
Novell
exteNd
Director
5.0 www.novell.com

CONTENT SEARCH GUIDE

Legal Notices
Copyright © 2003 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher. This manual, and any portion
thereof, may not be copied without the express written permission of Novell, Inc.
Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation
to notify any person or entity of such revisions or changes.
Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the
right to makes changes to any and all parts of Novell software, at any time, without any obligation to notify any person or
entity of such changes.
Copyright © 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall
at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You shall not
remove any copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce
such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in
the Software.
Patent pending.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Director Content Search Guide
December 2003

Online Documentation: To access the online documemntation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.
Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
Acrobat, Adaptive Server, Adobe, AIX, Autonomy, BEA, Cloudscape, DRE, Dreamweaver, EJB, HP-UX, IBM,
Informix, iPlanet, JASS, Java, JavaBeans, JavaMail, JavaServer Pages, JDBC, JNDI, JSP, J2EE, Linux, Macromedia,
Microsoft, MySQL, Navigator, Netscape, Netscape Certificate Server, Netscape Directory Server, Oracle, PowerPoint,
RSA, RSS, SPARC, SQL, SQL Server, Sun, Sybase, Symantec, UNIX, VeriSign, Windows, Windows NT
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.
4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Autonomy
Copyright ©1996-2000 Autonomy, Inc.
Title for Your Book 3

Castor
Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.
Redistribution and use of this software and associated documentation ("Software"), with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain copyright statements and notices. Redistributions must also contain a copy
of this document.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "ExoLab" must not be used to endorse or promote products derived from this Software without prior written
permission of Intalio Inc. For written permission, please contact info@exolab.org.
4. Products derived from this Software may not be called "Castor" nor may "Castor" appear in their names without prior
written permission of Intalio Inc. Exolab, Castor and Intalio are trademarks of Intalio Inc.
5. Due credit should be given to the ExoLab Project (http://www.exolab.org/).
THIS SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indiana University Extreme! Lab Software License
Version 1.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)."
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.
4. The names "Indiana University" and "Indiana University Extreme! Lab" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact
http://www.extreme.indiana.edu/.
5. Products derived from this software may not use "Indiana University" name nor may "Indiana University" appear in
their name, without prior written permission of the Indiana University.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that
follows these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org.
4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior
written permission from the JDOM Project Management (pm@jdom.org).
In addition, we request (but do not require) that you include in the end-user documentation provided with the
redistribution and/or in the software itself an acknowledgement equivalent to the following: "This product includes
software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

Sun
Sun Microsystems, Inc.
Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice,
SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual
Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

W3C
W3C® SOFTWARE NOTICE AND LICENSE
This work (and included software, documentation such as READMEs, or other related items) is being provided by the
copyright holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree that
you have read, understood, and will comply with the following terms and conditions.
Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any
purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the
software and documentation or portions thereof, including modifications:
1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software
Short Notice should be included (hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.
Title for Your Book 5

3. Notice of any changes or modifications to the files, including the date changes were made. (We recommend you provide
URIs to the location from which the code is derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software
without specific, written prior permission. Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Contents
About This Guide. 11

1 About Searching . 13
Searching methods . 14
Overview of Autonomy-based conceptual searching . 14

How conceptual searching works . 14
How conceptual searching differs from keyword searching . 15
Searching the CM repository .15
Searching other data sources. 16
What you can do with the Search subsystem . 16

Overview of SQL-based searching . 17
Why use SQL-based searching . 17
What you can search . 17
Support for SQL constructs . 18

PART I CONCEPTUAL SEARCH CONCEPTS. 19
2 Configuring Your Environment for Conceptual Searching . 21

Installing the exteNd Director Dynamic Reasoning Engine. 21
Installing the DRE on Windows . 22
Installing the DRE on UNIX . 22

Adding the Autonomy Java Native Interface to your environment . 24
Adding autonomyJNI.jar to your application server classpath . 24
Adding the Autonomy dynamic library to your environment . 25

Determining your exteNd Director project configuration . 27
Creating the exteNd Director project . 28
Enabling conceptual search . 28
Setting security options . 31
Setting search options. 31

3 Setting Search Options. 33
About search options. 33

For more information . 34
A decision matrix . 34
How to modify search options . 36

Configuring the DRE using the exteNd Director DRE Administration console 37
Setting search options at design time. 37
Setting search options in an existing exteNd Director project. 37
Setting search options programmatically at runtime . 39
Setting search options by modifying the DRE configuration file . 40
7

4 Implementing Conceptual Search . 41
Searching the CM repository: how the Search and Content Management APIs are integrated . . 42
Searching data sources other than the CM repository . 43
The process flow for implementing conceptual searching. 43
Configuring your project and search environment. 44
Developing application resources . 44

Implementing search operations. .44
Programming practices. 45
Interacting with the CM repository . 49
Packaging application resources . 49

Building, archiving, and deploying your application. 50
Updating content in the CM repository . 50

Updating content in the CMS Administration Console . 50
Updating content using the CM API . 50
Creating and updating content in third-party applications. 51

Testing queries . 51
Troubleshooting the search application. 51

5 Fetching Content and Metadata . 53
About fetching . 53

The default fetcher . 53
Fetchers for custom data sources . 54

Implementing fetching in your applications . 55
Key fetcher classes and interfaces . 55
Fetcher methods. 55
Code example: fetching data .56

Data fetcher descriptors . 56
Syntax. 56
Associating data fetchers with query result objects . 57

6 Querying Content and Metadata . 59
About querying . 59

Querying the CM repository . 60
Querying custom data sources . 60

Types of queries you can run . 60
Implementing querying for the CM repository . 61

Key classes and interfaces for querying the CM repository . 61
Methods for querying the CM repository. 62
Code example: issuing an Autonomy-based query against the CM repository. 64

Implementing querying for custom data sources. 66
Key query classes and interfaces for querying custom data sources 66
Query methods . 67
Code example: issuing an Autonomy-based query against a custom data source. 68

Search query descriptors . 70
Advantages of using query descriptors. 70
Query type element . 70
Query options property . 71
exteNd Director Content Search Guide8

Selected properties. 72
Example: defining a text query in XML . 72
Example: initializing a query object from an XML descriptor . 74

Sorting query results . 74
Sorting by date and then relevance . 74
Sorting field query results . 75

7 Configuring the Dynamic Reasoning Engine for Specialized Searching. 77
Searching for numbers . 77
Searching in other languages . 78

Importing MBCS and other binary formats . 78
Modifying language-specific configuration parameters. 80
Providing sentence-breaking files (optional) . 82

8 Troubleshooting the Conceptual Search Process . 87
Commonly encountered problems . 87

Unable to retrieve results exception. 88
Class not found exception for Autonomy JNI when accessing the Content Management (CM)

subsystem . 88
UnsatisfiedLinkError for autonomyJNI.dll. 89
Search results become invalid after restarting the DRE service . 90
Documents do not appear to be indexed . 90
Queries return no results or too few results . 94
Document content does not appear to be stored in the DRE . 96
java.lang.Exception for Autonomy JNI when publishing documents on UNIX 96

General debugging techniques . 97
Logging. 97
Examining exteNd Director DRE content . 99
Forcing indexing . 99
Getting the list of terms indexed for a document . 100
How to test queries. 101

PART II SQL-BASED SEARCH CONCEPTS. 103
9 Implementing SQL-Based Searching . 105

Logic flow for implementing SQL-based search . 105
Building the search criteria . 106

Using operators to match values against data . 107
Concatenating WHERE expressions . 108
Defining criteria for searching custom metadata. 108

Example: searching standard document metadata . 109

PART III TOOLS. 111
10 Administering the Dynamic Reasoning Engine . 113

exteNd Director DRE Administration console functions . 113
Starting the exteNd Director DRE Administration console . 114
Resetting the DRE. 116
exteNd Director Content Search Guide-9

Contents 9

Removing content from the DRE. 116
Testing queries . 117
Setting DRE search options . 118
Examining DRE content . 120
Restoring DRE content . 121
Getting help on how to use the DRE Administration console . 121

PART IV REFERENCE. 123
11 Search Options Reference . 125

Copy document contents into the DRE? . 126
Debug during import? . 126
Enable link to the Search subsystem? . 127
Importable file extensions . 127
Importable MIME types . 128
Index custom document metadata? . 128
Index document content? . 129
Index standard document metadata? . 129
Index port . 130
Install directory for binary document text filters . 130
Name of DRE database . 131
Name of DRE host . 131
Number of deleted documents to batch up . 132
Operations that trigger immediate synchronization . 132
Query port . 133
Support binary document formats? . 133
Symbol for concatenating multivalue custom metadata values before indexing 134
Synchronization mode. 134

12 Search Query Types . 135
Boolean queries . 135
Conceptual queries . 136
Field queries . 137
Fuzzy queries . 138
Get-all queries . 139
Keyword search. 139
Proper name search . 140
Proximity queries. 141
Suggest similar documents . 141
Thesaurus queries. 144
exteNd Director Content Search Guide10

About This Book
Purpose

This book shows you how to use the Novell® exteNd Director™ Content Management
and Search subsystems to implement Autonomy-based conceptual queries, keyword
search capabilities, and SQL-based queries in your exteNd Director applications.

Audience

This book is for programmers who want to incorporate search capability into their
Novell exteNd Director applications.

Prerequisites

This book assumes you are familiar with Java programming, XML, SQL, and content
query formatting.

Organization

Here’s a summary of the topics you’ll find in this book:

Part and chapter Description

1 About Searching Overview of the range of searching techniques
you can implement in exteNd Director
applications. Compares conceptual searching,
keyword searching, and SQL-based searching

PART I, “Conceptual Search Concepts”, on page 19

2 Configuring Your
Environment for
Conceptual Searching

How to set up your environment for implementing
Autonomy-based conceptual searching,
including platform-specific and server-specific
configuration requirements

3 Setting Search Options How to fine-tune the conceptual search process
11

4 Implementing
Conceptual Search

How to implement Autonomy-based conceptual
searching in exteNd Director applications using
the Content Management and Search APIs

5 Fetching Content and
Metadata

How to implement and trigger fetching in exteNd
Director applications using the Search API

6 Querying Content and
Metadata

How to construct and run Autonomy-based
queries using the Content Management and
Search APIs

7 Configuring the
Dynamic Reasoning
Engine for Specialized
Searching

How to use Autonomy-based methods in exteNd
Director to search for numbers and search
content in other languages

8 Troubleshooting the
Conceptual Search
Process

How to diagnose and correct commonly
encountered errors; includes techniques for
debugging the Autonomy-based conceptual
search process

PART II, “SQL-Based Search Concepts”, on page 103

9 Implementing SQL-
Based Searching

How to implement SQL-based searching in
exteNd Director applications using the Content
Management API; includes techniques for
constructing and executing SQL query
expressions

PART III, “Tools”, on page 111

10 Administering the
Dynamic Reasoning
Engine

How to manage search behavior using the
exteNd Director Dynamic Reasoning Engine
(DRE) Administration console

PART IV, “Reference”, on page 123

11 Search Options
Reference

Complete set of options you can configure in
exteNd Director for customizing Autonomy-
based conceptual search

12 Search Query Types Types of Autonomy-based queries supported by
the exteNd Director Search subsystem and how
to implement them

Part and chapter Description
12 exteNd Director Content Search Guide

1
 About Searching Chapter 1
This chapter provides an overview of the searching methods you can implement in
exteNd Director applications.

The following topics are covered:

Searching methods
Overview of Autonomy-based conceptual searching
Overview of SQL-based searching
13

Searching methods
You can implement the following types of searching in exteNd Director applications:

Overview of Autonomy-based conceptual searching
Autonomy-based search technology gives you the ability to implement conceptual and
keyword searching in your exteNd Director components. Traditional keyword
searching returns all documents that contain occurrences of a search string. By
contrast, conceptual searching matches concepts, often returning more relevant
results.

How conceptual searching works
NOTE: The information in this section is adapted from the Autonomy Technology
White Paper from Autonomy, Inc.

The Autonomy Dynamic Reasoning Engine (DRE) uses sophisticated pattern-
matching algorithms to analyze any type of unstructured information, including
documents in text and binary formats. Using these algorithms, the DRE identifies the
patterns that occur naturally in text, then looks for similar patterns in the data source
and returns the most relevant results.

Type of search Description exteNd Director support

Conceptual and keyword Matches concepts or keywords based on
English-like queries to search document
content and metadata. The underlying
technology is built around Application
Builder, a toolkit from Autonomy, Inc.
consisting of application programming
interfaces (APIs). These APIs provide
access to conceptual query and index
functionality of Autonomy’s Dynamic
Reasoning Engine (DRE).

The Search API wrappers the
Autonomy API to provide classes
and methods for searching data
sources allowed under license
agreements with Autonomy, Inc.

The Content Management (CM)
API wrappers the Search API to
provide classes and methods for
searching the exteNd Director
CM repository.

IMPORTANT: When you
purchase exteNd Director you
are licensed to search the
exteNd Director CM repository.

SQL-based Matches criteria specified in SQL queries
to search document metadata.

The CM API provides classes
and methods for searching the
exteNd Director CM repository.
14 exteNd Director Content Search Guide

The DRE determines relevance by performing probabilistic analysis to determine what
data is most important, then assigns weights to indexed terms based on their
importance.

How conceptual searching differs from keyword searching
NOTE: The information in this section is adapted from the Autonomy Technology
White Paper from Autonomy, Inc.

Recall that traditional keyword searching is the process of finding documents that
contain text strings specified by a user. Keyword searches return all documents that
contain one or more occurrences of the search string, regardless of the context in which
it is used. Because context is ignored, the results frequently contain many irrelevant
hits. To refine search results, users often must modify their queries by adding complex
boolean expressions. Keyword searching is also known as full-text searching.

By contrast, conceptual searching does take into account the context in which search
terms appear so that it can match concepts rather than simply finding literal text strings.
The result set contains content that is related by meaning and ranked by relevance to
the search criteria. In this way conceptual searching reduces the number of false hits by
returning documents that contain the concept, whether or not they also contain the
search string.

To further illustrate the difference between the two approaches, consider this example.
A keyword search for the term
The+effect+of+the+recession+on+consumer+spending would return only
documents that contain occurrences of all of these terms, likely producing a number of
irrelevant results. The identical conceptual search would return documents that match
the concept underlying the search expression, even if the documents don’t contain all
the terms in the query.

Searching the CM repository
exteNd Director comes with a data fetcher for the exteNd Director CM repository.
This CM fetcher automatically propagates document content and metadata from the
CM repository into the exteNd Director DRE where it is indexed. The related
processes of propagating and indexing data is often called fetching.

The exteNd Director CM subsystem communicates with the exteNd Director DRE
through the Search subsystem. The CM API wrappers the Search API, providing
classes and methods for constructing and running queries on content and metadata that
reside in the CM repository and have been indexed by the exteNd Director DRE.
exteNd Director Content Search Guide-15

About Searching 15

 For more information on using the CM API for implementing conceptual
searches against the CM repository, see Chapter 4, “Implementing Conceptual
Search”, Chapter 5, “Fetching Content and Metadata”, and Chapter 6, “Querying
Content and Metadata”.

Searching other data sources
The CM data fetcher that comes with exteNd Director allows you to use Autonomy
technology exclusively with data from the exteNd Director CM repository. This
fetcher automatically imports document content and metadata from the exteNd
Director CM repository into the DRE for indexing, allowing you to subsequently
conduct Autonomy-based searches over the indexed data.

To use Autonomy technology with exteNd Director to search other data sources, you
must purchase additional data fetchers from Autonomy, Inc. For these licensed data
sources, you use Search API classes directly to initiate the fetching process, and
construct and run queries. Fetching occurs automatically only when you use the CM
data fetcher.

What you can do with the Search subsystem
The Search API provides wrapper classes around the Autonomy APIs to give you
access to the following capabilities programmatically:

Fetch (import and index) content into the exteNd Director DRE
Perform conceptual searches using a variety of query types, including fuzzy,
proximity, and thesaurus searches
Search both structured data (document metadata) and unstructured data (content)
using a single query expression
Use Suggest More queries to find documents similar in meaning
Specify maximum number of hits to limit query results
Page through the results of Autonomy-based conceptual and keyword queries
Rank or limit the query results by relevance percentages or absolute weight

 For more information about how to access and implement these capabilities, see
Chapter 4, “Implementing Conceptual Search”, Chapter 5, “Fetching Content and
Metadata”, and Chapter 6, “Querying Content and Metadata”.
16 exteNd Director Content Search Guide

Overview of SQL-based searching
The exteNd Director CM subsystem provides a built-in capability for SQL-based
searching of metadata in the CM repository. You execute SQL search queries on
document metadata only.

To search document content—or both content and metadata—use Autonomy-based
searching, as described in “Overview of Autonomy-based conceptual searching” on
page 14.

Why use SQL-based searching
SQL-based searching allows you to search metadata stored in relational databases. You
might opt for this search method in exteNd Director to:

Take advantage of the rich set of operators SQL provides, including IN and
BETWEEN
Search metadata that is available only through SQL-based document queries—
and not via Autonomy-based search—such as category memberships or
information about document links

What you can search
You can use SQL queries to search for the following metadata properties in the CM
repository:

Author
Content size
Creation date/time
Document abstract
Document type
Expiration date/time
Document folder
Locked by field
MIME type
Document name
Parent document
Publish date and status
Document status
Subtitle
Title
Update time and user
exteNd Director Content Search Guide-17

About Searching 17

For these properties, the CM API provides classes and methods for constructing and
running SQL query expressions that search for values, ranges of values, words,
phrases, or other patterns, as appropriate.

Support for SQL constructs
The CM API provides methods on the com.sssw.cm.api.EbiDocQuery object for
defining SQL clauses that you use to construct search queries. In exteNd Director, you
construct SQL-based queries by defining SELECT, WHERE, and ORDER BY
clauses.

The com.sssw.cm.api.EbiDocQuery interface defines WHERE methods for setting
search criteria. In addition, com.sssw.cm.api.EbiDocQuery extends the
com.sssw.cm.api.EbiDocMetaDataQuery interface which defines SELECT and
ORDER BY methods:

 For more information, see Chapter 9, “Implementing SQL-Based Searching”.

Method type Description

SELECT Lets you specify the properties to return if they meet the search
criteria

WHERE Lets you set search criteria by defining the subclauses of a SQL
WHERE expression

ORDER BY Lets you specify how to return the result set
18 exteNd Director Content Search Guide

../javadoc/com/sssw/cm/api/EbiDocQuery.html
../javadoc/com/sssw/cm/api/EbiDocMetaDataQuery.html
../javadoc/com/sssw/cm/api/EbiDocMetaDataQuery.html
../javadoc/com/sssw/cm/api/EbiDocMetaDataQuery.html

I
 Conceptual Search Concepts PART I
Describes the fundamentals of implementing Autonomy-based conceptual
searching in exteNd Director applications

• Chapter 2, “Configuring Your Environment for Conceptual Searching”
• Chapter 3, “Setting Search Options”
• Chapter 4, “Implementing Conceptual Search”
• Chapter 5, “Fetching Content and Metadata”
• Chapter 6, “Querying Content and Metadata”
• Chapter 7, “Configuring the Dynamic Reasoning Engine for Specialized

Searching”
• Chapter 8, “Troubleshooting the Conceptual Search Process”

2
 Configuring Your Environment for
Conceptual Searching Chapter 2
This chapter explains how to set up your environment for implementing conceptual
searching in your exteNd Director applications. You will learn about platform-specific
and server-specific configuration requirements for using conceptual search capabilities
with the Content Management (CM) subsystem.

The following configuration tasks are covered:

Installing the exteNd Director Dynamic Reasoning Engine
Adding the Autonomy Java Native Interface to your environment
Determining your exteNd Director project configuration
Creating the exteNd Director project
Enabling conceptual search
Setting security options
Setting search options

Installing the exteNd Director Dynamic Reasoning
Engine

As you learned in Chapter 1, “About Searching”, conceptual searching uses a Dynamic
Reasoning Engine (DRE) based on technology from Autonomy, Inc. Therefore, you
must install the DRE on the platform where you will run exteNd Director applications
that implement conceptual search.

This section describes how to install the DRE on platforms supported by exteNd
Director. These platforms are listed in the Release Notes.
21

Installing the DRE on Windows
The exteNd Director DRE is automatically installed with exteNd Director on Windows
and automatically launched when you start the Windows machine where you installed
exteNd Director.

If you want to run the DRE on a different machine from where you installed exteNd
Director, follow these steps:

To install the exteNd Director DRE on a remote Windows server:

1 Run the exteNd Director installation program and proceed through the
introductory screens.

2 On the Setup Type panel, choose the Custom option.
3 On the panel for selecting features, select Autonomy DRE.
4 Finish the installation wizard.

Installing the DRE on UNIX

To install the exteNd Director DRE on UNIX:

1 Copy the installation files from the CD onto your machine:

2 Uncompress the copied file by entering this command:
uncompress filename.tar.Z

The file filename.tar is created.
3 Un-tar filename.tar by entering this command:

tar -xvf filename.tar

The directory server-platformID is created, as follows:

For Copy

AIX aix-Director500Autonomy.tar.Z

HP-UX hpux-Director500Autonomy.tar.Z

Linux linux-Director500Autonomy.tar.Z

Solaris sol-Director500Autonomy.tar.Z

Source file Directory created

aix-Director500Autonomy.tar Director500Autonomy

hpux-Director500Autonomy.tar Director500Autonomy

linux-Director500Autonomy.tar Director500Autonomy
22 exteNd Director Content Search Guide

4 Create the directories Scripts and ns-home by entering these commands:
mkdir Scripts
mkdir ns-home

5 Navigate to the directory ns-home and create two additional directories: docs
and cgi-bin, by entering these commands:

cd ns-home
mkdir docs
mkdir cgi-bin

6 Navigate up one level and then down to the installer directory by entering these
commands:

cd ..
cd server-platformID

7 In the installer directory, run the setup command, using this syntax:
./Setup.sh App_Name App_dir DRE_IP_Address DRE_
Port DRE_IndexerPort Root_html_dir CGI_dir_Map

where:

sol-Director500Autonomy.tar Director500Autonomy

Argument Description

App_Name Name of your Autonomy server installation

App_dir The full path of the location where the software should be
installed

NOTE: This directory will be created and must not
already exist

DRE_IP_Address The host IP address

DRE_Port The port number for communicating with the DRE; this
port must be different from the DRE_IndexerPort

DRE_IndexerPort The port number for communicating with the indexing
process of the DRE

NOTE: This port must be different from the DRE_Port

Root_html_dir The full path to the location of the root document
directory for your Web server

NOTE: The HTML files will be installed into a
subdirectory with the same name as App_Name

Source file Directory created
exteNd Director Content Search Guide-23

Configuring Your Environment for Conceptual Searching 23

Here is a sample command:
./Setup.sh MyServer /Autonomy/Server 127.0.0.1 2000 2001
/opt/ns-home/docs /opt/ns-home/cgi-bin /Scripts

8 When prompted, choose a style.
9 Navigate to the App_dir directory and start the Autonomy services by entering

these commands:
cd App_dir
StartQuery.sh

Adding the Autonomy Java Native Interface to your
environment

You add the Autonomy Java Native Interface (JNI) to your environment by:

1 Adding autonomyJNI.jar to your application server classpath
2 Adding the Autonomy dynamic library to your environment

Adding autonomyJNI.jar to your application server classpath
AutonomyJNI.jar resides in:

CGI_dir The full path to the CGI directory on your Web server

NOTE: This directory needs to be mapped for CGI files
and to be accessible via the URL /Scripts (see
CGI_Dir_Map)

CGI_Dir_Map The CGI mapping to be used

On JAR is installed at

Windows The exteNd Director installation directory under the subdirectory
autonomy

AIX $HOME/Director500Autonomy

HP-UX $HOME/Director500Autonomy3

Linux $HOME/Director500Autonomy

Solaris $HOME/Director500Autonomy

Argument Description
24 exteNd Director Content Search Guide

To add autonomyJNI.jar to your server classpath, follow server-specific instructions
below.

Instructions for Novell server

Start the server from the command line with the classpath command. For example,
assuming you install exteNd Director at c:\xwb, here is the syntax:

NOTE: If you install exteNd Director on your hard drive under Program Files, you
must use the shortcut Progra~1 in the path on the command line.

Instructions for BEA WebLogic server

Follow these instructions to add autonomyJNI.jar to your BEA WebLogic server
classpath:

1 Open the server’s startup file for editing.
TIP: The default startup file on Windows NT is startWebLogic.cmd.

2 Edit the set CLASSPATH command by appending autonomyJNI.jar to the
classpath.

3 Save and close the file.

Instructions for IBM WebSphere server

Copy autonomyJNI.jar to the WebSphere Classpath directory (typically
\WebSphere\AppServer\lib).

Adding the Autonomy dynamic library to your environment
The Autonomy dynamic library is contained in the following files on each supported
platform:

To Use this command line

Prepend a JAR to
the classpath

silverserver +cp:p C:\xwb\exteNd
Director\autonomy\autonomyJNI.jar

Append a JAR to
the classpath

silverserver +cp:a C:\xwb\exteNd
Director\autonomy\autonomyJNI.jar

On this platform Dynamic library is

Windows NT autonomyJNI.dll

AIX libautonomyJNI.so
exteNd Director Content Search Guide-25

Configuring Your Environment for Conceptual Searching 25

You must add this dynamic library to your server environment—that is, to the machine
on which you deploy your application. Follow the server-specific and platform-
specific instructions below.

Instructions for Novell server

On Windows The file autonomyJNI.dll is installed in the exteNd Director
installation directory under the subdirectory autonomy.

The directory containing autonomyJNI.dll is automatically added to the path of the
machine where you install exteNd Director. If you are using this machine as your
server, you are all set. Otherwise, add the path of the directory containing
autonomyJNI.dll to your library path (the PATH environment variable of your server).

On UNIX Add the path of the directory containing libautonomyJNI.so or
libautonomyJNI.sl to the library path as follows:

1 Open your Novell configuration file .agprofile in the Novell exteNd™

Application Server installation directory.
2 Edit .agprofile as follows:

Instructions for other supported servers

Consult the documentation for BEA WebLogic and IBM WebSphere servers for
instructions on how to edit the library path for those servers on Windows and UNIX
platforms.

HP-UX libautonomyJNI.sl

Linux libautonomyJNI.so

Solaris libautonomyJNI.so

For Do this

AIX Add the path to libautonomy.so to the LIBPATH variable

HP-UX Add the path to libautonomy.sl to the SHLIB_PATH variable

Solaris Add the path to libautonomy.so to the LD_LIBRARY_PATH variable

On this platform Dynamic library is
26 exteNd Director Content Search Guide

Determining your exteNd Director project configuration
Before you create your exteNd Director project, you need to determine which
subsystems you need to include for implementing conceptual searching. Often, the
configuration is dictated by the methodologies you choose for updating content in the
CM repository.

Use the following table as a guide:

You can use any combination of these methodologies as long as you include the
required subsystems in your exteNd Director project.

 For more information about the CMS Administration Console, CM API, and
WebDAV, see the Content Management Guide.

To update content Include

Search
subsystem

CM
subsystem

WebDAV
subsystem

Portal
subsystem

DAC

Using the CMS Administration
Console in the DAC

—

At runtime using the CM API — — —

Using WebDAV to transfer updates
from third-party applications into
the CM repository

— —
exteNd Director Content Search Guide-27

Configuring Your Environment for Conceptual Searching 27

Creating the exteNd Director project
Now that you have determined which subsystems you need for implementing
conceptual search, you can create a new exteNd Director project that includes these
subsystems and all others that your application will need.

You use the Project Wizard to create new projects. If you create a custom project, you
can include subsystems individually. If you create a typical project, all exteNd
Director subsystems are included automatically.

To create an exteNd Director project that supports searching:

1 Follow the procedure for using the Project Wizard, described in the section on
creating exteNd Director projects in Developing exteNd Director Applications.

2 Keep these guidelines in mind:
You must enable conceptual search for your project—either as you create a
new project at design time or afterward in an existing project. See “Enabling
conceptual search” on page 28 for details.
If you installed the DRE on UNIX, change the location of the binary
document text filter directory, which defaults to a Windows path. You can set
this directory at design time if you create a custom project in the Project
Wizard and modify settings on the Filters tab in the Content Management
Search Configuration panel.
IMPORTANT: After creating your project, set read/write/execute
permission on the designated binary document text filter directory.

Enabling conceptual search
Before you can implement search in your applications, you must set the option that
enables the conceptual search capability.

You can set this option at design time when you create a custom exteNd Director
project, or in an existing project.

To enable search at design time:

1 Begin creating your project using the Project Wizard.
 For more information, see the section on creating exteNd Director projects

in Developing exteNd Director Applications.
2 In the Setup Type panel, select Custom.

IMPORTANT: If you create a typical project instead of a custom project,
search is disabled by default. You must then override this default after you create
your project, using the technique described in “To enable search in an existing
project:” on page 29.
28 exteNd Director Content Search Guide

cdConfigServicesNew.html
cdConfigServicesNew.html

3 When you reach the Content Management Search Configuration panel, set
Enable link to the search service to Yes:

4 Complete the rest of the wizard panels to finish creating your project.

To enable search in an existing project:

1 In exteNd Director, open config.xml for the CM subsystem in the project in
which you want to implement conceptual search.

For more information about where project files are located, see the section
on exteNd Director project structure in Developing exteNd Director Applications.
exteNd Director Content Search Guide-29

Configuring Your Environment for Conceptual Searching 29

cdConfigServicesNew.html

2 In the configuration file, set the property com.sssw.cm.search.enable.repository
name to true:

Make sure you enable search for the correct repository. For example, if you plan
to search the default CM repository, enable this option:

com.sssw.cm.search.enable.Default

3 Configure other options in this file if necessary, as described in Chapter 3,
“Setting Search Options”.

4 Redeploy the project for the new settings to take effect.

 For more information about this option, see “Enable link to the Search
subsystem?” on page 127.
30 exteNd Director Content Search Guide

Setting security options
Your system administrator needs to set security options so that when authorized users
add custom metadata fields in the CM repository, these changes propagate to the
Search service and are indexed correctly into the DRE. In this way, the CM subsystem
is synchronized with the Search service to preserve the integrity of search results.

Here’s what to do:

1 Assign authorized users to the SearchAdmin group.
2 Assign READ, WRITE, and PROTECT permissions to the SearchAdmin group.

 To learn how to set these options in the Portal Administration Console (PAC),
see the chapter on managing security using the PAC in the User Management Guide.

Setting search options
The Search subsystem provides a comprehensive set of options that you can configure
to customize search technology and behavior.

To learn more about these options, see Chapter 3, “Setting Search Options” and
Chapter 11, “Search Options Reference”.
exteNd Director Content Search Guide-31

Configuring Your Environment for Conceptual Searching 31

usPACSecurity.html

32 exteNd Director Content Search Guide

3
 Setting Search Options Chapter 3
This chapter explains how to sort through and modify an extensive set of options for
configuring how conceptual search operates in your exteNd Director applications.

The following topics are covered:

About search options
A decision matrix
How to modify search options

About search options
exteNd Director provides a varied and powerful set of capabilities for implementing
sophisticated Autonomy-based conceptual searching in your applications. Within this
environment, you can shape search technology and behavior by modifying a number
of configurable search options at design time and runtime. You can tailor:

Types of data to search—content and/or metadata
When and how often to import and index content from your data source as
updates occur
Types of document formats to search
Operations that trigger the synchronization of the search database with your data
source
33

For more information
Detailed information about search options is available from these sources:

A decision matrix
Before you configure search options, consider these key decision points about search
capabilities required by your application:

For See

Detailed descriptions of the complete
set of options

“Search Options Reference” on
page 125

Guidance on how to decide which
options to modify

“A decision matrix” next

Instructions on how to configure search
options

“How to modify search options” on
page 36

Decision Action

How do I want to configure the
exteNd Director Dynamic
Reasoning Engine (DRE)?

Use the DRE Administration console to set up
a connection with a DRE running on a
particular host using a specific port. See
Chapter 10, “Administering the Dynamic
Reasoning Engine”.

What types of documents do I
want to search?

Specify which supported document MIME
types and associated file extensions you want
to index for searching by setting the options
“Importable MIME types” on page 128 and
“Importable file extensions” on page 127.

Do I want to search binary
document formats or just text
format?

Enable binary document search by setting the
options “Support binary document formats?”
on page 133 and “Install directory for binary
document text filters” on page 130.

How do I synchronize the Content
Management (CM) repository and
the corresponding exteNd
Director DRE database as
updates occur in the CM
repository?

Specify synchronization behavior by setting
the options “Synchronization mode” on
page 134, “Operations that trigger immediate
synchronization” on page 132, and “Number of
deleted documents to batch up” on page 132.
34 exteNd Director Content Search Guide

What kind of information do I
want to index for conceptual
searching?

Specify the content and metadata you want to
index by setting the options “Index document
content?” on page 129, “Index standard
document metadata?” on page 129, and
“Index custom document metadata?” on
page 128.

NOTE: It is recommended that you enable at
least one of these options so that the indexing
process produces meaningful results.

Do I want detailed error tracing of
the indexing process?

Set the option “Debug during import?” on
page 126.

Do I want to search for numbers? Set IndexNumbers = 1 in the Autonomy DRE
configuration file, as described in “Searching
for numbers” on page 77.

Do I want to search in other
languages?

Set language-specific configuration
parameters and specify sentence-breaking
files, as described in “Searching in other
languages” on page 78.

Decision Action
exteNd Director Content Search Guide-35

Setting Search Options 35

How to modify search options
There are several strategies for modifying search options:

Using the exteNd Director Dynamic Reasoning Engine (DRE) Administration
console
At design time when you create an exteNd Director project
In an existing exteNd Director project
Programmatically at runtime
By modifying the DRE configuration file

The diagram below illustrates the recommended order of operations for modifying
search options:

IMPORTANT: You must mirror any changes you make in the DRE Administration
console in the exteNd Director environment—either by modifying the associated
settings in the exteNd Director Project Wizard at design time when you create your
exteNd Director project or by modifying the config.xml file in an existing exteNd Director
project.
36 exteNd Director Content Search Guide

srcSetOptions.html#Settingsearchoptionsatdesigntime
srcSetOptions.html#SettingsearchoptionsinanexistingexteNdDirectorproject
srcSetOptions.html#SettingsearchoptionsinanexistingexteNdDirectorproject
srcSetOptions.html#ConfiguringtheDREusingtheexteNdDirectorDREAdministrationconsole
srcSetOptions.html#Settingsearchoptionsatdesigntime
srcSetOptions.html#SettingsearchoptionsinanexistingexteNdDirectorproject
srcSetOptions.html#Settingsearchoptionsprogrammaticallyatruntime
srcSetOptions.html#SettingsearchoptionsbymodifyingtheDREconfigurationfile

Configuring the DRE using the exteNd Director DRE Administration console
You can configure your exteNd Director DRE by using the DRE Administration
console, a graphical user interface for administering the exteNd Director DRE. The
procedure is described in “Setting DRE search options” on page 118.

Setting search options at design time
A subset of search options can be modified at design time when you create a custom
exteNd Director project:

Enable link to the Search subsystem?
Index port
Install directory for binary document text filters
Name of DRE database
Name of DRE host
Number of deleted documents to batch up
Operations that trigger immediate synchronization
Query port
Synchronization mode

You can set these options on the Content Management Search Options panel in the
exteNd Director Project Wizard during custom setup. This procedure is described in
the chapter on configuring exteNd Director applications in Developing exteNd
Director Applications.

You cannot modify these options when you create a standard exteNd Director project,
because they are set to default values automatically. However, you can override these
defaults after you create your project, as described in “Setting search options in an
existing exteNd Director project” on page 37.

Setting search options in an existing exteNd Director project
You can modify settings for all search options in an existing exteNd Director project by
editing the Content Management (CM) configuration file config.xml. When you
modify options in this file, you must redeploy your project for the changes to take
effect.
exteNd Director Content Search Guide-37

Setting Search Options 37

cdConfigServicesNew.html

Here is a snapshot of this configuration file in graphical view:

As you can see, this configuration file contains a set of properties, each described by a
key and a value.

Here is an example of the XML specification for the search option highlighted in the
screen above. This option enables Autonomy-based conceptual search capability in the
default CM repository:

<property>
<key>com.sssw.cm.search.enable.Default</key>
<value>true</value>
</property>

 For detailed descriptions of all search options, see Chapter 11, “Search Options
Reference”.

Defining options for a specific Content Management repository

There is a subset of search options that must be defined for each Content Management
(CM) repository that you use:

Enable link to the Search subsystem?
Index custom document metadata?
38 exteNd Director Content Search Guide

Index document content?
Index standard document metadata?
Index port
Name of DRE host
Number of deleted documents to batch up
Operations that trigger immediate synchronization
Query port
Support binary document formats?
Symbol for concatenating multivalue custom metadata values before indexing
Synchronization mode

If you scroll through the Content Management configuration file, you will see that
these search options have repository names appended to their keys. For example,
options defined for the Default CM repository have keys that end with the text string
Default.

Setting search options programmatically at runtime
You can set a number of search options programmatically at runtime by writing exteNd
Director components that call methods defined for the EbiDataFetcherDelegate class
in the Search API. These settings remain in effect only for the duration of the runtime
session.

These are the options that can be modified at runtime:

For more information about these options, see Chapter 11, “Search Options
Reference”.

Option EbiDataFetcherDelegate method

Name of DRE database setDestRepository()

Name of DRE host setHost()

Index port setIndexPort()

Symbol for concatenating multivalue custom
metadata values before indexing

setMultiValueDelim()

Index document content? setProcessContent()

Index custom document metadata? setProcessExtnMeta()

Index standard document metadata? setProcessMeta()

Query port setQueryPort()

Copy document contents into the DRE? setStoreContent()
exteNd Director Content Search Guide-39

Setting Search Options 39

../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setDestRepository(java.lang.String)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setHost(java.lang.String)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setIndexPort(int)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setMultiValueDelim(java.lang.String)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setProcessContent(boolean)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setProcessExtnMeta(boolean)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setProcessMeta(boolean)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setQueryPort(int)
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html#setStoreContent(boolean)

Setting search options by modifying the DRE configuration file
You can set specific search options by modifying DRE parameters directly in the DRE
configuration file located in autonomy\engine\DirectorDRE.cfg in the exteNd Director
installation directory.

After changing settings in this file, you must restart the DRE (as described in
“Resetting the DRE” on page 116) and reindex the data (as described in “Forcing
indexing” on page 99).
40 exteNd Director Content Search Guide

4
 Implementing Conceptual Search Chapter 4
This chapter takes you through the steps of the process flow for implementing
Autonomy-based conceptual searching in your exteNd Director applications.

The following topics are covered:

Searching the CM repository: how the Search and Content Management APIs are
integrated
Searching data sources other than the CM repository
The process flow for implementing conceptual searching
Configuring your project and search environment
Developing application resources
Building, archiving, and deploying your application
Updating content in the CM repository
Testing queries
Troubleshooting the search application
41

Searching the CM repository: how the Search and
Content Management APIs are integrated

exteNd Director comes with a data fetcher that allows you to conduct Autonomy-based
searches exclusively on content and metadata stored in the exteNd Director Content
Management (CM) repository. The CM subsystem communicates with the exteNd
Director Dynamic Reasoning Engine (DRE) through the Search API, as illustrated in
this process flow diagram:

In this scenario, you implement conceptual search in your exteNd Director
applications by using CM API classes that wrap the Search API. These wrapper classes
provide methods for constructing and executing queries on content and metadata that
reside in the CM repository and have been indexed by the exteNd Director DRE.

The CM fetcher performs the following search functions automatically:

Imports data from the CM repository into the exteNd Director DRE for
indexing—a process called fetching, as described in Chapter 5, “Fetching
Content and Metadata”. Data must be fetched before it becomes available for
searching.
Synchronizes the CM repository and the corresponding DRE database as you
change content and metadata. You can control the mode and frequency of the
synchronization process, as described in “Synchronization mode” on page 134
and “Operations that trigger immediate synchronization” on page 132.
42 exteNd Director Content Search Guide

Searching data sources other than the CM repository
To use Autonomy technology with exteNd Director to search data sources other than
the CM repository, you must work out legal and contractual issues to purchase
additional fetcher products from Autonomy, Inc. You can then use the exteNd Director
Search API to fetch and query content from the custom data source.

Alternatively, you can import your custom data into the CM repository and use the CM
wrapper classes for implementing Autonomy-based conceptual search.

The process flow for implementing conceptual searching
The diagram below presents the recommended process flow for implementing support
for Autonomy-based searching of content in the CM repository. Subsequent sections
describe each of these tasks in detail.
exteNd Director Content Search Guide-43

Implementing Conceptual Search 43

Configuring your project and search environment
To use Autonomy-based conceptual search capabilities with the CM subsystem, you
must configure your environment by:

Installing the exteNd Director Dynamic Reasoning Engine
Installing the exteNd Director Dynamic Reasoning Engine
Adding the Autonomy Java Native Interface to your environment
Enabling conceptual search
Setting security options
Setting search options

 See Chapter 2, “Configuring Your Environment for Conceptual Searching” for
detailed information about these configuration tasks.

Developing application resources
The Search and CM subsystems provide APIs that allow you to develop application
resources such as search components, JSP pages, and servlets for implementing
Autonomy-based search functionality in your exteNd Director applications.

The Search API provides wrapper classes around the Autonomy API that you can use
to fetch content from custom data sources, then construct and execute conceptual-style
queries against this data.

The CM API wrappers the Search API to provide classes and methods for searching
the CM repository in particular.

Implementing search operations
This section describes search operations you can implement in exteNd Director
applications.

Types of operations

Here are the key operations you can implement in your exteNd Director applications
using the Search API:

Operation Description For more information

Fetch Import structured and
unstructured data into the
query engine where it is
indexed for querying

See Chapter 5, “Fetching Content and
Metadata”
44 exteNd Director Content Search Guide

 For in-depth descriptions of how to use the Search classes and methods—along
with illustrative code examples—see Chapter 5, “Fetching Content and Metadata”,
Chapter 6, “Querying Content and Metadata”, and the API Reference.

The relationship between indexing and querying

The exteNd Director DRE queues its indexing jobs and executes them asynchronously.
As a result, certain documents may take longer to index than others and, consequently,
may not be available for querying immediately. Therefore, when implementing
Autonomy-based searching, leave a time window that allows the indexing process to
finish before you issue queries.

Programming practices
This section describes the best practices for using the Search API and CM API to
develop application resources that implement Autonomy-based searching in your
exteNd Director applications.

Using delegates

A delegate is a wrapper that hides the location of a service. The delegate model follows
the J2EE Business Delegate pattern.

When you use a delegate, you do not need to know whether the service is using a local
manager object or an EJB. The delegate initially attempts to instantiate a local
manager. If this fails, it attempts to use an EJB instead. This approach allows
developers to use the same code on clients and servers to instantiate services.

 For more information about delegates, see the chapter on coding Java for exteNd
Director applications in Developing exteNd Director Applications.

Query Create and execute queries
on indexed content and
process results

See Chapter 6, “Querying Content and
Metadata”and Chapter 12, “Search
Query Types”

Operation Description For more information
exteNd Director Content Search Guide-45

Implementing Conceptual Search 45

cdAccessServices.html
cdAccessServices.html
../javadoc/index.html

The CM API provides a delegate interface for managing search operations in the CM
repository; the Search API provides delegates for managing search activities for
custom data sources. When implementing Autonomy-based searching in exteNd
Director applications, it is recommended that you use these delegates as follows:

 To learn how to use these objects, see Chapter 5, “Fetching Content and
Metadata” and Chapter 6, “Querying Content and Metadata”.

Logic flow

Here is the recommended logic flow for implementing search in your exteNd Director
application. Add this logic to the getComponentData() method of your component:

1 Fetch data—that is, import content and metadata from your data source into the
exteNd Director DRE for indexing.
exteNd Director comes with a data fetcher for the CM repository. When you use
this repository as your data source, the fetching process is done automatically.
If you license other fetchers from Autonomy to work with outside data sources,
you need to initiate the fetch process programmatically. Follow these guidelines:

When the data source is Use

CM repository com.sssw.cm.api.EbiContentMgmtDelegate

Custom com.sssw.search.api.EbiDataFetcherDelegate
com.sssw.search.api.EbiQueryEngineDelegate

If you want to search Do this

CM repository Specify how to synchronize the CM repository
with the associated exteNd Director DRE
database to ensure that all updates are
imported and indexed in a timely manner. You
can:

Select one of two synchronization modes—
immediate or batch—as described in
“Synchronization mode” on page 134.

Specify triggers, as described in “Operations
that trigger immediate synchronization” on
page 132.
46 exteNd Director Content Search Guide

../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html
../javadoc/com/sssw/search/api/EbiDataFetcherDelegate.html
../javadoc/com/sssw/search/api/EbiQueryEngineDelegate.html

2 Instantiate a blank query object:

3 Set the query type.
For descriptions of Autonomy-based query types, see Chapter 12, “Search

Query Types”.
4 Specify the query string.

For syntax, see Chapter 12, “Search Query Types”.
5 Set other parameters such as maximum number of results to return and

relevance cut.
TIP: You need to call methods on com.sssw.search.api.EbiQuery.

Data sources other than
the CM repository

1 Work out legal and contractual issues with
Autonomy, Inc. One option is to purchase
additional fetcher products from Autonomy,
Inc.

2 Create a descriptor for each data fetcher, as
described in “Data fetcher descriptors” on
page 56.

3 For each data source, instantiate an object
that implements the
EbiDataFetcherDelegate interface.

4 Call the fetchData() method on each
EbiDataFetcherDelegate object to import
data from the data source into the associated
exteNd Director DRE for indexing.

 For more information, see Chapter 5,
“Fetching Content and Metadata”.

If you want to search Use

CM repository com.sssw.cm.factory.EboFactory.getQuery()

Custom data
sources

com.sssw.search.factory.EboFactory.getQuery
()

If you want to search Do this
exteNd Director Content Search Guide-47

Implementing Conceptual Search 47

../javadoc/com/sssw/search/api/EbiQuery.html

6 Get an object for running the query:

7 Run the query.
8 Process the results.

 For details on implementing these steps, see Chapter 5, “Fetching Content and
Metadata” and Chapter 6, “Querying Content and Metadata”.

Code example: querying the CM repository

The following code segment demonstrates how to construct and execute an
Autonomy-based search query against the CM repository:

...
//Instantiate a blank query object
com.sssw.search.api.EbiQuery query = com.sssw.cm.factory.EboFactory.getQuery();

//Specify the query type
query.setQueryType(query.QUERY_TYPE_TEXT);
query.setText(“animal+mammal”);

//Select all columns
query.selectAll();

//OR ... Select individual columns, like doc id and title
//query.select(com.sssw.cm.core.EbiCmConstants.DOCID);
//query.select(com.sssw.cm.core.EbiCmConstants.TITLE);

//Ask for a maximum of 50 results
query.setMaxNumResults(50);

//Ask for results that are at least 80% relevant
query.setRelevanceCut(80);

//Get the content manager delegate
EbiContentMgmtDelegate contentMgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

//Run the query
Iterator iterResults = contentMgr.runQuery(context, query, null, true).iterator();

If you want to search Do this

CM repository Get an object that implements the
EbiContentMgmtDelegate interface, as described in
“Querying the CM repository” on page 60.

Custom data sources Get an object that implements the
EbiQueryEngineDelegate interface, as described in
“Querying custom data sources” on page 60.
48 exteNd Director Content Search Guide

//Process results
while (iterResults.hasNext()) {

com.sssw.cm.api.EbiQueryResult res = (EbiQueryResult)iterResults.next()
System.out.println(“DOCID:” + res.getID());
System.out.println(“TITLE:” + res.getTitle());
String content = (res.getData() != null) ? new String(res.getData()) : “none”;
System.out.println(“CONTENT:” + content);
System.out.println(“RELEVANCE:” + res.getIntegerProperty(res.PROP_DOC_WEIGHT));
System.out.println(“QUICK SUMMARY:” + res.getProperty(res.PROP_DOC_QUICK_SUMMARY));

}
...

Interacting with the CM repository
If you plan to add and update content in the CM repository programmatically using the
CM API, you also need to write components and related resources that implement this
logic. To learn about all the ways to interact with the CM repository, see “Updating
content in the CM repository” on page 50.

Packaging application resources
As you begin to develop your search application resources, you must make decisions
about how to package them inside your exteNd Director project. Follow the guidelines
in the chapter on using resource sets in Developing exteNd Director Applications.

After you have incorporated your custom resources in the exteNd Director project, you
are ready to deploy the application to your application server, as described in
“Building, archiving, and deploying your application” next.
exteNd Director Content Search Guide-49

Implementing Conceptual Search 49

cdResourceSet.html

Building, archiving, and deploying your application
You build, archive, and deploy your application in exteNd Director just as you would
any J2EE application.

For server-specific guidelines, see the chapter on deploying exteNd Director
applications in Developing exteNd Director Applications.

Updating content in the CM repository
There are several ways to add and update content in the CM repository, each described
in this section. You can use any combination of these methods as long as you include
the appropriate subsystems in your exteNd Director project, as described in
“Determining your exteNd Director project configuration” on page 27.

Updating content in the CMS Administration Console
The CMS Administration Console is part of the exteNd Director Web tier, a prebuilt
Web application that provides a graphical user interface for creating, updating, and
publishing content in the CM repository. When you create content in the CM
Administration Console, you can take advantage of the exteNd Director CM features
designed to facilitate searching—including the ability to define and associate custom
metadata with documents.

 For more information, see the chapter on the CMS Administration Console in
the Content Management Guide.

Updating content using the CM API
You use classes and methods in the CM API to write exteNd Director components,
servlets, and JSP pages to create, update, and publish content in the CM repository.

 For more information, see the chapter on managing documents in the Content
Management Guide.
50 exteNd Director Content Search Guide

cmgDocuments.html
cdDeploy.html
cdDeploy.html
cmgPMCSearch.html

Creating and updating content in third-party applications
You can create and update content in third-party applications. Before you can perform
conceptual searches on this content, you must take additional steps:

Ensure that your third-party application produces content in a format that can be
searched by the Search subsystem.
 For information about configuring search formats, see “Importable MIME

types” on page 128 and “Importable file extensions” on page 127.
Import and publish the third-party content in the CM repository.

If your third-party application is a WebDAV-enabled client, you can use the WebDAV
subsystem to transfer content into the CM repository, as described in the chapter on
using WebDAV clients with exteNd Director for collaborative authoring in the Content
Management Guide. In this case, make sure you include the WebDAV subsystem when
you create your exteNd Director project.

IMPORTANT: Third-party content imported into the CM repository via WebDAV is
saved as system resources. A limitation of system resources is that you cannot define
custom metadata for them. However, you can still search their content and standard
metadata. This limitation does not apply if you use the exteNd Director content import
utility or create your own WebDAVclient using the client API provided in the exteNd
Director WebDAV subsystem. You can associate custom metadata with content created
in this type of custom-designed WebDAV client.

 For more information, see the chapters on importing content and building your
own WebDAV client in the Content Management Guide.

Testing queries
You can use the exteNd Director DRE Administration console to test your queries in
isolation before you deploy your application.

 For more information, see “Testing queries” on page 117.

Troubleshooting the search application
exteNd Director provides several techniques for debugging your search application
and correcting commonly encountered problems.

 For more information, see Chapter 8, “Troubleshooting the Conceptual Search
Process”.
exteNd Director Content Search Guide-51

Implementing Conceptual Search 51

cmgImportExport.html
cmgWebDAVServer.html
cmgWebDAVClient.html
cmgWebDAVClient.html

52 exteNd Director Content Search Guide

5
 Fetching Content and Metadata Chapter 5
This chapter describes fetching and explains how to implement it in your exteNd
Director search applications.

The following topics are covered:

About fetching
Implementing fetching in your applications
Data fetcher descriptors

About fetching
Fetching content involves two processes:

Importing data from the Content Management (CM) repository
Indexing the data in the exteNd Director DRE

The default fetcher
exteNd Director comes with a data fetcher for the exteNd Director CM repository. The
CM fetcher allows you to perform Autonomy-based conceptual searches only on data
stored in the CM repository.

The CM fetcher initiates the following processes automatically:

Process Description

Fetching Imports data from the CM repository into the exteNd Director
DRE database for indexing
53

Fetching is initiated whenever synchronization occurs. You schedule synchronization
to run as a real-time or batch process, as described in “Synchronization mode” on
page 134.

For real-time—or immediate—synchronization, you can specify the actions that
trigger the process, as described in “Operations that trigger immediate
synchronization” on page 132.

By default, synchronization occurs as a real-time process in immediate mode and is
triggered when any of the following CM operations occur:

Add
Update
Remove
Check in
Check out
Publish
Uncheckout
Unpublish
Unlock
Roll back

Fetchers for custom data sources
If you want to use a data source other than the CM repository, you must purchase
additional data fetchers from Autonomy, Inc.

When you purchase other data fetchers from Autonomy, you must initiate the fetch
process programmatically using the Search API, as demonstrated in “Implementing
fetching in your applications” next. You must also create a descriptor for each data
fetcher you use, as described in “Data fetcher descriptors” on page 56.

Synchronization Propagates updates made in the CM repository to the
corresponding DRE database so they can be indexed

Process Description
54 exteNd Director Content Search Guide

Implementing fetching in your applications
The exteNd Director Search API provides wrapper classes around Autonomy APIs
that provide methods for fetching content.

Key fetcher classes and interfaces
Key classes and interfaces for fetching content include:

Fetcher methods
This section describes Search API methods that you can use to perform data fetching
in your exteNd Director applications.

Getting a fetcher delegate

Here is the method for getting a fetcher delegate:

com.sssw.search.client.EboFactory.getDataFetcherDelegate()

This method returns an object that implements the EbiDataFetcherDelegate interface.
Methods on this object can be used to invoke and manage the data fetching process.

 For information about why to use delegates, see “Programming practices” on
page 45.

Class or interface Description Package

EbiDataFetcherDelegate Delegate for accessing
objects that implement the
EbiDataFetcher interface,
which provides methods for
importing content from a
specified data source into
the exteNd Director DRE,
where it is indexed

com.sssw.search.api

EboFactory Factory class that provides
methods for getting Search
subsystem delegates such
as EbiDataFetcherDelegate

com.sssw.search.client
exteNd Director Content Search Guide-55

Fetching Content and Metadata 55

Initiating the fetch process

Here is the method for fetching data:

com.sssw.search.API.EbiDataFetcherDelegate.fetchData()

This method fetches document data from the source repository into the destination
query engine database.

Code example: fetching data
The following code segment shows how to initiate the fetch process using the Search
API:

...
//Instantiate a data fetcher delegate
com.sssw.search.api.EbiDataFetcherDelegate fetcher =
com.sssw.search.client.EboFactory.getDataFetcherDelegate(whichFetcher);

//Fetch the data
fetcher.fetchData(context, false);
...

The getDataFetcherDelegate() method takes a string argument that specifies which
data fetcher to instantiate. Each data fetcher requires a descriptor, as described in “Data
fetcher descriptors” next.

Data fetcher descriptors
You must create a descriptor for each data fetcher you purchase from Autonomy.
exteNd Director provides a descriptor for the CM data fetcher.

You add data fetcher descriptors in the services configuration file services.xml for the
Search subsystem.

For more information about where project files are located, see the section on
exteNd Director project structure in Developing exteNd Director Applications.

Syntax
The syntax of data fetcher descriptors in services.xml sets up a mapping between the
data fetcher interface in the Search API and the data fetcher implementation class.

This mapping is illustrated in the descriptor for the CM data fetcher, which is supplied
with exteNd Director:

<service>
<interface>com.sssw.search.api.EbiDataFetcher.CM</interface>
56 exteNd Director Content Search Guide

cdConfigServicesNew.html

<impl-class>com.sssw.cm.core.EboDataFetcher</impl-class>
<description>Data fetcher object for the Content Management
subsystem</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>

The string CM in the <interface> element is an example of a data fetcher specifier that
you pass as a string argument to the getDataFetcherDelegate() method to initiate the
fetch process, as described in “Code example: fetching data” on page 56.

This is the syntax to use for any data fetcher descriptor. For example, if you purchase
or create a custom data fetcher called MYCO that is defined by the class
com.sssw.myco.Fetcher, you need to add a descriptor that looks like this:

<service>
<interface>com.sssw.search.api.EbiDataFetcher.MYCO</interface>
<impl-class>com.sssw.myco.Fetcher</impl-class>
<description>Data fetcher object for MYCO</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>

Associating data fetchers with query result objects
For each data fetcher you add, you can optionally add an associated query result object
descriptor. Here is the descriptor in services.xml for the query result object already
defined for the CM data fetcher:

<service>
<interface>com.sssw.search.api.EbiQueryResult.CM</interface>
<impl-class>com.sssw.cm.core.EboQueryResult</impl-class>
<description>Query result object for the Content Management
subsystem</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>

To associate the CM query result object with your MYCO data fetcher, you need to add
a descriptor that looks like this:

<service>
<interface>com.sssw.search.api.EbiQueryResult.MYCO</interface>
<impl-class>com.sssw.cm.core.EboQueryResult</impl-class>
<description>Query result object for MYCO</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>
exteNd Director Content Search Guide-57

Fetching Content and Metadata 57

Use this same syntax to create a descriptor for a custom query result object, as follows:

<service>
<interface>com.sssw.search.api.EbiQueryResult.MYCO</interface>
<impl-class>com.sssw.myco.webapp.impl.MycoQueryResult</impl-class>
<description>Query result object for MYCO</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>
58 exteNd Director Content Search Guide

6
 Querying Content and Metadata Chapter 6
This chapter describes the content query process and explains how to implement
querying in your exteNd Director search applications.

The following topics are covered:

About querying
Types of queries you can run
Implementing querying for the CM repository
Implementing querying for custom data sources
Search query descriptors
Sorting query results

About querying
Queries are structured expressions that you can use to search content from a data
source. Autonomy-based search capabilities in exteNd Director allow you to query
both content and metadata using a single query expression, rather than requiring you
to write separate queries for each type of data.

Querying metadata In exteNd Director you can query two types of metadata:

Standard (basic) metadata is descriptive information about content that is
automatically attached to every document. Examples of standard metadata are
title, author, and creation date.
59

Custom (extension) metadata is application-specific information about content
that you define in the Content Management (CM) subsystem as fields in
document types.

Querying content You can query content only if it has been published.

Querying the CM repository
exteNd Director comes with a data fetcher that allows you to conduct Autonomy-based
searches exclusively on content and metadata stored in the exteNd Director CM
repository.

To query the CM repository, you use the CM subsystem in conjunction with the Search
subsystem. The CM API provides classes that wrapper relevant search functions
associated with the CM repository, as described in “Implementing querying for the CM
repository” on page 61.

Querying custom data sources
To use Autonomy technology with exteNd Director to search data sources other than
the CM repository, you must purchase additional data fetchers from Autonomy, Inc.

To query custom data sources, you must use Search API classes to instantiate a query
object and run the query against the other data sources you are licensed to use, as
described in “Implementing querying for custom data sources” on page 66.

Alternatively, you can import your custom data into the CM repository and use the CM
wrapper classes for implementing Autonomy-based conceptual queries.

Types of queries you can run
The exteNd Director Search subsystem supports the following types of queries:

Boolean queries
Conceptual queries
Field queries
Fuzzy queries
Get-all queries
Keyword search
Proper name search
Proximity queries
Suggest similar documents
Thesaurus queries
60 exteNd Director Content Search Guide

 For detailed descriptions of each type of query—including syntax definitions
and code examples showing how to specify each query type—see Chapter 12, “Search
Query Types” .

Implementing querying for the CM repository
To implement Autonomy-based conceptual and keyword search in your exteNd
Director applications, you use CM API functionality that wrappers the relevant Search
APIs:

The wrapper classes provide methods for constructing and running queries on content
and metadata that reside in the CM repository and have been indexed by the exteNd
Director (Dynamic Reasoning Engine) DRE.

In addition, you can configure your environment to manage the processes of document
fetching and querying, as described in Chapter 3, “Setting Search Options”.

Key classes and interfaces for querying the CM repository
Key classes and interfaces for querying the CM repository include:

This CM class Does this To this search class

com.sssw.cm.api.EbiContentMgmtDelegate.
runQuery()

Wrappers com.sssw.search.api.
EbiQueryEngineDelegate.runQuery()

com.sssw.cm.api.EbiQueryResult Extends com.sssw.search.api.EbiQueryResult

Class or interface Description Package

EbiContentMgmtDelegate Delegate for accessing
objects that implement the
EbiContentManager
interface

NOTE: EbiContentManager
is an interface that provides
methods for accessing
standard metadata, custom
metadata, and content in the
CM repository

com.sssw.cm.api
exteNd Director Content Search Guide-61

Querying Content and Metadata 61

Methods for querying the CM repository
This section describes the CM API methods you can use to query the CM repository in
your exteNd Director applications.

Getting a content manager delegate

Here is the method for getting a content manager delegate:

com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate()

This method returns a content manager delegate associated with the default CM
repository. The content manager delegate provides methods for running Autonomy-
based queries on document content and metadata in this repository.

 For information about why to use delegates, see “Programming practices” on
page 45.

EbiQuery Interface that provides
methods for constructing
various types of Autonomy-
based queries and setting
query properties

com.sssw.search.api

EbiQueryResult Interface that provides
methods for processing the
results of Autonomy-based
queries of content and
metadata in the CM
repository

com.sssw.cm.api

EboFactory Factory class that provides
methods for getting content
manager delegates

com.sssw.cm.client

EboFactory Server-side factory class
that provides methods for
instantiating objects used by
the CM subsystem

com.sssw.cm.factory

Class or interface Description Package
62 exteNd Director Content Search Guide

Instantiating query objects for the CM repository

Autonomy-based queries are based on the EbiQuery interface—an interface that
resides in the Search API. To search content and metadata in the CM subsystem, you
must instantiate a query object that not only implements this interface but also is
associated with the CM repository. The CM API provides the method to use:

com.sssw.cm.factory.EboFactory.getQuery()

Using this query object, you can call Search API methods to construct Autonomy-
based queries and fine-tune search results, as described in “Constructing queries for the
CM repository” on page 63.

Constructing queries for the CM repository

Here are key methods for constructing queries for the CM repository:

NOTE: You use the same methods for constructing Autonomy-based queries for
custom data sources. The difference is that you call these methods on a query object
instantiated from a factory in the Search API, as described in “Implementing querying
for custom data sources” on page 66.

Issuing queries against the CM repository

Here is the method for querying the CM repository:

com.sssw.cm.api.EbiContentMgmtDelegate.runQuery()

This method runs a query that you construct using the com.sssw.search.api.EbiQuery
interface and returns the results as a collection of objects that implements the
com.sssw.cm.api.EbiQueryResult interface.

Method Description

com.sssw.search.API.EbiQuery.
setQueryType()

Specifies the type of query you want to run

 For more information, see Chapter
12, “Search Query Types”

com.sssw.search.API.EbiQuery.
setQueryText()

Specifies the query string

com.sssw.search.API.EbiQuery.
setMaxNumResults()

Sets the maximum number of results to
return

com.sssw.search.API.EbiQuery.
setRelevanceCut()

Sets the minimum relevance criteria for
query results
exteNd Director Content Search Guide-63

Querying Content and Metadata 63

Code example: issuing an Autonomy-based query against the CM
repository

The following code segment demonstrates how to instantiate a query object and run a
query against the default CM repository, called Default:

...
public void getComponentData(EbiPortalContext context, java.util.Map params) throws
com.sssw.fw.exception.EboUnrecoverableSystemException
{

//Declare a string buffer
StringBuffer sb = new StringBuffer();

//Set the query string
String queryString = “The+effect+of+the+recession+on+consumer+spending”;

try
{

//Create a blank query object
com.sssw.search.api.EbiQuery query = com.sssw.cm.factory.EboFactory.getQuery();

//Set query type to text
query.setQueryType(query.QUERY_TYPE_TEXT);

//Specify the query string; this is a conceptual query
query.setText(queryString);

//Ask for a maximum of 50 results
query.setMaxNumResults(50);

//Ask for results that are at least 80% relevant
query.setRelevanceCut(80);

//Ask to return all available document properties in the results
query.selectAll();

//Get the content manager delegate
EbiContentMgmtDelegate contentMgr =

com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

//Run the query
//The boolean argument in runQuery indicates whether results should be filtered
Iterator iterResults = contentMgr.runQuery(context, query, true).iterator();

//Process the results
while (iterResults.hasNext())
{

com.sssw.cm.api.EbiQueryResult res =
(com.sssw.cm.api.EbiQueryResult)iterResults.next();

//Get document metadata
String docTitle = res.getTitle();
java.sql.Timestamp dateCreated = res.getDateCreated();
64 exteNd Director Content Search Guide

//Get document content
String docAbstract = res.getAbstract();

//Add query result to the string buffer returned by the component
sb.append(“\n”).append(docTitle).append(dateCreated).append(docAbstract).append(“

\n”);
}

}
catch (Exception _E)
{

System.out.println (“Query failed”);
_E.printStackTrace();

}
//Set content type
context.setContentType(com.sssw.portal.api.EbiComponentConstants.MIME_TYPE_HTML_UTF8);

//Place the content into the context
context.setComponentContent(sb.toString());

}
...

As you can see, this component retrieves both standard metadata—the document title
and the date created—and content from the query results. By default, the exteNd
Director DRE is configured to index both types of information. This behavior is
controlled by two search options that are enabled by default in the CM subsystem
configuration file:

com.sssw.cm.fetch.process.content.repository name
See the description in “Index document content?” on page 129.
com.sssw.cm.fetch.process.metadata.repository name

See the description in “Index standard document metadata?” on page 129.

The CM subsystem provides many other options that you can configure to customize
your search environment, as described in Chapter 3, “Setting Search Options”.
exteNd Director Content Search Guide-65

Querying Content and Metadata 65

srcOptionsReference.html#Indexdocumentcontent?
srcOptionsReference.html#Indexstandarddocumentmetadata?

Implementing querying for custom data sources
The exteNd Director Search API provides wrapper classes around Autonomy APIs
that provide methods for querying content in data sources other than the CM
repository.

IMPORTANT: To use Autonomy technology with exteNd Director to search other data
sources, you must purchase additional data fetchers from Autonomy, Inc.

Key query classes and interfaces for querying custom data sources
Key classes and interfaces for querying custom data sources include:

Class or interface Description Package

EbiQueryEngineDelegate Delegate for accessing
objects that implement the
EbiQueryEngine interface,
which provides methods
for configuring the query
engine and processing
queries

NOTE: EbiQueryEngine
is an interface that
provides methods for
interacting with the DRE

com.sssw.search.api

EbiQuery Interface that provides
methods for constructing
various types of queries
and setting query
properties

com.sssw.search.api

EbiQueryResult Interface that provides
methods for processing
the results of queries
executed by the Search
subsystem

com.sssw.search.api

EboFactory Factory class that
provides methods for
getting Search subsystem
delegates such as
EbiQueryEngineDelegate

com.sssw.search.client
66 exteNd Director Content Search Guide

Query methods
This section describes Search API methods that you can use for querying custom data
sources in your exteNd Director applications.

Getting a query engine delegate

Here is the method for getting a query engine delegate:

com.sssw.search.client.EboFactory.getQueryEngineDelegate()

This method returns an object that implements the EbiQueryEngineDelegate interface.
Methods on this object can be used to configure the query engine and run queries.

 For information about why to use delegates, see “Programming practices” on
page 45.

Instantiating query objects for custom data sources

Autonomy-based queries are based on the EbiQuery interface that resides in the Search
subsystem API. To search content and metadata in custom data sources, you must
instantiate a query object that implements this interface. Here is the method to use:

com.sssw.search.factory.EboFactory.getQuery()

Using this query object, you can call Search API methods to construct Autonomy-
based queries and fine-tune search results.

Constructing queries for custom data sources

Here are key methods for constructing Autonomy-based queries for custom data
sources:

EboFactory Server-side factory class
that provides methods for
instantiating objects used
by the Search
subsystem—such as an
EbiQuery object

com.sssw.search.factory

Method Description

com.sssw.search.API.EbiQuery.
setQueryType()

Specifies the type of query you want to run

 For more information, see Chapter
12, “Search Query Types”

Class or interface Description Package
exteNd Director Content Search Guide-67

Querying Content and Metadata 67

NOTE: You use the same methods for constructing Autonomy-based queries for the
CM repository. The difference is that you call these methods on a query object
instantiated from a factory in the CM API, as described in “Implementing querying for
the CM repository” on page 61.

Issuing queries against custom data sources

Here is the method for issuing queries:

com.sssw.search.api.EbiQueryEngineDelegate.runQuery()

This method runs a query that you construct using the com.sssw.search.api.EbiQuery
interface and returns the results as a collection of objects that implements the
com.sssw.search.api.EbiQueryResult interface.

Code example: issuing an Autonomy-based query against a custom data
source

The following code segment presents the getComponentData() method of an exteNd
Director component that implements the logic for issuing an Autonomy-based
conceptual query against a custom data source:

...
public void getComponentData(EbiPortalContext context, java.util.Map params) throws
com.sssw.fw.exception.EboUnrecoverableSystemException
{

//Declare a string buffer
StringBuffer sb = new StringBuffer();

//Set the query string, using syntax for a conceptual query
String queryString = “physician+specialty+orthopaedics”;

try
{

//Create a blank query object
com.sssw.search.api.EbiQuery query = com.sssw.search.factory.EboFactory.getQuery();

//Set query type to text
query.setQueryType(query.QUERY_TYPE_TEXT);

com.sssw.search.API.EbiQuery.
setQueryText()

Specifies the query string

com.sssw.search.API.EbiQuery.
setMaxNumResults()

Sets the maximum number of results to
return

com.sssw.search.API.EbiQuery.
setRelevanceCut()

Sets the minimum relevance criteria for
query results

Method Description
68 exteNd Director Content Search Guide

//Specify the query string; this is a conceptual query
query.setText(queryString);

//Ask for a maximum of 50 results
query.setMaxNumResults(50);

//Ask for results that are at least 80% relevant
query.setRelevanceCut(80);

//Ask to return all available document properties in the results
query.selectAll();

//Get the query engine delegate
EbiQueryEngineDelegate qe =

com.sssw.search.factory.EboFactory.getQueryEngineDelegate();

//Run the query
Iterator iterResults = qe.runQuery(context, query, null, true).iterator();

//Process the results
while (iterResults.hasNext())
{

com.sssw.search.api.EbiQueryResult res =
(com.sssw.search.api.EbiQueryResult)iterResults.next();

//Get document metadata
String docTitle = res.getTitle();
java.sql.Timestamp dateCreated = res.getDateCreated();

//Get document abstract
String docAbstract = res.getAbstract();

//Add query result to the string buffer returned by the component
sb.append(“\n”).append(docTitle).append("\n").append(dateCreated).append("\n").ap

pend(docAbstract).append(“\n”);
}

}
catch (Exception _E)
{

System.out.println (“Query failed”);
if (m_log.isError())

m_log.error(_E);
}
//Set content type
context.setContentType(com.sssw.portal.api.EbiComponentConstants.MIME_TYPE_HTML_UTF8);

//Place the content into the context
context.setComponentContent(sb.toString());

}
...
exteNd Director Content Search Guide-69

Querying Content and Metadata 69

Search query descriptors
You can construct search query descriptors as XML files that can be used to initialize
the search query object. The XML for a search query definition must conform to the
rules specified in search-query-def_4_0.dtd, a file that resides in the DTD folder
within the SearchService.jar of your exteNd Director project library folder.

Advantages of using query descriptors
There are several advantages to initializing a query object programmatically from an
XML query descriptor:

Query descriptors are reusable.
You set all desired options with one method call, rather than making individual
calls to define specific query properties.

Query type element
Every search query definition contains an element for specifying the query type:

<!ELEMENT search-query-def (text-query | fuzzy-query | get-all-
query | suggest-query | name-search-query)>

In turn, each query type element provides properties for refining the query. For
example, consider the text query element:

<!ELEMENT text-query (query-text?, field-spec?, query-options?,
selected-props?)>

Using this definition, you can construct a field query by defining a field specifier list in
the field-spec property that indicates which metadata to search for the text defined in
query-text.

Here are the XML definitions for other query types:

Fuzzy queries:
<!ELEMENT fuzzy-query (query-text?, field-spec?, query-options?,
selected-props?)>

Get-all queries:
<!ELEMENT get-all-query (field-spec?, query-options?, selected-
props?)>

Suggest similar documents:
<!ELEMENT suggest-query (doc-list, suggest-options?, field-
spec?, query-options?, selected-props?)>

Proper name search:
<!ELEMENT name-search-query (query-text?, field-spec?, query-
options?, selected-props?)>
70 exteNd Director Content Search Guide

The Search API provides a method for setting query type at runtime—
setQueryType()—that you call on the EbiQuery object.

 For a detailed description of each type of query—including syntax definitions
and code examples showing how to specify each query type—see Chapter 12, “Search
Query Types” .

Query options property
Each query type includes a query-options property that allows you to fine-tune query
behavior. Here is the XML definition for query-options:

<!ELEMENT query-options (
batch-options?,
date-range?,
exclusions?,
generate-quick-summary?,
thesaurus-options?,
max-num-results?,
relevance-cut?,
sort-by-date?,
sort-by-relevance?,
use-abs-weight?

)>

For each of these options, the Search API provides methods that you can call on the
EbiQuery object for setting options individually at runtime. Here is a description of
each option:

Query option Description Associated method

batch-options Return the result set in
batches of a particular size

setBatchOptions()

date-range Search within the specified
range of document creation
dates

setDateRange()

exclusions Exclude the specified
documents from the query
results

setExclusions()

generate-
quick-summary

Generate quick summaries for
each item in the result set

setGenerateQuickSummary()

thesaurus-
options

Set up a thesaurus repository
for thesaurus queries

setThesaurus()

max-num-
results

Set the maximum number of
results to return

setMaxNumResults()
exteNd Director Content Search Guide-71

Querying Content and Metadata 71

Selected properties
The selected-props property for query types allows you to specify the document
properties to return in the query results. Here is the XML definition for selected-props:

<!ELEMENT selected-props (prop-name* | select-all)>

Using this definition, you can specify that your query return individual document
properties or all available document properties.

In addition, you can call the following Search API methods on the EbiQuery object to
specify document properties at runtime:

Example: defining a text query in XML
Here is an example of a text query defined in XML:

<search-query-def>
<text-query>

<query-text><![CDATA[clinical+trials+diabetes+research]]></query-text>
<field-spec>

relevance-cut Set the relevance cut (the
minimum similarity score) for
query results

setRelevanceCut()

sort-by-date Sort query results by date setSortByDate()

sort-by-
relevance

Sort query results by
relevance

setSortByRelevance()

use-abs-weight Return relevance scores as
absolute weights rather than
percentages

setUseAbsWeight()

Method Description

select() Select the specified document property to return in the query
results

selectAll() Return all available document properties in the query results

selectAlways() Always return the specified document property in the query
results

removeSelect() Remove the specified property from the list of selected
properties

Query option Description Associated method
72 exteNd Director Content Search Guide

<field-spec-list><![CDATA[fnameTITLE=*report*+fnameCountry=*USA*]]></field-
spec-list>

<field-boolean-expr><![CDATA[fnameTITLE+AND+fnameCountry]]></field-boolean-
expr>

</field-spec>
<query-options>

<date-range>
<date-from><![CDATA[11/01/2002]]></date-from>
<date-to><![CDATA[11/02/2002]]></date-to>
<date-pattern><![CDATA[dd/MM/yyyy]]></date-pattern>

</date-range>
<generate-quick-summary/>
<max-num-results><![CDATA[50]]></max-num-results>
<relevance-cut><![CDATA[70]]></relevance-cut>
<sort-by-date/>
<sort-by-relevance/>

</query-options>
<selected-props>

<prop-name><![CDATA[AUTHOR]]></prop-name>
<prop-name><![CDATA[TITLE]]></prop-name>
<prop-name><![CDATA[CREATED]]></prop-name>

</selected-props>
</text-query>

</search-query-def>

Based on this definition, this query is not merely a simple text query—or keyword
search—but instead has the following characteristics:

Characteristic Description

Performs a conceptual
search

The <query-text> element specifies a search string
in the form of a conceptual query:

word1+word2+word3+... wordN

Searches content and
metadata (field query)

The <field-spec> element specifies that the
application search all documents that contain the
string report in their title fields and the string USA in
their country fields

Searches within a
specified time period

The <date-range> element restricts the search to
documents created between November 1 and 2, 2002

Specifies a maximum
number of results

The <max-num-results> element specifies that a
maximum of 50 results be returned

Specifies a relevance
threshold

The <relevance-cut> element requests results that
are at least 70% relevant

Returns specific document
properties

The <selected-props> element indicates that the
author, title, and date created should be returned for
each document in the result set
exteNd Director Content Search Guide-73

Querying Content and Metadata 73

This sample XML query definition resides in search-query-def_4_0_sample.xml,
located in the DTD folder within the SearchService.jar of your exteNd Director project
library folder.

Example: initializing a query object from an XML descriptor
Here is sample code that initializes a query object from an XML query descriptor:

...
//Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();

//Read in your query XML descriptor
Document queryDesc =
com.sssw.fw.util.EboXmlHelper.getDocumentFromString(myInputStream);

//Initialize the blank query object with data from the XML
//descriptor
query.fromXML(queryDesc.getDocumentElement());
...

The getDocumentFromString() method returns a DOM document, converted from a
string that represents an XML document—in this case the input argument
myInputStream.

Sorting query results
This section describes how to sort the results of Autonomy-based conceptual queries.

Sorting by date and then relevance
You can sort query results by date, relevance, or both. When you sort by both
properties, the results are first sorted by date, then by relevance.
74 exteNd Director Content Search Guide

To sort by date and then relevance:

1 Define a com.sssw.search.api.EbiQuery object.
2 Call any of the following methods on that object:

Sorting field query results
You can also sort results of field queries in ascending or descending order by a single
parameter. The parameter can be the value of a standard metadata field or custom
metadata field.

NOTE: Standard metadata field names are listed in the [Fields] section of the DRE
configuration file DirectorDRE.cfg, located at autonomy\engine in your exteNd Director
installation directory.

To sort field query results:

1 Before issuing a field query, make sure you configure your search environment
to specify the types of metadata you want to search—standard metadata and/or
custom metadata—as described in Chapter 3, “Setting Search Options”.

2 In a text editor, open the DRE configuration file DirectorDRE.cfg.
3 Enable field sorting by setting the parameter FIELDSORT=1 in the [Server]

section.
NOTE: If this parameter does not appear, add it to the file.

4 Save and close the configuration file.
5 Reset the DRE, as described in “Resetting the DRE” on page 116.
6 Reindex the data, as described in “Programming practices” on page 45.
7 Specify the sort parameter by appending one of these expressions to the field

specifier list you created for your field query:

Sorting factor To Call

Relevance Enable sorting by relevance setSortByRelevance(true)

Disable sorting by relevance setSortByRelevance(false)

Date Enable sorting by date setSortByDate(true)

Disable sorting by date setSortByDate(false)

Sort expression Description

&fsort=FIELDNAME Sort in ascending order by the value of the field
FIELDNAME
exteNd Director Content Search Guide-75

Querying Content and Metadata 75

../javadoc/com/sssw/search/api/EbiQuery.html
../javadoc/com/sssw/search/api/EbiQuery.html#setSortByRelevance(boolean)

For example, suppose that in your CM repository you define a document type
called Colleges, and two custom fields—Ranking and Location. If you want to
find all colleges located in Massachusetts, sorted in descending order by rank,
your field specifier should look like this:

...
String fieldSpecList =

"fnameDOCTYPENAME=*Colleges*+fnameLocation=*Massachusetts*+
&fsort=-Ranking";

String fieldBooleanExpr = "fnameDOCTYPENAME+AND+fnameLocation";
query.setFieldSpecList(fieldSpecList, fieldBooleanExpr);
...

 For more information about constructing and implementing field queries,
see “Field queries” on page 137.

&fsort=-FIELDNAME Sort in descending order by the value of the field
FIELDNAME

Sort expression Description
76 exteNd Director Content Search Guide

../javadoc/com/sssw/search/api/EbiQuery.html

7
 Configuring the Dynamic Reasoning
Engine for Specialized Searching Chapter 7
This chapter explains how to configure your exteNd Director Dynamic Reasoning
Engine (DRE) to perform specialized search tasks.

The following topics are covered:

Searching for numbers
Searching in other languages

Searching for numbers
This section describes how to enable number searches using the DRE configuration
file.

To enable searching for numbers:

1 In a text editor, open the DRE configuration file DirectorDRE.cfg, located at
autonomy\engine in your exteNd Director installation directory.

2 Set the parameter INDEXNUMBERS=1.
NOTE: If this parameter does not appear, add it to the file.

3 Delete the parameter DONTINDEXNUMBERS=1.
4 Save and close the configuration file.
5 Reset the DRE, as described in “Resetting the DRE” on page 116.
6 Reindex the data, as described in “Programming practices” on page 45.
77

Searching in other languages
This section describes how to configure the DRE for searching in other languages,
including those that use a multibyte character set (MBCS). By default, the DRE is
configured to process English-language data.

To search in other languages:

1 Configure your search environment to import multibyte character set (MBCS)
and other binary formats, as described in “Importing MBCS and other binary
formats” below.

2 Set language-specific configuration parameters, as described in “Modifying
language-specific configuration parameters” on page 80.

3 (Optional) Copy sentence-breaking files into the directory where the DRE
resides, as described in “Providing sentence-breaking files (optional)” on
page 82.

4 Reset the DRE, as described in “Resetting the DRE” on page 116.
5 Reindex the data, as described in “Forcing indexing” on page 99.

Importing MBCS and other binary formats
This section describes how to configure your search environment to import multibyte
character set (MBCS) and other binary formats into the DRE for indexing.

You enable MBCS support by configuring Autonomy Omnislave, a plug-in module
that converts data from binary file formats so it can be indexed in the DRE.

The Omnislave configuration file is called omnislave.cfg and resides in
autonomy\OmniSlaves in your exteNd Director installation directory. The
omnislave.cfg file contains two types of sections:

In the following example, formats are defined for Word, RTF, and Microsoft
PowerPoint files:

[Configuration]
OmniConvertExtns0=*.doc
OmniConvertLibraryCsvs0=wpconvdll.dll,wordconv.dll,rtfconv.dll
OmniConvertConfigSectionCsvs0=WordPerfect,MSWord,Rtf
OmniConvertExtns1=*.rtf

Section type Description

[CONFIGURATION] Provides general configuration settings that apply to all
[<file_format>] sections that appear below it

[<file_format>] Defines settings for specific file formats that you want
OmniSlaves to extract
78 exteNd Director Content Search Guide

OmniConvertLibraryCsvs1=rtfconv.dll
OmniConvertConfigSectionCsvs1=Rtf
OmniConvertExtns2=*.ppt
OmniConvertLibraryCsvs2=pptconv.dll
OmniConvertConfigSectionCsvs2=Ppt

Logging=0
LogAppend=TRUE
LogMaxKBytes=500

[MSWord]
OutputCharSet=ASCII

[Rtf]

[Ppt]
OutputCharSet=ASCII
StopList=pptconv.dat

To enable support for MBCS and other binary formats:

1 Open the omnislave.cfg in your favorite text editor.
2 Create [<file_format>] sections for each of the file formats you want Omnislave

to convert for indexing.
3 In each [<file_format>] section, add a parameter OutputCharSet and set it to

the character set to which you want to convert the file format.
Choose one of these character set constants:

ASCII
UTF8
UCS2
GREEK
GREEK_ISO
HEBREW
HEBREW_ISO
ARABIC
ARABIC_ISO
CYRILLIC
CYRILLIC_KO18
CYRILLIC_ISO
THAI
EASTERNEUROPEAN
EASTERNEUROPEAN_ISO
TURKISH
exteNd Director Content Search Guide-79

Configuring the Dynamic Reasoning Engine for Specialized Searching 79

CHINESESIMPLIFIED
CHINESETRADITIONAL
KOREAN
SHIFTJIS
JIS
EUC

For example, if you want to search a Word document in traditional Chinese, add
the following lines of code under the appropriate [CONFIGURATION] section in
the Omnislave configuration file:

[MSWord]
OutputCharSet=CHINESETRADITIONAL

Modifying language-specific configuration parameters
You modify language-specific search parameters in the DRE configuration file
DirectorDRE.cfg, located at autonomy\engine\ in your exteNd Director installation
directory.

To modify language-specific parameters in the DRE:

1 Open DirectorDRE.cfg in your favorite text editor.
2 Set the CharConv parameter to the language you want the DRE to use:

Language Value

European 0 (default)

Japanese 1

Korean 2

Simplified Chinese 4

Traditional Chinese 5

Traditional Chinese indexed as Simplified Chinese 6

Eastern European 7

Russian WINANSI 8

Russian KO18 9

Hebrew 10

Greek 11

Swedish 12
80 exteNd Director Content Search Guide

3 Set the TermSize parameter to specify the maximum number of characters for
any term in the DRE:

Language Value

English and European languages 10 (default)

German 30

Japanese 30

Korean 40
exteNd Director Content Search Guide-81

Configuring the Dynamic Reasoning Engine for Specialized Searching 81

4 (Optional) Set the StripLanguage parameter to select which language to use
when stripping terms to their stems (for example, stripping running to run):

NOTE: Use the advanced settings for English (6) and German (9) when
possible. Exception: if you set the StripLanguage to 0 or 1 for English or 3 for
German when you indexed content into the DRE, you must use those same
settings when you send queries to the DRE.

Providing sentence-breaking files (optional)
When you use languages that do not separate words with spaces, you must specify
appropriate delimiters. exteNd Director provides language-specific sentence-breaking
files on your product CD that you must copy into the directory where the DRE
resides—autonomy\engine in your exteNd Director install directory. The following
sections describe the sentence-breaking files and associated DRE configuration
settings required for languages that do not delimit words with spaces.

Option Value

English 0

Conversion from UK to US English 1

no stripping 2

German 3

Italian 4

Russian 5

Advanced English 6

Spanish 7

Dutch 8

Advanced German 9

French 10

Greek 11

Swedish 12

Danish 13

Portuguese 14

Advanced Spanish 15

Norwegian 16
82 exteNd Director Content Search Guide

Traditional Chinese

The required sentence-breaking files are:

The required language-specific configuration settings are:

Simplified Chinese

The required sentence-breaking files are:

Platform
Sentence-breaking
files Location on CD

NT chinesebreaking.dll
big5togb.txt
wordlist.txt
chineseconvlist.txt

Autonomy\MBCS\chinese_nt_1_0_3.zip

UNIX chinesebreaking.so
big5togb.txt
wordlist.txt
chineseconvlist.txt

Autonomy/MBCS/chinese_aix_1_0_2.tar.Z
Autonomy/MBCS/chinese_hpux11_1_0_3.tar.Z
Autonomy/MBCS/chinese_solaris_1_0_3.tar.Z

DRE configuration parameter Value

CharConv 5

TermSize 40

StripLanguage 2

Platform Sentence-breaking files Location on CD

NT chinesebreaking.dll
big5togb.txt
wordlist.txt
chineseconvlist.txt

Autonomy\MBCS\chinese_nt_1_0_3.zip

UNIX chinesebreaking.so
big5togb.txt
wordlist.txt
chineseconvlist.txt

Autonomy/MBCS/chinese_aix_1_0_2.tar.Z
Autonomy/MBCS/chinese_hpux11_1_0_3.tar.Z
Autonomy/MBCS/chinese_solaris_1_0_3.tar.Z
exteNd Director Content Search Guide-83

Configuring the Dynamic Reasoning Engine for Specialized Searching 83

The required language-specific configuration settings are:

Japanese

The required sentence-breaking files are:

DRE configuration parameter Value

CharConv 4

TermSize 40

StripLanguage 2

Platform Sentence-breaking files Location on CD

NT japanesebreaking.dll
\dic\tag.attr
\dic\tag.counter
\dic\tag.index
\dic\tag.mrph
\dic\tag.string
\dic\tag.table
jtag.dll
jtag.ini
jtag_at.dll
japaneseconvlist.txt

Autonomy\MBCS\japanese_nt_2_0_5.zip

UNIX japanesebreaking.sl
/dic/system/jtag.attr
/dic/system/jtag.hash
/dic/system/jtag.id
/dic/system/jtag.mrph
/dic/system/jtag.offset
/dic/system/jtag.table
/dic/system/jtag.trie
jtag.ini
libcodeconv.sl
libjtag_at.sl
libjtag.sl
japaneseconvlist.txt

Autonomy/MBCS/japanese_aix_2_0_5.tar.Z
Autonomy/MBCS/japanese_hpux11_2_0_5.tar.Z
Autonomy/MBCS/japanese_solaris_2_0_5.tar.Z
84 exteNd Director Content Search Guide

The required language-specific configuration settings are:

Korean

The required sentence-breaking files are:

DRE configuration parameter Value

CharConv 1

TermSize 30

StripLanguage 2

Platform Sentence-breaking files Location on CD

NT koreanbreaking.dll
koreanconvlist.txt
Koma.dll
HanTag.dll
main.dat
prob.dat
main.fst
prob.fst
pos.nam
tag.nam
tagout.nam
connection.txt
stopposnam.txt
tagname.txt

Autonomy\MBCS\korean_nt_1_0_1.zip

UNIX koreanbreaking.so
koreanconvlist.txt
main.dat
prob.dat
main.fst
prob.fst
pos.nam
tag.nam
tagout.nam
connection.txt
stopposnam.txt
tagname.txt

Autonomy/MBCS/korean_aix_1_0_1.tar.Z
Autonomy/MBCS/korean_hpux11_1_0_1.tar.Z
Autonomy/MBCS/korean_solaris_1_0_1.tar.Z
exteNd Director Content Search Guide-85

Configuring the Dynamic Reasoning Engine for Specialized Searching 85

The required language-specific configuration settings are:

DRE configuration parameter Value

CharConv 2

TermSize 40

StripLanguage 2
86 exteNd Director Content Search Guide

8
 Troubleshooting the Conceptual
Search Process Chapter 8
This chapter provides troubleshooting tips to help you implement conceptual searching
successfully in your exteNd Director applications. You will learn how to diagnose and
correct commonly encountered errors.

The following topics are covered:

Commonly encountered problems
General debugging techniques

Commonly encountered problems
This section diagnoses commonly encountered problems and suggests corrective
actions. The following issues are covered:

Unable to retrieve results exception
Class not found exception for Autonomy JNI when accessing the Content
Management (CM) subsystem
UnsatisfiedLinkError for autonomyJNI.dll
Search results become invalid after restarting the DRE service
Documents do not appear to be indexed
Queries return no results or too few results
Document content does not appear to be stored in the DRE
java.lang.Exception for Autonomy JNI when publishing documents on UNIX
87

Unable to retrieve results exception
This section explains why you might encounter this exception and describes how to
correct the problem.

Diagnosis—DRE is not running

The Autonomy Java Native Interface (JNI) usually throws this exception if the exteNd
Director Dynamic Resource Engine (DRE) is not running.

What to do:

1 Determine whether the exteNd Director DRE is running:
On Windows:
Look for the process DirectorDRE.exe in the Task Manager or for the
service exteNd Director DRE in the Services Manager.
On UNIX:
Issue the following command from your browser:

http://server name or machine name:2000/qmethod=v

2 If the DRE is not running, start it:
On Windows:
From the Start menu, select Programs>Novell>exteNd Director
4.1>exteNd Director DRE.
On UNIX:
Run the command ./StartQuery.sh. This command resides in the directory
where you installed the DRE.

Class not found exception for Autonomy JNI when accessing the Content
Management (CM) subsystem

This section explains why you might encounter this exception and describes how to
correct the problem.

Diagnosis—JNI classes not on classpath

This exception is thrown if the Autonomy Java Native Interface (JNI) classes are not
on the classpath of your application server. These classes are stored in
autonomy\autonomyJNI.jar in theexteNd Director installation directory.
88 exteNd Director Content Search Guide

What to do:

Add Autonomy JNI classes to the classpath of your application server, as
described in “Adding autonomyJNI.jar to your application server classpath” on
page 24.

Diagnosis—Autonomy DLL not on library path

This exception is thrown if the autonomyJNI.dll is not on your library path. This
dynamic link library is located at autonomy\autonomyJNI.dll in the exteNd Director
installation directory.

What to do:

Add the directory containing autonomyJNI.dll to the Path environment variable
of the machine where you installed exteNd Director, as described in “Adding the
Autonomy dynamic library to your environment” on page 25.

UnsatisfiedLinkError for autonomyJNI.dll
You may see the following error message when you redeploy the exteNd Director
project:

java.lang.UnsatisfiedLinkError: Native Library autonomyJNI.dll
already loaded in another classloader

This section explains why you might encounter this error and describes how to correct
the problem.

Diagnosis—Mismatch of revision levels

The error occurs when autonomyJNI.jar and autonomyJNI.dll are not at the same
revision level.

What to do:

Make sure you have the correct revisions of these files. You can check revision
numbers programmatically by calling the method getApiVersion() on
com.sssw.search.api.EbiQueryEngineDelegate.
exteNd Director Content Search Guide-89

Troubleshooting the Conceptual Search Process 89

../javadoc/com/sssw/search/api/EbiQueryEngineDelegate.html#getApiVersion()
../javadoc/com/sssw/search/api/EbiQueryEngineDelegate.html

Search results become invalid after restarting the DRE service
This section explains why you might encounter this behavior and describes how to
correct—and prevent—the problem.

Diagnosis—Autonomy handles custom fields incorrectly

This problem occurs when you add new custom fields in the Content Management
(CM) repository after creating documents that use the preexisting set of custom fields.
Because of the way Autonomy handles custom fields, you must reinitialize the DRE to
read in the new field set. Otherwise, search results are invalid.

What to do:

1 Remove all documents from the DRE, as described in “Removing content from
the DRE” on page 116.

2 Reconfigure the DRE by issuing a reset from the DRE Administration console, as
described in “Resetting the DRE” on page 116.

3 Restart the DRE, as described in “Diagnosis—DRE is not running” on page 88.
4 Reindex your contents back into the DRE, as described in “Forcing indexing” on

page 99.

CAUTION: You must perform these steps every time you add new custom fields
after creating documents that use custom metadata. To avoid this problem, see the
preventive action below.

To prevent this problem from occurring:

Add all custom fields before adding any documents in the CM repository.

Documents do not appear to be indexed
You can check whether or not documents have been indexed by using any of the
methods described in “Examining DRE content” on page 120.

This section explains why you might encounter this behavior and describes how to
correct the problem.
90 exteNd Director Content Search Guide

Diagnosis—Search is disabled

The integration between the CM subsystem and the Search subsystem is disabled.

What to do:

1 Make sure the exteNd Director DRE is running, as described in “Diagnosis—
DRE is not running” on page 88.

2 Enable the option com.sssw.cm.search.enable.repository name.
For example, if you are working with the default CM repository—named
Default—the property name will look like this:

com.sssw.cm.search.enable.Default

TIP: You set this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Enable link to the Search subsystem?” on page 127 and
“Defining options for a specific Content Management repository” on page 38.

3 Redeploy your exteNd Director project for the new setting to take effect.

Diagnosis—Search options are mismatched

The values of search options do not correspond to exteNd Director DRE settings.

What to do:

1 Check your exteNd Director DRE settings in the DRE Administration console, as
described in “Setting DRE search options” on page 118.

2 Configure the following search options to match the DRE settings:
com.sssw.cm.search.host.repository name
com.sssw.cm.search.queryport.repository name
com.sssw.cm.search.indexport.repository name
com.sssw.cm.search.repository.repository name

TIP: You set these options in the CM config.xml file, as described in “Setting
search options in an existing exteNd Director project” on page 37. If you are using
the default CM repository, repository name = Default.

3 Redeploy your exteNd Director project for the new settings to take effect.

Diagnosis—Synchronization is scheduled as a batch process

There are two modes for synchronizing changes in the CM repository with DRE
indexing:

Mode Description

Immediate Changes in the CM repository are propagated to the DRE as soon as
they occur—so you see your documents indexed in real time
exteNd Director Content Search Guide-91

Troubleshooting the Conceptual Search Process 91

What to do:

Determine which synchronization mode is enabled by checking the value of the
following search option:

com.sssw.cm.search.synch.mode.repository name

If the value is 1, synchronization occurs in batch mode and you should not expect
to see your documents indexed immediately.
TIP: You view this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Synchronization mode” on page 134.

Diagnosis—Invalid document type

The document type of the content you are trying to index is invalid or unsupported. The
Search subsystem supports the following MIME types for indexing content:

Plain text
HTML
SGML
XML
Microsoft Word for Windows Version 3.x and higher
Microsoft Excel Version 3.x and higher
Microsoft PowerPoint Version 4 and higher
Adobe Acrobat PDF

What to do:

Make sure the MIME type of your document is supported by the Search subsystem.
You can check document MIME types in the CMS Administration Console by
following these steps:

1 Select the document of interest in the CMS Administration Console.
The content Property Inspector opens.

Batch Changes in the CM repository are propagated to the DRE as a
scheduled or periodic background task.
If you have scheduled synchronization to run in batch mode, you
will not see indexing occur until the synchronization is triggered.

Mode Description
92 exteNd Director Content Search Guide

2 In the property inspector, select the Versions tab.
The MIME type of the document is displayed, along with other properties.

 For information on how to use the CMS Administration Console, see the chapter
on the CMS Administration Console in the Content Management Guide.

Diagnosis—Documents have not been published

You may not have published the documents you are searching for in the CM
subsystem. Only published content can be imported and indexed in the DRE.

What to do:

In the CMS Administration Console, determine whether the documents of interest
have been published by following these steps:

1 Select the document of interest.
The content Property Inspector opens.

2 In the Property Inspector, select the Versions tab.
If the document has been published, one of its version icons appears with a green
border:

3 Publish documents as necessary.

 For more information about publishing documents, see the section on
administering version control in the chapter describing the CMS Administration
Console in the Content Management Guide

Diagnosis—DRE cannot find OmniSlave files

If you are indexing binary documents, you must specify the correct path to
Autonomy’s OmniSlave binary document filtering technology. By default, the
OmniSlave files are stored at:

exteNd Director installation directory\exteNd
Director\autonomy\OmniSlaves

What to do:

1 Make sure the path to OmniSlave files is specified correctly in the following
search option:

com.sssw.cm.fetch.binary.filters.dir

TIP: You set this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Install directory for binary document text filters” on
page 130.
exteNd Director Content Search Guide-93

Troubleshooting the Conceptual Search Process 93

cmgPMCAdmin.html
cmgPMCAdmin.html
cmgPMCIntro.html

2 If you change the path, redeploy your exteNd Director project for the new setting
to take effect.

Queries return no results or too few results
This section explains why you might encounter this behavior and describes how to
correct the problem.

Diagnosis—No documents match your search criteria

Your search criteria may be too narrow or incorrectly specified, or your query terms
may be misspelled.

What to do:

Examine your query and take any of the following corrective steps as necessary:

Broaden your search criteria.
Add documents that fit the search criteria.
Correct misspelled query terms or try a fuzzy query.
 For more information, see “Fuzzy queries” on page 138.

Diagnosis—Documents may not have been indexed

You can check whether or not documents have been indexed by using any of the
methods described in “Examining exteNd Director DRE content” on page 99.

What to do:

See the troubleshooting tips in “Documents do not appear to be indexed” on
page 90.

Diagnosis—You may have configured the DRE incorrectly

If you change parameters in the DRE configuration file without reinitializing the DRE
and reindexing the data, the DRE produces no results or erroneous results.

NOTE: The DRE configuration file is located at autonomy\engine\DirectorDRE.cfg in
the exteNd Director installation directory.

What to do:

1 Reconfigure the DRE by issuing a reset from the DRE Administration console,
as described in “Resetting the DRE” on page 116.

2 Restart the DRE, as described in “Diagnosis—DRE is not running” on page 88.
3 Rerun the query.
94 exteNd Director Content Search Guide

Diagnosis—You may have issued the wrong type of query

A common scenario is to issue a conceptual query when you really intend to run a
keyword search. In a keyword search, the DRE finds documents that contain
occurrences of the desired keyword. By contrast, the conceptual query is an intelligent
search that matches concepts rather than literal text strings.

 For more information, see “How conceptual searching differs from keyword
searching” on page 15.

What to do:

Make sure you are using the correct syntax for the type of query you want to run.
For example, if you want to search for documents that contain the words silk and
worm, use the query notation for keyword search:

silk:+worm:

Notice that this syntax is different from conceptual search notation:
silk+worm

For more information, see “Overview of Autonomy-based conceptual
searching” on page 14 and Chapter 6, “Querying Content and Metadata”.

Diagnosis—Document content is not copied into the DRE

You may not have enabled the option to copy the content of documents you are
searching into the exteNd Director DRE. If you are issuing a keyword query, you must
make sure the content of the target documents is stored in the DRE when they are
indexed.

What to do:

1 Enable the following search option:
com.sssw.cm.fetch.store.content.repository name

You set this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Copy document contents into the DRE?” on page 126.

2 Redeploy your exteNd Director project for the new setting to take effect.

Diagnosis—Your relevance threshold may be too low

If the relevance cutoff threshold is too low, the DRE will drop some results that you
actually want to see.

What to do:

Bump up the threshold by calling the method setRelevanceCut() on
com.sssw.search.api.EbiQuery.
exteNd Director Content Search Guide-95

Troubleshooting the Conceptual Search Process 95

../javadoc/com/sssw/search/api/EbiQuery.html
../javadoc/com/sssw/search/api/EbiQuery.html#setRelevanceCut(int)

Document content does not appear to be stored in the DRE
This section explains why you might encounter this behavior and describes how to
correct the problem.

Diagnosis—Document content is not copied into the DRE

You may not have enabled the option to copy the content of documents you are
searching into the exteNd Director DRE. This option is disabled by default to avoid
incurring the overhead of storing content in both the CM repository and the DRE.

What to do:

1 Enable the following option:
com.sssw.cm.fetch.store.content.repository name

You set this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Copy document contents into the DRE?” on page 126.

2 Redeploy your exteNd Director project for the new setting to take effect.

java.lang.Exception for Autonomy JNI when publishing documents on UNIX
This section explains why you might encounter this behavior and describes how to
correct the problem.

Diagnosis—You do not have write permission for the binary document text filter directory

The binary document text filter directory—which resides in the directory where you
installed the DRE—contains executables required for importing data from the CM
repository into the DRE for indexing. By default, publishing is an operation that
triggers immediate synchronization, an event that involves importing updated content
from the CM repository into the DRE. You must have read/write/execute permission
for the binary document text filter directory so that the import process can proceed to
completion.

What to do:

1 Find your binary document text filter directory:
1a In exteNd Director, open config.xml for the CM subsystem in your exteNd

Director project.
1b Find the following key:

com.sssw.cm.fetch.binary.filters.dir

The value of this key is the path for the binary document text filter directory.
96 exteNd Director Content Search Guide

NOTE: You set the binary document text filter directory when you created your
exteNd Director project, as described in the section on creating a new exteNd
Director project in Developing exteNd Director Applications. In this section, look
for information about setting parameters on the Filters tab of the Content
Management Search Configuration panel.

2 Set read/write/execute permission on the binary document text filter directory.

General debugging techniques
This section describes techniques you can use to determine whether search processes
are running as expected and whether you have constructed your queries correctly.
Some of these techniques require you to run the exteNd Director DRE Administration
console, which is described in Chapter 10, “Administering the Dynamic Reasoning
Engine”. These topics are included:

Logging
Examining exteNd Director DRE content
Forcing indexing
Getting the list of terms indexed for a document
How to test queries

Logging
This section describes how to monitor the indexing process by generating and
examining exteNd Director and Autonomy logs.

Configure and examine the import log

The import log records the activity of the Autonomy importer at runtime. By default,
this log resides in autonomy\OmniSlaves\import.log in the directory where you
installed exteNd Director.

You configure the behavior of the import log in the file importslave.cfg, located in the
same directory as import.log. You can specify the following options:

Logging level
Location of log file
Documents to be excluded from import, based on size in bytes and words
exteNd Director Content Search Guide-97

Troubleshooting the Conceptual Search Process 97

cdConfigServicesNew.html
cdConfigServicesNew.html

Enable debugging during import

When enabled, this option writes content to the server console for debugging purposes
as documents are imported and indexed.

To log information about indexing in exteNd Director:

1 Raise the logging levels of the CM subsystem and the Search subsystem to 5,
preferably on a small prototype document set.
Level 5 logging records debugging messages and information about application
progress on the server console as you interact with the CM repository and search
its content.
Use the Director Administration Console (DAC) to adjust logging levels for
EboSearchLog and EboCmLog, as described in the section on logs in the chapter
about application configuration using the DAC in the Content Management
Guide.

2 Enable the following search option:
com.sssw.cm.fetch.dump.imported.data

You set this option in the CM config.xml file, as described in “Setting search
options in an existing exteNd Director project” on page 37. For more information
about this option, see “Debug during import?” on page 126.

3 Redeploy your exteNd Director project for the new setting to take effect.
4 Monitor the index process on your server console as you run your search

application.

 For more information, see the chapter on logging information in the Developing
exteNd Director Applications.

Look at Autonomy’s activity log through your browser

You can view the log of activities performed by Autonomy by entering the following
URL in your browser:

http://DRE host:DRE-query-port/qmethod=v

For example, if your host name is localhost and your DRE-query-port is 2000 (the
default), the URL should look like this:

http://localhost:2000/qmethod=v
98 exteNd Director Content Search Guide

cdLogging.html
cdAppConfig.html

Examining exteNd Director DRE content
This section describes several ways to examine the content of the exteNd Director
DRE.

To examine DRE contents through your browser:

Issue the following command from your browser:
http://DRE host:DRE-query-port/qmethod=g

For example, if your host name is localhost and your DRE-query-port is 2000
(the default), the URL should look like this:

http://localhost:2000/qmethod=g

This command lists the documents that have been indexed. You can identify any
document of interest by looking up its Doc_id property value (the unique
identifier of the document within the DRE). This value appears in the results
generated by the qmethod=g command.

To examine DRE contents by backing up the DRE:

See “Examining DRE content” on page 120.

Forcing indexing
There are situations in which you need to force the exteNd Director DRE to reindex
data —for example, when you reconfigure the search environment, as described in
Chapter 3, “Setting Search Options”.

The following procedure shows how to configure the exteNd Director DRE to reindex
all content as a batch process.

To force indexing:

1 Open config.xml for the CM subsystem in your exteNd Director project.
2 Change the synchronization mode to batch by setting

com.sssw.cm.search.synch.mode.repository name to 1.
TIP: By default you use the CM repository—named Default. So you would set
synchronization mode on com.sssw.cm.search.synch.mode.Default.

3 Save and close config.xml.
4 In the same location as config.xml, open the task list configuration file for your

CM repository—repository name_tasklist.xml.
TIP: For the default CM repository, the configuration file is Default_tasklist.xml.

5 Look for the definition of the synch task—the task that synchronizes the CM
subsystem with the Search service engine.
TIP: The task definition appears as either <periodic-synch> (default) or
<scheduled-synch>.
exteNd Director Content Search Guide-99

Troubleshooting the Conceptual Search Process 99

6 Set the interval (for periodic-synch) or the schedule (for scheduled-synch) as
desired.

7 Specify that all content should be reindexed, by adding the following element to
the synch task definition:

<since-last>false</since-last>

NOTE: If you do not disable this property, the DRE indexes only the content that
hasn’t been processed in the previous run of the task (the default setting).

Here is a sample synchronization task definition that meets these requirements:
<periodic-synch>

<task-name>Default Repository Synchronization</task-name>
<description>The Default Repository Synchronization

Task</description>
<since-last>false</since-last>
<enabled>true</enabled>
<interval>

<millis>86400000</millis>
<exact>false</exact>

</interval>
</periodic-synch>

8 Save and close Default_tasklist.xml.
9 Redeploy the application.

TIP: After reindexing the content, it is recommended that you set the <since-
last> property back to true to avoid reindexing all content again unnecessarily.

10 Start the synch task from the CMS Administration Console, as described in the
section on administering automated tasks in the Content Management Guide.

 For more information about tasks in the CM repository, see the chapter on
managing tasks in the Content Management Guide.

Getting the list of terms indexed for a document
You may want to examine the list of terms indexed for a specific document to verify
that the correct information is in the DRE. You can retrieve the 40 most important
terms from a document using this command:

http://IPAddress:QueryPort/qmethod=t&querytext=docid

NOTE: The value docid is the Doc_id property for the document of interest. You can
look up Doc_id values as described in “Examining exteNd Director DRE content” on
page 99.
100 exteNd Director Content Search Guide

cmgTaskMgmt.html
cmgPMCAdmin.html

How to test queries
You can use the exteNd Director DRE Administration console to test your queries in
isolation to validate whether your queries return the expected results.

To test queries in the DRE Administration console:

See “Testing queries” on page 117.
exteNd Director Content Search Guide-101

Troubleshooting the Conceptual Search Process 101

102 exteNd Director Content Search Guide

II
 SQL-Based Search Concepts PART II
Describes the fundamentals of implementing SQL-based search in exteNd
Director applications

• Chapter 9, “Implementing SQL-Based Searching”

9
 Implementing SQL-Based Searching Chapter 9
This chapter describes how to implement SQL-based searching in exteNd Director
applications.

The following topics are covered:

Logic flow for implementing SQL-based search
Building the search criteria
Example: searching standard document metadata

Logic flow for implementing SQL-based search
You can write search components to implement SQL-based searching in exteNd
Director applications. Use the following logic flow in the getComponentData()
method of the exteNd Director component:

1 Instantiate a content manager delegate, as follows:
com.sssw.cm.api.EbiContentMgmtDelegate contentMgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

NOTE: A delegate is a wrapper that hides the location of a service. The delegate
model follows the J2EE Business Delegate pattern. For more information about
delegates, see the chapter on coding Java for exteNd Director applications in
Developing exteNd Director Applications.

2 Instantiate a document metadata query object, as follows:
com.sssw.cm.api.EbiDocQuery query = (EbiDocQuery)
contentMgr.createQuery(EbiDocQuery.DOC_QUERY);
105

cdAccessServices.html
../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html
../javadoc/com/sssw/cm/api/EbiDocQuery.html

3 Select the fields to be returned by calling SELECT methods on the EbiDocQuery
object.
EbiDocQuery inherits SELECT methods from
com.sssw.cm.api.EbiDocMetaDataQuery.

4 Specify the search criteria by calling WHERE methods on the EbiDocQuery
object.
Each method returns a com.sssw.fw.api.EbiQueryExpression object, which
represents a SQL WHERE subclause.

5 Concatenate the WHERE subclauses by calling methods on EbiQueryExpression
to combine terms using logical operators and parentheses.
 For more details, see “Building the search criteria” on page 106.

6 Specify the order in which to return results in ORDER BY clause(s) by calling
ORDERBY methods on the com.sssw.cm.api.EbiDocMetaDataQuery object.

7 Execute the search by calling findElements() on the EbiContentMgmtDelegate
object.
The findElements() method executes the query and returns a collection of
EbiDocument objects. The collection contains the IDs and data for only those
fields you designated using SELECT methods in Step 3. As such, the objects in
the collection are not complete representations of the documents in the CM
repository.

Building the search criteria
You specify search criteria for metadata by calling WHERE methods on the document
metadata query object com.sssw.cm.api.EbiDocQuery. WHERE methods match
values against data and include a NOT parameter that can negate the clause.

For standard metadata, use WHERE methods that correspond to the property of
interest. For example, if you want to find documents whose author is Smith, use
the whereAuthor() method.
For custom (extension) metadata, use the whereField*() methods, as described
in “Defining criteria for searching custom metadata” on page 108.
106 exteNd Director Content Search Guide

../javadoc/com/sssw/cm/api/EbiDocMetaDataQuery.html
../javadoc/com/sssw/cm/api/EbiDocQuery.html
../javadoc/com/sssw/cm/api/EbiDocMetaDataQuery.html
../javadoc/com/sssw/fw/api/EbiQueryExpression.html
../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html

Using operators to match values against data
WHERE methods can match values against data by using SQL, relational, or string
operators defined in com.sssw.fw.api.EbiMetaDataQuery, a generic interface for
defining SQL queries over metadata.

Here is a summary of available operators:

Constant Definition

SQL operators

OP_BETWEEN SQL BETWEEN operator

OP_IN SQL IN operator

OP_IS_NULL SQL IS NULL operator (the value argument in
the WHERE method is not ignored)

Relational operators

ROP_EQUAL Is equal to (=)

ROP_GEQ Is greater than or equal to (>=)

ROP_GREATER Is greater than (>)

ROP_LEQ Is less than or equal to (<=)

ROP_LESS Is less than (<)

String operators

SOP_ENDS_WITH Whether the target string ends with the
specified character sequence

SOP_EQUALS_IGNORE_CASE Whether two strings are equivalent without
considering case

SOP_LIKE SQL LIKE operator

SOP_LIKE_IGNORE_CASE SQL LIKE operator, where the case of the
operands is ignored

SOP_STARTS_WITH Whether the target string begins with the
specified character sequence
exteNd Director Content Search Guide-107

Implementing SQL-Based Searching 107

../javadoc/com/sssw/fw/api/EbiMetaDataQuery.html

Concatenating WHERE expressions
When you need to connect WHERE expressions for several metadata fields, you can
concatenate them using com.sssw.fw.api.EbiQueryExpression methods. Here are some
examples illustrating patterns that assign the result to expression1:

Defining criteria for searching custom metadata
To define criteria for searching custom (extension) metadata fields, use whereField*()
methods defined on com.sssw.cm.api.EbiDocQuery.

Here are the steps to follow:

1 Construct an expression that identifies the field of interest, by either ID or name:

2 Construct a second expression that specifies the desired value of the field.
Use any whereFieldValue*() method.

3 Concatenate the WHERE expressions you just created using the andExpression()
method and the parenthesize() method.
The resulting expression restricts the search to the field identified in Step 1 and
the values specified in Step 2.
TIP: To search another field, set up another pair of field identifier/value
expressions in the same way and concatenate the result with the rest of the
WHERE clause.

Example Pattern

expression1.andExpression(expression2); Join two expressions using
AND

expression1.parenthesize(); Enclose expression in
parentheses before joining it
to another expression

expression1.orExpression(expression3); Join two expressions using
OR

For Use

ID whereFieldID*() methods

Name whereFieldName*() methods
108 exteNd Director Content Search Guide

../javadoc/com/sssw/fw/api/EbiQueryExpression.html
../javadoc/com/sssw/cm/api/EbiDocQuery.html
../javadoc/com/sssw/fw/api/EbiQueryExpression.html#andExpression(com.sssw.fw.api.EbiQueryExpression)
../javadoc/com/sssw/fw/api/EbiQueryExpression.html#parenthesize()

Example: searching standard document metadata
The following example illustrates how to perform a SQL-based search on standard
document metadata. In this example, a method called executeDocMetaSearch() finds
documents of type Movie Review that meet the following search criteria:

Movie was released between 1990 and 2000
Author is JSmith or title starts with A

public void executeDocMetaSearch(EbiContentMgmtDelegate cmgr, EbiContext context, String
mrDocTypeID, String yorFieldID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 // Search for all the Movie Review documents where
 // (Author is 'JSmith' or Title starts with 'A')
 // AND
 // where YearOfRelease is between the year 1990 and the year 2000.

 EbiDocQuery docQuery = (EbiDocQuery)cmgr.createQuery(EbiDocQuery.DOC_QUERY);
 docQuery.selectAll();

 EbiQueryExpression expr = docQuery.whereDocTypeID(mrDocTypeID,
EbiDocQuery.ROP_EQUAL, false);
 EbiQueryExpression expr2 = docQuery.whereAuthor("JSmith", EbiDocQuery.ROP_EQUAL,
false);
 EbiQueryExpression expr3 = docQuery.whereTitle("A", EbiDocQuery.SOP_STARTS_WITH,
false);

EbiQueryExpression expr4 = docQuery.whereFieldValueBetween(yorFieldID,
EboMisc.getInteger(1990), EboMisc.getInteger(2000), false);

 // (Author is 'JSmith' or Title starts with 'A)
 expr2.orExpression(expr3);
 expr2.parenthesize();

 // YearOfRelease was between the year 1990 and the year 2000
 expr4.andExpression(expr5);

 // (Author is 'JSmith' or whose Title starts with 'A')
 // AND
 // YearOfRelease was between the year 1990 and the year 2000
 expr.andExpression(expr2);
 expr.andExpression(expr4);

 docQuery.setWhere(expr);

 // Sort results by creation date/time, in ascending order
 docQuery.orderByCreateDate(true);

 // Execute the search and filter the results based
// on security constraints

 Collection results = cmgr.findElementsFiltered(context, docQuery);
 }
exteNd Director Content Search Guide-109

Implementing SQL-Based Searching 109

In this example, the com.sssw.cm.api.EbiDocQuery.whereFieldValueBetween()
method allows you to specify your custom metadata query in a single line of code.
Other similar methods include:

com.sssw.cm.api.EbiDocQuery.whereFieldValue()
com.sssw.cm.api.EbiDocQuery.whereFieldValue_ByName()
com.sssw.cm.api.EbiDocQuery.whereFieldValueBetween_ByName()
com.sssw.cm.api.EbiDocQuery.whereFieldValueIn()
com.sssw.cm.api.EbiDocQuery.whereFieldValueIn_ByName()

For more information on these methods, see the javadoc for EbiDocQuery.

The EbiDocument objects in the returned collection contain all the properties that have
been defined for the movie reviews in ascending order by creation date.

The executeDocMetaSearch() method accesses the following objects as input
arguments:

Content manager—EbiContentMgmtDelegate
Context object—EbiContext
Document type
Field of interest
110 exteNd Director Content Search Guide

../javadoc/com/sssw/cm/api/EbiDocQuery.html
../javadoc/com/sssw/cm/api/EbiDocQuery.html

III
 Tools PART III
Describes how to use the exteNd Director Dynamic Reasoning Engine
Administration console to manage conceptual searching

• Chapter 10, “Administering the Dynamic Reasoning Engine”

10
 Administering the Dynamic Reasoning
Engine Chapter 10
This chapter explains how to manage search behavior using the exteNd Director
Dynamic Reasoning Engine (DRE) Administration console.

The following topics are covered:

exteNd Director DRE Administration console functions
Starting the exteNd Director DRE Administration console
Resetting the DRE
Removing content from the DRE
Testing queries
Setting DRE search options
Examining DRE content
Restoring DRE content
Getting help on how to use the DRE Administration console

NOTE: Information in this chapter is adapted from the Autonomy Server 2.2 manual
from Autonomy, Inc.

exteNd Director DRE Administration console functions
The exteNd Director Search subsystem gives you access to the exteNd Director DRE
Administration console, a graphical user interface for administering the exteNd
Director DRE. You can use the DRE Administration console to:

Reset the DRE after changing configuration settings
Remove documents and other content from the DRE
Test content queries in isolation locally before deployment
113

srcDRE.html#ResettingtheDRE
srcDRE.html#RemovingcontentfromtheDRE
srcDRE.html#Testingqueries

Set DRE search options
Examine DRE content
Restore DRE content

Starting the exteNd Director DRE Administration console
You can start the exteNd Director DRE Administration console from the Windows
Start menu or by invoking the executable file.

To start the DRE Administration console:

1 Make sure the exteNd Director DRE is running.
On Windows, the exteNd Director DRE is invoked automatically when you start
your server. On UNIX, you must start the exteNd Director DRE manually, as
described in “Installing the exteNd Director Dynamic Reasoning Engine” on
page 21.

2 Invoke the DRE administrator using one of these methods:

From Do this

Windows Start
menu

Select Programs>Novell>exteNd Director 4.1>exteNd
Director DRE Administrator

Executable file Double-click autonomy\engine\DirectorDREadmin.exe
in your exteNd Director installation directory
114 exteNd Director Content Search Guide

srcDRE.html#SettingDREsearchoptions
srcDRE.html#ExaminingDREcontent
srcDRE.html#RestoringDREcontent

The DRE Administration console tries to connect with the DRE, then displays its
main Administration panel on your desktop:

Notice that there is a symbol in the upper-right panel that gives you an immediate
visual cue about the status of the DRE:

If the administrator cannot connect to the DRE, see Chapter 8, “Troubleshooting
the Conceptual Search Process”.

Symbol Means

DRE is running and has connected to the DRE Administration
console

DRE Administration console cannot connect to the DRE
exteNd Director Content Search Guide-115

Administering the Dynamic Reasoning Engine 115

Resetting the DRE
When you change configuration parameters, you must reset the DRE to reinitialize its
settings.

To reset the DRE:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Select the Advanced tab.
3 Click Reset DRE.

Removing content from the DRE
You can use the DRE Administration console to remove documents from the DRE or
to remove all content—including documents, terms, and probability weightings. After
removing any of these resources, you must reindex the remaining content into the DRE
before you can search the Content Management (CM) repository again. This section
describes the recommended procedures.

To remove documents from the DRE:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.
The console opens with the Administration tab selected.

2 Select a DRE database from the list in the Database Administration panel.
TIP: To specify the DRE database for the default CM repository, select
com.sssw.cm.Default.

3 Click Delete Documents from Database.
A confirmation window appears.

4 Click Yes to confirm the deletion.
5 Reindex your content into the DRE, as described in “Forcing indexing” on

page 99.

To remove all content from the DRE:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Select the Advanced tab.
3 Click Initialize DRE.
4 Reindex your contents into the DRE, as described in the section on how to force

indexing.
116 exteNd Director Content Search Guide

srcTroubleshooting.html#Forcingindexing
srcTroubleshooting.html#Forcingindexing

Testing queries
You can use the DRE Administration console to test your queries in isolation to
validate whether they return the expected results.

To test queries in the DRE Administration console:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Select the Query DRE tab.
The DRE Administration dialog opens with the Query DRE tab selected:

3 Make sure the DRE database you want to search appears in the Databases list.
By default, the Search subsystem designates com.sssw.cm.Default as the DRE
database to search.

4 Enter your search query in the text box next to the search symbol:
exteNd Director Content Search Guide-117

Administering the Dynamic Reasoning Engine 117

5 Click the Do Query button.
The query results appear in the results table at the bottom of the dialog.
 For more information about querying in the DRE Administration console,

click the Help button at the bottom of the dialog. To learn about supported query
types and how to construct queries, see Chapter 12, “Search Query Types” and
Chapter 6, “Querying Content and Metadata”.

Setting DRE search options
This section describes how to configure DRE settings in the exteNd Director DRE
Administration console.

To modify search options in the DRE Administration console:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Select the Administration tab if it is not already displayed:
118 exteNd Director Content Search Guide

Note that the DRE Administration console has successfully connected to the
DRE running on localhost at query port 2000, as indicated by the check mark
symbol:

3 Click Change DRE Settings.
The Change DRE Settings dialog opens:

4 Enter a new DRE host and/or query port and click OK.
The DRE Administration console attempts to connect to the DRE running on the
new host and/or port number. If the connection fails, the check mark symbol
changes to an alert symbol:

5 Propagate your changes to the exteNd Director environment using techniques
described in “Setting search options at design time” on page 37 and “Setting
search options in an existing exteNd Director project” on page 37.
exteNd Director Content Search Guide-119

Administering the Dynamic Reasoning Engine 119

Examining DRE content
This section explains how you can examine DRE content by creating a backup file
using the exteNd Director DRE Administration console.

To examine DRE contents by backing up the DRE:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Select the Advanced tab.
3 Specify a path to the file that will hold the backup data.

For example:
c:\Autonomy\backups\mybackup.idx

4 Click Backup Now! for the LOCAL IDX BACKUP.
The DRE administrator backs up DRE data in the IDX file you specified. You
can open the IDX file in a text editor to examine content, standard metadata, and
custom fields associated with each document that has been imported and indexed
in the DRE. Here is an excerpt from an IDX file showing information about one
document:

#DREENDDOC
#DREREFERENCE Production/Employee Classifieds/For Sale: Electric
Lawnmower
#DRETITLE
#DREFIELD summary=""
#DREFIELD CHECKSUM=""
#DREFIELD DREDOCTYPE=""
#DREFIELD BIAS=""
#DREFIELD AuthorTemplate=""
#DREFIELD AUTHOR="B. Greene"
#DREFIELD CONTENTSIZE="307"
#DREFIELD CREATED="1002060735000"
#DREFIELD DOCABSTRACT="Selling 5-year-old electric lawnmower."
#DREFIELD DOCID="07fce6f50a8e94ef39c96a8164ae0000"
#DREFIELD DOCNAME="For Sale: Electric Lawnmower"
#DREFIELD DOCTYPEID="07feb46c1d4e94d3561a6a8164ae0000"
#DREFIELD DOCTYPENAME="Employee Classified"
#DREFIELD EXPIRATIONDATE=""
#DREFIELD FOLDERID="07ffc46c1d4e94d3561a6a8164ae0000"
#DREFIELD LOCKEDBY="administrator"
#DREFIELD MIMETYPE="text/html"
#DREFIELD PARENTDOCID=""
#DREFIELD PUBLISHDATE=""
#DREFIELD PUBLISHSTATUS="1"
#DREFIELD REPOSITORYID=""
#DREFIELD STATUS=""
#DREFIELD SUBTITLE=""
#DREFIELD TITLE="Selling Electric Lawnmower"
#DREFIELD UPDATETIME=""
#DREFIELD UPDATEUSER=""
120 exteNd Director Content Search Guide

#DREDOCID 8
#DRESECTION 0
#DRETYPE TEXT
#DREDATE 1002060735
#DREDBNAME com.sssw.cm.Default
#DRESTORECONTENT y
#DRECONTENT
I'm selling my 5-year-old electric lawnmower. We recently moved
to a house with a much larger yard, so using the cord has become
problematic. Regrettably, we must revert to a gas-powered unit.
Our electric unit is in excellent condition and has never needed
any repairs. Asking $100.

TIP: You can restore DRE content from this backup IDX file, as described in “Restoring
DRE content” next.

Restoring DRE content
This section explains how you can restore DRE content from a backup IDX file.

To restore DRE content:

1 Start the Administration console, as described in “Starting the exteNd Director
DRE Administration console” on page 114.

2 Back up DRE content to an IDX file, as described in “Examining DRE content”
on page 120.

3 Select the Import-Index tab.
4 Click Add IDX Files.

An Open dialog appears.
5 Select your backup IDX file and click Open.

The IDX file is added to the list on the Import-Index panel in the DRE
administrator.

6 Select the IDX file from the list and click Index Into DRE now!.

Getting help on how to use the DRE Administration
console

Click the Help button at the bottom of the DRE Administration console to invoke
Autonomy online help.
exteNd Director Content Search Guide-121

Administering the Dynamic Reasoning Engine 121

122 exteNd Director Content Search Guide

IV
 Reference PART IV
Describes the options for configuring a conceptual search environment and the
types of queries you can implement

• Chapter 11, “Search Options Reference”
• Chapter 12, “Search Query Types”

11
 Search Options Reference Chapter 11
This chapter describes the search options you can configure in exteNd Director:

Copy document contents into the DRE?
Debug during import?
Enable link to the Search subsystem?
Importable file extensions
Importable MIME types
Index custom document metadata?
Index document content?
Index standard document metadata?
Index port
Install directory for binary document text filters
Name of DRE database
Name of DRE host
Number of deleted documents to batch up
Operations that trigger immediate synchronization
Query port
Support binary document formats?
Symbol for concatenating multivalue custom metadata values before indexing
Synchronization mode

 For background information, see Chapter 3, “Setting Search Options”.
125

Copy document contents into the DRE?
Indicates whether to copy document contents into the exteNd Director Dynamic
Reasoning Engine (DRE) when the document is imported and indexed.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Debug during import?
Indicates whether to dump document contents to the console as documents are indexed
for debugging purposes.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Tips Set method

com.sssw.cm.fetch.store.
content.repository name

false Set to false to avoid the
overhead of storing the same
information in two places: the
Content Management (CM)
repository and the DRE
database.

Set to true to allow you to
extract and back up document
content using the DRE
Administration console and
execute keyword searches.

IMPORTANT: This option must
be set to true to enable keyword
searching.

EbiDataFetcherDelegate.setStoreContent()

Key in config.xml Default Tips

com.sssw.cm.fetch.dump.imported.data false Set to true to get a greater degree of detail than tracing
CM and Search logs when documents are imported and
indexed.

Set to false to avoid performance overhead.
126 exteNd Director Content Search Guide

Enable link to the Search subsystem?
Indicates whether to activate Autonomy and Search subsystem interactions with the
CM subsystem—including importing, indexing, and searching.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Importable file extensions
Specifies the extensions of binary formats that you can import into the DRE.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Tips

com.sssw.cm.search.enable.repository name false Set to true to enable interaction between the CM
repository and the Search subsystem.

Set to false to disable all interactions between
Autonomy and the CM subsystem, including
conceptual search.

IMPORTANT: You must set the value to true to use
Autonomy and the Search subsystem.

Key in config.xml Default Tips

com.sssw.cm.fetch.extensions .html;.sgml;.xml;.txt;.rtf;.pdf;.xls;.xls;.ppt;.ppt The number and order of importable
extensions must match the number
and order of importable MIME types.
exteNd Director Content Search Guide-127

Search Options Reference 127

srcOptionsReference.html#ImportableMIMEtypes

Importable MIME types
Specifies the MIME types of binary formats that you can import and index in the DRE.
The following MIME types are supported:

Plain text
HTML
SGML
XML
Microsoft Word for Windows Version 3.x and higher
Microsoft Excel Version 3.x and higher
Microsoft PowerPoint Version 4 and higher
Adobe Acrobat PDF

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Index custom document metadata?
Indicates whether custom document metadata (extension metadata) field values should
be indexed. Custom metadata is application-specific information about content that
you define in the CM subsystem as fields in document types. Custom metadata helps
to categorize content, making it easier to search.

Key in config.xml Default Tips

com.sssw.cm.fetch.mime.types text/html;text/sgml;text/xml;text/plain;
application/msword;application/pdf;
application/msexcel;
application/xmsexcel;
application/powerpoint;
application/mspowerpoint

The number and order of importable
MIME types must match the number
and order of importable file
extensions.

Key in config.xml Default Tips Set method

com.sssw.cm.fetch.process.extn.
metadata.repository name

true Set to true to index
custom metadata.

Set to false to ignore
custom metadata and
index only standard
metadata and/or
content.

EbiDataFetcherDelegate.setProcessExtnMeta()
128 exteNd Director Content Search Guide

srcOptionsReference.html#Importablefileextensions
srcOptionsReference.html#Importablefileextensions

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Index document content?
Indicates whether document content should be indexed.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Index standard document metadata?
Indicates whether standard document metadata should be indexed. Standard metadata
is descriptive information about content that is automatically attached to every
document. Examples of standard metadata are title, author, and creation date.

Key in config.xml Default Tips Set method

com.sssw.cm.fetch.process.
content.repository name

true Set to true to index
document content.

Set to false to ignore
document content and index
only standard and/or custom
document metadata.

EbiDataFetcherDelegate.setProcessContent()

Key in config.xml Default Tips Set method

com.sssw.cm.fetch.process.
metadata.repository name

true Set to true to index document
standard metadata.

Set to false to ignore standard
document metadata and index
only document content and/or
custom document metadata.

EbiDataFetcherDelegate.setProcessMeta()
exteNd Director Content Search Guide-129

Search Options Reference 129

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Index port
Specifies the port number used by the DRE for indexing:

You can configure this option:

Using the DRE Administration console, as described in “Configuring the DRE
using the exteNd Director DRE Administration console” on page 37
When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39
In the DRE configuration file, as described in “Setting search options by
modifying the DRE configuration file” on page 40

Install directory for binary document text filters
Specifies where Autonomy OmniSlave binary document text filters are installed.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37

Key in config.xml Default Set method

com.sssw.cm.search.indexport.repository name 2001 EbiDataFetcherDelegate.setIndexPort()

Key in config.xml Default Tips

com.sssw.cm.fetch.binary.filters.dir C:\exteNd\exteNd Director\Autonomy
\OmniSlaves

Specify the directory where the
Autonomy OmniSlave technology is
installed
130 exteNd Director Content Search Guide

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Name of DRE database
Specifies the name of the DRE database that fetches documents from the Default CM
repository.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Name of DRE host
Specifies the host name or IP address of the DRE that fetches documents from the
default CM repository.

You can configure this option:

Using the DRE Administration console, as described in “Configuring the DRE
using the exteNd Director DRE Administration console” on page 37
When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Tips Set method

com.sssw.cm.search.repository.
Default

com.sssw.cm.
Default

If you override the
default, make sure all
search options that are
specified for this
database reflect the
new name.

EbiDataFetcherDelegate.setDestRepository()

Key in config.xml Default Set method

com.sssw.cm.search.host.Default localhost EbiDataFetcherDelegate.setHost()
exteNd Director Content Search Guide-131

Search Options Reference 131

Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Number of deleted documents to batch up
Specifies the number of deleted documents to batch up before removals are reflected
in the DRE.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Operations that trigger immediate synchronization
Specifies the operations on documents that trigger immediate synchronization to
reflect changes to metadata or content.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Tips

com.sssw.cm.search.synch.removes.batch.size.
repository name

100 This setting is relevant only if batch synchronization
is enabled (com.sssw.cm.search.synch.mode is set
to 1), as described in “Synchronization mode” on
page 134.

Key in config.xml Default Tips

com.sssw.cm.search.synch.docops.
repository name

add; update; remove; checkin;
checkout; publish; uncheckout;
unpublish; unlock; rollback

This setting is relevant only if immediate
synchronization is enabled
(com.sssw.cm.search.synch.mode is set to 0),
as described in “Synchronization mode” on
page 134.
132 exteNd Director Content Search Guide

Query port
Specifies the port number on which the DRE expects to receive queries.

You can configure this option:

Using the DRE Administration console, as described in “Configuring the DRE
using the exteNd Director DRE Administration console” on page 37
When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39
In the DRE configuration file, as described in “Setting search options by
modifying the DRE configuration file” on page 40

Support binary document formats?
Indicates whether to enable support for indexing documents in binary formats.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Set method

com.sssw.cm.search.queryport.repository name 2000 EbiDataFetcherDelegate.setQueryPort()

Key in config.xml Default Tips

com.sssw.cm.fetch.handle.binary.repository name true Set to true to index documents developed in
applications that produce binary formats, such as
Adobe Acrobat and Microsoft Word and
PowerPoint.

Set to false if you are indexing documents in text
formats only—including XML, HTML, and other
text documents.
exteNd Director Content Search Guide-133

Search Options Reference 133

Symbol for concatenating multivalue custom metadata
values before indexing

Specifies the delimiter symbol to use for concatenating multivalue custom metadata
values before they are indexed into the DRE. You must specify a delimiter, because
Autonomy does not support multivalue properties.

You can configure this option:

In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37
Using its Set method, as described in “Setting search options programmatically at
runtime” on page 39

Synchronization mode
Specifies how the DRE propagates changes to documents in the CM repository.

You can configure this option:

When you create your exteNd Director project, as described in “Setting search
options at design time” on page 37
In an existing project, as described in “Setting search options in an existing
exteNd Director project” on page 37

Key in config.xml Default Set method

com.sssw.cm.fetch.multivalue.delim.
repository name

/ EbiDataFetcherDelegate.setMultiValueDelim()

Key in config.xml Default Tips

com.sssw.cm.search.synch.mode.
repository name

0
(immediate
mode)

Set to 0 for immediate mode—Propagate changes as
soon as they occur. You can specify events to trigger
synchronization in this mode, as described in “Operations
that trigger immediate synchronization” on page 132.

Set to 1 for batch mode—Propagate changes as a
scheduled or periodic background task. You can specify
the number of deleted documents to batch up before
removals are reflected in the DRE, as described in
“Number of deleted documents to batch up” on page 132.
134 exteNd Director Content Search Guide

12
 Search Query Types Chapter 12
This chapter describes the types of Autonomy-based queries supported by the exteNd
Director Search subsystem and how to implement them.

The following queries are covered:

Boolean queries
Conceptual queries
Field queries
Fuzzy queries
Get-all queries
Keyword search
Proper name search
Proximity queries
Suggest similar documents
Thesaurus queries

 For background information, see Chapter 6, “Querying Content and Metadata”.

Boolean queries
Description A boolean query uses logical operators to refine search criteria.

Syntax word1+LOGICAL OPERATOR+word2+LOGICAL OPERATOR+word3+LOGICAL

OPERATOR+... wordN
135

This is the order of precedence of logical operators (in descending order):

1 NOT

2 AND, WNEAR, NEAR
3 OR, XOR, EOR

You can use parentheses to group operators and operands.

Examples
effect+recession+AND+economic+AND+slowdown+AND+consumer+AND+spending+OR
+buying

In this example parentheses are not needed, because AND has a higher precedence
than OR. To change the order of evaluation use parentheses, as in this example:

((effect+recession+AND+economic)+OR+(+slowdown+AND+consumer+AND+
spending))+OR+buying+OR+(effect+AND+economic+NOT+depression)

Implementation In the getComponentData() method of your exteNd Director component, set up the
boolean query like this:

...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set the query type to be "text"
query.setQueryType(query.QUERY_TYPE_TEXT);
// Specify the query
query.setText("effect+AND+recession+AND+economic+AND+slowdown+AND+c
onsumer+AND+spending+OR+buying");
...

Conceptual queries
Description A conceptual query returns content that is related by meaning and ranked by relevance

to the search criteria. The query string should be as specific as possible—usually a
paragraph or at least a sentence.

Syntax word1+word2+word3+... wordN

Example The+effect+of+the+recession+on+consumer+spending

Implementation In the getComponentData() method of your exteNd Director component, set up the
conceptual query like this:

...
// Instantiate a blank query object
136 exteNd Director Content Search Guide

com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "text"
query.setQueryType(query.QUERY_TYPE_TEXT);
// Specify the query
query.setText("The+effect+of+the+recession+on+consumer+spending");
...

Field queries
Description A field query allows you to search metadata in documents, or metadata and content in

a single method call. Metadata refers to standard metadata and/or custom metadata.
Before issuing a field query, make sure you configure your search environment to
specify the types of metadata you want to search—standard metadata and/or custom
metadata—as described in Chapter 3, “Setting Search Options”.

Syntax To specify the metadata to search, you must set up a field specifier list by calling the
method setFieldSpecList() on an object that implements the EbiQuery interface. If you
are searching more than one field, you must define a field boolean expression that
specifies how the fields should be searched, then pass this expression as the second
argument to setFieldSpecList(). If you are searching only one field, this argument
should be null.

Field specifier list The syntax for the field specifier list is:

fnameFieldname1=*value1*+fnameFieldname2=*value2*+...
fnameFieldnameN=*value3*

You can issue field queries using the names of standard or custom metadata fields, as
long as the metadata has been indexed.

Standard metadata field names are listed in DirectorDRE.cfg, located in:

exteNd Director installation directory\autonomy\engine

Field boolean expression The syntax for the field boolean expression is:

fnameFieldname1+LOGICAL OPERATOR+fnameFieldname2+LOGICAL
OPERATOR+... fnameFieldnameN

Logical operators can be the keywords AND, OR, and NOT.
exteNd Director Content Search Guide-137

Search Query Types 137

Example Suppose that in your Content Management (CM) repository you define a document
type called Research Study and a custom field called Topic. If you want to find all
research studies whose topic is Economy, follow these steps:

1 Define a field specifier list, as follows:
String fieldSpecList = "fnameDOCTYPENAME=*Research
Study*+fnameTopic=*Economy*";

2 Define a boolean expression to direct the search, as follows:
String fieldBooleanExpr = "fnameDOCTYPENAME+AND+fnameTopic";

3 Pass these two strings as arguments to the setFieldSpecList() method:
query.setFieldSpecList(fieldSpecList, fieldBooleanExpr);

Implementation In the getComponentData() method of your exteNd Director component, set up the
field query like this:

...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "text"
query.setQueryType(query.QUERY_TYPE_TEXT);
// Specify the query
query.setText("effect+recession+economic+slowdown+consumer+spending
");
// Provide field specifiers (to find research studies about the
// economy)
 String fieldSpecList = "fnameDOCTYPENAME=*Research
Study*+fnameTopic=*Economy*"
 String fieldBooleanExpr = "fnameDOCTYPENAME+AND+fnameTopic";
 query.setFieldSpecList(fieldSpecList, fieldBooleanExpr);
...

Notice that this example defines criteria for searching content (using the setText()
method) as well as criteria for searching metadata (using the setFieldSpecList()
method) in a single query expression. This is a powerful feature, because it allows you
to search both content and metadata with a single call to the runQuery() method.

Fuzzy queries
Description A fuzzy query tries to match terms even when they are misspelled.

Implementation Fuzzy queries are implemented in the same way as conceptual queries except that you
must define the query type to be fuzzy. In the getComponentData() method of your
exteNd Director component, set up the fuzzy query like this:

...
// Instantiate a blank query object
138 exteNd Director Content Search Guide

srcQueryTypes.html#Conceptualqueries

com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "fuzzy"
query.setQueryType(query.QUERY_TYPE_FUZZY);
// Specify the query
query.setText("The+efect+of+the+recession+on+consumer+spending");
...

Get-all queries
Description A get-all query returns all documents.

Implementation You do not specify query strings for get-all queries, but you must define the query type
to be get all. In the getComponentData() method of your exteNd Director component,
set up the get-all query like this:

...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "get all"
query.setQueryType(query.QUERY_TYPE_GETALL);
...

NOTE: The get-all query is provided for debugging purposes, but not recommended
for production use—because returning all documents can impact performance.

Keyword search
Description A traditional keyword search looks for occurrences of a search string.

Syntax word1:+word2:+word3:+... wordN:

Example effect:recession:+economic:+slowdown:+consumer:+spending:+buying:
exteNd Director Content Search Guide-139

Search Query Types 139

Implementation These are the steps for implementing keyword searches:

1 Make sure that content can be indexed and stored in the DRE, by enabling the
property com.sssw.cm.fetch.store.content.repository name in config.xml for
the CM subsystem.

For more information about where project files are located, see the section
on exteNd Director project structure in Developing exteNd Director Applications.
 For more information about this property, see “Copy document contents

into the DRE?” on page 126.
2 In the getComponentData() method of your exteNd Director component, set up

the keyword query like this:
...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "text"
query.setQueryType(query.QUERY_TYPE_TEXT);
// Specify the query
query.setText("effect:+recession:+consumer:+spending:+buying:")
;
...

Proper name search
Description As its name suggests, a proper name search looks for proper names.

Syntax ProperName1+ProperName2+ProperName3+... ProperNameN

Example Ralph+Waldo+Emerson

Implementation Proper name searches are implemented in the same way as conceptual queries, except
that you must define the query type to be a name search. In the getComponentData()
method of your exteNd Director component, set up the proper name search like this:

...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set query type to be "name search"
query.setQueryType(query.QUERY_TYPE_NAMESEARCH);
// Specify the query
query.setText("Ralph+Waldo+Emerson");
...
140 exteNd Director Content Search Guide

cdConfigServicesNew.html
srcOptionsReference.html#CopydocumentcontentsintotheDRE?

Proximity queries
Description A proximity query specifies that certain words in the query must occur close to each

other.

Syntax Put single quotes around the words that should occur close together.

word1+‘word2+word3’+... wordN

Example effect+recession+‘economic+slowdown’+‘consumer+spending’+‘consumer+

buying’

Usage In the getComponentData() method of your exteNd Director component, set up the
proximity query like this:

...
// Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();
// Set the query type to be "text"
query.setQueryType(query.QUERY_TYPE_TEXT);
// Specify the query
query.setText("effect+recession+‘economic+slowdown’+‘consumer+spend
ing’+‘consumer+buying’");
...

Suggest similar documents
Description A suggest-similar query tries to find documents similar to other documents that were

found to be relevant to your search criteria.

Syntax document-identifier1+document-identifier2+document-identifier3+...

document-identifierN

The document identifier is either the document ID assigned to the document by the
query engine (exteNd Director DRE) or its URL (DRE reference).

Example In the query expression, you can specify document identifiers as document IDs or
document URL references.

Implementation To implement the suggest-similar query, follow these steps:
exteNd Director Content Search Guide-141

Search Query Types 141

1 Set the query type to suggest, using the setQueryType() method.
2 Define suggest options, using the setSuggestOptions() method:

2a Indicate whether the document identifiers you specify in the query
expression should be treated as document IDs (generated by the DRE) or
document references.

2b Indicate whether the documents you specify in the query expression should
be included or excluded from the query results.

3 Construct the query expression.

In the getComponentData() method of your exteNd Director component, set up the
suggest similar query like this:

...
//Get the query engine delegate
EbiQueryEngineDelegate qe =
com.sssw.search.factory.EboFactory.getQueryEngineDelegate();

//Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();

query.selectAll();

//Set query type to "text" to get documents whose references
//or IDs can be passed on to the suggest-similar query
query.setQueryType(com.sssw.search.api.EbiQuery.QUERY_TYPE_TEXT);

//Set query string
query.setText("economic+recession+effects");

String ids = "";

//Search for documents that meet the original search criteria

try
{
 Iterator results = qe.runQuery(context, query, null,
false).iterator();

//Put together the list of engine document IDs that constitute
//the suggest-similar query

 boolean first = true;
 while (results.hasNext())
 {
 com.sssw.search.api.EbiQueryResult res =
(com.sssw.search.api.EbiQueryResult) results.next();
 String engineDocID =
res.getProperty(EbiQueryResult.PROP_ENGINE_DOC_ID);
 if (!first)
 ids += "+";
 else
 first = false;
142 exteNd Director Content Search Guide

 ids += engineDocID;
 }
}
catch (Exception e)
{
 if (m_log.isError())
 m_log.error(e);
}

if (!"".equals(ids))
{
 //Set query type to "suggest"
 query.setQueryType(EbiQuery.QUERY_TYPE_SUGGEST);
 query.setSuggestOptions(true, true);
 query.setText(ids);
 //Run the suggest-similar query
 Iterator results = qe.runQuery(context, query, null, false);
 …
}

In this example, the setSuggestOptions() method specifies that:

Identifiers in the query expression be interpreted as document IDs
Documents referenced in the query expression suggestQuery be excluded from
the query results

To use document URL references (instead of document IDs) in this example, modify
the following statements:

Change:
String engineDocID =
res.getProperty(EbiQueryResult.PROP_ENGINE_DOC_ID);

to:
String engineDocID =
res.getProperty(EbiQueryResult.PROP_ENGINE_DOC_REF);

Change:
query.setSuggestOptions(true, true);

to:
query.setSuggestOptions(false, true);
exteNd Director Content Search Guide-143

Search Query Types 143

Thesaurus queries
Description A thesaurus query analyzes not only the terms in the query expression, but also

associated terms (or synonyms) that you define in a separate thesaurus.

To issue a thesaurus query, you follow these basic steps:

1 Decide what terms you want to search for.
2 For each term, create a thesaurus document that contains synonyms or words you

want to associate with that term.
3 Construct your query expression.
4 Mark the query to run as a thesaurus query by calling the setIsThesaurusQuery()

method on an object that implements the EbiQuery interface.
5 Get a repository descriptor object for each thesaurus DRE you create.
6 Set thesaurus options by calling the setThesaurus() method on an EbiQuery

object.
7 Run the query.

Thesaurus DRE For each term you plan to search, you need to create a thesaurus DRE (Step 2 above).
This section explains how.

NOTE: This section is based on information adapted from the Autonomy Server 2.2
manual from Autonomy, Inc.

To create a thesaurus DRE:

1 Create a folder called ThesaurusDRE in the folder where the Autonomy
integration files are installed.
By default, the Autonomy integration files are stored in the exteNd Director
installation directory at:

exteNd Director\autonomy

2 Copy all files from the existing exteNd Director DRE to the ThesaurusDRE
folder.
These files are stored in the exteNd Director installation directory at:

exteNd Director\autonomy\engine

3 In the ThesaurusDRE folder, rename the following files:

Change this To this

DirectorDRE.exe ThesaurusDRE.exe

DirectorDREadmin.exe ThesaurusDREadmin.exe

DirectorDRE.cfg ThesaurusDRE.cfg
144 exteNd Director Content Search Guide

4 Edit ThesaurusDRE.cfg to point to different ports, as follows:

5 In your favorite text editor, create a thesaurus document.
The thesaurus document should contain a list of associated words, separated by
carriage returns, as in this example:

6 Save the thesaurus document.
7 Use the DRE Administration console to import and index your thesaurus

document in the thesaurus DRE. Follow these steps:
7a Double-click ThesaurusDRE.exe.
7b Connect the DRE Administration console to the thesaurus DRE by double-

clicking ThesaurusDREadmin.exe in the ThesaurusDRE folder.
Make sure the connection was successful by checking for the check mark
symbol on the DRE Administration console window:

7c Create a new DRE database by entering ThesaurusDB in the New Database
Name text box and clicking the Create New Database button.

7d If an alert box appears, click Yes to confirm that you want to create the
database.

7e Select the Import-Index tab.
7f Click the Import Files into IDX format button.

The Main Import Settings dialog opens.
7g Click the Add Files button.
7h Browse to your thesaurus document, select it, and click Open.

The thesaurus document should appear in the list of input files to import.

Change this To this

The QUERYPORT
setting

QUERYPORT=8000

The INDEXPORT setting INDEXPORT=8001
exteNd Director Content Search Guide-145

Search Query Types 145

7i Select ThesaurusDB as the destination database and click OK.
7j Click Yes to confirm that you want to add the thesaurus document’s IDX file

to the list of documents to index.
7k Click Index into DRE now! to index the thesaurus document.

Now you are ready to implement a thesaurus query.

Implementation In the getComponentData() method of your exteNd Director component, set up the
thesaurus query like this:

...
//Instantiate a blank query object
com.sssw.search.api.EbiQuery query =
com.sssw.search.factory.EboFactory.getQuery();

//Construct your query expression
query.setText("feline");

//Mark the query to run as a thesaurus query
query.setIsThesaurusQuery(true);

//Get a repository descriptor for the thesaurus DRE
EbiRepositoryDesc thesaurus =
com.sssw.search.factory.EboFactory.getRepositoryDesc("141.155.166.1
81", 8000, 8001, "ThesaurusDB");

//Set thesaurus options
query.setThesaurus(thesaurus);

//Run the query
Collection results = queryEngine.runQuery(context, query,
repositories, true);
...
146 exteNd Director Content Search Guide

Index
A
Autonomy

about 14
Administration console 37, 113
configuring 44
Java Native Interface (JNI) 24
testing queries 51, 101
see also search, Search subsystem

autonomyJNI.jar 24, 88

C
conceptual search

about 14
implementing in applications 43
see also search

Content Management subsystem
configuring search 44
searching content 50
search options in config.xml 37

D
delegates

using in searches 45
Director

 see Novell exteNd Director
documents

metadata, searching--SQL-based (code
example) 109

DRE
see Autonomy

Dynamic Reasoning Engine
see Autonomy

E
exteNd Director

 seeNovell exteNd Director

I
importing content

in multibyte character set (MBCS) format 78

K
keyword search

compared to conceptual 15

M
MBCS

importing for Autonomy-based conceptual
search 78

multibyte character set (MBCS)
importing for Autonomy-based conceptual

search 78

N
Novell exteNd Director applications

implementing conceptual search 43
Search API 44

P
Project Wizard

setting search options 37

Q
query types

boolean 135
conceptual 136
field 137
fuzzy 138
get all 139
keyword 139
proximity 141
suggest similar 141
thesaurus 144
exteNd Director Content Search Guide-147

147

S
search

conceptual 14
enabling 28
implementing in applications 43
multibyte character set (MBCS) 78
no results 88, 94
setting options in config.xml 37
setting options via API 39
subsystems required 27
testing queries in Autonomy 51, 101
troubleshooting techniques 97

Search API 44
Search subsystem

about 14
capabilities 15
configuring Autonomy 44
see also Autonomy

W
WebDAV client

limitations on metadata 51
exteNd Director Content Search Guide148

	About This Book
	About Searching

	Conceptual Search Concepts
	Configuring Your Environment for Conceptual Searching
	Installing the exteNd Director Dynamic Reasoning Engine
	Installing the DRE on Windows
	Installing the DRE on UNIX

	Adding the Autonomy Java Native Interface to your environment
	Adding autonomyJNI.jar to your application server classpath
	Adding the Autonomy dynamic library to your environment

	Determining your exteNd Director project configuration
	Creating the exteNd Director project
	Enabling conceptual search
	Setting security options
	Setting search options

	Setting Search Options
	About search options
	For more information

	A decision matrix
	How to modify search options
	Configuring the DRE using the exteNd Director DRE Administration console
	Setting search options at design time
	Setting search options in an existing exteNd Director project
	Setting search options programmatically at runtime
	Setting search options by modifying the DRE configuration file

	Implementing Conceptual Search
	Searching the CM repository: how the Search and Content Management APIs are integrated
	Searching data sources other than the CM repository
	The process flow for implementing conceptual searching
	Configuring your project and search environment
	Developing application resources
	Implementing search operations
	Programming practices
	Interacting with the CM repository
	Packaging application resources

	Building, archiving, and deploying your application
	Updating content in the CM repository
	Updating content in the CMS Administration Console
	Updating content using the CM API
	Creating and updating content in third-party applications

	Testing queries
	Troubleshooting the search application

	Fetching Content and Metadata
	About fetching
	The default fetcher
	Fetchers for custom data sources

	Implementing fetching in your applications
	Key fetcher classes and interfaces
	Fetcher methods
	Code example: fetching data

	Data fetcher descriptors
	Syntax
	Associating data fetchers with query result objects

	Querying Content and Metadata
	About querying
	Querying the CM repository
	Querying custom data sources

	Types of queries you can run
	Implementing querying for the CM repository
	Key classes and interfaces for querying the CM repository
	Methods for querying the CM repository
	Code example: issuing an Autonomy-based query against the CM repository

	Implementing querying for custom data sources
	Key query classes and interfaces for querying custom data sources
	Query methods
	Code example: issuing an Autonomy-based query against a custom data source

	Search query descriptors
	Advantages of using query descriptors
	Query type element
	Query options property
	Selected properties
	Example: defining a text query in XML
	Example: initializing a query object from an XML descriptor

	Sorting query results
	Sorting by date and then relevance
	Sorting field query results

	Configuring the Dynamic Reasoning Engine for Specialized Searching
	Searching for numbers
	Searching in other languages
	Importing MBCS and other binary formats
	Modifying language-specific configuration parameters
	Providing sentence-breaking files (optional)

	Troubleshooting the Conceptual Search Process
	Commonly encountered problems
	Unable to retrieve results exception
	Class not found exception for Autonomy JNI when accessing the Content Management (CM) subsystem
	UnsatisfiedLinkError for autonomyJNI.dll
	Search results become invalid after restarting the DRE service
	Documents do not appear to be indexed
	Queries return no results or too few results
	Document content does not appear to be stored in the DRE
	java.lang.Exception for Autonomy JNI when publishing documents on UNIX

	General debugging techniques
	Logging
	Examining exteNd Director DRE content
	Forcing indexing
	Getting the list of terms indexed for a document
	How to test queries

	SQL-Based Search Concepts
	Implementing SQL-Based Searching
	Logic flow for implementing SQL-based search
	Building the search criteria
	Using operators to match values against data
	Concatenating WHERE expressions
	Defining criteria for searching custom metadata

	Example: searching standard document metadata

	Tools
	Administering the Dynamic Reasoning Engine
	exteNd Director DRE Administration console functions
	Starting the exteNd Director DRE Administration console
	Resetting the DRE
	Removing content from the DRE
	Testing queries
	Setting DRE search options
	Examining DRE content
	Restoring DRE content
	Getting help on how to use the DRE Administration console

	Reference
	Search Options Reference
	Copy document contents into the DRE?
	Debug during import?
	Enable link to the Search subsystem?
	Importable file extensions
	Importable MIME types
	Index custom document metadata?
	Index document content?
	Index standard document metadata?
	Index port
	Install directory for binary document text filters
	Name of DRE database
	Name of DRE host
	Number of deleted documents to batch up
	Operations that trigger immediate synchronization
	Query port
	Support binary document formats?
	Symbol for concatenating multivalue custom metadata values before indexing
	Synchronization mode

	Search Query Types
	Boolean queries
	Conceptual queries
	Field queries
	Fuzzy queries
	Get-all queries
	Keyword search
	Proper name search
	Proximity queries
	Suggest similar documents
	Thesaurus queries

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

