, but the API provides the logical 
underpinnings for invoking key CM functions from your client:

Creating documents using custom templates
Categorizing documents
Deleting, copying, moving, and renaming resources and collections
Locking and unlocking documents
Making collections
Updating documents
Getting and setting custom metadata values in a document

JAR file Directory Location

WebDAVClient.jar exteNd Director 
installation directory

\utilities\Client

WebDAV_slide.jar \utilities\Client

xerces.jar \lib

xalan.jar \lib

FrameworkService.jar \lib

servlet.jar Novell installation 
directory

\lib
exteNd Director Content Management Guide-139

Building Your Own WebDAV Client 139



WebDAV requests and responses
The WebDAV client API provides methods that invoke CM functions by sending 
WebDAV requests. The result of each request is returned as a WebDAV response that 
includes a status code to indicate success or the reason for failure.

A WebDAV request consists of a header and a body. The request header contains the 
method, target resource, HTTP version, and a sequence of key/value pairs containing 
parameters for the method. The request body defines additional—and perhaps more 
complex—parameters if necessary.

Similarly, a WebDAV response contains a header and optional body. The response 
header contains information about the response, such as the HTTP version used by the 
server, along with status codes and messages. The response body generally contains 
the result of method execution—such as a document. 

Classes in the WebDAV client API provide methods for easily constructing and 
sending specific WebDAV requests and processing responses.

 For more information about WebDAV, search on the Web for rfc2518—the 
WebDAV specification.

Working with resources, collections, and properties
WebDAV requests act on Web resources, collections, and properties as described in 
“Information elements for distributed Web authoring” on page 128. When you issue a 
WebDAV request, you need to pass along a reference to the element of interest. This 
reference should be a URI, relative to the element’s server in this format:

/database name/WebDAVService/main/path relative to default (root) 
folder

For example, assume your exteNd Director database is called Director. For a 
document called MyDocument that resides in a folder called Test in the default (root) 
folder, the URI looks like this:

/Director/WebDAVService/main/Test/MyDocument
140 exteNd Director Content Management Guide



Classes
The WebDAV client API consists of these key classes:

EboDAVSwitch—the heart of the matter The EboDAVSwitch object is the heart 
of the WebDAV client API, containing most of the functionality for communicating 
with the CM subsystem. EboDAVSwitch provides helper methods and utility methods 
that encapsulate much of the low-level Slide code required for transmitting WebDAV 
requests and responses.

Helper methods
The EboDAVSwitch object provides a set of helper methods for constructing WebDAV 
requests. Each helper method allows you to send a complete request in a single line of 
code.

Here is list of supported WebDAV requests that have associated helper methods. Click 
on the links in the table to get more information about how to code specific WebDAV 
requests in a Java client program.

Class Description

EboDAVSwitch Constructs WebDAV requests and fetches WebDAV 
responses

EboDAVException Defines WebDAV exceptions

EboDAVStatus Indicates the status code associated with WebDAV 
exceptions

Request Helper method

Adding a category reference to a document addCategoryToDocument

Deleting a document copyElement

Creating a new collection makeCollection

Creating a new document from a custom 
template

createNewDocument

Deleting a document deleteDocument

Locking a document lockDocument

Moving a resource or collection moveElement

Removing a category reference from a 
document

removeCategoryFromDocument
exteNd Director Content Management Guide-141

Building Your Own WebDAV Client 141

cmgWebDAVClient.html#Helpermethods
../javadoc/com/sssw/webdav/client/EboDAVSwitch.html
cmgWebDAVClient.html#Utilitymethods


Some WebDAV requests do not have associated helper methods and can be issued only 
by using Slide classes and utility methods, described next.

 For information on how to use these helper methods in WebDAV client 
applications, see “Programming practices using helper methods” on page 144.

Utility methods
All WebDAV requests can be invoked using utility methods. Compared to helper 
methods, utility methods expose more of the Slide API than helper methods. The 
tradeoff is that while you gain access to the additional functionality offered by the Slide 
API, you’ll have to write more lines of code to send a WebDAV request.

Utility methods also provide a mechanism for issuing WebDAV requests that do not 
have associated helper methods.

Utility methods that wrap Slide functions

Here is list of commonly used utility methods that wrap Slide functions for 
constructing and issuing WebDAV requests:

Removing all category references from a 
document

removeAllCategoriesFrom
Document

Renaming a resource or collection moveElement

Setting the value of a custom field in a 
document

setFieldValueForDocument

Unlocking a document unlockDocument

Updating a document putDocument

Utility method What it does

createCredentials Creates credentials

NOTE:  The credentials object is a Slide object that is 
used for authenticating users

createWebDAVmethod Creates the method you want to execute as part of your 
WebDAV request

endSession Ends a WebDAV client session

executeCommand Issues the WebDAV request

Request Helper method
142 exteNd Director Content Management Guide

cmgWebDAVClient.html#Utilitymethods


 For information about how to use these utility methods in WebDAV client 
applications, see “Programming practices using utility methods” on page 146.

Associated Slide API classes

When you work with utility methods, you need to use several Slide API classes:

Credentials

State

Specific WebDAV method classes:
CopyMethod

DeleteMethod

GetMethod

HeadMethod

LockMethod

MoveMethod

OptionsMethod

PostMethod

PropFindMethod

PropPatchMethod

PutMethod

UnlockMethod

 For more information about these classes, see the Slide WebDAV client JavaDoc, 
available at this URL (valid at the time this chapter was published):

http://jakarta.apache.org/slide/clientjavadoc/index.html

getState Gets state

NOTE:  The state object is a Slide object; you call the 
Slide method setAuthenticateToken on the state object 
to indicate how you are going to authenticate users

setCredentials Sets credentials on the EboDAVSwitch object

setState Sets state with your authentication token

startSession Starts a WebDAV client session

Utility method What it does
exteNd Director Content Management Guide-143

Building Your Own WebDAV Client 143

new http://jakarta.apache.org/slide/clientjavadoc/index.html


WebDAV requests that have no helper methods

Here is list of WebDAV requests that have no associated exteNd Director helper 
methods and therefore can be implemented only by using Slide classes and exteNd 
Director utility methods. Click on the links in the table to get more information about 
how to code these WebDAV requests in a Java client program:

Programming practices
This section describes best practices for using the client API to issue WebDAV 
requests and process WebDAV responses in custom Java client programs. The logic 
varies depending on whether you use helper methods or utility methods.

Programming practices using helper methods

Recommended steps

Here are the steps for using helper methods to issue WebDAV requests:

1 Instantiate an EboDAVSwitch object.
2 Start a session on the EboDAVSwitch object.
3 Call the helper method on the EboDAVSwitch object in a try/catch block.
4 Get the response and process the results if necessary.
5 End the session.

Code example: deleting a document using a helper method

Here is sample code showing how to use the helper method deleteDocument() in a 
WebDAV client. In this example, assume server URL = localhost and port = 80. The 
document to be deleted is passed as an argument to the method.

WebDAV request Associated WebDAV method

Getting a resource or collection GET

Getting header information from a resource or 
collection

HEAD

Getting methods that can be called on a resource or 
collection

OPTIONS

Getting properties defined on a resource or 
collection

PROPFIND
144 exteNd Director Content Management Guide

cmgWebDAVClient.html#Helpermethods
cmgWebDAVClient.html#Utilitymethods


Note that an EboDAVStatus object is also instantiated. This object is used to check the 
status of the request and inform the user of success or failure.

/**
    deleteADocument

*/
import com.sssw.webdav.client.*;

public class deleteADocument {

private static boolean m_debug = false;

public void deleteADocument (String document)
{
 

   //Define variables
int statuscode = 0;
String user = "contentadmin";
String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch();

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus();

//Start a session
dav.startSession("localhost", 80);

try 
{

//Lock document before trying to delete
statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The document is now locked”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));

//Send the WebDAV request to delete document
statuscode = dav.deleteDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_OK)

System.out.println("Request succeeded: The document was deleted.");
else

System.out.println("Request failed: " + status.getStatusText(statuscode));
      

}
catch (EboDAVException e) {

if (m_debug)
e.printStackTrace();

else
System.out.println(e.getMessage());
exteNd Director Content Management Guide-145

Building Your Own WebDAV Client 145



}
   

//End session
dav.endSession();

   }
}

To learn how to issue the same WebDAV request using utility methods, see 
“Code example: deleting a document using utility methods” on page 147.

Programming practices using utility methods

Recommended steps

Here are the steps for using utility methods to issue WebDAV requests:

1 Instantiate an EboDAVSwitch object.
2 Start a session on the EboDAVSwitch object.
3 Create and set credentials on the EboDAVSwitch object.
4 Get and set the state of the EboDAVSwitch object and the authentication realm.
5 Construct the WebDAV method.
6 Execute the WebDAV method.
7 End the session.

Constructing WebDAV requests that use Proppatch

The WebDAV Proppatch method is used with exteNd Director utility methods to issue 
a variety of WebDAV requests:

Adding a category reference to a document
Removing a category reference from a document
Removing all category references from a document
Setting the value of a custom field in a document

For each of these requests, you must instantiate a Slide PropPatchMethod object, then 
call the addPropertyToSet() method on the PropPatchMethod object using this 
signature:

addPropertyToSet( String property name, String property value, 
String namespace-abbr, String namespace )
146 exteNd Director Content Management Guide



Here are descriptions of the arguments to addPropertyToSet():

Setting values of standard fields You can also use the WebDAV Proppatch 
method to set values of standard fields—such as title and author—in a document. In 
this case, call addPropertyToSet() without the namespace-abbr and namespace 
arguments.

Code example: deleting a document using utility methods

Here is sample code illustrating how to use utility methods with Slide classes in a 
WebDAV client to send a request to delete a document. In this example, assume server 
URL = localhost and port = 80. The example uses the following Slide classes:

Credentials
State
DeleteMethod

/**
    deleteTheDocument

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class deleteTheDocument
{
   private static boolean m_debug = false;

Argument Description

property name The name or UUID of the property to be updated

property value The value of the property to be updated

If property name is a UUID, then property value must be null

namespace-abbr An arbitrary string that must be unique within the PropPatch 
method request

namespace Type of request issued using the PropPatch method

These requests are defined as fields of the 
EboWebdavConstants class:

EboWebdavConstants.PROPPATCH_SETFIELDVALUE

EboWebdavConstants.PROPPATCH_ADDCATEGORY

EboWebdavConstants.PROPPATCH_REMOVECATEGORY

EboWebdavConstants.PROPPATCH_REMOVEALL
CATEGORIES
exteNd Director Content Management Guide-147

Building Your Own WebDAV Client 147



   public void deleteTheDocument (String document)
   {
   //Define variables

int statuscode = 0;
String user = "contentadmin";
String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch();

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus();

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials(user, password);
dav.setCredentials(credentials);

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken(realm);
dav.setState(state);

try 
{

//Create the WebDAV method object LockMethod
LockMethod lm = (LockMethod)dav.createWebdavMethod(dav.LOCK_METHOD,document);

//Set the owner
lm.setOwner(user);

//Execute LockMethod
dav.executeCommand(lm);
statuscode = lm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))

System.out.println(“Request succeeded: The document was locked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));

//Create the WebDAV method object DeleteMethod
DeleteMethod dm = 

(DeleteMethod)dav.createWebdavMethod(dav.DELETE_METHOD,document);

//Execute DeleteMethod (send the WebDAV request to delete document)
dav.executeCommand(dm);
statuscode = dm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_OK))

System.out.println("Request succeeded: The document was deleted.");
else

System.out.println("Request failed: " + status.getStatusText(statuscode));
148 exteNd Director Content Management Guide



}
catch (EboDAVException e)
{

if (m_debug)
e.printStackTrace();

else
System.out.println(e.getMessage());

}
catch (java.net.MalformedURLException murle)
{

if (m_debug)
murle.printStackTrace();

else
System.out.println(murle.getMessage());

}
catch (java.io.IOException ioe)
{

if (m_debug)
ioe.printStackTrace();

else
System.out.println(ioe.getMessage());

}

//End session
dav.endSession();

   }
}

To learn how to issue the same WebDAV request using helper methods, see 
“Code example: deleting a document using a helper method” on page 144.

Issuing WebDAV requests from a Java client
This section describes how to issue WebDAV requests from a Java client application. 
The following functions are covered:

Adding a category reference to a document
Copying a resource or collection
Creating a new collection
Creating a new document from a custom template
Deleting a document
Getting a resource or collection
Getting header information from a resource or collection
Getting methods that can be called on a resource or collection
Getting properties defined on a resource or collection
Locking a document
exteNd Director Content Management Guide-149

Building Your Own WebDAV Client 149



Moving a resource or collection
Removing a category reference from a document
Removing all category references from a document
Renaming a resource or collection
Setting the value of a custom field in a document
Unlocking a document
Updating a document

Adding a category reference to a document
The following code examples show how to add a category reference to a document. A 
category is a descriptive name used to group documents logically in the CM 
subsystem.

Code example: adding a category reference using a helper method

This example uses the helper method addCategoryToDocument():

/**
    addCategoryReferenceToDocument

*/
import com.sssw.webdav.client.*;

public class addCategoryReferenceToDocument {

private static boolean m_debug = false;

public void addCategoryReferenceToDocument (String document, String categoryUUID)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   

//Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   try 
   {
150 exteNd Director Content Management Guide



//Lock the document
statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode == EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The category was added to “ + 
document);

else
System.out.println(“Request failed: “ + status.getStatusText(statuscode));

//Send the WebDAV request to add a category reference
      statuscode = dav.addCategoryToDocument(user, password, realm, document, 
categoryUUID);
      if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
         System.out.println("Request succeeded: The category was added to " + 
document);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));

//Unlock the document
statuscode = dav.unlockDocument(user, password, realm, document);
if (statuscode == EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The document was unlocked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));
}

   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();

}
}

Code example: adding a category reference using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

The method that adds the category reference is addPropertyToSet(), called on the 
PropPatchMethod object. Notice that the second argument—property value—is null 
(because the category UUID is passed as the first argument—property name). For 
more information about addPropertyToSet() and its arguments, see “Constructing 
WebDAV requests that use Proppatch” on page 146.
exteNd Director Content Management Guide-151

Building Your Own WebDAV Client 151



/**
    addCategoryReference

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class addCategoryReference
{
   private static boolean m_debug = false;

   public void addCategoryReference (String document, String categoryUUID)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String namespace-abbr = "AC";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

try
{

//Lock the document
//Create the WebDAV method object LockMethod
LockMethod lm = (LockMethod)dav.createWebdavMethod(dav.LOCK_METHOD,document);

//Set the owner
lm.setOwner(user);

//Execute the command
dav.executeCommand(lm)
statuscode = lm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))
152 exteNd Director Content Management Guide



System.out.println(“Request succeeded: The document was locked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));

   //Create the WebDAV method object PropPatchMethod
   PropPatchMethod ppm = 
(PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
   ppm.addPropertyToSet( categoryUUID, null, namespace-abbr, 
EboWebdavConstants.PROPPATCH_ADDCATEGORY);

   //Execute PropPatchMethod (send the WebDAV request to add category reference)
dav.executeCommand(ppm);

      statuscode = ppm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
         System.out.println("Request succeeded: The category was added to " + document 
+ ".");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      

//Create the WebDAV method object UnlockMethod
UnlockMethod ulm = 

(UnlockMethod)dav.createWebdavMethod(dav.UNLOCK_METHOD,document);

//Execute UnlockMethod
dav.executeCommand(ulm);
statuscode = ulm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))

System.out.println(“Request succeeded: The document was unlocked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }
exteNd Director Content Management Guide-153

Building Your Own WebDAV Client 153



   //End session
   dav.endSession();
   }
}

Copying a resource or collection
The following code shows how to copy a document from a source path to a destination 
path. In this case the source path points to a document. To copy other types of resources 
or collections, make sure the source path points to the element of interest.

Code example: copying a document using a helper method

The example uses the helper method copyElement():

/**
    copyADocument

*/
import com.sssw.webdav.client.*;

public class copyADocument {

private static boolean m_debug = false;

public void copyADocument (String docsourcepath, String docdestinationpath)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   boolean overwrite = true; //Overwrite an existing document of the same name in the 
docdestinationpath
   boolean autogen = true; //Generate folders in the docdestinationpath if they don't 
exist
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to copy document
   try 
   {
154 exteNd Director Content Management Guide



      statuscode = dav.copyElement(user, password, realm, docsourcepath, 
docdestinationpath, overwrite, autogen);
      if (statuscode==EboDAVStatus.SC_CREATED)
         System.out.println("Request succeeded: The document " + docsourcepath + "was 
copied to " + docdestinationpath);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));

}
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

You can also copy a resource or collection using the Slide CopyMethod class 
and exteNd Director utility methods. See “Programming practices using utility 
methods” on page 146.

Creating a new collection
The following code shows how to create a new collection. Recall that a collection is a 
container for other resources and collections. A folder is a an example of a collection. 

Code example: creating a collection using a helper method

This example uses the helper method makeCollection():

/**
    makeACollection

*/
import com.sssw.webdav.client.*;

public class makeACollection {

private static boolean m_debug = false;

public void makeACollection (String parent_folder, String folder_name)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
exteNd Director Content Management Guide-155

Building Your Own WebDAV Client 155



   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
     
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to make a collection
   try 
   {
      statuscode = dav.makeCollection(user, password, realm, parent_folder, folder_name, 
true);
      if (statuscode==EboDAVStatus.SC_CREATED)
         System.out.println("Request succeeded: The collection " + parent_folder + "/" + 
folder_name + "was created.");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

You can also make a new collection using the Slide MkcolMethod class and exteNd 
Director utility methods. See “Programming practices using utility methods” on 
page 146.

Creating a new document from a custom template
The following code shows how to create a new document from a custom template. 
Custom templates are document types that you define in the exteNd Director CM 
subsystem using the CM API or CMS Administration Console. 

The document that is created contains the content “Hello world!” along with any 
custom fields defined in the document type.
156 exteNd Director Content Management Guide



Code example: creating a document using a helper method

This example uses the helper method createNewDocument(). The document type is 
passed as an argument to createNewDocument, along with the user name, password, 
realm, containing folder, and content:

/**
    createADocument

*/
import com.sssw.webdav.client.*;

public class createADocument {

private static boolean m_debug = false;

public void createADocument (String document, String folder, String documentType)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String sourcetext = "Hello world!";
   byte [] content = sourcetext.getBytes();
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to create a document
   try 
   {
      statuscode = dav.createNewDocument(user, password, realm, folder, document, 
documentType, content);
      if (statuscode==EboDAVStatus.SC_CREATED)
         System.out.println("Request succeeded: The document " + document + "was 
created.");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
exteNd Director Content Management Guide-157

Building Your Own WebDAV Client 157



   }
   
   //End session
   dav.endSession();
   }
}

Deleting a document
For examples of how to delete a document from a WebDAV client, see “Code 

example: deleting a document using a helper method” on page 144 and “Code 
example: deleting a document using utility methods” on page 147.

Getting a resource or collection
The following code shows how to get the content of a document stored in the CM 
subsystem. The document is referenced as the second argument of the 
createWebDAVMethod() utility method. To get other types of resources or collections, 
modify this argument to point to the element of interest.

Code example: getting a document using utility methods

This example uses the Slide GetMethod class and the exteNd Director utility methods 
startSession(), createCredentials(), setCredentials(), getState(), setState(), and 
createWebDAVMethod().

By calling the getDataAsString() method on the GetMethod class, the client 
application retrieves the content of the document in HTML format.

There is no helper method for getting a resource or collection:

/**
    getTheDocument

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class getTheDocument
{
   private static boolean m_debug = false;

   public void getTheDocument (String document)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
158 exteNd Director Content Management Guide



   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object GetMethod
   GetMethod gm = (GetMethod)dav.createWebdavMethod(dav.GET_METHOD,document);

   //Execute GetMethod (send the WebDAV request to get document)
   try 
   {
      dav.executeCommand(gm);
      statuscode = gm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_OK))
      {
         String html = gm.getDataAsString();
         System.out.println("Request succeeded: Got the document and its content as 
html.");
      }
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
exteNd Director Content Management Guide-159

Building Your Own WebDAV Client 159



      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }

   //End session
   dav.endSession();
   }
}

There is no exteNd Director helper method for getting a resource or collection.

Getting header information from a resource or collection
The following code shows how to get the header information of a document stored in 
the CM subsystem. The document is referenced as the second argument of the 
createWebDAVMethod() utility method. To get other types of resources or collections, 
modify this argument to point to the element of interest.

Code example: getting header information using utility methods

This example uses the Slide HeadMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

There is no helper method for getting a resource or collection:

/**
    getDocumentHeader

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class getDocumentHeader
{
   private static boolean m_debug = false;

   public void getDocumentHeader (String document)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

String authtype = ““;

   //Instantiate an EboDAVSwitch object
160 exteNd Director Content Management Guide



   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object HeadMethod
   HeadMethod hm = (HeadMethod)dav.createWebdavMethod(dav.HEAD_METHOD,document);

   //Execute HeadMethod (send the WebDAV request to get document header)
   try 
   {
      dav.executeCommand(hm);
      statuscode = hm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_OK))
      {

//Get authorization type from header
         authtype = hm.getHeader (“authorization”).toString();

System.out.println("Request succeeded: Got the document header. Authorization 
type is “ + authtype);
      }
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
exteNd Director Content Management Guide-161

Building Your Own WebDAV Client 161



      else
         System.out.println(ioe.getMessage());
   }

   //End session
   dav.endSession();
   }
}

There is no exteNd Director helper method for getting header information from a 
resource or collection.

Getting methods that can be called on a resource or collection
The following code shows how to get the methods that can be called on a document 
stored in the CM subsystem. The document is referenced as the second argument of the 
createWebDAVMethod() utility method. To get other types of resources or collections, 
modify this argument to point to the element of interest.

Code example: getting allowed methods using utility methods

This example uses the Slide OptionsMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

There is no helper method for getting allowed methods on a resource or collection:

/**
    getAllowedMethods

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;
import java.util.*;

public class getAllowedMethods
{
   private static boolean m_debug = false;

   public void getAllowedMethods (String document)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();
162 exteNd Director Content Management Guide



   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object HeadMethod
   OptionsMethod om = (OptionsMethod)dav.createWebdavMethod(dav.OPTIONS,document);

   //Execute OptionsMethod (send the WebDAV request to get the allowed methods on 
//the document)

   try 
   {
      dav.executeCommand(om);
      statuscode = om.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_OK))
      {
         System.out.println("Request succeeded: Got the document header.\n");
         System.out.println("The allowed methods on " + document + " are:\n");
         Enumeration methods = om.getAllowedMethods();
         while (methods.hasMoreElements()) {
            System.out.println( methods.nextElement().toString() + "\n" );
         }
      }
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
exteNd Director Content Management Guide-163

Building Your Own WebDAV Client 163



      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }

   //End session
   dav.endSession();
   }
}

There is no exteNd Director helper method for getting methods that can be called on a 
resource or collection.

Getting properties defined on a resource or collection
The following code shows how to get properties defined on a document stored in the 
CM subsystem. The document is referenced as the second argument of the 
createWebDAVMethod() utility method. To get other types of resources or collections, 
modify this argument to point to the element of interest.

Code example: getting properties using utility methods

This example uses the Slide PropFindMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

There is no helper method for getting properties defined on a resource or collection:

/**
    getProperties

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;
import java.util.*;

public class getProperties
{
   private static boolean m_debug = false;

   public void getProperties (String document)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
164 exteNd Director Content Management Guide



   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object PropFindMethod
   PropFindMethod pfm = 
(PropFindMethod)dav.createWebdavMethod(dav.PROPFIND_METHOD,document);

   //Execute PropFindMethod (send the WebDAV request to get the properties defined on 
//the document)

   try 
   {
      dav.executeCommand(pfm);
      statuscode = pfm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
      {
         System.out.println("Request succeeded: Got the properties.\n");
         System.out.println("The properties defined on " + document + " are:\n");
         Enumeration props = pfm.getResponseProperties(document);
         while (props.hasMoreElements()) {
            System.out.println( props.nextElement().toString() + "\n" );
         }
      }
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
exteNd Director Content Management Guide-165

Building Your Own WebDAV Client 165



   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }

   //End session
   dav.endSession();
   }
}

There is no exteNd Director helper method for getting methods that can be called on a 
resource or collection.

Locking a document
The following code shows how to lock a document for exclusive access in a 
collaborative environment. You might invoke this function in your WebDAV client 
application when a user checks out a document.

Code example: locking a document using a helper method

The example uses the helper method lockDocument(). This method throws an 
exception if the document of interest is already locked. To explicitly check for this 
condition, the code calls the checkLockToken() method:

/**
    lockADocument

*/
import com.sssw.webdav.client.*;

public class lockADocument {

private static boolean m_debug = false;

public void lockADocument (String document)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();
166 exteNd Director Content Management Guide



   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

try 
   {

//If document not already locked, send the WebDAV request to lock the document
if ( dav.checkLockToken(document) == null)
{

statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_NO_CONTENT)

System.out.println("Request succeeded: The document " + document + "was 
locked.");

else
System.out.println("Request failed: " + status.getStatusText(statuscode));

}
else

System.out.println(“Document is already locked.”);

}
catch (EboDAVException e) 

   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }

   //End session
   dav.endSession();
   }
}

You can also lock a document using the Slide LockMethod class and exteNd Director 
utility methods. See “Programming practices using utility methods” on page 146.
exteNd Director Content Management Guide-167

Building Your Own WebDAV Client 167



Moving a resource or collection
The following code shows how to move a folder from a source path to a destination 
path. In this case, the source path points to a folder. To move other types of resources 
or collections, make sure the source path points to the element of interest.

Code example: moving a folder using a helper method

The example uses the helper method moveElement():

/**
    moveAFolder

*/
import com.sssw.webdav.client.*;

public class moveAFolder {

private static boolean m_debug = false;

public void moveAFolder (String foldersourcepath, String folderdestinationpath)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   boolean autogen = true; //Generate folders in the folderdestinationpath if they don't 
exist
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to move folder
   try 
   {
      statuscode = dav.moveElement(user, password, realm, foldersourcepath, 
folderdestinationpath, autogen);
      if (statuscode==EboDAVStatus.SC_CREATED)
         System.out.println("Request succeeded: The folder " + foldersourcepath + "was 
moved to " + folderdestinationpath);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
168 exteNd Director Content Management Guide



   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

You can also move a resource or collection using the Slide MoveMethod class and 
exteNd Director utility methods. See “Programming practices using utility methods” 
on page 146.

Removing a category reference from a document
The following code examples show how to remove a category reference from a 
document. A category is a descriptive name used to group documents logically in the 
CM subsystem.

Code example: removing a category reference using a helper method

This example uses the helper method removeCategoryFromDocument():

/**
    removeCategoryReferenceFromDocument

*/
import com.sssw.webdav.client.*;

public class removeCategoryReferenceFromDocument {

private static boolean m_debug = false;

public void removeCategoryReferenceFromDocument (String document, String categoryUUID)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();
exteNd Director Content Management Guide-169

Building Your Own WebDAV Client 169



   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to remove a category reference
   try 
   {
      statuscode = dav.removeCategoryFromDocument(user, password, realm, document, 
categoryUUID);
      if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
         System.out.println("Request succeeded: The category was removed from " + 
document);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

Code example: removing a category reference using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

The method that removes the category reference is addPropertyToSet(), called on the 
PropPatchMethod object. Notice that the second argument—property value—is null 
because the category UUID is passed as the first argument—property name. For more 
information about addPropertyToSet() and its arguments, see “Constructing WebDAV 
requests that use Proppatch” on page 146.

/**
    removeCategoryReference

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class removeCategoryReference
{
   private static boolean m_debug = false;
170 exteNd Director Content Management Guide



   public void removeCategoryReference (String document, String categoryUUID)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String namespace-abbr = "RC";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object PropPatchMethod
   PropPatchMethod ppm = 
(PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
   ppm.addPropertyToSet( categoryUUID, null, namespace-abbr, 
EboWebdavConstants.PROPPATCH_REMOVECATEGORY);

   //Execute PropPatchMethod (send the WebDAV request to remove category reference)
   try 
   {
      dav.executeCommand(ppm);
      statuscode = ppm.getStatusCode();
      if (statuscode == (EboDAVStatus.MULTI_STATUS))
         System.out.println("Request succeeded: The category was removed from " + document 
+ ".");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
exteNd Director Content Management Guide-171

Building Your Own WebDAV Client 171



      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }

   //End session
   dav.endSession();
   }
}

Removing all category references from a document
The following code examples show how to remove all category references from a 
document. A category is a descriptive name used to group documents logically in the 
CM subsystem.

Code example: removing all category references using a helper method

This example uses the helper method removeAllCategoriesFromDocument():

/**
    removeAllCategoryReferencesFromDocument

*/
import com.sssw.webdav.client.*;

public class removeAllCategoryReferencesFromDocument {

private static boolean m_debug = false;

public void removeAllCategoryReferencesFromDocument (String document)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();
172 exteNd Director Content Management Guide



   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to remove all category references from the document
   try 
   {
      statuscode = dav.removeAllCategoriesFromDocument(user, password, realm, document);
      if (statuscode==EboDAVStatus.MULTI_STATUS)
         System.out.println("Request succeeded: All categories were removed from " + 
document);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

Code example: removing all category references using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod().

The method that removes all category references is addPropertyToSet(), called on the 
PropPatchMethod object. Notice that the second argument—property value—is null 
because the document UUID is passed as the first argument—property name. For more 
information about addPropertyToSet() and its arguments, see “Constructing WebDAV 
requests that use Proppatch” on page 146.

/**
    removeAllCategoryReferences

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class removeAllCategoryReferences
exteNd Director Content Management Guide-173

Building Your Own WebDAV Client 173



{
   private static boolean m_debug = false;

   public void removeAllCategoryReferences (String documentUUID)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String namespace-abbr = "RAC";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object PropPatchMethod
   PropPatchMethod ppm = 
(PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
   ppm.addPropertyToSet( documentUUID, null, namespace-abbr, 
EboWebdavConstants.PROPPATCH_REMOVEALLCATEGORIES);

   //Execute PropPatchMethod (send the WebDAV request to remove all category references)
   try 
   {
      dav.executeCommand(ppm);
      statuscode = ppm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_OK))
         System.out.println("Request succeeded: All categories were removed.");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
174 exteNd Director Content Management Guide



   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }

//End session
   dav.endSession();
   }
}

Renaming a resource or collection
The following code shows how to rename a document. In this case, the source path 
points to a document. The destination path is identical to the source path, except for a 
different document name. 

To rename other types of resources or collections, make sure the source path points to 
the element of interest and the destination path points to the same element, but with a 
different name.

Code example: renaming a document using a helper method

The example uses the helper method moveElement():

//**
    renameADocument

*/
import com.sssw.webdav.client.*;

public class renameADocument {

private static boolean m_debug = false;

public void renameADocument (String docsourcepath, String docdestinationpath)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
exteNd Director Content Management Guide-175

Building Your Own WebDAV Client 175



   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   boolean autogen = false; //Do not generate folders in the docdestinationpath if they 
don't exist
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to rename the document
   try 
   {
      statuscode = dav.moveElement(user, password, realm, docsourcepath, 
docdestinationpath, autogen);
      if (statuscode==EboDAVStatus.SC_CREATED)
         System.out.println("Request succeeded: The document " + docsourcepath + "was 
renamed to " + docdestinationpath);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

You can also rename a resource or collection using the Slide MoveMethod class and 
exteNd Director utility methods. See “Programming practices using utility methods” 
on page 146.
176 exteNd Director Content Management Guide



Setting the value of a custom field in a document
The following code examples show how to update the custom metadata in a document 
by setting the value of a custom field. Custom fields are fields that you define as part 
of a custom document type created in the CM subsystem using the CM API or the CMS 
Administration Console.

To update standard metadata in a document, use the addPropertyToSet() method on a 
Proppatch method object, as described in “Constructing WebDAV requests that use 
Proppatch” on page 146.

Code example: setting a field value using a helper method

This example uses the helper method setFieldValueForDocument(). This method 
overwrites existing values of custom fields:

/**
    setFieldValueOfADocument

*/
import com.sssw.webdav.client.*;

public class setFieldValueOfADocument {

private static boolean m_debug = false;

public void setFieldValueOfADocument (String document, String field_name, String 
field_value)

{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to update the custom field
   try 
   {
      statuscode = dav.setFieldValueForDocument(user, password, realm, document, 
field_name, field_value);
      if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
exteNd Director Content Management Guide-177

Building Your Own WebDAV Client 177



         System.out.println("Request succeeded: The field " + field_name + " of document " 
+ document + "was changed to " + field_value);
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

Code example: setting a field value using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility 
methods startSession(), createCredentials(), setCredentials(), getState(), 
setState(), and createWebDAVMethod():

/**
setTheFieldValue

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class setTheFieldValue
{
   private static boolean m_debug = false;

   public void setTheFieldValue (String document)
   {
   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String fieldname = "Department";
   String fieldvalue = "Human Resources";
   String namespace-abbr = "SFV";

   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
178 exteNd Director Content Management Guide



   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Get and set credentials
   Credentials credentials = dav.createCredentials(user, password);
   dav.setCredentials(credentials);

   //Get and set state and authentication realm
   State state = dav.getState();
   state.setAuthenticateToken(realm);
   dav.setState(state);

   //Create the WebDAV method object PropPatchMethod
   PropPatchMethod ppm = 
(PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
   ppm.addPropertyToSet( fieldname, fieldvalue, namespace-abbr, 
EboWebdavConstants.PROPPATCH_SETFIELDVALUE);

   //Execute PropPatchMethod (send the WebDAV request to set field value)
   try 
   {
      dav.executeCommand(ppm);
      statuscode = ppm.getStatusCode();
      if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
         System.out.println("Request succeeded: The field " + fieldname + " was set to " + 
fieldvalue + ".");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e)
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   catch (java.net.MalformedURLException murle)
   {
      if (m_debug)
         murle.printStackTrace();
      else
         System.out.println(murle.getMessage());
   }
   catch (java.io.IOException ioe)
   {
      if (m_debug)
         ioe.printStackTrace();
      else
         System.out.println(ioe.getMessage());
   }
exteNd Director Content Management Guide-179

Building Your Own WebDAV Client 179



   //End session
   dav.endSession();
   }
}

Unlocking a document
The following code shows how to unlock a document, making it available to other 
authors in a collaborative environment. You might invoke this function in your 
WebDAV client application when a user checks in a document.

Code example: unlocking a document using a helper method

The example uses the helper method unlockDocument(). This method throws an 
exception if the document of interest is already unlocked. To explicitly check for this 
condition, the code calls the checkLockToken() method:

/**
    unlockADocument

*/
import com.sssw.webdav.client.*;

public class unlockADocument {

private static boolean m_debug = false;

public void unlockADocument (String document)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

 try 
   {

//If document is locked, unlock it
if (dav.checkLockToken(document) != null)
{

180 exteNd Director Content Management Guide



   //Send the WebDAV request to unlock the document
statuscode = dav.unlockDocument(user, password, realm, document);

      if (statuscode==EboDAVStatus.SC_NO_CONTENT)
         System.out.println("Request succeeded: The document " + document + "was 
unlocked.");
       else
         System.out.println("Request failed: " + status.getStatusText(statuscode));

}
else
{

System.out.println(“The document is already unlocked.”);
}

}
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   }

//End session
   dav.endSession();
   }
}

You can also unlock a document using the Slide UnlockMethod class and exteNd 
Director utility methods. See “Programming practices using utility methods” on 
page 146.

Updating a document
The following code example shows how to update the content of a document.

Code example: updating a document using a helper method

The example uses the helper method putDocument(). This method updates the 
content—not the metadata—of a document by creating and publishing a new version. 
To update document metadata, see “Setting the value of a custom field in a document” 
on page 177.

/**
    updateADocument

*/
import com.sssw.webdav.client.*;

public class updateADocument {

private static boolean m_debug = false;
exteNd Director Content Management Guide-181

Building Your Own WebDAV Client 181



public void updateADocument (String document)
{
 

   //Define variables
   int statuscode = 0;
   String user = "contentadmin";
   String password = "contentadmin";
   String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
   String updatetext = "Hello earth!";
   byte [] newcontent = updatetext.getBytes();
   
   //Instantiate an EboDAVSwitch object
   EboDAVSwitch dav = new EboDAVSwitch();

   //Instantiate an EboDAVStatus object
   EboDAVStatus status = new EboDAVStatus();

   //Start a session
   dav.startSession("localhost", 80);

   //Send the WebDAV request to update the document
   try 
   {
      statuscode = dav.putDocument(user, password, realm, document, newcontent);
      if (statuscode==EboDAVStatus.SC_OK)
         System.out.println("Request succeeded: The document " + document + "was 
updated.");
      else
         System.out.println("Request failed: " + status.getStatusText(statuscode));
      
   }
   catch (EboDAVException e) 
   {
      if (m_debug)
         e.printStackTrace();
      else
         System.out.println(e.getMessage());
   }
   
   //End session
   dav.endSession();
   }
}

You can also update a document or create a new document using the Slide PutMethod 
class and exteNd Director utility methods. See “Programming practices using utility 
methods” on page 146.
182 exteNd Director Content Management Guide



11
 Working with WebDAV Events Chapter 11
This chapter describes how to handle events related to WebDAV operations and 
activities. It has these sections:

About WebDAV events
Registering for WebDAV events
Enabling WebDAV events

This chapter assumes familiarity with the exteNd Director event model and 
event handling. For more information, see the chapter on working with events in 
Developing exteNd Director Applications.

About WebDAV events
WebDAV subsystem events are an extension of the base exteNd Director event model 
framework, consisting of state change events, event producers, and event listeners 
(including vetoable listeners). The API for WebDAV events is defined in the 
com.sssw.webdav.event.api package.

Event types
The API defines a set of state changed events related to WebDAV operations. Event 
IDs are exposed on the individual event classes as well as on the 
com.sssw.webdav.event.api.EbiConstants interface. There are also generic state 
change events defined in com.sssw.fw.event.api.EbiotateChangeEvent.
183

cdEventHandling.html


Below is a list of event IDs defined in com.sssw.webdav.event.api.EbiConstants:

For more information about WebDAV operations, see “Supported WebDAV 
methods” on page 134.

Registering for WebDAV events
To subscribe to WebDAV events:

Use the addStateChangeListener() or add VetoableStateChangeListener method 
available on the EbiStateChangeProducer interface.

You can register for a specified type or types of events using this version of 
addStateChangeListener():

public boolean addStateChangeListener(
   BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs.

WebDAV operation Event ID constant

Copy collections and resources COPY_EVENT_ID

Delete collections or resources DELETE_EVENT_ID

Retrieve collections or resources GET_EVENT_ID

Retrieve header only HEAD_EVENT_ID

Create a lock specified by the lockinfo XML 
element on the Request-URI.

LOCK_EVENT_ID 

Create collection MKCOL_EVENT_ID

Move resources or collections MOVE_EVENT_ID

Return methods that can be called on resources 
and collections 

OPTIONS_EVENT_ID

Download resources and collections from the client POST_EVENT_ID

Retrieve properties on resources and collections PROPFIND_EVENT_ID

Set and/or remove properties on server-side 
resources and collections

PROPPATCH_EVENT_ID 

Upload resources and collections from the client PUT_EVENT_ID

Remove a lock identified in the Lock-Token request 
header of the Request-URI.

UNLOCK_EVENT_ID
184 exteNd Director Content Management Guide



Use the event IDs specified in com.sssw.webdav.event.api.EbiConstants. For example, 
this code registers for create, delete and move operations on collections and resources:

EbiStateChangeProducer producer = new EbiStateChangeProducer()
// Instantiate a Java BitSet and populate it
BitSet events = new BitSet();
events.set(EbiConstants.MKCOL_EVENT_ID_ID);
events.set(EbiConstants.DELETE_EVENT_ID);
events.set(EbiConstants.MOVE_EVENT_ID);
// Add listener
producer.addStateChangeListener(events, Mylistener);

Enabling WebDAV events
To enable or disable WebDAV events:

1 Open config.xml for WebDAV in your exteNd Director project.
2 Find this property:

com.sssw.webdav.events.enable.Default

3 Set the value to true for enable or false for disable. 
4 Redeploy your project.
exteNd Director Content Management Guide-185

Working with WebDAV Events 185

locator cdLocator.html#WebDAVsubsystemconfiguration file


186 exteNd Director Content Management Guide



III
 CMS Administration Console PART III
Describes how to use the CMS Administration Console, a graphical user 
interface for developing and managing a content management scheme

• Chapter 12, “About the CMS Administration Console”
• Chapter 13, “Setting Up the Required Infrastructure”
• Chapter 14, “Setting Up the Optional Infrastructure”
• Chapter 15, “Creating Content”
• Chapter 16, “Maintaining Content”
• Chapter 17, “Administering Content”
• Chapter 18, “Searching Content”
• Chapter 19, “Managing Content Security”
• Chapter 20, “Importing and Exporting Content”
• Chapter 21, “Administering Automated Tasks”





12
 About the CMS Administration 
Console Chapter 12
This chapter describes what tasks you can perform with the Content Management 
Subsystem Administration Console, or CMS Administration Console. It has these 
sections:

What CM tasks you can do with the CMS Administration Console
How to access the CMS Administration Console
The main CMS Administration Console page

IMPORTANT:  Along with exteNd Director, you must have Microsoft Internet Explorer 
Version 5.5 or higher installed for running the CMS Administration Console.

What CM tasks you can do with the CMS Administration 
Console

You can use the CMS Administration Console to perform all tasks related to managing 
content throughout its dynamic life cycle in the exteNd Director application. 
189



The following diagram presents the recommended order and interaction of these tasks 
during a typical CMS Administration Console session:
190 exteNd Director Content Management Guide



 For more information on how to perform these tasks with the CMS 
Administration Console, see these sections:

Chapter 13, “Setting Up the Required Infrastructure”
Chapter 14, “Setting Up the Optional Infrastructure”
Chapter 15, “Creating Content”
Chapter 16, “Maintaining Content”
Chapter 17, “Administering Content”
Chapter 19, “Managing Content Security”

Importing and exporting documents In addition to the CM tasks shown in the 
diagram above, the CMS Administration Console allows you to import and export 
documents. 

 For more information on how to import and export documents using the CMS 
Administration Console, see Chapter 20, “Importing and Exporting Content”.
exteNd Director Content Management Guide-191

About the CMS Administration Console 191



How to access the CMS Administration Console
You can access the CMS Administration Console by selecting Content Management 
from the Director Administration Console (DAC). 

For information about how to access the DAC, see the section on accessing the 
DAC in Developing exteNd Director Applications.

From an EAR project, the CMS Administration Console login page looks like this:

Log in by entering your user name and password and then clicking OK.

NOTE:  Check with your administrator to make sure you have the necessary user 
privileges for performing the CM tasks assigned to you. For more information, see 
Chapter 19, “Managing Content Security”.

The main CMS Administration Console page opens in your browser, as described in 
the next section.
192 exteNd Director Content Management Guide

cdAppAdmin.html#AccessingtheDAC
cdAppAdmin.html#AccessingtheDAC


The main CMS Administration Console page
When you start the CMS Administration Console, the main page appears—as in this 
example:

The CMS Administration Console has several views and modes that you control via 
interactive controls—as follows.
exteNd Director Content Management Guide-193

About the CMS Administration Console 193



Interactive controls
The CMS Administration Console consists of the following interactive controls:

Toolbar
Content view tabs
Content tree view
Content list
Context-sensitive toolbar
Property Inspector

Toolbar—switch between modes

To switch between modes:

Content view tabs—display views of content infrastructure

To display views of the content infrastructure:

Mode Icon What authorized users can do

Content Set up content infrastructure, and administer and secure 
content, search for documents

By default, the CMS Administration Console opens in 
content mode, displaying your content by container in 
the content tree view and by document in the 
document list.

Templates Define document types, display styles, and fields—and 
create content based on these specifications

Tasks View, start, and stop automated tasks

Import Import content infrastructure, documents, document 
types, display styles, and fields

Export Export content infrastructure, documents, document 
types, display styles, and fields

View Displays

Folder Physical content infrastructure as a tree view of folders

Category Logical content infrastructure as a tree view of taxonomies and 
categories

Check-Outs Documents checked out, by either the current user or other users
194 exteNd Director Content Management Guide



 For more information about folders and categories, see “Subsystem 
infrastructure” on page 21. For information about checking out documents, see 
“Checking documents in and out” on page 260. For information about finding 
documents with the Search facility, see Chapter 18, “Searching Content”.

Content tree view

Displays:

The physical infrastructure in folder view
The logical infrastructure in category view.

Content list

Displays the list of documents in the selected folder, along with identifying 
information such as name, author, description, create date, expiration date, publish 
date, and checkout status.

Context-sensitive toolbar

Provides functions based on the current mode and view.

Property Inspector

Displays properties for selected documents, folders, taxonomies, and categories. 

The Property Inspector is context-sensitive and permission-sensitive. It displays 
interactive controls and tabbed panes of information based on the object you select and 
the permissions associated with your user ID. 

For example: if you do not have WRITE permission, you cannot edit documents and 
the Property Inspector will not display Check-In and Check-Out controls; if you do not 
have PROTECT permission, you cannot set security on content and the Property 
Inspector will not display a Security tab.

Search Search dialogs and documents found by the most recent search

View Displays
exteNd Director Content Management Guide-195

About the CMS Administration Console 195



196 exteNd Director Content Management Guide



13
 Setting Up the Required InfrastructureChapter 13
This chapter describes the order of tasks required for setting up the required parts of the 
infrastructure, along with associated procedures. It has these sections:

Flow of operations
Creating folders
Creating document types
Creating fields and adding them to a document type
Writing JavaScript for document types and fields

NOTE:  Before creating documents for your exteNd Director application, you must 
define the content infrastructure, as described in “Subsystem infrastructure” on 
page 21.

Flow of operations
Here is a workflow that illustrates the recommended order of operations for setting up 
the required parts of the Content Management (CM) subsystem infrastructure:

Generally, the task of building this infrastructure is assigned to a system administrator 
or content administrator who has READ, WRITE, and LIST permissions. For more 
information about managing security, see Chapter 19, “Managing Content Security”.
197



Creating folders
The folder is a key part of the CM subsystem. Every document must reside in one (and 
only one) folder, although a single folder can store one or more documents as well as 
other folders.

To create a folder:

1 Enter Content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your existing folders appear in the content tree view.
3 Select the folder that will house your folder by clicking the name.

The name appears highlighted.
4 Click the New Folder icon, located in the bottom-left panel of the CMS 

Administration Console.
An Untitled folder appears in the content tree view. 
You may have to expand the parent folder in the content tree view to make the 
new folder visible in that view.

5 Click Untitled to open the Property Inspector for the new folder.
6 Fill in the Name and Description text boxes in the Property Inspector, then click 

Save.
The other General fields are filled in automatically by the CMS Administration 
Console. You cannot edit them.

7 Select the Security tab in the Property Inspector and set security for the folder, as 
described in Chapter 19, “Managing Content Security”. 

8 Click Save to preserve your settings.
9 Select the folder in the content tree view.

Your new folder should appear in the content tree view as well as in the content 
list along with the description, author, and date created. 
198 exteNd Director Content Management Guide



Here is an example showing information about a PSAT folder:

Creating document types
A document type is the basic definition of a document. Every document is associated 
with a document type in the CMS Administration Console. 

The document type is a template that specifies layout styles, fields of information, and 
document management options—such as whether or not the CMS Administration 
Console automatically checks in a document after it is edited.
exteNd Director Content Management Guide-199

Setting Up the Required Infrastructure 199



To create a document type:

1 Enter Templates mode by clicking the Templates button in the toolbar.
A panel appears listing any document types that have been defined.

2 Click the Add button that appears under the Document Types list. 
The Create A New Document Type window appears:

3 Specify the basic options, including:

Option Effect

Auto-Checkin If selected, CMS Administration Console checks in 
documents automatically after they are edited.

If not selected, CMS Administration Console does not 
check in documents automatically after they are edited

Auto-Publish If selected, CMS Administration Console publishes the 
latest version of the content of a document automatically 
after that document is edited.

If not selected, CMS Administration Console does not 
publish documents automatically after they are edited

Default Content If you select:

HTML: CMS Administration Console will always enter 
content as HTML for documents of this type.

Binary: CMS Administration Console will always upload 
content from an external source for documents of this 
type.

Choice: You want to decide at content creation time 
whether to enter content as HTML or upload content from 
an external source.
200 exteNd Director Content Management Guide



4 Click Extended Options to specify additional document type behavior. 
The Create A New Document Type window expands:

5 Specify extended options, including:

Option Effect

Default Folder When the CMS Administration Console creates 
documents of this type, this folder is specified as the 
parent folder. You can change the folder when creating 
the new document. 

Force Folder If selected, the folder specified under Default Folder 
cannot be changed when creating a new document of 
this type.

Default Categories When the CMS Administration Console creates 
documents of this type, this category is specified as the 
parent category. You can change the category when 
creating the new document. 
exteNd Director Content Management Guide-201

Setting Up the Required Infrastructure 201



6 Click the Create New Document Type button.
Your new document type is added to the list.

Creating fields and adding them to a document type

About fields
Fields are application-specific metadata that you define as part of a document type.

You can create custom fields using the CMS Administration Console or 
programmatically using the CM API. 

NOTE:  You must be a member of the SearchAdmin group to create fields. For more 
information about users and groups, see the chapter on using the Directory section of 
the DAC in the User Management Guide.

You assign each field a control type. The control type you select should reflect the way 
you’d like the content developer to enter information in the document type template. 
Each control type requires its own set of parameters, which you can specify in the 
Property Inspector. When fields are created, they are added to a pool of available fields 
that are shared by multiple document types.

When you add a field to a document type, an equivalent blank field is added to 
documents of that type that you have already created in the CMS Administration 
Console.

Force Categories If selected, the category specified under Default 
Category cannot be changed when creating a new 
document of this type.

Clean Up Data If selected, when you remove a field from a document 
type (but leave it available for later use), the CMS 
Administration Console deletes the field from legacy 
documents of that type.

If not selected, when you remove a field from a 
document type (but leave it available for later use), the 
CMS Administration Console preserves the field in 
legacy documents of that type but does not allow you to 
edit the field.

User Data You can use the text box to store additional metadata 
about the document type (such as notes, procedural 
instructions, and so on). 

Option Effect
202 exteNd Director Content Management Guide

usPACDirectory.html
usPACDirectory.html


Creating and manipulating fields
This section explains how to create fields, add existing fields to document types, and 
specify which fields to display in the Available Fields list.

To create a field:

1 Make sure you are a member of the SearchAdmin group.
For information, see the procedures described in the chapter on using the 

Directory section of the DAC in the User Management Guide.
2 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.
3 Click the document type for which you are going to create a field.

NOTE:  If you want to create a new document type first, see “Creating document 
types” on page 199.

A Content Types panel appears displaying the currently defined fields in the 
document type and providing controls for creating new fields or adding existing 
fields:
exteNd Director Content Management Guide-203

Setting Up the Required Infrastructure 203

usPACDirectory.html
usPACDirectory.html


4 Click Add in the Content Types panel.
An Untitled field appears in the Fields pane for the selected document type, and 
the Property Inspector opens allowing you to specify properties for the new field:

5 In the Fields pane, select the control type you want for your field. Choices 
include Textfield, Checkbox, Radio Button, and so on.
The Property Inspector refreshes to display options appropriate for the control 
type you select. These control types represent HTML control types, and the 
display options represent the attributes for those control types.

6 In the Property Inspector, enter an informative name for your field and fill in the 
other parameters.

7 Click Update.
The new field appears in the Fields pane for the selected document type and in 
the Available Fields pane for other document types to use.

8 Repeat these steps for as many fields as you want to create and add to the 
document type.

9 Click Save in the Fields pane to save the fields in the current document type.

To add an existing field to a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that are currently defined.
204 exteNd Director Content Management Guide



2 Click the document type for which you want to add a field. 
NOTE:  If you want to create a new document type first, see “Creating document 
types” on page 199.

The Content Types panel appears displaying a pane of available fields:

3 Add fields to the document type using one of these methods:
Double-click the field name in the Available Fields list.
OR
Select a field in the Available Fields list and click the Add Field button:

OR
Drag the field icon from the Available Fields list to the Fields list:
exteNd Director Content Management Guide-205

Setting Up the Required Infrastructure 205



To change the Available Fields display:

1 Click the down arrow of the dropdown menu labeled Show Fields in Document 
Type, located under the Available Fields list. A menu appears allowing you to 
display the fields available for only a particular document type or for all 
document types:

2 Select a menu option. 
The Available Fields list refreshes to reflect your choice.

Writing JavaScript for document types and fields
The CMS Administration Console enables you to specify JavaScript code for 
document types and fields. You can specify JavaScript that runs when:

A content page is loaded
An HTML form on a page is submitted
A field on a page gains or loses focus, or is clicked
The content of a field is changed
206 exteNd Director Content Management Guide



If you code JavaScript for a particular document type, you can access that code when 
defining JavaScript for individual fields in that document type. For example, if you 
define a function for the document type, you can call that function on a JavaScript 
event for a field, such as gaining focus or clicking. 

CAUTION:  The CMS Administration Console does not verify JavaScript code. You 
are responsible for verifying that JavaScript written for a document type or field is 
designed and coded correctly. 

To specify JavaScript for a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types currently defined.

2 Click the document type for which you want to specify JavaScript code. 
NOTE:  If you want to create a new document type first, see “Creating document 
types” on page 199.

3 Click the Advanced tab. 
The Advanced Properties window displays:
exteNd Director Content Management Guide-207

Setting Up the Required Infrastructure 207



4 Under JavaScript Event, specify when you want the JavaScript to run during the 
life cycle of the document. Choices include:

Before Page Is Loaded
After Page Is Loaded
Form Submitted

If you want the JavaScript code to be available to fields in the document type (for 
example, if you want to define functions that will be called by individual fields), 
specify Before Page Is Loaded.

5 Under JavaScript Code, insert the code.
For example, here is some JavaScript code containing two function definitions 
that is to run before the page is loaded:

6 Click Save to save the JavaScript specification in the current document type.

To code additional JavaScript for other events, repeat this procedure specifying the 
alternate event(s) in Step 4 and code in Step 5.

To specify JavaScript for a field:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that are currently defined.
208 exteNd Director Content Management Guide



2 Click the document type that contains the field for which you want to specify 
JavaScript code. A list of the fields defined for that type appears.
NOTE:  If you want to create a new document type first, see “Creating document 
types” on page 199.

3 Double-click the field for which you want to specify JavaScript to access the 
field properties.

4 Under JavaScript Events, specify when you want the JavaScript to run. 
Depending on the kind of field (text field, check box, text area, and so on) 
selected, one or more of these events might be available:

onBlur
onFocus
onClick
onChange

You can specify different JavaScript code for different events. 
5 In the text box next to the JavaScript Events selection box, type your JavaScript 

code.
If any functions for the document type that contains the field have been defined, 
you can click Available Functions to select from the list of predefined functions:

A template for the function is inserted into the text box. You can then edit the text 
box.

For information about defining JavaScript functions for a document type, 
see “To specify JavaScript for a document type:”above.

6 Click Update to save your field properties.

To code additional JavaScript for other field events, repeat this procedure specifying 
the alternate event(s) in Step 4 and code in Step 5.

CAUTION:  If you create a field that references a function defined in a particular 
document type and then use that field in another document type, you must redefine the 
function in the second document type before that function can work.
exteNd Director Content Management Guide-209

Setting Up the Required Infrastructure 209



210 exteNd Director Content Management Guide



14
 Setting Up the Optional Infrastructure Chapter 14
In addition to the required infrastructure such as document types and folders, you can 
create optional parts of the CM subsystem infrastructure that define display styles and 
assign categories to content. This chapter has these sections:

Flow of operations
Creating display styles
Specifying a style sheet for a document type
Creating taxonomies
Creating categories

Flow of operations
Here is a workflow that illustrates the recommended order of operations for setting up 
the optional CM subsystem infrastructure:
211



Creating display styles

About display styles
Display styles specify how to display content for individual document types. The CMS 
Administration comes with a default display style that it automatically applies to all 
content unless you override it by creating custom display styles for document types. 

For each display style, you can add one or more XSL style sheets that specify how to 
render content for particular user agents, such as Microsoft Internet Explorer and 
Netscape Navigator. You must create the XSL specifications in an external XSL editor, 
then upload the XSL file to a display style.

The CMS Administration Console treats XSL style sheets like documents—by:

Storing each XSL style sheet in one (and only one) folder, identifying it as a 
system resource
Storing each update to an XSL style sheet as a new version
Requiring authorized users to publish the version of the XSL style sheet they 
want to apply to content

Before you create display styles Before you can create display styles, the 
following elements of the content infrastructure must be in place:

Creation procedure After you complete these tasks, you are ready to:

Create an XSL style sheet in an external editor based on existing content
Create a display style
Upload the XSL style sheet to the display style

Infrastructure element For information see

Folder for physically storing XSL style 
sheets

“Creating folders” on page 198

Document type for defining content 
structure

“Creating document types” on 
page 199 and “Creating fields and 
adding them to a document type” on 
page 202

Instances of the document type(s) for 
which you want to create a display style

“Creating documents” on page 223
212 exteNd Director Content Management Guide



To create an XSL style sheet based on existing content:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand 
some of these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click Preview in the Property Inspector.

The content opens in a Content Reader window:

6 Click View XML.
The Content Reader refreshes to display the XML code that underlies your 
content, along with a Show Styled Document button that allows you to redisplay 
the rendered content.

7 Copy the XML and paste it into an XSL editor and develop an XSL style sheet 
for the content.

8 Save the XSL style sheet in an XSL file on your local file system or designated 
network directory.

Now you are ready to create a display style that will use the XSL style sheet you just 
created.
exteNd Director Content Management Guide-213

Setting Up the Optional Infrastructure 213



To create a display style:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

2 Select the document type for which you are going to define a display style.
TIP:   If you want to create a new document type first, see “Creating document 
types” on page 199.

3 Click the XSL Style Sheets tab.
Two panes appear. The Default Display Styles pane lists any display styles that 
have already been created for the document type, and the Properties pane 
displays the properties of a selected display style. In the following example, no 
display styles have been created:
214 exteNd Director Content Management Guide



4 Click Create Display Style.
The Create Display Style window opens:

5 Enter a name for the new display style and (optionally) a description, then click 
Create The Display Style.
The new display style is added to the Default Display Styles pane.

6 If you want to designate the display style as the default for the selected document 
type, select the display style in the Default Display Styles pane and click Set As 
Default.

To upload an XSL style sheet to a display style:

Before performing this procedure, you must create an XSL style sheet in an external 
editor and store the specification as an XSL file on your network.

1 Enter Templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.
The document type Property Inspector appears.

3 Click the XSL Style Sheets tab.
Two panes appear. The Default Display Styles pane lists any display styles that 
have been created for the document type, and the Properties pane displays the 
properties of a selected display style.

4 In the Default Display Styles pane, select the display style for which you want to 
add an XSL style sheet.
exteNd Director Content Management Guide-215

Setting Up the Optional Infrastructure 215



5 Click Upload in the Properties pane to upload the XSL style sheet you created 
externally.
The Upload Style Sheet window opens:

6 Fill in the text boxes as follows:

7 Click Upload The Style Sheet.
The XSL style sheet is uploaded to the display style. If you expand the display 
style in the Default Display Styles pane, you will see its list of associated XSL 
style sheets.
The XSL style sheet is also uploaded as a system resource to the folder you 
specified in Step 6.

Option What to enter

Document Name Name that identifies the XSL style sheet in the CMS 
Administration Console

NOTE:  The CMS Administration Console uses this name 
to display the XSL style sheet as a document in folder view

Target Browser A user agent from the dropdown list

NOTE:  The CMS Administration Console uses this value 
to determine which XSL style sheet should render content 
for specific user agents

Folder Folder where the XSL style sheet should be stored

XSL File XSL style sheet you created for this display style. You can:

Browse the network for an external file

OR

Select Choose Existing Document to search for an 
XSL file that has already been uploaded to the CMS 
Administration Console
216 exteNd Director Content Management Guide



Specifying a style sheet for a document type
The properties of a document type can include an XSL style sheet that you can specify 
on the Advanced tab of the document type properties. This style sheet designation is 
included in the XML of all documents of this type that you create. 

The CMS Administration Console content creation code uses this style sheet to render 
the data for that document type.

This style sheet designation is distinct from the styles and style sheets you can specify 
in the XSL Style Sheets tab (as described under “Creating display styles” on page 212). 
Those styles are used when displaying portlets of the document type in the Content 
Reader. 

To specify a style sheet for the document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.
A document type Property Inspector appears.

3 Click the Advanced tab.
4 To specify a style sheet document that currently exists in the CMS 

Administration Console:
4a Click Choose Existing Document.

The Search For A Resource window opens.
4b Search for a document by name, title, or author by selecting the appropriate 

radio button, entering identifying information, and clicking the Search 
button.

This example shows a search for all resources that contain PC in their 
names. 

4c Select the document from the search results.
Your choice is reflected under Style Sheet File.
exteNd Director Content Management Guide-217

Setting Up the Optional Infrastructure 217



4d Click Close Window to exit the Search For A Resource window.
5 To specify an external style sheet:

5a Click Browse.
A file selection dialog opens.

5b Browse to the appropriate style sheet and select it.
Your choice is reflected under Style Sheet File.

5c Next to Style Sheet Folder, click the ellipsis. 
The Folder Selection dialog appears.

5d Navigate to the CMS Administration Console folder where you want to 
install the style sheet and click Done.
Your choice is reflected next to Style Sheet Folder.

6 Click Save to apply the style sheet specification to the document type properties.

To remove a style sheet specification from the document type properties:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.
A document type Property Inspector appears.

3 Click the Advanced tab.
4 Under Document Creation Style Sheet, click Do Not Use Style Sheet.
5 Click Save to remove the style sheet specification from the document type 

properties.

Creating taxonomies
If you plan to set up multiple categories for classifying documents, you may want to 
group them in a meaningful taxonomy.

 For more information, see “Classifying content” on page 25.

To create a taxonomy:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view. (You 
may have to expand the Default root category.)
218 exteNd Director Content Management Guide



3 Click the New Taxonomy icon, located in the bottom-left panel of the CMS 
Administration Console.
An Untitled taxonomy appears in the content tree view.

4 Click Untitled to open the Property Inspector for the new taxonomy:

5 Fill in the Name and Description text boxes in the Property Inspector, then click 
Save.
The name of the taxonomy is updated in the content tree view.

6 Select the Security tab in the Property Inspector and set security for the 
taxonomy, as described in Chapter 19, “Managing Content Security”. 

7 Click Save to preserve your settings.

Creating categories
You can create one or more categories for classifying documents within a taxonomy.

 For more information, see “Classifying content” on page 25.
exteNd Director Content Management Guide-219

Setting Up the Optional Infrastructure 219



To create a category:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view.
3 Click the name of the taxonomy that will store your category.

The name appears highlighted.
4 Click the New Category icon in the bottom-left panel of the CMS 

Administration Console.
An Untitled category appears in the content tree view within the selected 
taxonomy.

5 Click Untitled to open the Property Inspector for the new category:

6 Fill in the Name and Description fields in the Property Inspector, then click 
Save.
The name of the category is updated in the content tree view.

7 Select the Security tab in the Property Inspector and set security for the category, 
as described in Chapter 19, “Managing Content Security”.

8 Click Save to preserve your settings.
220 exteNd Director Content Management Guide



15
 Creating Content Chapter 15
This chapter describes how to create content using the CMS Administration Console. 
It has these sections:

About content
Flow of operations
Creating documents
Creating relationships between documents

About content
What content is Content is defined as information that is viewed or downloaded by 
users of your exteNd Director application. Content is managed in the CMS 
Administration Console. (It is important to distinguish content from pages, which are 
managed in the DAC and present the graphical interface that helps users navigate the 
Web site.)

 For more information about content, see Chapter 1, “About the Content 
Management Subsystem”.

The CMS Administration Console supports content in any format that can be digitized, 
including HTML and binary content imported from other applications.
221



Before you create content Before you can create content for your exteNd 
Director application, the following elements of the content infrastructure must be in 
place:

Within this infrastructure, you will be able to create content that conforms to the 
standards your organization has set for structure. 

Flow of operations
Here is the basic task required to create content in the CMS Administration Console:

First you create content as documents based on a document type; then you can set up 
relationships between documents by adding child documents and attachments to a 
parent document. You can also set up relationships between documents by adding child 
documents and attachments to a parent document.

This section describes procedures for:

Creating documents
Creating relationships between documents

After the content has been developed, authorized users can add optional parts of the 
content infrastructure as needed—such as custom display styles, taxonomies, and 
categories. These procedures are covered in Chapter 14, “Setting Up the Optional 
Infrastructure”.

Element For information see

Folder for physically storing the content “Creating folders” on page 198

Document type for defining content 
structure

“Creating document types” on 
page 199 and “Creating fields and 
adding them to a document type” on 
page 202
222 exteNd Director Content Management Guide



Creating documents
With the CMS Administration Console, content developers create content in the form 
of documents that reside in folders. Each document is stored in one (and only one) 
folder.

When you create documents, you must specify three types of information:

1 Identifying information—or metadata:

Name of document (identifies the document in the CMS Administration 
Console content list)
Title of content (appears in the user view of the document)
Subtitle (optional)
Author
Folder (where document is stored)
Categories (optional)
Abstract (optional)
Status (optional)
Expiration date (optional)
Publish date (optional)

2 Information required by the fields that are part of the document type
3 Dynamic content that can be entered either as HTML directly in the CMS 

Administration Console, or uploaded from external files

Identifying information Details

Name of document  Identifies the document in the content list)

Title of content  Appears in the user view of the document)

Subtitle  (Optional)

Author —

Folder  Where document is stored)

Categories  (Optional)

Abstract  (Optional)

Status  (Optional)

Expiration date  (Optional)

Publish date  (Optional)
exteNd Director Content Management Guide-223

Creating Content 223



Each time you edit the content of a document, the CMS Administration Console 
creates a new version of the document content. The CMS Administration Console does 
not create a new version of the document content if you change only the metadata or 
custom field values but not the content.

If you want to create a document for the purpose of testing your style sheets, you can 
use the CMS Administration Console’s Auto Create utility, which automatically fills in 
boilerplate content for you.

This section describes how to:

Creating a document
Specifying a folder for a new document
Using Auto Create to create a document
Using the CMS Administration Console’s HTML Editor

Creating a document

To create a document:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.
224 exteNd Director Content Management Guide



2 Select a document type from the list and click Use.
The Create A New Document window opens with the General tab open.
This tab contains the basic document metadata, such as name, title, author, folder 
that contains the document, any categories that contain the document, and so on:

3 Enter data into any required fields in the General tab. 
TIP:   Any fields marked with an asterisk are required fields and must be filled in 
before you can create the document. 
exteNd Director Content Management Guide-225

Creating Content 225



4 Click Custom Fields and enter data for any fields defined for the document type. 
Some example custom fields are shown below:

TIP:   Custom fields are in some sense required fields in that you must fill in any 
empty fields before you can create the document. In the example above, you must 
fill in the Question Text field and select one of the buttons before the CMS 
Administration Console can create the document.
226 exteNd Director Content Management Guide



5 Click the Content tab and specify the dynamic content for the document:

The options for entering content depend on the Default Content setting of the 
document type (as specified under “Creating document types” on page 199):

If Default Content = Binary, content developers upload content from an 
external file on the network.
If Default Content = HTML, content developers use the CMS Administration 
Console’s HTML Editor to enter content by typing directly in the edit area or 
by pasting in HTML source from an external editor.
exteNd Director Content Management Guide-227

Creating Content 227



If Default Content = Choice, content developers can choose the way they 
enter content, as follows:

TIP:  Users with appropriate privileges can modify the Default Content 
setting in the document type to restrict the type of content users can enter.

 To learn how to work with the CMS Administration Console’s HTML 
Editor, see “Using the CMS Administration Console’s HTML Editor” on 
page 229.

6 Click Add the Content at the bottom of the Create A New Document window.
The document is created in the folder you specified in the General tab.
 To view the content you just created, see “Previewing content” on 

page 242.

Specifying a folder for a new document

To specify a folder for a new document:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select a document type from the list and click Use.
The Create A New Document window opens.

3 Click the ellipsis next to the Folder field.
The Folder Selector window opens:

To Do this

Create content in 
the HTML Editor

1 Select the Create Content radio button.

2 Type or paste content in the CMS Administration 
Console’s HTML Editor, using the command bar 
buttons to format text, create hyperlinks, and 
insert images.

Upload content 
from an external 
source

1 Select the Upload Content radio button.

2 Enter a path to a file, or click Browse to navigate 
to a file on the network.
228 exteNd Director Content Management Guide



4 Navigate to the folder you want, click the folder name, and click Done.
The name of the selected folder appears in the Folder field of the Create Content 
window.

5 Enter other content as needed and click Update the Content.

Using Auto Create to create a document

To use Auto Create to create a document:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select a document type from the list and click Auto Create.
The Create Content window opens, with most required metadata and fields filled 
in.

3 Specify a folder for the document.
4 Fill in any other content as desired and click Add the Content.

The document is created in the specified folder.

Using the CMS Administration Console’s HTML Editor
Content developers can enter content as HTML using the CMS Administration 
Console’s HTML Editor. 

The only prerequisite is that you must set the Default Content option to HTML or 
Choice when creating the document type. 

For more information about specifying document type options, see “Creating 
document types” on page 199.
exteNd Director Content Management Guide-229

Creating Content 229



When you create or edit content using a document type with one of these Default 
Content settings (Binary, HTML, or Choice), the HTML Editor appears in the Content 
tab of the Create A New Document or Edit Document window:

With the CMS Administration Console’s HTML Editor you can:

Cut, copy, and paste text
Format text
Toggle editing mode between HTML code and rendered text
Create hyperlinks
Insert images

You can use the HTML Editor to edit the portion of the HTML code that would appear 
in the <BODY> section—not the entire HTML document. For example, you cannot 
use the HTML Editor to modify HTML code that would appear in the <HEAD> 
section of the document.
230 exteNd Director Content Management Guide



This section describes how to access and use the CMS Administration Console’s 
HTML Editor.

To access the CMS Administration Console’s HTML Editor when creating a new 
document:
1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.
2 Select a document type whose Default Content field equals HTML or Choice.
3 Click Use.

The Create A New Document window opens. 
4 Click Content to access the HTML Editor:
exteNd Director Content Management Guide-231

Creating Content 231



To access the CMS Administration Console’s HTML Editor when editing an 
existing document:
1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand 
some of these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
5 Click the Edit button.

The Edit Document window appears. 
6 Click Content to access the HTML Editor:

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.
232 exteNd Director Content Management Guide



To cut, copy, paste, and format text:

Select the appropriate buttons from the toolbar.

To show HTML code:

Check View HTML source.
Enabling this option:

Exposes HTML tags in existing text (entered while this setting was disabled)
Allows the HTML Editor to interpret HTML tags as code when typed in 
directly or pasted in from an outside source
NOTE:  If you enter HTML tags when this option is disabled, the tags are not 
interpreted as code and instead are converted to text.

To show rendered text:

Deselect View HTML source to hide HTML tags and show rendered text.

To create a hyperlink:

1 Position the cursor in the HTML Editor where you want to insert the link.
2 Click the Create Hyperlink button:

The Create A Link window opens:

3 Choose the type of link you want to create:

Type of link Description

Internal Link to content that you created in or uploaded to the CMS 
Administration Console

External Link to external content
exteNd Director Content Management Guide-233

Creating Content 233



4 To create an internal link:
4a Select the Internal radio button.

The Search For A Resource window opens:

4b Search for internal content by name, title, or author by selecting the 
appropriate radio button, entering the appropriate identifying information, 
and clicking the Search button.

4c Select the resource from the search results and click the Close Window 
button at the bottom of the window.
A text string linking to the resource appears in the Create A Link window. 
You can click on the text string to view the resource.

4d Back in the Create A Link window, enter the display text for the link in the 
Display field and click Add The Link.

5 To create an external link:
5a Select the External radio button.
5b Enter the display text for the link in the Display field.
5c Enter the URL of the external content in the URL field.

NOTE:  You can enter an URL that invokes a servlet to serve up content to 
your exteNd Director application.

5d Click Add The Link.
234 exteNd Director Content Management Guide



To insert an image:

1 Position the cursor in the HTML Editor area where you want to insert the image.
2 Click the Insert Image button:

The Insert An Image window opens:

3 Choose the type of image you want to insert:

4 To insert an internal image:
4a Select the Internal radio button.

The Search For A Resource window opens:

4b Search for an internal image by name, title, or author by selecting the 
appropriate radio button, entering the appropriate identifying information, 
and clicking the Search button.

4c Select the image from the search results and click the Close Window button 
at the bottom of the window.
A text string identifying the image target appears in the Insert An Image 
window.

Type of image Description

Internal Image that you created in or uploaded to the CMS 
Administration Console

External Image created outside the CMS Administration Console
exteNd Director Content Management Guide-235

Creating Content 235



4d Back in the Insert An Image window, enter a title for the image in the Title 
field.
The title is the hover text that will appear as the cursor moves over the 
image.

4e Click Insert The Image.
5 To insert an external image:

5a Select the External radio button.
5b Enter a title for the image in the Title field.

The title is the hover text that will appear as the cursor moves over the 
image.

5c Enter the URL of the external image in the URL field.
5d Click Insert The Image.

Creating relationships between documents
The CMS Administration Console allows you to create two types of relationships 
between documents:

The definition of document includes not only documents created in the CMS 
Administration Console, but also documents that are uploaded to the CMS 
Administration Console, such as images and binary files.

This section describes how to add child documents and attachments to a parent 
document, and how to remove these relationships.

Relationship type Description

Parent/child In this relationship, a parent document can have one or more 
child documents. This is a one-to-many relationship: each 
child document can have only one parent, but each parent 
can have multiple child documents. A typical application of 
the parent/child relationship is for a discussion thread in 
which one question can have multiple responses but each 
response relates to only one parent question.

Parent/attachment In this relationship, a parent document can have one or more 
attached documents. This is a many-to-many relationship: 
each parent document can have more than one attachment, 
while each attachment can be shared with multiple other 
parents. A typical application of the parent/attachment 
relationship is an online bookstore that attaches author 
documents to its book lists, where multiple books can have 
the same author.
236 exteNd Director Content Management Guide



To add a child document:

Users with READ and WRITE permissions can add children to a document. You can 
add internal child documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest.
A Child Docs tab appears in the document’s Property Inspector.

5 Click Check-Out to check out your document and then select the Child Docs 
tab.

6 Select a document, using one of these methods:

The document you select appears as a child of your document in the Property 
Inspector.

7 Check your document back in by selecting the General tab, then clicking Check-
In.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.

To Do this

Add an internal 
document

1 Click Add in the Child Docs pane.

The Search For A Resource window opens.

2 Search for a document by name, title, or author by 
selecting the appropriate radio button, entering 
identifying information, and clicking the Search 
button.

3 Select the document from the search results.

Upload an external 
document

1 Click Upload in the Child Docs pane.

The Upload A File Attachment window opens.

2 Browse to the document of interest and select it.

3 Click Upload.
exteNd Director Content Management Guide-237

Creating Content 237



To add an attachment:

Users with READ and WRITE permissions can add attachments to a document. You 
can attach internal documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest.
An Attachments tab appears in the document’s Property Inspector.

5 Click Check-Out to check out your document and then select the Attachments 
tab.

6 To attach an internal document (one that has been created in or uploaded to the 
CMS Administration Console):
6a Click Add in the Attachments pane.

The Search For A Resource window opens.
6b Search for a document by name, title, or author by selecting the appropriate 

radio button, entering identifying information, and clicking the Search 
button.

6c Select the document from the search results.
The Attachment Properties window opens.

6d (Optional) In the Description text area, enter text about the relationship 
between the parent document and its attachment.
This text appears in the XML generated by the CMS Administration Console 
Content Reader.

6e Click Add.
The document you selected appears as an attachment to your document in 
the Property Inspector.

7 To attach an external document:
7a Click Upload in the Child Docs pane.

The Upload A File Attachment window opens.
7b Browse to the document of interest and select it.
7c (Optional) In the Description text area, enter text about the relationship 

between the parent document and its attachment.
This text appears in the XML generated by the CMS Administration Console 
Content Reader.
238 exteNd Director Content Management Guide



7d Click Upload.
The document you select appears as an attachment to your document in the 
Property Inspector.

8 Check your document back in by selecting the General tab, then clicking Check-
In.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.

To remove relationships between documents:

To remove the relationship between a parent document and its child or attachment, you 
need READ, WRITE, and LIST permissions. 

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the parent document of interest to open its Property Inspector.
5 Check out the parent document by clicking Check-Out in its Property Inspector.
6 Check out the attachment or child document of interest by selecting it in the 

content list and clicking Check-Out in its Property Inspector.
7 Select the parent document again and then choose the Attachments or Child 

Docs tab in its Property Inspector.
8 Select the attachment or child document of interest in the parent’s Property 

Inspector.
The Property Inspector refreshes to provide a Remove Relationship button.

9 Click the Remove Relationship button.
The attachment or child document disappears from the parent’s Property 
Inspector, but remains in its CMS Administration Console folder.

10 Check the parent and child (or attachment) back in by selecting the General tab, 
then clicking Check-In.

NOTE:  The parent and child (or attachment) must both be checked out to sever the 
relationship. Otherwise, the Remove Relationship button will not appear. Even after 
you sever the relationship, the attached file or child document remains in the CMS 
Administration Console.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.
exteNd Director Content Management Guide-239

Creating Content 239



240 exteNd Director Content Management Guide



16
 Maintaining Content Chapter 16
This chapter describes various ways to access and update existing content using the 
CMS Administration Console. It has these sections:

Flow of operations
Previewing content
Editing content
Modifying properties
Assigning a document’s folder, categories, and taxonomies
Modifying display styles
Editing document types
Editing document fields
Setting document expiration dates
Deleting content

Flow of operations
Here is a workflow that shows the variety of operations available to authorized users 
who are responsible for maintaining content in the CMS Administration Console:
241



This section presents procedures for:

Previewing content
Editing content
Modifying properties
Assigning a document’s folder, categories, and taxonomies
Modifying display styles
Editing document types
Editing document fields
Setting document expiration dates
Deleting content

Previewing content
Users with READ permission can preview documents to get a view of how content will 
appear to users of the Web site. Using the preview function, document reviewers verify 
the accuracy, structure, and layout of content before it is published.

To preview the latest version of content:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
242 exteNd Director Content Management Guide



5 Click the Preview button.
The latest version of the document’s content opens in the Content Reader 
window:

To preview a specific version of content:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Select the Versions tab.

A list of content versions appears, ordered from most recent to earliest.
The currently published version of content appears with the published-version 
icon:

If no version has been published, all versions appear with the default document 
icon:

6 Click to select a version.
The version name appears highlighted.
exteNd Director Content Management Guide-243

Maintaining Content 243



7 Click the Preview button.
The selected version of the document’s content opens in the Content Reader 
window:

NOTE:  If no version of this document has been published, no dynamic content 
appears in the Content Reader. Instead, a message appears at the bottom of the 
Content Reader window indicating that there is no currently published content for 
the document. For information about publishing content, see “Administering 
version control” on page 264. 

Editing content
Users with READ and WRITE permission can edit content. Documents must be 
checked out before they can be modified. The CMS Administration Console applies 
edits to the latest version of a document and saves the modifications as a new (later) 
version.

To edit content:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click the Check-Out button.
244 exteNd Director Content Management Guide



6 Click the Edit button.
An edit window appears in which metadata, fields, and dynamic content can be 
modified.

7 Edit the content, then click Update The Content.
NOTE:  To undo your edits, click the Reset button to return the document to its 
original state.

The updated content is saved in a new version of the document.
8 Check the document back in by clicking Check-In.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.

Modifying properties
Users with READ, WRITE, and LIST permissions can modify the properties of the 
following CM elements in the CMS Administration Console:

Folders
Taxonomies
Categories
Documents
Values of document fields

To modify properties:

1 Select the CM element of interest and open its Property Inspector.
Here’s how to access the Property Inspector for each element:

CM element How to access

Folder 1 Click the Content button.

2 Select the Folder View tab.

3 Select the folder of interest.

Taxonomy and 
category

1 Click the Content button.

2 Select the Category View tab.

3 Select the taxonomy or category of interest.
exteNd Director Content Management Guide-245

Maintaining Content 245



2 In the Property Inspector, modify properties as needed.
TIP:   Some properties cannot be edited.

3 Record your changes:

 For more information about checking documents out and in, see “Checking 
documents in and out” on page 260.

Assigning a document’s folder, categories, and 
taxonomies

You can change the folder, categories, and taxonomies anytime for any document for 
which you have READ, WRITE, and LIST permissions.

To change a document’s folder:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

Document 1 Click the Content button.

2 Select the Folder View tab.

3 Expand the folder that contains the document of interest.

4 Select the document.

5 Check out the document by clicking Check-Out.

Document field 1 Click the Templates button.

2 Select a document type that contains the field of interest.

3 Select the field and click the Properties button.

For Do this

Folders, taxonomies, 
categories, and documents

Click Save.

Document fields 1 Click Update.

2 Check the document back in by clicking 
Check-In.

CM element How to access
246 exteNd Director Content Management Guide



3 Click the folder that contains the document of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click the Check-Out button.
6 Click the Edit button.

An edit window appears.
7 Click the ellipsis next to the Folder field.

The Folder Selector window opens:

8 Navigate to the new folder, click the folder name, and click Done.
The name of the new folder replaces the old one in the Folder field of the edit 
window.

9 Click Update The Content.
10 Click Check-In.

To assign a document to categories or taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Click the folder that contains the document of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click the Check-Out button.
6 Click the Edit button.

An edit window appears.
exteNd Director Content Management Guide-247

Maintaining Content 247



7 Click the ellipsis next to the Categories field.
The Category Selector window opens:

8 Navigate to an appropriate category or taxonomy and click the name.
The name of the new category appears in the Categories field of the edit 
window.
You can click additional categories and taxonomies to add the document to them.
TIP:   If you click a category or taxonomy that already contains the document, that 
document is removed from that category or taxonomy. (In the Edit Document 
dialog, the document’s name is removed from the Categories listing.) 

9 When you have finished specifying categories and taxonomies, click Done. 
The Category Selector window closes and your choices are reflected in the 
Categories listing.

10 Enter other content as needed and click Update And Close.
The Edit Document dialog closes.

11 In the Content Property Inspector, click Check-In.

To change a document’s categories or taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to 
expand some of these containers to see the complete view.

3 Click the category or taxonomy that contains the document of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click Check-Out.
6 Click Edit.

An edit window appears.
248 exteNd Director Content Management Guide



7 Select the ellipsis next to the Categories field.
The Category Selector window opens:

8 Navigate to the appropriate category or taxonomy and click the name.
The name of the new category appears in the Categories field of the edit 
window.
You can click additional categories and taxonomies to add the document to them.
To remove the document from a category or taxonomy, click that category or 
taxonomy. (In the Edit Document dialog, the document’s name is removed from 
the Categories listing.) 

9 When you have finished specifying categories and taxonomies, click Done. 
The Category Selector window closes and your choices are reflected in the 
Categories listing.

10 Click Update The Content.
11 Click Check-In.

Modifying display styles
Authorized users can modify a display style by uploading changes to its XSL style 
sheets. The CMS Administration Console stores these updates as new versions of the 
style sheets. Users then publish the version they want to apply to content.

This section describes the procedure for modifying style sheets in a display style. 

NOTE:  Before you begin, make sure you have updated the style sheet in an external 
editor and can access the file containing these modifications from your local file system, 
the network, or the CMS Administration Console.

To modify a display style:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.
exteNd Director Content Management Guide-249

Maintaining Content 249



3 Navigate to the folder that contains the XSL style sheet you want to modify.
TIP:   Style sheets appear as system resources.

4 Select the style sheet of interest to open its Property Inspector.
5 Click the Check-Out button.

The style sheet is checked out and appears with the checked-out document icon:

6 Switch to templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

7 Select the document type that contains the display style you want to change.
A document type Property Inspector appears.

8 Click the XSL Style Sheets tab.
Two panes appear. The Default Display Styles pane lists the display styles that 
have been created for the document type, and the Properties pane displays the 
properties of a selected display style.

9 In the Default Display Styles pane, expand the display style you want to modify 
to display its associated XSL style sheets.

10 Select the style sheet you want to modify and click Upload.
The Update Style Sheet window opens:

11 Enter the name of the updated XSL style sheet using one of these methods:
Browse the network for an external file.
OR
Select Choose Existing Document to search for an updated XSL file that has 
already been uploaded to the CMS Administration Console.

A new version of the XSL style sheet is created.
12 Enter content mode by clicking the Content button in the toolbar.

The style sheet document should still be selected with its Property Inspector 
open.
250 exteNd Director Content Management Guide



13 Check the style sheet back in by clicking Check-In.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.

NOTE:  To apply the updated style sheet to content, you must publish the new version, 
as described in “Administering version control” on page 264.

Editing document types
Authorized users can edit document types. All changes apply to legacy documents as 
well as new documents of the designated type.

To edit a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

2 Select the document type you want to modify and click Edit.
The Edit This Document Type window opens:

NOTE:  If you created the document outside of the CMS Administration Console 
using the CM APIs, you might not be able to access the document type and 
associated data. The CMS Administration Console requires that certain meta data 
be included. For more information, refer to EbiContentMgmtDelegate in the on-
line API Reference section.

3 (Optional) Click Extended Options to display additional document type options.
4 Edit fields and options as needed.

For details about the individual options, see “Creating document types” on 
page 199.

5 Click Update Document Type.
exteNd Director Content Management Guide-251

Maintaining Content 251



Editing document fields
Authorized users can edit fields, but only from within the document types where the 
fields were originally created.

To edit a document field:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type in which the field was created.
The fields defined for that document type appear along with the list of all 
available fields.
NOTE:  If you created the document outside of the CMS Administration Console 
using the CM APIs, you might not be able to access the document fields. The 
CMS Administration Console requires that meta data from the document fields be 
included. For more information, refer to EbiContentMgmtDelegate in the on-line 
API Reference section.

The Available Fields list displays the parent document type in parentheses next to 
each field. Use this information to verify that you are editing the field in its 
parent document type.

3 Select the field you want to edit and click Properties.
The Property Inspector opens.

4 Edit the properties of the field as appropriate and click Update.

Setting document expiration dates
There are occasions when a content administrator needs to set an expiration date for a 
documents that has a limited life span. The CMS Administration Console allows users 
with WRITE permission to set or change this date anytime after the document is 
created.

When expiration dates are set, developers can write queries in portlets to remove 
expired content, or write a scheduled business object to check expiration dates and take 
specified actions if content is obsolete.

To set the expiration date of a document:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.
252 exteNd Director Content Management Guide



3 Click to select the folder that contains the document of interest.
A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.
5 Click the Check-Out button.
6 In the Expiration Date field, enter an expiration date of the form:

YYYY-MM-DD HH:MM:SS

7 Click Save.
8 Click the Check-In button.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.

Deleting content
Authorized users can delete certain CM elements in the CMS Administration Console. 
This section describes procedures for:

Deleting folders
Deleting taxonomies and categories
Deleting documents
Deleting display styles
Deleting document types
Deleting and removing document fields

Deleting folders
When you delete a folder, all folders and documents it contains are also deleted.

To delete a folder:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Select the folder of interest to open its Property Inspector.
4 Click Delete.
5 When a confirmation window appears, click OK.
exteNd Director Content Management Guide-253

Maintaining Content 253



Deleting taxonomies and categories
When you delete a taxonomy or category, all categories it contains are also deleted. 
Documents are always retained in their parent folder, even if their assigned taxonomies 
or categories have been removed.

To delete a taxonomy or category:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to 
expand some of these containers to see the complete view.

3 Select the taxonomy or category of interest to open its Property Inspector.
4 Click Delete.
5 When a confirmation window appears, click OK.

Deleting documents
You must check out a document before you can delete it. When you delete a document, 
all versions are removed.

To delete a document:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The Property Inspector refreshes to display new function buttons.
5 Click Delete.
6 When a confirmation window appears, click OK.

 For more information about checking documents in and out, see “Checking 
documents in and out” on page 260.
254 exteNd Director Content Management Guide



Deleting display styles
When you delete a display style, the CMS Administration Console also removes all 
XSL style sheets that have been created for that display style.

To delete a display style:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style to delete.
3 Select the XSL Style Sheets tab.

A list of the document type’s display styles appears in the Default Display Styles 
pane.

4 Select the display style you want to delete.
5 Click Delete under the Properties pane.
6 When a confirmation window appears, click OK.

Deleting document types
When you delete a document type, the CMS Administration Console also removes all 
documents that have been created using that document type.

There is another side effect of deleting document types: any fields that were created 
within that document type are adopted by a new parent—the system document type—
that appears in the Document Types list as _PmcSystemDefaultType. 

Once adopted, these fields remain part of the available pool of fields but can be edited 
only from within _PmcSystemDefaultType. You can easily identify adopted system 
fields: they appear in the Available Fields pool with the suffix --System Field 
appended to their names. 
exteNd Director Content Management Guide-255

Maintaining Content 255



In the following example, Multiple Choice is an adopted system field:

To delete a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type to delete.
3 Click Delete under the Document Types pane.
4 When a confirmation window appears, click OK.

The CMS Administration Console deletes the document type and all documents 
that have been created using that document type.
256 exteNd Director Content Management Guide



Deleting and removing document fields
There are two separate operations:

Permanently deleting fields—from the CMS Administration Console

You can delete document fields permanently from the CMS Administration Console, 
but only from within the document types where they were originally defined. When 
you delete a field from the CMS Administration Console, the field is removed from all 
existing documents in which it appeared and from the pool of available fields. 

CAUTION:  Although this is a convenient way of applying one deletion to multiple 
documents, be aware that the effect is global and irreversible.

To permanently delete a document field from the CMS Administration Console:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

2 Select the document type for which the field was defined.
3 Select the field in the Available Fields pane.
4 Click Delete under the Available Fields pane.
5 When a confirmation window appears, click OK.

The CMS Administration Console deletes the field from the Available Fields 
pane and from all documents that have been created using document types that 
contain the field.

Removing fields—from the parent document type 

You can remove a document field from the document types where it was originally 
defined but leave it in the available pool of fields for later use. 

When a field is removed from its parent document type, it is adopted by the system 
document type _PmcSystemDefaultType. You can then add the field to any document 
type, but edit it only from the system document type.

Operation Description

Permanently deleting fields—
from the CMS Administration 
Console

Deletes fields from all documents and from pool 
or available fields

Removing fields—from the 
parent document type

Removed fields from all documents—but leaves 
fields in pool of available fields
exteNd Director Content Management Guide-257

Maintaining Content 257



What happens to legacy documents when you remove a field from its parent document 
type? There are two scenarios:

 For more information about the Clean Up Data option, see “Creating document 
types” on page 199.

To remove a document field from a document type (but leave it available):

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

2 Select the document type for which the field was defined.
3 Select the field in the Fields pane and then click the Remove Field button:

The field is removed from the Fields pane and refreshes in the Available Fields 
pane as a system field.

4 Click Save.

If you The CMS Administration Console

Selected the Clean Up Data 
option in the parent 
document type

Deletes the field from legacy documents of the 
designated type

Did not select the Clean Up 
Data option in the parent 
document type

Preserves the field in legacy documents of the 
designated type, but does not allow you to edit the 
field

NOTE:  You will see the legacy field when you 
preview the document, but not when you edit the 
document.
258 exteNd Director Content Management Guide



17
 Administering Content Chapter 17
This chapter describes how to check documents in and out and administer version 
control. It has these sections:

About content administration
Flow of operations
Checking documents in and out
Administering version control

About content administration
In organizations responsible for developing and maintaining exteNd Director 
applications, CM is a dynamic process that often involves multiple users interacting 
concurrently with a shared set of files within a common infrastructure.

To preserve the integrity of data in this type of environment, the CMS Administration 
Console provides a number of safeguards for effectively administering content:

Ability to lock documents using checkin and checkout functions
Version control
259



Flow of operations
Here is a workflow that illustrates the recommended order of operations for 
administering content in the CMS Administration Console:

Checking documents in and out
To prevent concurrent access to documents in a multiuser environment, the CMS 
Administration Console provides checkin and checkout capability to users with 
READ, WRITE, and LIST permissions—typically the users who are content 
developers and administrators.

Authorized users must check out documents before they can make any changes to the 
content, including:

Modifying properties
Changing field values
Updating HTML content
Adding child documents
Adding attachments

These rules also apply to XSL style sheets, which when uploaded to the CMS 
Administration Console are managed in the same way as documents that are created in 
the CMS Administration Console. 

This section describes what happens during checkin and checkout and explains how to 
perform the following tasks:

Check out a document
Check in a document
Enable automatic checkin
260 exteNd Director Content Management Guide



What happens during checkout
Checking out a document locks it, preventing other users from modifying the content. 
Users with READ permission can view the currently published content of checked-out 
documents. 

The CMS Administration Console marks checked-out documents for easy 
identification with a checkmark icon and displays the name of the user who has locked 
the content. In the following example, the document PSAT3 has been checked out by 
user administrator:

In this example, the user dba now becomes the owner of the document and the only 
user with authorization to save, delete, edit, and check in the document. If other users 
try to access PSAT3, they will not see the Save, Delete, Edit, or Check In buttons on 
the Property Inspector—even if they have WRITE permission for PSAT3—and they 
will see only the Preview button if they have READ permission for PSAT3.
exteNd Director Content Management Guide-261

Administering Content 261



When a document is checked out, the latest version is locked for editing by the owner. 
The only way to modify an earlier version of a document is to roll back to that version, 
as described in “Administering version control” on page 264.

Using the check-outs view The Content tab contains a check-outs view that 
displays checkouts for either the current user or other users. Here is a sample check-
outs view display, with a single file checked out to the current user:

Using the check-outs view, you can:

View checkouts for the current user or for other exteNd Director users
View the Property Inspector for the checked-out document by selecting it in the 
list
Check in all documents displayed in the list
262 exteNd Director Content Management Guide



What happens during checkin
When a document is checked in by its owner, any content modifications are saved as a 
new version, accessible from the Versions tab in the document’s property sheet. Other 
authorized users are then free to check out the document for editing and will get the 
most up-to-date version of the content.

Content administrators can implement an automatic checkin feature when they create 
document types. When this feature is enabled, the CMS Administration Console 
automatically checks in any document of the specified type after it is edited.

Checkin and checkout procedures

To check out a document:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document, 
indicating who has locked the content and changing the document icon to the 
checked-out icon:

To check in a document:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the checked-out document of interest and select it to open its 
Property Inspector.

4 In the Property Inspector, select the General tab and click Check-In.
The CMS Administration Console checks in the document, making the most 
current version of the content available for other users to edit.
exteNd Director Content Management Guide-263

Administering Content 263



To enable automatic checkin for an existing document type:

This option is available only to administrators.

NOTE:  You can also set this parameter when you create a new document type, as 
described in “Creating document types” on page 199.

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that have been defined.

2 Select the document type for which you want to set automatic check-in, then 
click Edit.
The Edit This Document Type window opens:

3 Check the Auto-Checkin check box and click Update Document Type.
When you edit a document of this type, the CMS Administration Console 
automatically checks in your modifications.

Administering version control
The CMS Administration Console provides version control to systematically maintain 
a history of changes to documents and ensure that the correct content is published. 

Administrator tasks The version control system allows administrators with 
PUBLISH permissions to perform the following tasks:

Task Description

Publish Approve the designated content version and make the content 
available for viewing by other users with appropriate permissions. 
The published version of a document is the content that is returned 
by the method getContent().
264 exteNd Director Content Management Guide



What version you see By default, you receive the latest version of content when 
you check out and edit a document in the CMS Administration Console. If you want to 
revert to and modify earlier content, you can roll back to a previous version. Rolling 
back deletes all later versions of content and sets the target version as the most current.

You must check out a document before you can publish, unpublish, or roll back 
versions of that document. If you have not checked the document out, you can only 
preview versions of the content.

Any user who opens a document will see a Versions tab in the document’s Property 
Inspector. Here is an example of what the Versions panel looks like:

In this example, any user who selects the document PSAT1 can preview its two 
versions.

Unpublish Hide the designated version from public view.

Roll back Delete all versions of content created after a specified version.

Task Description
exteNd Director Content Management Guide-265

Administering Content 265



Publish features Users with PUBLISH permission can check out PSAT1 and gain 
the ability to publish, unpublish, and roll back versions, as shown in the refreshed 
Property Inspector:

Content administrators can also implement an automatic publish feature when they 
create document types. When this feature is enabled, the CMS Administration Console 
automatically publishes the content of any document of the specified type if that 
content is changed.

What’s in this section This section explains how to perform the following version 
control tasks:

Publish a version
Unpublish a version
Roll back to a previous version
Enable automatic publishing
Set publish dates
266 exteNd Director Content Management Guide



To publish a version:

You can publish any version, even if it is not the latest. The CMS Administration 
Console allows only one version of a document to be published at any given time.

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
5 Select the Versions tab, then select the document version you want to publish.
6 Click Publish.

The CMS Administration Console publishes the version you selected, marking it 
with the published-version icon:

7 Return to the General tab and click Check-In.
The published version cannot be edited, even when the document is checked out.

To unpublish a version:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
5 Select the Versions tab, then select the published version you want to unpublish.

Published versions appear with this icon:

6 Click Unpublish.
The CMS Administration Console unpublishes the version you selected, marking 
it with the default document icon:

7 Return to the General tab and click Check-In.
exteNd Director Content Management Guide-267

Administering Content 267



To roll back to a previous version:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
5 Select the Versions tab, select the version you want to roll back to, then click 

Rollback.
6 When a confirmation window opens, click OK.

The CMS Administration Console deletes all versions created after the selected 
version—even if one of these later versions was already published. The selected 
version becomes the latest version.

7 Return to the General tab and click Check-In.

To enable automatic publish:

Only users with administrative permissions can implement this feature. Enabling 
automatic publish produces the following effects:

Whenever you edit the dynamic content of a document, the CMS 
Administration Console automatically publishes a new version of the document.
If you edit only the metadata and field portions of a document, the CMS 
Administration Console automatically updates and publishes the latest version of 
the document.
268 exteNd Director Content Management Guide



To enable automatic publish:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

2 Select the document type for which you want to set automatic checkin, and click 
Edit.
The Edit This Document Type window opens:

3 Check the Auto-Publish check box and click Update Document Type.
When you edit and save a document of this type, the CMS Administration 
Console automatically publishes your modifications as a new version of the 
content. This latest version becomes the published version, regardless of whether 
an earlier version was already published or no earlier versions were published.

NOTE:  You can also enable automatic publish when you create a new document type, 
as described in “Creating document types” on page 199.

To set publish dates:

The CMS Administration Console does not automatically set publish dates, although 
content administrators with WRITE permission can set publish dates manually 
anytime to mark documents for publication. After that, developers can write scheduled 
business objects that publish documents based on these dates.

1 Enter Content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand 
some of these containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
exteNd Director Content Management Guide-269

Administering Content 269



5 In the Publish Date field, enter a publish date of the form:
YYYY-MM-DD HH:MM:SS

6 Click Save to record the date.
270 exteNd Director Content Management Guide



18
 Searching Content Chapter 18
This chapter describes how to use the Autonomy search engine to search content in the 
CMS Administration Console. It has these sections:

Setting up the CMS Administration Console search facility
Using the search facility in the CMS Administration Console
Search options

Setting up the CMS Administration Console search 
facility

The search facility of the CMS Administration Console uses the Autonomy search 
engine (Dynamic Reasoning Engine, or DRE). The Autonomy DRE uses conceptual 
pattern matching, which is a more sophisticated form of searching than keyword-based 
full-text searching.

Before you can use the search facility in the CMS Administration Console, you must:

Configure the Autonomy DRE to interface properly with your server.
For instructions on configuring Autonomy for use with your server and the 

CM subsystem, see the section on configuring your environment in the Content 
Search Guide.
271

srcIntro.html#OverviewofAutonomy-basedconceptualsearching
srcIntro.html#OverviewofAutonomy-basedconceptualsearching
srcConfigure.html


Configure the CM subsystem to link to the Search service for your exteNd 
Director EAR project. 
You can make search configuration settings when you create your project. After 
you have created a project, you can change search configuration settings for the 
CM subsystem in the exteNd Director EAR configuration tool.
NOTE:  For changes in content to be immediately available to the CMS 
Administration Console’s search facility, you must set Synchronization Mode to 
immediate and select which document operations you want to trigger immediate 
synchronization (for example, checkin and publish). In batch mode, changes are 
propagated to the DRE by the synch task. 

If you have made configuration changes in an existing project, redeploy your 
project.

After you have configured you environment for the Autonomy DRE and configured 
the search options for your project, you can use the search facility in the CMS 
Administration Console. 

Using the search facility in the CMS Administration 
Console

To perform a search in the CMS Administration Console:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Search View tab. 
3 In the Search Pane:

3a Enter the word or phrase you want to search for in the Search Text box. 
3b (Optional) Set any other search options you want to use to refine your 

search. See “Search options” on page 274.
3c Click the Search button:
272 exteNd Director Content Management Guide

cdConfigServicesEdit.html


The search view In the search view:

The Search Pane replaces the content tree.
Documents found by the search are listed in the content list. If you click a 
document to select it from the list, the Content Property Inspector appears, as 
shown in Step 2 above.
In the content list, there is a Weight column between the Name and Description 
columns. The numbers in the Weight column indicate the relevance of each 
found document to the search criteria, expressed as a percentage:

If you are not getting the results you expect If the search facility is not finding 
documents you expect it to find:

Make sure you have created or imported content into your repository.
Review the synchronization settings for your project. You can do this in the 
exteNd Director EAR Configuration tool.
If you are using immediate synchronization, make sure you have made your 
documents available to the search engine by performing one or more of the 
operations you chose when you configured immediate synchronization on each 
of the documents. 
exteNd Director Content Management Guide-273

Searching Content 273

cdConfigServicesEdit.html


Search options
In the Search Pane you can set a number of options to refine your search:

The following table explains how to use the search options:

Option How to use the option

Search Text Enter the word or phrase you want to search for.
274 exteNd Director Content Management Guide



Query Type Select the type of search you want to perform:

Conceptual or keyword search (the default)—When this type 
is selected, the DRE uses conceptual pattern matching by 
default.

If you use semicolon notation (for example: silk;+worm;) 
the search engine performs a keyword search based on the 
number of occurrences of the terms, rather than on their 
conceptual relevance.

Proper Name Search—When this type is selected, the 
search engine treats the search text as a proper name, and 
performs a conceptual search accordingly.

Min. weight Enter the minimum weight for a document to be displayed in the 
content list.

The weight of a found document is a measure of its relevance 
to the search text. The search engine assigns a percentage 
value to each document, with 100% representing the greatest 
possible relevance.

Max. number of 
results

Enter a number that specifies the greatest number of 
documents you want to be displayed in the content list.

Sort by Select a sort order from the dropdown list. The available 
choices are:

weight (the default)

date

weight and date

Search Within 
Date Range

Select this check box if you want to restrict the search to 
documents created within a specified time period. For both the 
From and To dates, enter the day, month, and year in the 
corresponding text boxes.

Option How to use the option
exteNd Director Content Management Guide-275

Searching Content 275

srcIntro.html#OverviewofAutonomy-basedconceptualsearching


Batch Mode Check this check box if you want a subset of the found 
documents to appear in the content list. 

When using batch mode, it is helpful to think of the full set of 
found documents as an array, ordered according to the sort 
order you indicate in the Sort by box.

The documents that are displayed are selected from the full set 
of found documents, based on the numeric values you enter in 
the Start and Size boxes:

Start—Specifies the position of the first document (from the 
full set of found documents) to be displayed in the content 
list. Like array elements, the order of the documents in the 
full set of found documents begins with 0.

Size—Specifies the total number of documents you want to 
be displayed in the content list, beginning with the document 
specified by the Start value.

Example Say you perform a search without using batch mode 
that returns six documents. Then you repeat the search in 
batch mode, indicating a Start value of 1 and a Size value of 3.

The search now returns the second, third, and fourth 
documents from the original set of found documents, based on 
the order in which they initially appeared in the content list.

Option How to use the option
276 exteNd Director Content Management Guide



Field Search Enter a field search expression.

The syntax of a field search expression is:
fieldname1=value1 operator fieldname2=value2 ...

where:

fieldname is the name of an extension metadata field you 
have created, or one of these standard metadata fields:

AUTHOR

CONTENTSIZE

CREATED

DOCABSTRACT

DOCID

DOCNAME

DOCTYPEID

DOCTYPENAME

EXPIRATIONDATE

FOLDERID

LOCKEDBY

MIMETYPE

PARENTDOCID

PUBLISHDATE

PUBLISHSTATUS

STATUS

SUBTITLE

TITLE

UPDATETIME

value is the field value you are searching for

operator is either:

AND

or

OR

Example If you want to limit your search to all HTML 
documents written by user admin, the field search expression 
you would use is:

author=admin AND mime-type=text/html

Option How to use the option
exteNd Director Content Management Guide-277

Searching Content 277



Suggest More If you want to find documents related to a document that was 
found by previous search, select that document in the content 
list and click the Suggest More button. 

The list of documents found by the previous search is replaced 
by a list consisting of the selected document and any related 
documents.

Option How to use the option
278 exteNd Director Content Management Guide



19
 Managing Content Security Chapter 19
This chapter describes how to secure access to content using the CMS Administration 
Console. It has these sections:

About content security
Flow of operations
Permissions for content access
User permissions required for CM operations
Cascading security
Setting security on CM elements

For background information, see Chapter 4, “Securing Content”.

About content security
The CMS Administration Console allows administrators—and other users with 
PROTECT permission—to control access to CM elements. Administrators can assign 
users and groups various levels of access permission on an element-by-element basis 
to the following types of content:

Document
Folder
Taxonomy
Category

When users with PROTECT permission open one of these CM elements in the CMS 
Administration Console, they will see a Security tab in the Property Inspector. The 
Security tab displays controls for assigning levels of access to the selected CM 
element.
279



For example, here is what the Security tab looks like after assigning the 
ContentAdmins Group WRITE access to the document PSAT1:

The CMS Administration Console provides security-sensitive controls as part of its 
user interface. It gives you only those CM capabilities that are permitted by the security 
privileges assigned to you for each CM element. 

For example, if you have WRITE permission for all documents, you can check out and 
edit any document in the CMS Administration Console. If you do not have WRITE 
permission for documents in a confidential folder, you will never see Edit and Check-
Out controls in the Property Inspectors of documents residing in that folder.

Flow of operations
Here is the basic task for securing content in the CMS Administration Console:
280 exteNd Director Content Management Guide



This chapter explains how to manage security in the CMS Administration Console and 
includes the following topics:

Permissions for content access
User permissions required for CM operations
Cascading security
Setting security on CM elements

Permissions for content access
Administrators with PROTECT permission can assign users various levels of content 
access based on their roles in the organization. 

The CMS Administration Console allows authorized users to assign the following 
access permissions:

While each of these access permissions is assigned to CM elements individually (as 
described in “Setting security on CM elements” on page 284), it is not necessary to 
explicitly set access permissions on each element. A CM element can inherit access 
permissions from its parent element. 

 For more information on setting CM element permissions through inheritance, 
see “Cascading security” on page 283.

Permission Allows you to

READ View any data and/or metadata associated with the designated CM 
element—for example, preview a document or view the metadata 
associated with a folder

WRITE Create, modify, and save the designated CM element

PROTECT Set security on a designated CM element

LIST View lists of documents in a folder or category

NOTE:  This permission applies to folders or categories only, not to 
documents.

PUBLISH Publish a document

NOTE:  This permission applies to documents only, not to folders or 
categories.
exteNd Director Content Management Guide-281

Managing Content Security 281



User permissions required for CM operations
The following table describes which permissions are required for performing specific 
CM operations in the CMS Administration Console:

Element Operation Permission

Document View content or metadata READ

Modify content or metadata WRITE

Publish PUBLISH

Set security PROTECT

Folder View metadata READ

Modify folder metadata

Add subfolder

Add document

WRITE

List contents LIST

Set security PROTECT

Category View metadata READ

Modify category metadata

Add subcategory

Add document

WRITE

List contents LIST

Set security PROTECT

Field View metadata READ

Modify metadata WRITE

Set security PROTECT

Document type View metadata READ

Modify metadata WRITE

Set security PROTECT

List fields that belong to the document type LIST

Layout style View metadata READ

Modify metadata WRITE

Set security PROTECT
282 exteNd Director Content Management Guide



 For information on giving users and groups levels of access to individual CM 
elements, see “Setting security on CM elements” on page 284.

Cascading security
Generally, security settings cascade from parent to child in the hierarchical 
relationships of CM elements. The following content hierarchies exist in the CMS 
Administration Console:

Physical hierarchy of root folders , folders , and documents :

Logical hierarchy of taxonomies , categories , and documents :
exteNd Director Content Management Guide-283

Managing Content Security 283



Inherited security When a new child is created in either hierarchy, it inherits the 
parent’s security settings. Child elements can also inherit changes to a parent’s access 
permissions, but you must explicitly enable this behavior, as described in “Setting 
security on CM elements” on page 284.

Setting security on CM elements
Users with PROTECT permission can set security on the following CM elements:

Documents
Folders
Categories
Taxonomies

To set security on documents and folders:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of 
these containers to see the complete view.

3 Navigate to the folder or document of interest and select it to open its Property 
Inspector.

4 Select the Security tab.
5 Select a permission from the dropdown list.
6 Assign this permission to the appropriate users and groups by following these 

steps:

To Do this

Assign individual users 
and groups

1 Select users or groups one at a time from 
Available Users. 

2 Click the single-arrow button to move each 
selection to Selected Users.

NOTE:  You cannot multiselect users and groups 
from Available Users.

Assign all users and 
groups

Click the double-arrow button.

NOTE:  All groups move from Available Users to 
Selected Users.
284 exteNd Director Content Management Guide



7 To allow existing children of the selected folder to inherit the new security 
setting, check Apply Security To Existing Children.
IMPORTANT:  This option is available only to administrators.

8 Click Save.

To set security on categories and taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your categories and taxonomies appear in the content tree view. You may need to 
expand some of these containers to see the complete view.

3 Navigate to the category or taxonomy of interest and select it to open its Property 
Inspector.

4 Select the Security tab.
5 Select a permission from the dropdown list.
6 Assign this permission to the appropriate users and groups by following these 

steps:

7 To allow existing children of the selected folder to inherit the new security 
setting, check Apply Security To Existing Children.
IMPORTANT:  This option is available only to administrators.

8 Click Save.

To Do this

Assign individual users 
and groups

1 Select users or groups one at a time from 
Available Users. 

2 Click the single-arrow button to move each 
selection to Selected Users.

NOTE:  You cannot multiselect users and groups 
from Available Users.

Assign all users and 
groups

Click the double-arrow button.
exteNd Director Content Management Guide-285

Managing Content Security 285



286 exteNd Director Content Management Guide



20
 Importing and Exporting Content Chapter 20
This section describes how to import and export content using the CMS 
Administration Console:

About the import and export facilities
Summary of CMS Administration Console import and export behavior
Exporting content
Importing content
Structure of the data import or export archive
Best practices and prerequisites

For background information about how the functions work and how to 
customize the import and export functions, see Chapter 7, “Importing and Exporting 
Content”.

About the import and export facilities
The CMS Administration Console allows you to export CM data from your repository, 
beginning from any point in the Content Tree. You can also export the entire contents 
of a CM system from the toolbar. 

Similarly, the CMS Administration Console allows you to import CM data at any 
point in the Content Tree, or the entire contents of a CM system from the toolbar.

Uses for the import and export facilities include:

Moving or copying folders, categories, and documents within a repository
Moving CM data between different stages of development
Integrating with third-party vendors
287



Backing up and restoring CM data
Debugging and data analysis

Import and export of CM infrastructure It is also possible to export and import 
all or part of the supporting infrastructure of your CM subsystem, such as fields or 
document types.

Import and export of archives When you export CM data from the CMS 
Administration Console, it is stored in a ZIP file that serves as a structured export 
archive. When you import CM data using the CMS Administration Console, it must be 
imported from a ZIP file that follows the same structure as the export archive. When 
you import CM data that has been exported from a CM repository, you import directly 
from the export archive.

Summary of CMS Administration Console import and 
export behavior

Here is what happens when you export or import CM data, depending on the starting 
point for the operation: 

Starting point
Export:
what goes into the ZIP file

Import:
where the contents of the 
ZIP file are placed

Toolbar The entire contents of the 
CM subsystem including:

The Content Admin 
element

Taxonomies

Categories

Display styles

Document types

Fields

Folders

Documents

Document versions

OR
A subset of the CM 
subsystem, as specified by a 
document export descriptor 
(DED)

The Default folder
288 exteNd Director Content Management Guide



 For more information on what goes into the export archive and how the archive 
is structured, see “Structure of the data import or export archive” on page 297.

Exporting content
This section explains how to export CM data from the toolbar and the Property 
Inspectors.

NOTE:  Before you export data, be sure to review the section “Best practices and 
prerequisites” on page 298.

Exporting from the toolbar
The Export button on the toolbar allows you to export the entire contents of your CM 
subsystem, or to perform a customized export using a descriptor file called the data 
export descriptor (DED). 

Repository Property 
Inspector

All folders, documents, 
document versions, fields, 
and document types 
contained in the repository

The Default folder

Folder Property 
Inspector

The selected folder and all 
its contents, including:

Documents and 
associated versions, 
fields, and document 
types

Subfolders of the selected 
folder, and their contents

The selected folder

Content Property 
Inspector

All versions of the selected 
document, plus any 
document type and fields 
associated with it

Not applicable

Starting point
Export:
what goes into the ZIP file

Import:
where the contents of the 
ZIP file are placed
exteNd Director Content Management Guide-289

Importing and Exporting Content 289



To export content from the toolbar:

1 Click the Export button on the CMS Administration Console toolbar.
The Export Pane displays: 

2 Choose Export using a specific Data Export Descriptor.
3 Click the Browse button and navigate to the DED file you want to use for this 

export.
4 Click the Export button.
5 Click OK in the question box that appears:

6 In the File Download dialog, click Save:
290 exteNd Director Content Management Guide



7 In the Save As dialog, navigate to the folder where you want to store the export 
archive, give the archive file a unique name, and click Save. 

 For more information about the archive, see “Structure of the data import 
or export archive” on page 297.
exteNd Director Content Management Guide-291

Importing and Exporting Content 291



Exporting from a Property Inspector

To export content from a Property Inspector:

1 Enter Content mode by clicking the Content button on the CMS Administration 
Console toolbar.

2 Select the starting point for the export by doing one of the following:
In the Content Tree, click the Default folder. The Repository Property 
Inspector displays:

OR
In the Content Tree, click any folder other than the Default folder. The Folder 
Property Inspector displays:
292 exteNd Director Content Management Guide



OR
In the content list, click a document. The Content Property Inspector displays:

3 Click the Export button in the Property Inspector.
4 Follow Step 5, Step 6, and Step 7 in “To export content from the toolbar:” on 

page 290 to name and save your export archive.

 For a description of the contents of the export archive file, see “Structure of the 
data import or export archive” on page 297.

Customizing exports
You can configure and customize the export process by editing the DED.

 For more information, see “Customizing imports and exports” on page 113. 

Importing content
This section describes the import process and explains how to import data into your 
CM subsystem from the toolbar and the Property Inspectors.

NOTE:  Before you import data, be sure to review the section “Best practices and 
prerequisites” on page 298.

Data not previously exported If you want to import data that was not previously 
exported from a CM repository, you can do this manually by assembling an import ZIP 
file, or programmatically using the CM API. For more information, see “Customizing 
imports and exports” on page 113.

Data previously exported If you are importing data that was previously exported 
from a CM repository—for example, as part of a moving or copying process—you 
import directly from the export archive so that the archive will automatically follow the 
required structure.
exteNd Director Content Management Guide-293

Importing and Exporting Content 293



Configuring the import process
Unlike with exporting content (when you can configure the process only from the 
toolbar), when you are importing content you can configure the process regardless of 
the starting point. You do this by adding a data import descriptor (DID) to the import 
archive file or editing the existing file before performing the import. 

NOTE:  When you are importing previously exported CM data, the import archive will 
always contain a DID (called contentmgmt_did.xml) in the contentmgmt-inf folder. 

 For more information about the DID, see “Customizing the data import 
descriptor (DID)” on page 114.

Importing from the toolbar
The Import button on the toolbar allows you to import CM data from an import 
archive into the Default folder of a repository.

To import content from the toolbar:

1 Click the Import button on the CMS Administration Console toolbar.
The Import Pane displays: 

2 Click the Browse button.
294 exteNd Director Content Management Guide



3 In the Choose File dialog, browse to the import archive you want to use and click 
Open:

4 In the Import Pane, click Import.

Importing from a Property Inspector
You can import from the Repository Property Inspector and the Folder Property 
Inspector (but not from the Content Property Inspector).

To import content from a Property Inspector:

1 Enter content mode by clicking the Content button on the CMS Administration 
Console toolbar.

2 Select the starting point for the import by doing either of the following:
In the Content Tree, click the Default folder. The Repository Property 
Inspector displays:
exteNd Director Content Management Guide-295

Importing and Exporting Content 295



OR
In the Content Tree, click any folder other than the Default folder. The Folder 
Property Inspector displays:

3 In the Property Inspector, click the Import tab.
4 Click Browse.
5 In the Choose File dialog, browse to the import archive you want to use and click 

Open:

6 In the Import pane, click Import.
296 exteNd Director Content Management Guide



Structure of the data import or export archive
The following table shows the internal folder structure of a data import or export 
archive file and explains what each folder contains:

Folder name Contains

Included when exporting from:

Toolbar 
(entire 
system)

Repository, Folder, or 
Content property 
inspector

contentmgmt-inf contentmgmt_did.xml (the DID)

admin_metadata ContentAdmin.xml (the Content Admin 
element)

categories_metadata XML descriptor files for each taxonomy 
and category, organized according to the 
structure of the taxonomy(ies)

styles_metadata An XML descriptor for each style, 
registering its name and listing the 
document type it is associated with

fields_metadata An XML descriptor for each field, 
registering the field name and the data 
type of its value

fields_data The application-specific data associated 
with each extension metadata field; for 
fields created with the CMS 
Administration Console, this consists of 
an XML descriptor for each field listing its 
properties, including its control type and 
(if applicable) its possible values

doctypes_metadata An XML descriptor for each document 
type, listing the fields associated with it

doctypes_data The application-specific data associated 
with each document type; for document 
types created with the CMS 
Administration Console, this consists of 
an XML descriptor for each document 
type describing its properties

folders_metadata An XML descriptor for each folder, 
registering the folder and listing its parent 
folder, if any
exteNd Director Content Management Guide-297

Importing and Exporting Content 297



Best practices and prerequisites
This section provides some notes on best practices for importing and exporting CM 
data.

Planning for large-scale import/export operations
If you are planning to export or import a very large amount of CM data, it is important 
to keep the memory capacity of your machines in mind as you plan your operation.

During an import or export operation, all objects representing elements of the 
repository must be present in memory at the same time. That means the amount of 
available memory imposes a practical limit on the size of a repository you can process 
in a single operation.

The best way to approach a large-scale operation is to export or import your source 
repository in logical chunks. For example, you might export all your document types 
in one operation, your fields in another operation, and so on, ending with exporting or 
importing your document content in manageable chunks according to the folder 
structure of your repository.

docs_metadata An XML descriptor for each document 
containing the names and values of the 
fields associated with the document, 
organized according to the folder 
structure

docs_content Files containing the published content of 
each exported document, organized 
according to the folder structure

docs_content_versions Files containing the content of each 
version of exported document, organized 
according to the folder structure

Folder name Contains

Included when exporting from:

Toolbar 
(entire 
system)

Repository, Folder, or 
Content property 
inspector
298 exteNd Director Content Management Guide



Security considerations
This section applies primarily to importing CM data that has been exported from 
another repository.

Permissions to establish in the import target The user who performs the 
export from the source repository must exist and must have the SearchAdmin WRITE 
permission in the target repository.

Users to create in the import target You need to make sure that if any documents 
were checked out at the time of export, the users to whom they are checked out have 
been created in the repository into which you are importing.

If these users do not exist in the import repository, the import will fail.
exteNd Director Content Management Guide-299

Importing and Exporting Content 299



300 exteNd Director Content Management Guide



21
 Administering Automated Tasks Chapter 21
Tasks mode in the CMS Administration Console allows you to view, start, and stop 
automated CM tasks from the CMS Administration Console. This chapter includes 
these topics:

The task display
Starting and stopping tasks

Several tasks are installed with the CM subsystem. You can modify these installed 
tasks and/or create new, custom tasks to meet the specific needs of your application.

 For more information, see Chapter 5, “Managing Tasks”.
301



The task display
You enter tasks mode by clicking the Tasks button on the CMS Administration 
Console toolbar. The task display appears, as in this example:

This display provides the following information about the tasks defined on your server:

Task property Details Example

Name and 
description

As defined in the task object. —

Type The task type, from a 
scheduling point of view. 
Possible types are:

Periodic: a task that is 
scheduled to run multiple 
times at regularly scheduled 
intervals. 

For example, a periodic 
task could be a repository 
backup utility that runs 
every 24 hours (86,400,000 
milliseconds).

Scheduled: a task that is 
scheduled to run at one or 
more fixed points in time.

For example, a scheduled task 
could be a content publishing 
task that is scheduled to run at 
three publication deadlines, 
such as: 

Monday, June 24, 2002 at 9 
a.m.

Wednesday, June 26, 2002 
at 5 p.m.

Friday, June 28, 2002 at 
midnight
302 exteNd Director Content Management Guide



Starting and stopping tasks
Tasks are not persistent across application server sessions. Each time you restart your 
server, you must restart each of your tasks.

To start or stop a task:

1 Enter tasks mode by clicking the Tasks button in the toolbar.
2 Click anywhere in a task description to select it.
3 Click the Start Task button to start the task or the Stop Task button to stop the 

task.

Status The execution status of the 
task. Possible values are:

Stopped: Task is not yet 
running or has been halted.

Started: Task is currently 
running.

—

Task property Details Example
exteNd Director Content Management Guide-303

Administering Automated Tasks 303



304 exteNd Director Content Management Guide



IV
 Applications PART IV
Describes how to use the Content Query and RSS portlet application

• Chapter 22, “Content Query Application”





22
 Content Query Application Chapter 22
This chapter describes how to use the Content Query action and related artifacts to 
query the Content Management subsystem. It has these sections:

About Content Query
Using the Content Query action

NOTE:  To use this application your project must include the Content Management and 
the Rule subsystems. 

About Content Query
The Content Query action (CQA) allows you to query published documents in the 
Content Management (CM) subsystem. You can query by folder, category, document 
type, or by specific document. Searches can be designated as either inclusive or 
exclusive. The results of the query are captured in XML and processed as a query in the 
CM subsystem. 

Content Query consists of a portlet and sample rules that use the installed Content 
Query action. The application artifacts are provided in your exteNd Director directory 
at:

Portal/WEB-INF/lib/cqa-portlets.jar

Application contents The CQA-Portlets JAR includes:

CQA Artifact Description

ContentListPortlet.class Portlet that displays the results of a query using the 
Content Query action.
307



Using the Content Query action
The Content Query action provides a custom user interface in the Rule Editor for 
specifying the folders, categories, document types, and documents to include (or 
exclude) in the query results. It also provides an interface for selecting the properties 
(content fields) that should be displayed in the query output and for specifying sort 
rules. The Content Query action also includes a query builder to allow you to specify 
selection criteria. 

To edit and run a query:

1 If you have not yet created content, you need to add some content using the 
Director Administration console (DAC) or WebDAV.

2 Start your server and open the ContentList rule in exteNd Director. 

For more information, see the section on using the rule and macro editors 
in the Rules Guide.
NOTE:  You can also create a new rule and add the Query action. If you are 
creating your own rule, skip the next step.

3 Select the Edit query against the content management system action, then 
right-click and select Edit from the popup menu. 
A popup asks you to specify the URL to your project’s ContentMgmtService 
folder. 

ContentList.xml Sample rule that executes a general document query 
against the CM subsystem.

See Using the Content Query action.

MyDocuments.xml Sample rule that executes a query for documents 
created or modified by the logged-in user

NewDocuments.xml Sample rule that executes the SetDateonWhiteboard 
action and executes a query for documents created or 
modified on the current date

CQA Artifact Description
308 exteNd Director Content Management Guide

reEditorMacros.html


4 Specify the correct URL—for example:
http://localhost/MyDirectorProj/ContentMgmtService/

The Content Query Property Inspector displays:
exteNd Director Content Management Guide-309

Content Query Application 309



5 On the Search tab, specify which documents you want to include (or exclude) in 
your query:

Each property panel allows you to specify an URL to a whiteboard key for the 
documents:

You can either enter the value or specify a whiteboard key that holds the value 
you want. Use this format: 

!valueOf.keyname

You can also specify a key that holds the name of another key. To get a value 
from another key, specify !valueOf.anotherkey.

For more information about the !valueOf construct, see the section on 
using whiteboard values in the Rules Guide. 

6 To build a query condition, click the Whose button:

To select one or more Click the

Folders to be included or excluded Folders button

Categories to be included or excluded Categories button

Document types to be included or excluded Doc Types button

Documents to be included or excluded Documents button
310 exteNd Director Content Management Guide

reRulesPipeDev.html#Usingwhiteboardvalues


The Whose query builder lets you specify selection criteria for individual CM 
properties. To build a query condition:

The query specifications you provide on the Search tab are ANDed together. That 
means that to be included in the result set for the query, a document must satisfy 
all criteria specified on the Search tab.

7 On the Properties tab, select the document properties that you want to appear in 
the query output. You can select one or more properties from the list on the left 
and add them to the list on the right by using the arrows. You can also move the 
properties up or down to adjust the display order by using the arrows on the right 
side of the dialog. 
TIP:   You must select at least one property on the Properties tab to see data in the 
query output. In the ContentList rule, some properties are selected by default.

8 On the Sort tab, specify how the data will be sorted in the query output. For each 
property you select, you can specify the sort order (ascending or descending).

9 Once you’ve finished editing the action, click Exit. 
10 To save your changes, click Yes.
11 Save the rule.
12 To test your query, add the ContentList portlet to a portal page and test the page.

Step Action

1 If you’ve already added one or more conditions to the query, select a 
logical operator (and or or).

2 Select Standard Document Properties.

3 Select a property (such as Author).

4 Select an operator (such as ends with).

5 Select <literal>.

TIP:  Only literal strings or whiteboard keys are supported at this time. 

6 Enter a value that will be used for the expression. You can either enter 
the literal value or a whiteboard key that holds a value. Use this format: 

!valueOf.keyname

You can also specify a key that holds the name of another key. To get a 
value from another key, specify !valueOf.anotherkey.

For more information about the !valueOf construct, see the 
chapter on using whiteboard values in the Rules Guide. 

7 Click Add to add the condition.
exteNd Director Content Management Guide-311

Content Query Application 311

reRulesPipeDev.html#Usingwhiteboardvalues


312 exteNd Director Content Management Guide



V
 Reference PART V
Describes how to use the Content Management (CM) JSP tag library

• Chapter 23, “Content Management Tag Library”





23
 Content Management Tag Library Chapter 23
This chapter describes the tags in the Content Management (CM) tag library 
(ContentMgmtTag.jar):

For background information, see the chapter on using the exteNd Director tag 
libraries in Developing exteNd Director Applications.

Content Management tags:

checkIn
checkOut
findDocuments
getChildDocuments
getContent
getDirectory
getDirectoryList
getDocType
getDocument
getFieldInfo
getFields
getLinkedDocuments
getVersionHistory
publish
unCheckOut
updateDocument
315

cdUsingTagLib.html
cdUsingTagLib.html


Alphabetical list of tags

checkIn

Description Checks a document in to the CM subsystem for the current user and saves a new 
content version. If the save is successful, the tag returns an integer representing the 
new version.

This tag wraps the checkinDocument() method on the EbiContentMgmtDelegate 
interface.

Syntax <prefix:checkIn docid="docID" mime="mime" content="content" 

comment="comment" keepcheckedout="keepcheckedout" id="ID" />

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid Yes Yes Specifies the UUID for a 
document in the CM subsystem.

mime Yes Yes Specifies the MIME type of the 
new version.

content Yes Yes Specifies the new content data.

comment No Yes Specifies a checkin comment.

keepcheckedout Yes Yes Indicates whether the new 
version should be kept checked 
out.

If true, the new version is inserted 
but the document remains 
checked out to the user.

If false, the lock is released and 
the document is made available 
for changes by other users.

id No No Specifies the name of the variable 
used to store the result of the 
operation. If the checkin is 
successful, this variable holds the 
new version.

If no value is specified, a default 
id of version is used.
316 exteNd Director Content Management Guide



Example <% taglib uri="/cm" prefix="cm" %>
...
<% 
String content = "this is my new content";
byte myarray[] = content.getBytes();
%>
...
<cm:checkIn docid="addd2545931b11d48e130010a4e70c5f" id="version" 
comment="checking in my changes" content="<%=myarray%>" 
keepcheckedout="true" mime="text/html" />
<%=pageContext.getAttribute("version")%>

checkOut

Description Checks out a document for the current user, returning true if successful and false if 
unsuccessful.

This tag wraps the checkoutDocument() method on the EbiContentMgmtDelegate 
interface.

Syntax <prefix:checkOut docid="docID" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:checkOut docid="addd2545931b11d48e130010a4e70c5f" id="result" />
<%=pageContext.getAttribute("result")%>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid Yes Yes Specifies the UUID for a document in the 
CM subsystem.

id No No Specifies the name of the variable that is 
used to store the result of the operation.

If no value is specified, a default id of 
checkout is used.
exteNd Director Content Management Guide-317

Content Management Tag Library 317



findDocuments

Description Retrieves documents that match the criteria specified in tag attributes (as described 
below), returning either a list of EbiDocument objects or an XML string.

This tag wraps either the findElements() or the findFilteredElements() method of the 
EbiContentMgmtDelegate interface.

Syntax <prefix:findDocuments id="ID" secure="securitySetting" xml="xmlFormat" 

authorFrom="authorFrom" authorTo="authorTo" authorLike="authorLike" 
categoryID="categoryID" createDateFrom="createDateFrom" 
createDateTo="createDateTo" expireDateFrom="expireDateFrom" 
expireDateTo="expireDateTo" publishDateFrom="publishDateFrom" 
publishDateTo="publishDateTo" docTypeName="docTypeName" 
folderID="folderID" docNameFrom="docNameFrom" docNameTo="docNameTo" 
docNameLike="docNameLike" parentDocId="parentDocID" 
titleFrom="titleFrom" titleTo="titleTo" titleLike="titleLike" 
orderAsc="orderAsc" orderDesc="orderDesc"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

id No No Specifies the name of the variable 
used to store the list of 
EbiDocument objects.

If no value is specified, a default id 
of foundDocuments is used.

secure No No Specifies whether the returned 
documents are filtered according to 
security constraints. 

If true (the default), the filter method 
is used and only those documents 
to which the user has read access 
are returned. 

If false, all documents are returned.
318 exteNd Director Content Management Guide



xml No No Specifies that the document list is 
returned as an XML string. 

The DTD for the returned xml is 
contentmgmt-query-
results_3_0.dtd, which can be found 
under 
templates\Director\library\ContentM
gmtService/ContentMgmtService-
conf/DTD directory in the standard 
exteNd Director installation 
directory. 

If not specified, a list of 
EbiDocument objects is returned.

authorFrom 

authorTo

No Yes Search for documents based on a 
range of author metadata.

authorLike No Yes Search for documents based on a 
match of author metadata.

This attribute is case-insensitive, 
and may include SQL wildcard 
characters % and _.

categoryID No Yes Limits the search to documents in a 
particular category.

createDate
From 

createDateTo

No Yes Search for documents based on 
creation date metadata.

Date entries should have the format 
m/d/yyyy. For example: 5/14/2001 
is a valid date entry.

expireDate
From 

expireDateTo

No Yes Search for documents based on 
expiration date metadata.

Date entries should have the format 
m/d/yyyy. For example: 5/14/2001 
is a valid date entry.

publishDate
From 

publishDateTo

No Yes Search for documents based on 
publication date metadata.

Date entries should have the format 
m/d/yyyy. For example: 5/14/2001 
is a valid date entry.

Attribute Required?

Request-time 
expression 
values 
supported? Description
exteNd Director Content Management Guide-319

Content Management Tag Library 319



docTypeName No Yes Limits the search to documents of a 
specific type.

folderId No Yes Limits the search to documents in a 
particular folder.

docName
From 

docNameTo

No Yes Search for documents based on a 
range of document name metadata.

docNameLike No Yes Search for documents based on a 
match of document name metadata.

This attribute is case-insensitive, 
and may include SQL wildcard 
characters % and _.

parentDocId No Yes Limits the search to documents that 
are children of a particular 
document.

titleFrom 

titleTo

No Yes Search for documents based on a 
range of title metadata.

titleLike No Yes Search for documents based on a 
match of title metadata.

This attribute is case-insensitive, 
and may include SQL wildcard 
characters % and _.

orderAsc

orderDesc

No Yes Sorts the documents in ascending 
or descending order, based on one 
of the search criteria.

Legitimate values for these 
attributes are:

author

createDate

docId

docName

expireDate

publishDate

title

Attribute Required?

Request-time 
expression 
values 
supported? Description
320 exteNd Director Content Management Guide



Example <cm:findDocuments id="test2" secure="false" xml="false"
authorLike="administrator" orderAsc="DOCID" />

Found <%=test2.size()%> Documents <br/>
<% for (int x=0;x<test2.size();x++){

EbiDocument doc = (EbiDocument) test2.get(x); %>
Doc <%=x%> title = <%=doc.getTitle()%>

<% } %>

getChildDocuments

Description Retrieves the children of a document, returning a list of EbiDocument objects.

Depending on the setting for the secure attribute, this tag wraps either the 
getChildDocuments() or the getFilteredChildDocuments() method on the 
EbiContentMgmtDelegate interface. 

Syntax <prefix:getChildDocuments docid="docID" docpath="docPath" id="ID" 

secure="securitySetting"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for the parent 
document in the CM subsystem.

If you do not specify a docid value, you 
must specify a value for the docpath 
attribute.

docpath No Yes Specifies the path to the parent 
document in the CM subsystem.

If you do not specify a docpath value, 
you must specify a value for the docid 
attribute.

id No No Specifies the name of the variable used 
to store the returned list of 
EbiDocument objects.

If no value is specified, a default id of 
childDocuments is used.
exteNd Director Content Management Guide-321

Content Management Tag Library 321



Example <cm:getChildDocuments docid="c373e9ea8d110d2c8f6a0000864ec468" 

id="test3"/>
Found <%=test3.size()%> Child Documents <br/>

getContent

Description Retrieves the contents of a document, returning a string. 

This tag wraps the getContent() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:getContent docid="docID" docpath="docpath" id="ID" 

version="version" verid="verID" />

secure No No Specifies whether the returned 
documents are filtered according to 
security constraints. 

If true (the default), the filter method is 
used and only those documents to 
which the user has read access are 
returned. 

If false, all documents are returned.

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for a document in 
the CM subsystem. 

If a docid value is not specified, you 
must specify a value for the docpath 
attribute.

docpath No Yes Specifies the path to a document in the 
CM subsystem.

If a docpath value is not specified, you 
must specify a value for the docid 
attribute.

Attribute Required?

Request-time 
expression 
values 
supported? Description
322 exteNd Director Content Management Guide



Example This example gets the latest version of the content for two documents by specifying the 
paths to the documents. The content for each document is inserted in the page at the 
location where the corresponding getContent tag appears:

<% taglib uri="/cm" prefix="cm" %>
...
<cm:getContent docpath="HR/Employee Forms/ESPP/ChangeOfAddress.html" 
id="doc1" />
content = <%=new String(((EbiDocContent)doc1).getData())%>
<cm:getContent docpath="HR/Employee 
Forms/ESPP/ChangeOfAddressInstructions.html" id="doc2" />
content = <%=new String(((EbiDocContent)doc2).getData())%>
...

getDirectory

Description Retrieves a directory from the CM subsystem, returning an EbiDirectory object. This 
tag can be used to retrieve folders as well as categories. 

This tag wraps the getEntry() and lookupDirectoryEntry() methods on the 
EbiContentMgmtDelegate interface.

id No No Specifies the name of the variable used 
to store the EbiDocContent object.

If no value is specified, the document 
content is inserted in the page at the 
location where the tag appears.

version No No Indicates whether to return a specified 
version of the content.

If false (the default), or if this attribute is 
omitted, the published version of the 
content is returned. If no version is 
published, no content is returned. 

If true, you must specify a version using 
the verid attribute. The specified 
version is returned.

verid No Yes Specifies a version ID for the content 
that should be returned. 

If the version attribute is false, the verid 
attribute is ignored.

Attribute Required?

Request-time 
expression 
values 
supported? Description
exteNd Director Content Management Guide-323

Content Management Tag Library 323



Syntax <prefix:getDirectory id="id" roottype="roottype" dirname="dirname" 

dirid="dirid" dirpath="dirpath" />

Attribute Required?

Request-time 
expression 
values 
supported? Description

id No No Specifies the name of the variable used 
to store the EbiDirectory object.

If no value is specified, the default 
name of dirEntry is used for the 
variable.

roottype Yes Yes Specifies whether the tag is being used 
to retrieve a folder or a category. 

If the directory is a folder, specify 
folder as the value for the roottype 
attribute. If it is a category, specify 
category instead. 

Typically, this attribute is used in 
conjunction with one of the following 
attributes to specify the correct 
directory object in the CM subsystem:

dirname

dirid

dirpath

If none of these attributes is specified, 
the root folder or category is returned, 
depending on the setting of roottype.

dirname No Yes Specifies the name of the directory you 
want to retrieve. 

The directory specified must be a direct 
descendent of the root. 

The directory can be a folder or 
category in the CM subsystem. 

dirid No Yes Specifies the UUID for the directory 
you want to retrieve. 

The directory can be a folder or 
category in the CM subsystem. 
324 exteNd Director Content Management Guide



Example <%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectory roottype="category" dirpath="HR/Employee Forms/ESPP" >

ID for the directory is ...
<%=dirEntry.getID()%>

getDirectoryList

Description Retrieves a list of directory contents from the CM subsystem, returning a collection of 
EbiDirectoryEntry objects. Depending on the attributes specified, this collection can 
contain folder, category, and document objects.

This tag wraps the getDirectoryList() and getFilteredDirectoryList() methods on the 
EbiContentMgmtDelegate interface.

Syntax <prefix:getDirectoryList id="id" finddocuments="finddocuments" 

roottype="roottype" parentdir="parentdir" iterate="iterate" 
findsubdirs="findsubdirs" dirname="dirname" dirid="dirid" 
dirpath="dirpath" filter="documents" />

dirpath No Yes Specifies the path to the directory you 
want to retrieve. 

The directory can be a folder or 
category in the CM subsystem. 

Attribute Required?

Request-time 
expression 
values 
supported? Description

id No No Specifies the name of the 
variable used to store the 
Collection object.

If a value is specified for the id 
attribute, that value is used as the 
name for the resulting variable 
that contains the collection. 
Otherwise, the default name of 
dirList is used for the variable.

Attribute Required?

Request-time 
expression 
values 
supported? Description
exteNd Director Content Management Guide-325

Content Management Tag Library 325



finddocuments No No Indicates whether to retrieve the 
documents that are located in the 
specified directory.

If true, all documents located in 
the specified directory are 
retrieved.

If false (the default), documents 
located in the specified directory 
are not retrieved.

roottype No Yes Specifies whether to retrieve the 
contents of a folder or a category. 
If the directory is a folder, specify 
folder as the value for the root 
attribute. If it’s a category, specify 
category. 

Typically, this attribute is used in 
conjunction with one of the 
following attributes:

dirname

dirid

dirpath

If the roottype attribute is 
specified by itself, the directory 
for which contents will be 
retrieved is the root.

If a value for this attribute is not 
specified, the directory for which 
contents will be retrieved is 
assumed to be the root folder.

parentdir No Yes Specifies the directory object for 
which the document contents 
should be retrieved. The object 
should be of type EbiDirectory.

If this attribute is specified, it is 
not necessary to specify the 
roottype attribute.

Attribute Required?

Request-time 
expression 
values 
supported? Description
326 exteNd Director Content Management Guide



iterate No No Indicates whether this tag 
operates as a body tag so that 
each row can be processed 
separately.

If true, the following values can 
be accessed within the 
getDirectoryList tag:

identifier

name

type

isdir

Each of these variables has a 
scope of NESTED.

If false (the default), this tag 
operates as a nonbody tag. The 
tag returns an object of type 
Collection that contains a 
collection of EbiDirectoryEntry 
objects.

findsubdirs No No Indicates whether to retrieve 
directories that are child 
directories under the specified 
one.

If true (the default), all 
subdirectories of the specified 
directory are retrieved.

If false, subdirectories of the 
specified directory are not 
retrieved.

dirname No Yes Specifies the name of a directory 
from which contents should be 
retrieved. 

The directory specified must be a 
direct descendent of the root. 

The directory can be a folder or 
category in the CM subsystem. 

Attribute Required?

Request-time 
expression 
values 
supported? Description
exteNd Director Content Management Guide-327

Content Management Tag Library 327



Examples This example shows how to use the getDirectoryList tag with the iterate attribute set to 
true:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectoryList roottype="category" dirpath="HR/Employee 
Forms/ESPP" finddocuments="true" iterate="true">
Identifier = <%=identifier%><br/>
Name = <%=name%><br/>
Type = <%=type%><br/>
Is this item a directory? = <%=isdir%><br/>
</cm:getDirectoryList>

This example shows how to use the getDirectoryList tag with the iterate attribute set to 
false:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectoryList iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute("dirList")).size() %> 
= the size of the list...

dirid No Yes Specifies the UUID for a directory 
from which contents should be 
retrieved. 

The directory can be a folder or 
category in the CM subsystem. 

dirpath No Yes Specifies the path to a directory 
from which contents should be 
retrieved. 

The directory can be a folder or 
category in the CM subsystem. 

filter No No Indicates whether to search using 
security filters. 

If true (the default), the filter 
method is used and only those 
objects to which the user has 
read access are returned. 

If false, all objects are returned.

Attribute Required?

Request-time 
expression 
values 
supported? Description
328 exteNd Director Content Management Guide



getDocType

Description Retrieves a document type from the CM subsystem, returning an EbiDocType object. 

Depending on whether you specify the typeid or name attribute, this tag wraps the 
getDocumentTypeByID() or getDocumentTypeByName() method on the 
EbiContentMgmtDelegate interface.

Syntax <prefix:getDocType typeid="docID" name="name" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:getDocType typeid="addd2543931b11d48e130010a4e70c5f" id="test" />
...
Name for the doc type is ...
<%=test.getDocTypeName()%>

Attribute Required?

Request-time 
expression 
values 
supported? Description

typeid No Yes Specifies the UUID for a document type 
in the CM subsystem. 

If you do not specify a typeid value, you 
must specify a value for the name 
attribute.

name No Yes Specifies the name of a document type 
in the CM subsystem.

If you do not specify a name value, you 
must specify a value for the typeid 
attribute.

id No No Specifies the name of the variable used 
to store the EbiDocType object.

If no value is specified, a default id of 
docType is used.
exteNd Director Content Management Guide-329

Content Management Tag Library 329



getDocument

Description Retrieves a document, returning an EbiDocument object.

This tag wraps the lookupDirectoryEntry() and getDocument() methods on the 
EbiContentMgmtDelegate interface.

Syntax <prefix:getDocument docid="docID" docpath="docPath" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:getDocument id="test" docid="addd2545931b11d48e130010a4e70c5f" />
Title for document is ...
<%=test.getTitle()%>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for a document in 
the CM subsystem.

If you do not specify a docid value, you 
must specify a value for the docpath 
attribute.

docpath No Yes Specifies the path to a document in the 
CM subsystem.

If you do not specify a docpath value, 
you must specify a value for the docid 
attribute.

id No No Specifies the name of the variable used 
to store the EbiDocument object.

If no value is specified, a default id of 
document is used.
330 exteNd Director Content Management Guide



getFieldInfo

Description Retrieves the extension fields of a document, returning the field information as an 
EbiDocExtnMeta object.

This tag wraps the getDocumentExtnMeta() method on the EbiContentMgmtDelegate 
interface.

Syntax <prefix:getFieldInfo docid="docID" docpath="docPath" id="ID" 

iterate="iterateSetting"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for a document in the 
CM subsystem.

If you do not specify a docid value, you 
must specify a value for the docpath 
attribute.

docpath No Yes Specifies the path to a document in the 
CM subsystem.

If you do not specify a docpath value, you 
must specify a value for the docid 
attribute.

id No No Specifies the name of the variable used 
to store the EbiDocExtnMeta object.

If no value is specified, a default id of 
docFields is used.
exteNd Director Content Management Guide-331

Content Management Tag Library 331



Example <cm:getFieldInfo docid="c373e9ea8d110d2c8f6a0000864ec468" id="test6" />
<% for (int x=0;x<test6.size();x++){

EbiDocExtnMetaInfo dmi = (EbiDocExtnMetaInfo) test6.get(x); %>
Field <%=x%> info = <%=dmi.getFieldName()%>

<% } %>

getFields

Description Retrieves fields from the CM subsystem, returning a collection of EbiDocField 
objects. You can use this tag to retrieve all fields or fields for a given document type. 

This tag wraps the getDocumentFields() and getFilteredDocumentFields() methods on 
the EbiContentMgmtDelegate interface.

Syntax <prefix:getFields id="ID" doctypeid="doctypeID" 

doctypename="doctypename" iterate="iterate" filter="filter" />

iterate No No Indicates whether this tag operates as a 
body tag so that each row can be 
processed separately.

If true, the following values can be 
accessed within the getDirectoryList tag:

fieldInfo

fieldName

fieldValues

Each of these variables has a scope of 
NESTED.

If false (the default), this tag operates as 
a nonbody tag. The tag returns an 
EbiDocExtnMeta object.

Attribute Required?

Request-time 
expression 
values 
supported? Description
332 exteNd Director Content Management Guide



Attribute Required?

Request-time 
expression 
values 
supported? Description

id No No Specifies the name of the variable 
used to store the collection of 
EbiDocField objects.

If no value is specified, a default 
name of fieldList is used for the 
variable.

doctypeid No Yes Specifies the UUID for a document 
type in the CM subsystem.

If you do not specify either a 
doctypeid or doctypename value, 
all fields are retrieved.

doctypename No Yes Specifies the name of a document 
type in the CM subsystem.

If you do not specify either a 
doctypeid or doctypename value, 
all fields are retrieved.

iterate No No Indicates whether this tag is to 
operate as a body tag so that each 
row can be processed separately.

If true, the following values can be 
accessed within the getFields tag:

identifier

name

Each of these variables has a 
scope of NESTED.

If false (the default), this tag 
operates as a nonbody tag. In this 
case, the tag returns a collection of 
EbiDocField objects.

filter No No Indicates whether to search using 
security filters. 

If true (the default), the filter method 
is used and only those fields to 
which the user has read access are 
returned. 

If false, all fields are returned.
exteNd Director Content Management Guide-333

Content Management Tag Library 333



Examples This example shows how to use the getFields tag with the iterate attribute set to true:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getFields doctypename="myDocumentType" iterate="true">
Identifier = <%=identifier%><br/>
Name = <%=name%><br/>
</cm:getFields>

This example shows how to use the getFields tag with the iterate attribute set to false:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getFields iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute("fieldList")).size() 
%> = the size of the list...

getLinkedDocuments

Description Retrieves the documents linked to a particular document, returning a list of 
EbiDocument objects.

Depending on the attributes you specify for this tag, it wraps one of these methods on 
the EbiContentMgmtDelegate interface:

getFilteredLinkChildDocuments()
getLinkChildDocuments()
getFilteredLinkParentDocuments()
getLinkParentDocuments()

Syntax <prefix:getLinkedDocuments docid="docID" docpath="docPath" id="ID" 

secure="securitySetting" parentLinks="parentLinksSetting"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for a document in the 
CM subsystem.

If you do not specify a docid value, you 
must specify a value for the docpath 
attribute.
334 exteNd Director Content Management Guide



Example <cm:getLinkedDocuments docid="c373e9ea8d110d2c8f6a0000864ec468"
id="test4" parentLinks="false"/>

Found <%=test4.size()%> Linked Documents <br/>

getVersionHistory

Description Retrieves the versions of a document, returning a list of EbiDocVersion objects.

This tag wraps the getDocumentContentVersions() method on the 
EbiContentMgmtDelegate interface.

Syntax <prefix:getVersionHistory docid="docID" docpath="docPath" id="ID" 

includeContent="includeContent"/>

docpath No Yes Specifies the path to a document in the 
CM subsystem.

If you do not specify a docpath value, you 
must specify a value for the docid 
attribute.

id No No Specifies the name of the variable used to 
store the list of EbiDocument objects.

If no value is specified, a default id of 
linkedDocuments is used.

secure No No Specifies whether the returned 
documents are filtered according to 
security constraints. 

If true (the default), the filter method is 
used and only those documents to which 
the user has read access are returned. 

If false, all documents are returned. 

parentLi
nks

No No Specifies whether you want to get 
documents that are linked as parents or 
children to the specified document.

If true, return parent documents to which 
this document is linked.

If false (the default), return child 
documents that are linked to this 
document. 

Attribute Required?

Request-time 
expression 
values 
supported? Description
exteNd Director Content Management Guide-335

Content Management Tag Library 335



Example <cm:getVersionHistory docid="c373e9ea8d110d2c8f6a0000864ec468"
id="test1" includeContent="false"/>

<% EbiDocVersion ver = (EbiDocVersion) test1.get(0); %>
Version mime-type is = <%=ver.getMimeType()%>

publish

Description Publishes a specified version of content for a document, returning true if successful or 
false if unsuccessful. 

This tag wraps the publishDocumentContentVersion() method on the 
EbiContentMgmtDelegate interface.

Syntax <prefix:publish docid="docID" uselatest="uselatest" version="version" 

overwrite="overwrite" force="force" />

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid No Yes Specifies the UUID for a document in the 
CM subsystem.

If you do not specify a docid value, you 
must specify a value for the docpath 
attribute.

docpath No Yes Specifies the path to a document in the 
CM subsystem.

If you do not specify a docpath value, you 
must specify a value for the docid 
attribute.

id No No Specifies the name of the variable used to 
store the list of EbiDocVersion objects.

If no value is specified, a default id of 
docVersions is used.

include
Content

No No Include the actual content in the returned 
EbiDocVersion objects.
336 exteNd Director Content Management Guide



Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:publish docid="addd2545931b11d48e130010a4e70c5f" uselatest="true" 
/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid Yes Yes Specifies the UUID for a document in 
the CM subsystem.

uselatest Yes No Indicates whether to publish the latest 
version of the document.

If true, the latest version is published.

If false, the version number specified in 
the version attribute is published.

version No Yes Specifies the version to publish. 

This attribute is required if the uselatest 
attribute is set to false.

overwrite No No Indicates whether to replace any 
versions already published.

If true (the default), the specified version 
overwrites any published version for the 
document.

If false, an exception is thrown if a 
published version of the document 
already exists.

force No No Indicates whether to force an immediate 
publish, regardless of the publish dates 
specified in the document metadata.

If true, the version is published 
regardless of the publish date value 
specified for the document. 

If false (the default), the current data 
and time is compared against the 
publish date and time specified for the 
document. If it is too early or too late to 
publish, the version is not published; 
otherwise, the version is published. In 
either case, an application exception is 
thrown.
exteNd Director Content Management Guide-337

Content Management Tag Library 337



unCheckOut

Description Unchecks out a document from the CM subsystem for the current user, returning true 
if successful or false if unsuccessful. 

NOTE:  No data is saved. Any changes made between the original checkout and the 
uncheckout are lost.

This tag wraps the unCheckOutDocument() method on the EbiContentMgmtDelegate 
interface.

Syntax <prefix:unCheckOut docid="docID" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:unCheckOut docid="addd2545931b11d48e130010a4e70c5f" id="done" />
<%=pageContext.getAttribute("done")%>

updateDocument

Description Updates a document in the CM subsystem, returning true if successful or false if 
unsuccessful.

This tag wraps the updateDocument() method on the EbiContentMgmtDelegate 
interface.

Syntax <prefix:updateDocument doc="document" checkout="checkoutSetting" 

checkin="checkinSetting"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

docid Yes Yes Specifies the UUID for a document in the 
CM subsystem.

id No No Specifies the name of the variable used to 
store the result of the operation. 

If no value is specified, a default id of 
uncheckout is used.
338 exteNd Director Content Management Guide



Example <cm:getDocument id="test" docid="c373e9ea8d110d2c8f6a0000864ec468" />
...
<% test.setAbstract(test.getAbstract()+"a"); %>
<cm:updateDocument doc="<%=test%>" checkout="true" checkin="true"/>

Attribute Required?

Request-time 
expression 
values 
supported? Description

doc No Yes Specifies a document (an object of 
class EbiDocument) in the CM 
subsystem. 

checkout No Yes Specifies that the document is to be 
checked out to the current user before 
performing the update.

checkin No Yes Specifies that the document is to be 
checked in after performing the 
update.
exteNd Director Content Management Guide-339

Content Management Tag Library 339



340 exteNd Director Content Management Guide



Index
A
access

permissions in Content Management subsystem 79
restricting 82

access control
in Content Management subsystem 77

access right types
and Content Management subsystem 79

ACLs
about 33
access methods for ContentAdmin 82
access methods in Content Management 

subsystem 80
adding (code examples) 82
inheriting 81
specifying for new objects 81

administrator
ContentAdmin 80
role 78

attachments
adding 238

author role 78
auto-checkin feature for documents

about 200
enabling 264

Auto Create utility for Content Management 
subsystem 224, 229

auto-publish feature for documents
about 200, 266
enabling 268

B
browsers

identifier strings 41

C
cascading security in CMS Administration 

Console 283

categories
assigning to documents 246
creating 219
deleting 254
managing 43

category parameter 25
category tree 46
child documents

adding 64, 237
getting 68
updating link 67

cleanup data feature for document types 202, 258
CMS Administration Console

about 24
accessing 192
administering tasks 301
Auto Create utility 224
classifying content 25
content list 195
content tree view 195
content view tabs 194
context-sensitive toolbar 195
creating content 221
interactive controls 194
main page 193
Property Inspector 195
tasks 189
toolbar 194
using the internal HTML Editor 229

cm.sssw.cm.api package 30
compound document relationship 62
compound linking

about 65
methods for 66

content, in Content Management subsystem
about display styles 24
classifying 25
compared to pages 21
creating 221
default formats in document types 200
defined 20, 221
defining structure and layout 24
deleting 253
dynamic 223
exteNd Director Content Management Guide-341

341



editing 244
exporting 110
exporting in the CMS Administration Console 289
importing 112
importing in the CMS Administration Console 293
previewing 242
securing 77
versions of 26

ContentAdmin group 80
ContentList

sample application 307
ContentList rule

editing 308
Content Management subsystem

API 30
auto-publish feature 266
changing data about content 30
checking documents in and out 260
creating and adding fields 202
creating categories 219
creating display styles 212
creating documents 223
creating document types 199
creating folders 198
creating relationships between documents 236
creating tasks 90
creating taxonomies 218
customizing tasks 89
default document type 24
document types, about 24
getting manager (code example) 30
installed tasks 86
layout styles, adding 41
logical infrastructure 23
physical infrastructure 22
publishing document versions 264
removing relationships between documents 239
repository 30
rolling back document versions 265
security for 77
security methods 80
setting security on content elements 284
system document type 255
tasks, managing 85
tasks, overview of 31
unpublishing document versions 265
users, roles for 78
version control 264

Content Query
sample application 307

Content Query action
in Content Query sample application 308

content security
access permissions 281
cascading 283
permissions required for Content Management 

tasks 282
setting 284

control types
for document fields 202

D
data export descriptor (DED)

about 113
samples 113

data import descriptor (DID)
about 114
sample 114

data types
about 32

default task 86
display styles

about 24
creating 212, 214
deleting 255
modifying 249

document fields
 see fields

documents
adding 49
adding category (code example) 45
adding child (code example) 64
adding fields 34
adding layout document 42
auto-checkin feature 200
auto-publish feature 200
categories (code example) 46
changing layout style 43
checking in 263
checking in and out 260, 261, 263
child document, updating (code example) 67
child documents, getting (code example) 68
composite 74
compound document relationship 62
creating 223
creating relationships between 236
defined 20
deleting 254
exteNd Director Content Management Guide342



displaying 72
extension metadata 55
fields by name 55
fields for document (code example) 57
fields for type (code example) 54
field values, geting 57
field values, setting 55
hierarchical relationship 62
HTML, setting in a portlet 72
HTML content, displaying 72
layout sets 60
layout styles, managing 38
managing folders and categories 43
metadata for 32, 49
methods for managing 58
modifying and publishing 69
parent, getting (code example) 68
publishing a version 267
removing relationships between 239
rolling back to a previous version 268
setting expiration dates 252
status, setting (code example) 71
status of 70
style sheets 38
types, managing 35
unpublishing a version 267
when to check out 260
XML content, displaying 73
XML layout, getting (code example) 73

document types
about 24
adding 37
cleanup data feature 202, 258
creating 199
default 24
deleting 255, 256
editing 251
system 255

E
EbiContentMgmtDelegate 80
elements

securable in Content Management subsystem 79
events

Content Management types 115
enabling in Content Management 123
enabling task 103
enabling WebDAV 185

in Content Management 115
registering in Content Management 119, 121
registering WebDAV 184
tasks and 102
types, in WebDAV 183
types, specifiying in Content Management 120
WebDav and 183

exceptions
handling (code example) 84

expire task 86
export behavior in the CMS Administration 

Console 288
exporting content

about 289
API 114
customizing 113
process overview 111

extension metadata
and documents 55
 see also fields

F
fields

adding 34
adding with document type 37
and document types 33
and values 33
creating and adding 202
deleting from document types 257
deleting from the CMS Administration Console 257
document (code example) 55
document type (code example) 54
editing 252
getting by name 55
getting for document 57
getting for document (code example) 57
getting values for (code example) 57
managing 32
setting values in document 55
system 255
values, getting 57
values for a document, specifying 54

folders
assigning to documents 246
creating 198
deleting 253
managing 43
specifying for documents 228
exteNd Director Content Management Guide-343

Index 343 



G
groups

in Content Management subsystem 78

H
hierarchical document relationship 62
hierarchical linking 63
HTML Editor

using in the CMS Administration Console 229
hyperlinks

creating in documents 233

I
images

inserting in documents 235
import behavior in the CMS Administration 

Console 288
importing content

about 293
API 114
customizing 113
process overview 112

J
janitor task 86
JavaScript

writing in the CMS Administration Console 206

L
layout document

adding 42
layout styles

adding 41
adding layout document descriptor 42
changing 43
layout sets 60
managing 38
setting up 39

legacy documents
removing fields from parent document types 258

linking
checking out target documents 65
compound 65
hierarchical 63

logical content infrastructure in CMS Administration 
Console 23

M
manager objects

getting for content (code example) 30
metadata

for documents 32, 49
for fields 33
list of predefined elements 223

methods
for managing documents 58
for version control and publishing 71

modes, in the CMS Administration Console 194

P
pages

compared to CMS Administration Console 
content 21

parent documents
getting 68

permissions
and Content Management subsystem elements 79
for ContentAdmin group 80

physical content infrastructure in CMS Administration 
Console 22

_PmcSystemDefaultType for content 
management 255, 257

portlets
HTML, setting in 72

properties
modifying 245

Property Inspector
exporting content from 292

publishing
dates 269
methods for 71
publisher role 78

publish task 86, 264
exteNd Director Content Management Guide344



R
repository (Content Management)

changing information about 30
restricted access

in Content Management subsystem 82
roles

in Content Management subsystem 78
rolling back

defined 265

S
securable objects

accessing ACLs for 80
access right types 79
in Content Management subsystem 79

security
cascading 283
for Content Management tasks 282
for the Content Management subsystem 77
permissions for content access 281
setting on content elements 284

security exceptions
handling (code example) 84

style sheets
and CMS Administration Console display styles 24, 

212
and Content Management subsystem 38, 41
creating 213
how managed by CMS Administration Console 212
layout sets for content 60
uploading to CMS Administration Console 215

synch task 86
system administrator

ContentAdmin 80
system document fields 255
system document type 255

T
tag libraries

Content Management tag library 315
tasks

administering in the CMS Administration 
Console 301

creating 90
customizing 89
default 86

events and 102
expire 86
installed 86
janitor 86
managing 85
publish 86
registering and configuring 87
synch 86

taxonomies
assigning to documents 246
creating 218
deleting 254

text
copying 233
cutting 233
formatting 233
pasting 233

U
unpublish task

defined 265
user agents 41
users

in Content Management subsystem 78

V
version control

auto-checkin feature 200, 264
auto-publish feature 200, 266
in Content Management subsystem 264
methods for 71
publishing 264
rolling back 265
unpublishing 265

views, in the CMS Administration Console 194

W
WebDAV client

about 137
adding a category reference to a document 150
classes 141
configuring your environment 138
constructing WebDAV requests that use 

Proppatch 146
exteNd Director Content Management Guide-345

Index 345 



deleting a document using a helper method (code 
example) 144

deleting a document using utility methods (code 
example) 147

helper methods 141
how exteNd Director manages versioning for 131
how exteNd Director secures content from 131
how exteNd Director stores content from 130
issuing WebDAV requests from a Java client 149, 

150
programming practices using helper methods 144
programming practices using utility methods 146
setting up 133
using 139
utility methods 142
WebDAV requests and responses 140
why build your own 138
working with resources, collections, and 

properties 140
WebDAV client, issuing WebDAV requests from a Java 

client
adding a category reference using a helper method 

(code example) 150
adding a category reference using utility methods 

(code example) 151
copying a document using a helper method (code 

example) 154
copying a resource or collection 154
creating a collection using a helper method (code 

example) 155
creating a document using a helper method (code 

example) 157
creating a new collection 155
creating a new document from a custom 

template 156
deleting a document 158
getting a document using utility methods (code 

example) 158
getting allowed methods using utility methods (code 

example) 162
getting a resource or collection 158
getting header information from a resource or 

collection 160
getting header information using utility methods (code 

example) 160
getting methods that can be called on a resource or 

collection 162
getting properties defined on a resource or 

collection 164

getting properties using utility methods (code 
example) 164

locking a document 166
locking a document using a helper method (code 

example) 166
moving a folder using a helper methods (code 

example) 168
moving a resource or collection 168
removing a category reference from a 

document 169
removing a category reference using a helper method 

(code example) 169
removing a category reference using utility methods 

(code example) 170
removing all category references from a 

document 172
removing all category references using a helper 

method (code example) 172
removing all category references using utility methods 

(code example) 173
renaming a document using a helper method (code 

example) 175
renaming a resource or collection 175
setting a field value using a helper method (code 

example) 177
setting a field value using utility methods (code 

example) 178
setting the value of a custom field in a 

document 177
unlocking a document 180
unlocking a document using a helper method (code 

example) 180
updating a document 181
updating a document using a helper method (code 

example) 181
WebDAV protocol

about 127
and distributed Web authoring 128
extensions to HTTP 128

WebDAV subsystem
about 127
deploying 133
events and 183
exteNd Director support for 129
installing 132
supported methods 134
what you can do 130
exteNd Director Content Management Guide346



X
XML

document categories (code example) 46
getting for a document 73
exteNd Director Content Management Guide-347

Index 347 



exteNd Director Content Management Guide348


	About This Book
	Concepts
	About the Content Management Subsystem
	About content management
	About content
	About documents
	Content and pages

	Subsystem infrastructure
	Physical infrastructure
	Logical infrastructure
	Defining content structure and layout
	Classifying content

	Content life cycle
	Checking out documents
	Publishing a document

	Subsystem support functions
	Integration with other subsystems

	Developing Content Management Infrastructure
	About the CM API
	Getting a content manager object
	Changing repository data

	About the CM subsystem infrastructure
	Managing fields
	Adding a field
	Adding a field to a portlet
	Listing fields using different filters

	Managing document types
	Adding a document type with associated fields

	Managing layout styles
	User agents
	Adding a layout style
	Adding a layout document and a layout document descriptor
	Changing a layout style

	Managing folders and categories
	Adding a category

	Navigating the CM hierarchy

	Managing Documents
	About documents
	Accessing the CM API

	Adding documents
	Adding a document
	Adding multiple documents

	Specifying field values for a document
	Getting fields for the document type
	Getting a field object by name
	Setting a field value
	Getting all fields
	Getting field values for a single field

	Specifying layout sets for documents
	When to use a layout set
	Methods for managing layout sets

	Creating links between documents
	Two types of document relationships
	Hierarchical linking
	Adding a child document
	Compound linking
	Linking a child document
	Updating a link with a new document version
	Getting linked parent documents
	Getting linked child documents

	Modifying and publishing documents
	Tracking document status
	Methods for source control and publishing

	Displaying documents
	HTML content
	XML content
	Composite documents


	Securing Content
	About access control
	CM user groups

	ACL-based security
	Permissions
	Element types and associated permissions
	ContentAdmin group

	Methods for managing access control
	Accessing ACLs for existing elements
	Specifying ACLs for new elements
	Inheriting ACLs
	Accessing ACLs for ContentAdmin
	Restricting element access to administrators

	Examples of adding ACLs
	Example of handling a security exception

	Managing Tasks
	About tasks
	Installed tasks
	Custom tasks

	About how tasks are registered and configured
	tasktypes.xml
	Default_tasklist.xml
	services.xml

	Customizing an installed task
	Creating and implementing a new task
	Custom task sample code
	NewDocumentNotifier
	PeriodicNewDocumentNotifier

	Working with task events
	Task event types
	Registering for a task event
	Enabling or disabling a task event


	Managing Content Caching
	About caching in CM
	Summary of CM caching information
	Caching behavior
	Caching of folders, categories, and document metadata
	About document content and versions

	Controlling caching in the DAC

	Importing and Exporting Content
	About importing and exporting
	Using the import/export facilities

	About the export facility
	Export process

	About the import facility
	Import process

	Customizing imports and exports
	Customizing the data export descriptor (DED)
	Customizing the data import descriptor (DID)
	Accessing the import and export API


	Working with Content Management Events
	About CM events
	CM event types

	Registering for CM events
	Registering for events on directory elements
	Specifying event types
	Using the event helper class
	Event registration examples

	Enabling CM events


	WebDav
	Using WebDAV Clients with exteNd Director for Collaborative Authoring
	What is WebDAV?
	Information elements for distributed Web authoring
	WebDAV extensions to HTTP

	About exteNd Director’s WebDAV support
	What you can do with the exteNd Director WebDAV subsystem
	How exteNd Director stores content from WebDAV clients
	How exteNd Director secures content from WebDAV clients
	How exteNd Director manages versioning for WebDAV clients

	Installing the exteNd Director WebDAV subsystem
	Deploying the exteNd Director WebDAV subsystem
	Before you deploy

	Setting up the client
	Supported WebDAV methods
	Public WebDAV server

	Building Your Own WebDAV Client
	About the WebDAV client API
	Why build your own WebDAV client?
	Configuring your environment
	Using the WebDAV client API
	WebDAV requests and responses
	Working with resources, collections, and properties
	Classes
	Helper methods
	Utility methods

	Programming practices
	Programming practices using helper methods
	Programming practices using utility methods

	Issuing WebDAV requests from a Java client
	Adding a category reference to a document
	Copying a resource or collection
	Creating a new collection
	Creating a new document from a custom template
	Deleting a document
	Getting a resource or collection
	Getting header information from a resource or collection
	Getting methods that can be called on a resource or collection
	Getting properties defined on a resource or collection
	Locking a document
	Moving a resource or collection
	Removing a category reference from a document
	Removing all category references from a document
	Renaming a resource or collection
	Setting the value of a custom field in a document
	Unlocking a document
	Updating a document


	Working with WebDAV Events
	About WebDAV events
	Event types

	Registering for WebDAV events
	Enabling WebDAV events


	CMS Administration Console
	About the CMS Administration Console
	What CM tasks you can do with the CMS Administration Console
	How to access the CMS Administration Console
	The main CMS Administration Console page
	Interactive controls


	Setting Up the Required Infrastructure
	Flow of operations
	Creating folders
	Creating document types
	Creating fields and adding them to a document type
	About fields
	Creating and manipulating fields

	Writing JavaScript for document types and fields

	Setting Up the Optional Infrastructure
	Flow of operations
	Creating display styles
	About display styles

	Specifying a style sheet for a document type
	Creating taxonomies
	Creating categories

	Creating Content
	About content
	Flow of operations
	Creating documents
	Creating a document
	Specifying a folder for a new document
	Using Auto Create to create a document
	Using the CMS Administration Console’s HTML Editor

	Creating relationships between documents

	Maintaining Content
	Flow of operations
	Previewing content
	Editing content
	Modifying properties
	Assigning a document’s folder, categories, and taxonomies
	Modifying display styles
	Editing document types
	Editing document fields
	Setting document expiration dates
	Deleting content
	Deleting folders
	Deleting taxonomies and categories
	Deleting documents
	Deleting display styles
	Deleting document types
	Deleting and removing document fields


	Administering Content
	About content administration
	Flow of operations
	Checking documents in and out
	What happens during checkout
	What happens during checkin
	Checkin and checkout procedures

	Administering version control

	Searching Content
	Setting up the CMS Administration Console search facility
	Using the search facility in the CMS Administration Console
	Search options

	Managing Content Security
	About content security
	Flow of operations
	Permissions for content access
	User permissions required for CM operations
	Cascading security
	Setting security on CM elements

	Importing and Exporting Content
	About the import and export facilities
	Summary of CMS Administration Console import and export behavior
	Exporting content
	Exporting from the toolbar
	Exporting from a Property Inspector
	Customizing exports

	Importing content
	Configuring the import process
	Importing from the toolbar
	Importing from a Property Inspector

	Structure of the data import or export archive
	Best practices and prerequisites
	Planning for large-scale import/export operations
	Security considerations


	Administering Automated Tasks
	The task display
	Starting and stopping tasks


	Applications
	Content Query Application
	About Content Query
	Using the Content Query action


	Reference
	Content Management Tag Library
	Alphabetical list of tags
	checkIn
	checkOut
	findDocuments
	getChildDocuments
	getContent
	getDirectory
	getDirectoryList
	getDocType
	getDocument
	getFieldInfo
	getFields
	getLinkedDocuments
	getVersionHistory
	publish
	unCheckOut
	updateDocument



	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


