
Novell
exteNd
Director
5.0 www.novell.com

RULES GUIDE

Legal Notices
Copyright © 2003 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher. This manual, and any portion
thereof, may not be copied without the express written permission of Novell, Inc.
Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation
to notify any person or entity of such revisions or changes.
Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the
right to makes changes to any and all parts of Novell software, at any time, without any obligation to notify any person or
entity of such changes.
Copyright © 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall
at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You shall not
remove any copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce
such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in
the Software.
Patent pending.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Director Rules Guide
December 2003

Online Documentation: To access the online documemntation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.
Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
Acrobat, Adaptive Server, Adobe, AIX, Autonomy, BEA, Cloudscape, DRE, Dreamweaver, EJB, HP-UX, IBM,
Informix, iPlanet, JASS, Java, JavaBeans, JavaMail, JavaServer Pages, JDBC, JNDI, JSP, J2EE, Linux, Macromedia,
Microsoft, MySQL, Navigator, Netscape, Netscape Certificate Server, Netscape Directory Server, Oracle, PowerPoint,
RSA, RSS, SPARC, SQL, SQL Server, Sun, Sybase, Symantec, UNIX, VeriSign, Windows, Windows NT
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.
4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Autonomy
Copyright ©1996-2000 Autonomy, Inc.
Title for Your Book 3

Castor
Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.
Redistribution and use of this software and associated documentation ("Software"), with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain copyright statements and notices. Redistributions must also contain a copy
of this document.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "ExoLab" must not be used to endorse or promote products derived from this Software without prior written
permission of Intalio Inc. For written permission, please contact info@exolab.org.
4. Products derived from this Software may not be called "Castor" nor may "Castor" appear in their names without prior
written permission of Intalio Inc. Exolab, Castor and Intalio are trademarks of Intalio Inc.
5. Due credit should be given to the ExoLab Project (http://www.exolab.org/).
THIS SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indiana University Extreme! Lab Software License
Version 1.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)."
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.
4. The names "Indiana University" and "Indiana University Extreme! Lab" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact
http://www.extreme.indiana.edu/.
5. Products derived from this software may not use "Indiana University" name nor may "Indiana University" appear in
their name, without prior written permission of the Indiana University.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that
follows these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org.
4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior
written permission from the JDOM Project Management (pm@jdom.org).
In addition, we request (but do not require) that you include in the end-user documentation provided with the
redistribution and/or in the software itself an acknowledgement equivalent to the following: "This product includes
software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

Sun
Sun Microsystems, Inc.
Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice,
SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual
Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

W3C
W3C® SOFTWARE NOTICE AND LICENSE
This work (and included software, documentation such as READMEs, or other related items) is being provided by the
copyright holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree that
you have read, understood, and will comply with the following terms and conditions.
Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any
purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the
software and documentation or portions thereof, including modifications:
1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software
Short Notice should be included (hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.
Title for Your Book 5

3. Notice of any changes or modifications to the files, including the date changes were made. (We recommend you provide
URIs to the location from which the code is derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.
The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software
without specific, written prior permission. Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Contents
About This Guide. 13

PART I CONCEPTS . 15
1 About Rules in exteNd Director . 17

Rules and the Rule subsystem . 17
The Rule subsystem. 17
What a rule is . 17
exteNd Director features for rules . 19
The Rule API . 20

Why use rules? . 20
Planning a rules-based application . 21

When to use rules. 21
Design guidelines . 22

2 How You Use Rules. 23
How rules work . 23

Basic process .23
Rule application components .24

Working with conditions and actions . 25
Using whiteboard values . 26
Accessing scoped paths .28

Accessing and firing rules . 28
Methods for firing rules . 29
Firing rules from the context object . 29
 Firing rules from a rule manager . 30
Firing rules from a JSP page .30
Firing temporary rules . 31

Handling the result of a rule . 32
Context methods for accessing HTTP response values . 32
Context methods for accessing the whiteboard . 33
Examples of handling return values . 33

Using pipelines . 35
Benefits of pipelines . 36
How pipelines work. 36
Validating a pipeline . 37

3 Developing Custom Conditions and Actions . 39
About custom conditions and actions . 39
Designing a condition or action . 40
Defining logic. 41

Defining logic for a condition .41
Defining logic for an action . 43
7

Defining a condition or action rule descriptor . 44
Defining properties . 45

Defining JavaBeans . 45
Defining runtime properties. 46
Using generic property panels . 49
Creating a custom property panel. 50
Writing a BeanInfo class . 51
Using resource bundles . 53

PART II TOOLS. 55
4 Rule and Macro Editors . 57

Accessing the Rule Editor . 57
About the rule tree view . 59
Naming a rule .59

Using conditions . 59
Editing and deleting conditions . 62
Deactivating a condition . 62

Using actions. 62
Editing and deleting actions . 64
Deactivating an action . 64

Using cases. 65
Adding case descriptions . 66
Using other case commands .66

Testing, editing, and saving rules . 67
Testing rules . 67
Saving and editing rules . 67

Working with condition and action macros . 68
Using condition macros . 68
Using action macros . 70

5 Condition and Action Wizards . 73
Using the Condition Wizard and Action Wizard. 73
Using Java templates to define custom conditions and actions . 75

Condition template . 75
Action template. 76
About the template methods. 77

Using condition and action properties . 79
Deploying custom conditions and actions . 80

Compiling the condition or action source code . 80
Deploying support files . 80

6 Pipeline and Binding Editors . 81
Basic steps of setting up a pipeline . 81
Creating and editing a pipeline . 82

Creating a pipeline . 82
Editing a pipeline .84
exteNd Director Rules Guide8

Binding rules to a user, group, or pipeline. 85
Creating a rule binding . 85
Editing a rule binding . 86

PART III REFERENCE. 87
7 Installed Actions . 89

Accessing condition and action sources . 89
Properties that support string templates . 90

!valueOf template . 90
Scoped path support . 90

Properties that support database drivers and URLs . 90
Alphabetical list of actions . 92

Add . 93
Add Eraser . 94
Calculate Age .94
Clear Request Data From Whiteboard . 95
Create Collection Of Objects From SQL. 95
Default . 96
Delete Cookie .96
Deny Access. 97
Display Component . 97
Display Cookies . 97
Display Request Headers . 97
Display Whiteboard . 98
Divide . 98
Drop Cookie User ID . 98
Fire Rule . 99
Flush. 99
Format Date . 99
Get Cookie Value . 100
Get User Property. 100
Log User Off . 100
Multiply . 100
Query . 101
Remove From Whiteboard . 101
Return As Decimal Format . 101
Return As Html Body . 102
Return As Html Bold . 103
Return As Html Break . 103
Return As Html Checkbox . 104
Return As Html File Upload . 104
Return As Html Hidden Field . 105
Return As Html JavaScript . 106
Return As Html Option List . 106
Return As Html Password. 107
Return As Html Radio Button . 108
exteNd Director Rules Guide-9

Contents 9

Return As Html Reset Button . 109
Return As Html Scripted Button . 109
Return As Html Submit Button . 110
Return As Html Table . 111
Return As Html Text Area. 112
Return As Html Text Field. 112
Return As XML . 113
Return Authentication Required . 115
Return False . 115
Return Response . 115
Return Response With Default . 115
Return True . 116
Save Cookies To Whiteboard . 116
Save Form Get Data To Whiteboard . 116
Save Request Data To Whiteboard . 116
Save To Whiteboard .117
Send Mailer SMTP .117
Set Component Parameter . 118
Set Cookie Value . 118
Set Date On Whiteboard. 119
Set Expired . 119
Set Next Activity . 120
Set Pipeline Status . 120
Set Response Header . 120
Set Response Status .121
Set User Property . 121
Set Workitem Priority . 121
Set Workitem Value . 122
SQL Hierarchy . 122
SQL String . 122
Stop Rule Processing . 123
Subtract . 123

8 Installed Conditions . 125
Alphabetical list of conditions . 125

Check Component Parameter . 126
Check Date. 126
Check Date Within Range . 127
Check Day . 127
Check For Cookie. 128
Check Month . 128
Check Request Data . 128
Check Time . 128
Check User. 129
Check User Group . 129
Check User Property .130
Check Whiteboard . 130
exteNd Director Rules Guide10

Check Whiteboard Value . 131
Check Whiteboard Value Is Empty . 131
Check Workitem Value . 131
Default . 132
Is Form Get Data Available. 132
Is New Session. 132
Save Cookies To Whiteboard . 132
Save Form Get Data To Whiteboard . 132
Save Request Data To Whiteboard . 133
Set Action Off . 133
Set Action On . 133
Set Action On Or Off. 133
PSQL Check For Column . 133
SQL String . 134

9 Rule JSP Tag Library . 135
doAction . 136
doCondition . 137
conditionalRule . 138
fireRule . 139
exteNd Director Rules Guide-11

Contents 11

exteNd Director Rules Guide12

About This Book
Purpose

This book shows how to use the Rule subsystem to create and use rules in your Novell®
exteNd Director™ applications.

Audience

This book is for Java developers.

Prerequisites

This book assumes you are familiar with Java programming, XML, and developing
Web applications.

Organization

Here’s a summary of the contents of the book:

Part and chapter Description

PART I: Concepts

1 About Rules in exteNd
Director

Provides an overview of the Rule subsystem
and how to design rule-based applications

2 How You Use Rules Describes how rules work and how to use and
deploy rules and pipelines in exteNd Director
applications

3 Developing Custom
Conditions and Actions

Describes how to write your own classes for
special-purpose conditions and actions
13

PART II: Tools

4 Rule and Macro Editors Describes how to use the exteNd Director Rule
Editor and the Condition and Action Macro
Editors

5 Condition and Action
Wizards

Describes how to write custom conditions and
actions using the exteNd Director Condition
Wizard and Action Wizards

6 Pipeline and Binding
Editors

Describes how to use the exteNd Director
Pipeline Editor and Pipeline Binders

PART III: Reference

7 Installed Actions Describes how to use the installed actions for
creating rules in the exteNd Director Rule Editor

8 Installed Conditions Describes how to use the installed conditions
for creating rules in the exteNd Director Rule
Editor

9 Rule JSP Tag Library Describes how to use the custom JSP tags to
call methods in the Rule subsystem API

Part and chapter Description
14 exteNd Director Rules Guide

I
 Concepts PART I
Provides an overview of rules and the fundamentals of how to develop
rule-based applications

• Chapter 1, “About Rules in exteNd Director”
• Chapter 2, “How You Use Rules”
• Chapter 3, “Developing Custom Conditions and Actions”

1
 About Rules in exteNd Director Chapter 1
This chapter provides an overview of exteNd Director’s Rule subsystem and describes
some of the benefits of developing rules-based applications. It has these sections:

Rules and the Rule subsystem
Why use rules?
Planning a rules-based application

Rules and the Rule subsystem
Typically, exteNd Director applications fire rules at crucial points in their logic flows
to make application decisions. A rule can perform virtually any programming task.
You can handle the result in your portlet code, or you can let the rule handle processing
outside the scope of your application.

The Rule subsystem
The Rule subsystem provides a Java API and tool support for creating flexible,
reusable logic for your exteNd Director applications.

What a rule is
A rule is a combination of conditions and actions that return a value. The basic formula
for a rule is: if a condition or group of conditions are true, the associated action or
actions are executed. Rule structure is based on the case statement, a standard construct
in many programming languages. You create rules using exteNd Director’s Rule
Editor, which provides a user interface for building the rule logic.
17

Basic rule structure Every rule consists of at least one decision node (case) that
has at least these two sections:

The When section contains one or more conditions. You select the conditions
and specify how the results of individual conditions are combined using AND
and OR operators.
The Do section contains one or more actions that you select. It is executed when
the When section evaluates to true. You can also insert decision nodes within an
action, which are evaluated as nested rules.

A final Otherwise Do section is optional. It specifies default actions for the rule that
are executed when none of the decision nodes are true.

For example, a rule with one case and a default section has this format:

When {condition group is true}
Do {actions}

Otherwise Do {actions}

Here’s what it looks like in the Rule Editor:
18 exteNd Director Rules Guide

Nested logic Logic can be nested within rules by adding child nodes to a parent
node, and as with standard case statements, you can control the flow of processing
using break and continue statements:

exteNd Director features for rules
Here are the rule-based components you can create in the exteNd Director
development environment:

For information about the Rule and Macro Editors, see Chapter 4, “Rule and
Macro Editors”.

Feature Description

Conditions and
actions

Conditions and actions are prebuilt, reusable JavaBeans with
properties you can set in the Rule Editor. exteNd Director
supplies an installed set of general-purpose conditions and
actions. You can also create your own custom versions.

Macros A macro is a series of conditions or actions that can be
combined for reuse. For example, a condition macro could be: if
today is a weekday, and the time is between 9 a.m. and 5 p.m.,
and this is not November.

Pipelines A pipeline is a series of rules that you can set up in the Rule
Editor and execute in your applications. Pipelines can be bound
to users and groups, or to any named pipeline you define.
exteNd Director Rules Guide-19

About Rules in exteNd Director 19

The Rule API
After you define rules in the Rule Editor, you can access them in your applications
using the Rule API. The API includes a rule manager and a context object for firing
rules and accessing session data. There are also implementation classes for defining
custom conditions and actions.

For more information, see the com.sssw.re packages in the API online help.

Why use rules?
As an application developer, you might ask: why use rules? Why not just code the logic
directly in my application? From the application development and deployment
standpoint, rules provide several advantages:

Benefit of rules Details

Easy to create and use The Rule Editor provides a set of general-purpose
conditions and actions that can address many
application needs. Using a point-and-click interface, you
can combine conditions and actions in flexible ways to
create different types of rules. You also have access to
runtime properties (such as userID), and you can easily
store, retrieve, and evaluate your own session values
using the whiteboard feature.

exteNd Director API methods make it easy to fire rules
and build logic by exchanging information between rules
and application code.

Have encapsulated
logic

Rules contribute toward the goal of making applications
modular. You can enhance code maintenance, for
example, by separating business logic in rules and
handling presentation in your application code.

Also, depending on your application design, this
separation of functions allows nonprogrammers such as
business analysts to reconfigure logic without adversely
affecting the underlying application code.
20 exteNd Director Rules Guide

Planning a rules-based application
Because rules are flexible and provide many implementation options, you need to
carefully plan how and when to use them in your applications. Your most fundamental
decision is whether to implement your business logic in rules rather than directly in
your application code.

When to use rules
Here are criteria to consider:

Reusable and
extendable

Conditions and actions can be reused to create different
rules for different purposes, or the rules themselves can
be reused in the same application or across
applications. For example, you might use the same set
of rules with different properties to be executed when
users in different groups log in to an application, or you
might have some unique rules for each group, with
some overlapping rules.

Because conditions and actions are implemented as
JavaBeans, they are easily extensible. The Rule
subsystem provides complete support for JavaBeans,
including built-in constructs that facilitate creating your
own custom conditions and actions.

Interoperable with other
exteNd Director
subsystems

Rules can easily be integrated with other exteNd
Director subsystems. For example, you can use rules:

To control access to documents in the Content
Management subsystem

To define routing logic in a Workflow application

For user profiling in exteNd Director applications

If logic Then use

May be shared in different parts of an application

Can be used in multiple applications

Data or criteria change frequently

Can be updated by nonprogrammers

Rules

Benefit of rules Details
exteNd Director Rules Guide-21

About Rules in exteNd Director 21

Design guidelines
Here are some guidelines for designing a rules-based application:

Has a narrow application

Data or criteria change rarely

Must be isolated for a specific scenario

Must be controlled by programmers

Direct Java code

Guideline Details

Determine what business
logic can be encapsulated in
rules and what needs to be
handled by the application
itself

This will vary with requirements. As a general
principle, the more logic you can encapsulate in
rules, the more reusable your code will be.

Create a detailed design
specification that defines
what each rule does

The design document should include the following:

The condition or set of conditions (condition
node) that determine an action. For example,
WHEN the current user belongs to the
administrator group AND today is a weekday.

The action or actions taken when the condition is
true or false. For example: if the condition node
is true, return true AND return an HTTP
response phrase to the caller. OTHERWISE
return false AND return a different response
phrase.

How the application that fires the rule should
respond to the result of the action. For example:
if the action is true, display the response AND
increment a log; if the action is FALSE, display
the response and send an e-mail. In some
cases, the rule may not respond at all.

If logic Then use
22 exteNd Director Rules Guide

2
 How You Use Rules Chapter 2
This chapter describes how you use rules in your applications. It has these sections:

How rules work
Working with conditions and actions
Accessing and firing rules
Handling the result of a rule
Using pipelines

How rules work
As stated in the first chapter, a rule is a combination of conditions and actions that
return a value. You define rules in the exteNd Director Rule Editor, and then access
rules and handle the results in your exteNd Director application code.

Basic process
Using rules is a three-step process:

1 In the Rule Editor, you create a rule by selecting conditions and actions and
setting their properties. For example, you might select the CheckDay condition
and set the property to When today is Thursday, then select the
ReturnResponsePhrase action and enter an appropriate phrase.

2 From the appropriate point in your application code, you fire the rule using one
of the available methods. For example:

fireRule(Thursdays)
23

3 You handle the result of the rule in your application. For example, if the rule
returns a certain response phrase when today is Thursday and another phrase
otherwise, you set the result in your application.

Rule application components
These are the components for building rules:

Component Description

EbiContext EbiContext provides access to the whiteboard and has
methods for firing rules, validating pipelines, and handling
rule results.

EbiRuleManager EbiRuleManager provides alternative methods for firing rules
and accessing rules associated with rule owners. Owners,
defined in the Rule Editor, allow you to organize rules by
application or other criteria.

Rule A rule defines a set of conditions and actions that you
configure in the Rule Editor. The rule definition is saved as an
XML descriptor, which is used by the Rule subsystem to
execute rules and return a value to the caller.

Conditions and
actions

Conditions and actions are Java classes (typically
JavaBeans) with properties you can set using the Rule Editor.
These properties can include session and object values
accessed from the whiteboard.

Whiteboard The whiteboard is an area where session values and
specified objects can be stored. The whiteboard is accessed
from EbiContext (the context object).
24 exteNd Director Rules Guide

Working with conditions and actions
You use the exteNd Director’s Rule Editor to create rules by selecting installed
(prebuilt) conditions and actions.

NOTE: Before creating rules, you should become familiar with the Rule Editor. For
more information, see Chapter 4, “Rule and Macro Editors”.

There are several ways you can set up your business logic. Some setup can be done in
the rule itself, and other setup needs to be done in application code before the
application fires the rule. Here are some techniques for using the installed conditions
and actions to set up values and build results:

For details about these and other installed conditions and actions, see Chapter 8,
“Installed Conditions” and Chapter 7, “Installed Actions”.

Technique How to implement it

Getting, setting,
and removing
whiteboard
values

Use one of the several Save To Whiteboard conditions or
actions. The data on the whiteboard is then available to
other conditions and actions via !valueOf templates.

Check whether a whiteboard key exists (Check
Whiteboard condition) and if not, use Save To Whiteboard
to create it.

Saving cookies
on the client

Check for the existence of a cookie with the Check For
Cookie condition.

Use the Save Cookies To Whiteboard action to make
cookies available as whiteboard keys.

Use the Set Cookie Value action to create cookies that the
application or rule needs.

Building a
response phrase

Use the several Return Response and Return HTML
actions to put data in the response phrase.

Select the Append check box (when available in an action
property sheet) to incrementally build a response from
several actions.

Setting response
status

Use the Return True, Return False, or Set Response
Status action.
exteNd Director Rules Guide-25

How You Use Rules 25

Using whiteboard values
An exteNd Director session includes a whiteboard where you can store values needed
for your business logic. You give each whiteboard value a key that you use to retrieve
the value. You can access the whiteboard from installed conditions and actions in the
Rule Editor as well as from your application code. Whiteboard values are accessed in
a condition or action property sheet in the Rule Editor.

Using the !valueOf template

For some properties, you can either enter the actual value or specify a whiteboard key
that holds the value. You can also specify a key that holds the name of another key.

In the Rule Editor, if a condition or action property has a caret (^) as part of its name,
you can use the special code !valueOf.whiteboardkey, where whiteboardkey is
the name of the key whose value you want. The rule substitutes the key’s value for the
special code.

To specify a whiteboard key, use this format:

!valueOf.keyname

where keyname is a key that exists on the whiteboard when the application runs the
rule.

NOTE: keyname is case sensitive.

Using built-in whiteboard values

There are several built-in constants you can use like whiteboard keys in !valueOf
expressions. They provide information about the logged-in user, the rule that is being
run, and the current date and time:

Constant Description

userID The ID for the user logged in to the application. If the user is not
logged in, the userID is anonymous. If the user’s session times out,
the userID reverts to anonymous.

today The current date. The value is returned as a string using the date
format appropriate for the user’s locale.

now The current time as a number, returned as a string. The time value is
the difference (measured in milliseconds) between the current time
and midnight on January 1, 1970 UTC (Coordinated Universal
Time).

response The text stored in the response phrase of the context object. Many
rule actions assign a value to the response phrase.
26 exteNd Director Rules Guide

Example of !valueOf

In the following panel, the ReturnResponseWithDefault action has a Default property
for a message to the user. In the message you can refer to values on the whiteboard.
This sample text uses the system whiteboard value userID and a key called appname,
created by the application:

The current user !valueOf.userID is authorized to get more data
from the application !valueOf.appname.

Accessing object attributes from the whiteboard

If an item on the whiteboard is a programming object rather than plain text, you can
access any attributes (instance variables) associated with the object. You can refer to
object attributes on the whiteboard with this format:

!valueOf.whiteboardkey^attributename

For example, if your application puts an EbiUser object on the whiteboard, you can get
the user’s last name this way:

!valueOf.myUser^lastName

ruleID The ID of the rule currently being run.

ruleDesc The description of the rule currently being run.

uri A reference to the content currently set in the browser.

Constant Description
exteNd Director Rules Guide-27

How You Use Rules 27

Accessing whiteboard values

The context object provides several methods for accessing values stored on the
whiteboard.

For more information, see “Context methods for accessing the whiteboard” on
page 33.

Removing values from the whiteboard

You can use an eraser to remove a whiteboard key at a designated time or after a
specified number of accesses. An eraser has the same name as the whiteboard key it
will erase. You can use the installed actions AddEraser and RemoveEraser to
manage erasers. You can also access eraser methods from the
com.sssw.fw.api.EbiWhiteboard class.

Accessing scoped paths
The ^ template field in conditions and actions also supports substitution syntax for
scoped paths. Scoped paths allow you to access different types of data in your exteNd
Director applications, such as documents in the resource set and the Content
Management subsystem.

You can specify a scoped path using this format:

${spath}

For more information, see the chapter on working with scoped paths and XPaths
in Developing exteNd Director Applications.

Accessing and firing rules
When you fire a rule, the Rule subsystem evaluates the conditions for a decision node
(the When section in the Rule Editor) and if true, executes the node’s actions (Do
section). If no decision node evaluates to true, the Rule subsystem executes the default
actions (Otherwise Do section— if any. The result of the action is then returned to the
application.

NOTE: You can fire rules from an EbiContext object or from an EbiRuleManager. The
rule manager provides additional methods for firing and accessing rules and is the
recommended implementation for applications that use rules extensively.
28 exteNd Director Rules Guide

cdScopedPaths.html

Methods for firing rules
Here are the context and rule manager methods for firing rules:

Firing rules from the context object
Typically, you fire rules from an exteNd Director portlet or a JSP page. First you need
to instantiate a rule context object using this method:

public static EbiContext createEbiContext(HttpServletRequest
 request, HttpServletResponse response, ServletContext
 servletContext)
throws EboFactoryException

You can get the request and response objects from an EbiContext object, which you can
instantiate using another factory method.

Here is sample code showing how to fire a rule from a portlet’s doView() method;
where myapp is the (optional) rule owner and access rule is the rule ID:

public void doView(RenderRequest req, RenderResponse res) {
 try{
// get an EbiContext from the RenderRequest
 com.sssw.fw.api.EbiContext context =
 com.sssw.fw.factory.EboFactory.createEbiContext(req, res,

Method In class When to use

fireRule() EbiContext

EbiRuleManager

When you have defined and saved a
rule in the Rule Editor.

fireTemporaryRule() EbiContext

EbiRuleManager

When you have a rule definition as an
XML string. This allows you to fire a rule
by providing the entire XML rule
definition, rather than a rule ID defined
in the Rule Editor in exteNd Director.

See “Firing temporary rules” on
page 31.

isTrue() EbiRuleManager When a rule defined in exteNd Director
sets the response status to a true or
false value. The isFalse() method fires
the specified rule and reports whether
the rule returned a true value.

isFalse() EbiRuleManager When a rule defined in exteNd Director
sets the response status to a true or
false value. The isFalse() method fires
the specified rule and reports whether
the rule returned a false value.
exteNd Director Rules Guide-29

How You Use Rules 29

 GenericPortlet.getPortletContext());
// Get the rule context
 reContext = com.sssw.re.factory.EboFactory.createEbiContext(
 context);
// Fire the rule
 reContext.fireRule("myapp.accessRule");
// handle the result...
// Catch excepions ...

 Firing rules from a rule manager
A rule manager allows you to fire rules without specifying the owner each time. You
can invoke a rule manager for a particular owner and fire rules by specifying the rule
ID.

This code instantiates a rule manager in a portlet:

public void doView(RenderRequest req, RenderResponse res) {
 try{
 {
 // If a rule owner exicts
 EbiRuleManager rm = com.sssw.re.factory.EboFactory.
 createRuleManager("myapp");
 /** For rules with no owner
 EbiRuleManager rm =
 com.sssw.re.factory.EboFactory.createRuleManager();
 */
 // get an EbiContext from the RenderRequest
 com.sssw.fw.api.EbiContext context =
 com.sssw.fw.factory.EboFactory.createEbiContext(req, res,
 GenericPortlet.getPortletContext());
// Get the rule context
 reContext = com.sssw.re.factory.EboFactory.createEbiContext(
 context);
 rm.fireRule(“myRule”, reContext);
// handle the result...
// Catch excepions ...

NOTE: Regardless of the owner you used to instantiate a rule manager, you can fire
any rule as you would from the context object by specifying an owner:

rm.fireRule("secondApp.contentRule", reContext);

Firing rules from a JSP page
You can also get a rule manager directly from a JSP page or a servlet. In this case you
need to get a class that extends HttpServlet and call getServletContext(). Then you can
get the rule manager and fire the rule the same way you would from a portlet:

public class reTester extends HttpServlet
{

30 exteNd Director Rules Guide

 ServletContext m_servletContext = null;
 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);
 // Initialize any instance variables...
 m_servletContext = config.getServletContext();
 }
 // Create a rule manager and fire the rule
 EbiRuleManager rm = com.sssw.re.factory.EboFactory.
 createRuleManager();
 com.sssw.re.api.EbiContext ctx =
 com.sssw.re.factory.EboFactory.createEbiContext(
 m_servletContext.getEbiRequest().getHttpServletRequest(),
 m_servletContext.getEbiResponse().getHttpServletResponse(),
 m_servletContext.getServletContext());
 rm.fireRule(myRule, ctx);

Firing temporary rules
Typically you define rules in the exteNd Director Rule Editor, where they are saved to
a known location in your exteNd Director project resource set. This is what allows you
to reference rules by rule name. Temporary rules are XML strings that can be
referenced directly. You can get the XML for a rule by defining it in the Rule Editor and
exporting the XML using EbiRuleManager.toXMLString().

Here is how you fire a temporary rule from the rule context object:

string xmlrule =...;
reContext.fireTemporarayRule(xmlrule);

Here is how you fire a temporary rule from the rule manager:

rm.fireTemporaryRule(xmlrule, reContext);
exteNd Director Rules Guide-31

How You Use Rules 31

Handling the result of a rule
This section describes methods you can use to handle HTTP response values and
whiteboard values returned from a rule, and includes some code examples.

Context methods for accessing HTTP response values
This table lists the methods available on the rule EbiContext to handle HTTP response
values:

Accessor method Usage

get/setResponsePhrase() Accesses an HTTP response phrase. A response
phrase can be used to pass data between an action
and the application code.

Typically, actions set a response phrase by calling
setResponsePhrase(); the application code can then
retrieve the data by calling getResponsePhrase().
When your action sets a response phrase, it should
also set a response type by calling the
setResponseType() method.

get/setResponseStatus() Accesses an HTTP response status code. A response
status code tells the calling object the status of the
return value. For example, the action Return True
returns the status code 200. Return False returns 412.
HTTP status codes are defined in EbiResponse.

Typically, actions set the status code by calling
setResponseStatus(); the application code calls
getResponseStatus() to retrieve the code.

NOTE: If a rule action returns true or false, use the
isTrue() or isFalse() method to fire the rule. For more
information, see “Methods for firing rules” on page 29.

get/setResponseType() Accesses the type of value associated with the
response phrase. Response types are defined in
EbiResponse as CONTENT, HTML, TEXT, and URL.
32 exteNd Director Rules Guide

Context methods for accessing the whiteboard
This table lists some EbiContext methods to store and retrieve session and object
values from the whiteboard.

Examples of handling return values
This section provides some code examples for handling values returned by rules in
your application code.

Example of a rule that returns a boolean

This code shows a portlet that fires a rule called bonus whose owner is sample.

The bonus is based on this rule: “If today is a weekday, display the value the bonus is
$100,000; otherwise, display $1.”

Method Description

get/setValue() Gets the object associated with a specified whiteboard
key. Use these methods for values that need to persist
during the session.

get/setTemporaryValue() Gets the object associated with a specified whiteboard
key. Use these methods for values that do not need to
persist beyond the initiating request.

get/setValueNames() Gets an array of the whiteboard keys that are defined in
the session.

hasValue() Checks whether the specified key has a value on the
whiteboard.

merge() Processes text that contains !valueOf expressions. The
merge() method finds !valueOf expressions in the
passed template, gets the keyname associated with it,
and gets the value of that key from the whiteboard.

removeValue() Removes a value associated with the specified key
from the whiteboard.

removeValues() Removes all values and their keys from the whiteboard.
exteNd Director Rules Guide-33

How You Use Rules 33

The rule’s actions return true or false by setting the response status to 200 for true and
412 for false. The code determines what to do with those results:

public void doView(RenderRequest req, RenderResponse res) {
 try {
 //get the context
 com.sssw.fw.api.EbiContext context =
 com.sssw.fw.factory.EboFactory.createEbiContext(req,
 res, GenericPortlet.getPortletContext());
 // Get the rule manager
 EbiRuleManager rm =
 com.sssw.re.factory.EboFactory.createRuleManager("sample");
 // Get the rule context
 com.sssw.re.api.EbiContext reContext =
 com.sssw.re.factory.EboFactory.createEbiContext(context);
 // nitialize bonus
 Double bonusAmount = null;

 // Fire rule to determine bonus.
 if (rm.ruleExists("bonus"))
 {
 if (rm.isTrue("bonus", reContext))

bonusAmount = new Double(100000.00);
 else

bonusAmount = new Double(1.00);
 }

 else
 bonusAmount = new Double(0.00);

 }
catch (Exception e)
 {
 // ..exception handling ...
 }
}

Example of a rule that returns data

Building on the preceding example, suppose the rule returns a bonus amount instead of
true or false. Both the Do and Otherwise Do actions are ReturnContentFromData,
rather than ReturnTrue and ReturnFalse. Do gets the value bonus1 and Otherwise Do
gets bonus2 from the whiteboard. The selected action returns the value as a response
phrase, which is available from the context object.

Before firing the rule, you must get the values (from a company database, for example)
and call EbiContext.setValue() to set the values for the whiteboard keys bonus1 and
bonus2 in this user’s session:

String bonusString = "0";
Double bonusAmount = null;

// Get a rule manager and context objects.
EbiRuleManager rm = com.sssw.re.factory.EboFactory.
34 exteNd Director Rules Guide

 createRuleManager();
com.sssw.fw.api.EbiContext context =
 com.sssw.fw.factory.EboFactory.createEbiContext(req,
 res, GenericPortlet.getPortletContext());
com.sssw.re.api.EbiContext reContext =
 com.sssw.re.factory.EboFactory.createEbiContext(context);

// Fire rule to determine bonus.
if (rm.ruleExists("bonus"))
{

context.setValue("bonus1", ...); // retrieve value from db
context.setValue("bonus2", ...); // retrieve value from db
rm.fireRule("bonus", reContext);
bonusString = context.getResponsePhrase();
bonusAmount = Double.valueOf(bonusString);

}

Example of a rule that uses a whiteboard value

Again using the bonus example, suppose instead that the bonus value is set in the Rule
Editor. The Do and Otherwise Do sections both use the installed action Return
Response, where the bonus amounts are specified:

String bonusString = "0";
Double bonusAmount = null;

// Get a rule manager and context objects as shown
// in previous example.

// Fire rule to determine bonus.
if (rm.ruleExists("bonus"))
{

rm.fireRule("bonus", reContext);
bonusString = context.getResponsePhrase();
bonusAmount = Double.valueOf(bonusString);

Using pipelines
A pipeline is a mechanism for binding a rule or set of rules to a known user or group,
or for firing a set of rules in a specified order as a unit.

You set up a pipeline using exteNd Director’s Pipeline and Binding Editors.

For information about setting up pipelines in exteNd Director, see Chapter 6,
“Pipeline and Binding Editors”.
exteNd Director Rules Guide-35

How You Use Rules 35

Benefits of pipelines
Pipelines enhance the power of rules by providing a higher level of logical
encapsulation and reusability, while maintaining the benefits of tool-based
maintenance and the hot deployment capability. Here is a summary of some of the
benefits:

How pipelines work
When you create a pipeline, you can associate it with one or more binders, of which
there are three types:

Benefit of pipelines Details

Easy to organize
and maintain
complex logic

Pipelines are especially useful for applications with complex
logic that depends on one or more top-level conditions. This
is especially relevant with user and group bindings.

For example, a corporate Web site might be driven primarily
by user or organizational group. You might have rules that
stop processing under certain conditions, or whose actions
fire other rules under other conditions. It would be much
easier to maintain this kind of logic in a single pipeline,
especially if the logic needs to be updated frequently.

Enhanced
separation of logic
and presentation

When you validate a pipeline, the application does not need
to know what rules will be fired—only what value will be
returned.

For example, you can avoid firing rules in case statements
and let the pipeline handle this higher-level logic. This
means you can push more of your business logic out of your
portlet or JSP page, which can be used to handle
presentation.

Enhanced rule
reusability

Pipelines are reusable, just like rules. You might have two or
more applications that share logic that can be built into
pipelines.

Binder type When to use

User To fire rules associated with a specified user. The rules will fire only
when this user is in the application session.

Group To fire rules associated with a specified group. The rules will fire only
when a member of this group is in the application session.

Pipeline To fire rules associated with the specified pipeline.
36 exteNd Director Rules Guide

Here is how a pipeline is processed:

After you create a pipeline, you use the appropriate Binding Editor to select a rule or
rules and specify the order in which you want them to fire. Then you use the validate()
method to execute the pipeline in your application code. You handle the result of the
pipeline the same way you handle the result of a rule.

For more information, see “Handling the result of a rule” on page 32.

Validating a pipeline
Firing the rules in a pipeline is called validating the pipeline. You use the validate()
method on the EbiContext object.

First you need to get the EbiContext, as shown in “Firing rules from the context object”
on page 29.

This code validates the pipeline you specify:

ctx.validate("CheckAllAccessRestrictions");

This code sets a pipeline ID in the EbiContext object and validates it:

ctx.setPipelineID("CheckAllAccessRestrictions");
ctx.validate();}
exteNd Director Rules Guide-37

How You Use Rules 37

38 exteNd Director Rules Guide

3
 Developing Custom Conditions and
Actions Chapter 3
This chapter describes how to write your own classes for special-purpose conditions
and actions. It includes the following topics:

About custom conditions and actions
Designing a condition or action
Defining logic
Defining properties

This chapter assumes you are familiar with rules-based applications and using the Rule
Editor in exteNd Director. For background information, see Chapter 2, “How You Use
Rules”.

About custom conditions and actions
Conditions and actions are Java classes used to build rules fired by portlets and other
application components. The Rule Editor provides a selection of prebuilt conditions
and actions. You can also write custom conditions and actions to meet your
application’s specific requirements.

Conditions and actions are typically implemented as JavaBeans, with properties you
can set in the Rule Editor.
39

Designing a condition or action
Designing a condition or action involves several decision points.

What logic should be implemented? When designing rule-based logic,
consider how conditions and actions will interact with each other and with the
application source code. Here are key considerations:

What condition should be tested?
What action should be executed if the condition is true?
What action should be executed if the condition is false?
What portlets will fire the rule that contains these conditions and actions?
What data must be passed by the condition to its actions and by actions back to
the firing portlet?

Will any of the installed conditions or installed actions meet my
requirements? Before you begin your development, you should become familiar
with the installed conditions and actions. There may be one that will meet your
requirements, or you may want to modify one of the installed versions. For more
information, see Chapter 8, “Installed Conditions” and Chapter 7, “Installed Actions”.

What kind of user interface should be rendered by the Rule Editor? By
default, the Rule Editor generates a generic property panel as the interface for
interacting with conditions and actions you use to build rules. If a condition or action
has properties, the property panel provides controls—such as check boxes and text
boxes—for choosing or entering required values. You can also specify a custom user
interface in your condition and action class, which the Rule Editor then uses to render
the property panel. For more information, see “Defining properties” on page 45.

What supporting classes will be needed? Conditions and actions often rely on
supporting classes such as:

Type of class Used for

Custom classes Implementing logic not provided in the exteNd Director API

BeanInfo classes Providing additional information for the condition or action
JavaBean

For more information, see “Writing a BeanInfo class” on
page 51

Resource bundles Localizing static strings that appear in the property panel for
your conditions and actions

For more information, see “Using resource bundles” on
page 53
40 exteNd Director Rules Guide

Does the rule need to access runtime values? You can define properties to
access session whiteboard values that can be set dynamically at runtime. For more
information, see “Defining runtime properties” on page 46.

Defining logic
Conditions and actions each have three methods that define their implementations:

These methods are included in the templates generated by exteNd Director’s Condition
Wizard and Action Wizard.

For an overview of the templates and core methods, see “About the template
methods” on page 77.

Defining logic for a condition
Typically a condition compares property values entered in the Rule Editor and returns
a boolean. This logic is coded within the doCondition() method.

The doCondition() method includes an EbiContext object, allowing you to access
runtime values.

Method Used in Description

doCondition() Conditions Fulfills the requirements of a condition

In this method, you write code that makes
comparisons or evaluates property values and
returns a boolean value

doAction() Actions Fulfills the requirements of an action

In this method, you write code that performs
actions based on whether the associated
condition evaluates to true or false

This method typically returns the result of a
business rule

toString() Both conditions
and actions

Returns a string that describes the condition
and its current settings

This string appears as a description of a
condition or action in the Rule Editor
exteNd Director Rules Guide-41

Developing Custom Conditions and Actions 41

Example of doCondition()

This example shows code from the installed condition CheckTime, which checks
whether the current time of day is within the time range specified for the condition in
the Rule Editor:

// ...
// JavaBean get/set accessor methods

public int getFrom() {
return from;

}

public void setFrom(int from) {
this.from = from;

}

public int getTo() {
return to;

public void setTo(int to) {
 this.to = to;

}
// Check to see if the current time of day is within the specified
// range.
public boolean doCondition(com.sssw.re.api.EbiContext context)
throws com.sssw.re.exception.EboConditionException {

int hour = new GregorianCalendar().get(Calendar.HOUR_OF_DAY
);

 if (from < to) {
// Daytime check
if (hour >= from) {

if (hour <= to) {
return true;

}
}
return false;

}
else {

// Crossover check
if (hour >= to) {

if (hour <= from) {
return false;

}
}
return true;

}

}
// ...
42 exteNd Director Rules Guide

Notes about the condition example

get/set methods These are JavaBean accessor methods that define two properties
for this condition: from a specified time and to a specified time (inclusive). These
values are accessed from the property panel in the Rule Editor.

For information, see “Defining JavaBeans” on page 45.

doCondition() This method is the workhorse of condition classes. In this example
the property values are compared to the current time, which is obtained from a Java
GregorianCalendar object. The code does two checks—for within current day and for
crossover times—in each case returning a boolean.

Defining logic for an action
An action returns the result of a rule, based on the return value of one or more
conditions. The logic for an action is coded in the doAction() method.

Actions can perform virtually any activity, including accessing a database via SQL,
manipulating whiteboard values, returning HTTP and HTML values, performing
operations, and controlling user access to objects. Like conditions, actions typically
have properties settable in the Rule Editor.

Returning values to the caller

Because actions return the result of a rule, you need to understand how the result is
handled by the caller, typically a portlet or JSP page. Here is a summary of the common
HTTP response methods you might use to return a value from an action to the portlet
that fired the rule:

Return value method Description Usage

EbiContext.setResponse
Status()

Sets an HTTP status
code that indicates
whether the action
succeeded or failed

Called from doAction()
method

EbiContext.setResponse
Phrase()

Sets a response phrase
used to pass data from
the action back to the
firing portlet

Called from doAction()
method

EbiContext.setResponse
Type()

Sets the type of the
response phrase to
indicate how the firing
portlet should process
the data

Should be called from
the doAction() method
whenever the method
EbiContext.setResponse
Phrase() is called
exteNd Director Rules Guide-43

Developing Custom Conditions and Actions 43

Example of doAction()

The following shows code from the installed action ReturnAsHTMLBold. It returns
the text entered by the user in bold format:

public void doAction(com.sssw.re.api.EbiContext context) throws
 com.sssw.re.exception.EboActionException {
context.setResponsePhrase("" + getValue().getValue(context) +

"");

Defining a condition or action rule descriptor
The toString() method provided by the template returns a description of the condition
or action that appears in the Rule Editor when a condition or action is selected.
Typically, toString() calls the properties’ get methods to include property values.

Example of toString()

Here is how toString() is implemented in the installed condition CheckTime:

// Use resource bundle, “caResource” instantiated with Class
// definition, for string processing.
public String toString() {

return caResource.getString("the hour is between ") +
getHours().elementAt(from) + caResource.getString("
and ") + getHours().elementAt(to);

}
// Implement a JPanel using getParameterPanel() using getHours()
// to get selected property values.

private Vector getHours() {
if (hours == null) {

hours = new Vector();
hours.addElement(caResource.getString("12 am"));
hours.addElement(caResource.getString("1 am"));
hours.addElement(caResource.getString("2 am"));

 // ...

Notes about toString() example

A local method, getHours(), uses a Vector to store property values. The toString()
method calls getHours() to display the hours selected in the Rule Editor.

NOTE: In this example, toString() directs processing to a resource bundle that is
instantiated with the condition class. This provides support for localization. For more
information, see “Using resource bundles” on page 53.
44 exteNd Director Rules Guide

Here is what the result looks like in the Rule Editor:

Defining properties
There are several ways to define properties and property panels for conditions and
actions. The Rule subsystem supports Java constructs like JavaBeans and JPanels, and
also provides default controls for certain data types and objects and support for using
runtime values in properties. You can also follow the implementation of resource
bundles and BeanInfo classes used in the installed conditions and actions.

This section provides descriptions and examples of each approach.

Defining JavaBeans
Like other JavaBeans, conditions and actions can have properties. By defining
properties, you allow conditions and actions to be customized in the Rule Editor for use
in a variety of rules.

When you add properties in a custom condition or action, you must follow JavaBeans
standards. For each property, define:

A member variable whose name has all lowercase letters
A pair of get and set accessor methods
By convention, each method name consists of get or set prepended to the
property name starting with an initial capital letter (such as getTime).
exteNd Director Rules Guide-45

Developing Custom Conditions and Actions 45

The Rule Editor can use these constructs to automatically generate a property panel for
the condition or action, based on the data type of the property. For a model
implementation, see “Example of doCondition()” on page 42.

You can also use a JDK BeanInfo class to enhance the display properties. See “Writing
a BeanInfo class” on page 51.

Defining runtime properties
The Rule subsystem provides two string template data types that allow properties in
conditions and actions to be set dynamically from runtime values:

EboStringTemplateSingle: single-line text box, rendered as a TextField
EboStringTemplateMulti: multiline text box, rendered as a TextArea

When you define properties using these data types, the Rule Editor lets you specify
values for these properties by referencing whiteboard keys. When the rule is fired, the
property will be set to the real-time value associated with the whiteboard key.

For information about using the whiteboard, see Chapter 2, “How You Use
Rules”.

Working with the !valueOf construct

For each property you want to set dynamically, you need to define a member variable
of type EboStringTemplateSingle or EboStringTemplateMulti. The Rule Editor will
generate the associated TextField or TextArea, labeled with a string that ends with the
caret (^) symbol. This symbol indicates that the property has been defined as a string
template that can be set either statically by entering a literal string or dynamically by
using the construct !valueOf. With this construct, you specify the value associated
with a whiteboard key. Here is the syntax:

!valueOf.whiteboard key

Certain session values, such as userID, are automatically provided. For example: to set
the property to the value associated with the whiteboard key UserID, enter
!valueOf.UserID.
46 exteNd Director Rules Guide

Resolving the valueOf! expression When you write a condition or action that
needs to evaluate a runtime value, use one of these methods to get the value:

Example of using string template values

This example shows code from the installed action SaveToWhiteBoard. The action
saves data to the whiteboard in the specified whiteboard key:

public boolean resolve;
public com.sssw.re.core.EboStringTemplateSingle data = new

 com.sssw.re.core.EboStringTemplateSingle();
public com.sssw.re.core.EboStringTemplateSingle template = new

 com.sssw.re.core.EboStringTemplateSingle();

// Set the template value for the whiteboard key that will be used
// to store the data value.
 public void setKeyTemplate(EboStringTemplateSingle detailKey)
{

this.template = detailKey;
}

// Return the template for the whiteboard key.
 public EboStringTemplateSingle getKeyTemplate() {

return template;
}

// Return the template for the data.
 public EboStringTemplateSingle getData() {

return data;
}

// Set the template value for the data to be saved to the
// whiteboard.
 public void setData(EboStringTemplateSingle data) {

this.data = data;
}

// Return boolean true if the data value is a templatized string
// that needs to be resolved, and false if the data value is the
// value to be saved.

public boolean getResolve() {
return resolve;

}

Method In class Usage

merge() EbiContext Gets a string of one or more whiteboard
values by providing the whiteboard key
names

getValue() EboStringTemplateSingle
EboStringTemplateMulti

Gets a string value for a whiteboard key
associated with a specified template
exteNd Director Rules Guide-47

Developing Custom Conditions and Actions 47

// Set the value that determines if the data value needs to be
// resolved.
 public void setResolve(boolean resolve) {

this.resolve = resolve;
}

// Save the data value, or resolved data value if resolved is
// true, to the whiteboard in the specified whiteboard key.
public void doAction(com.sssw.re.api.EbiContext context) throws
com.sssw.re.exception.EboActionException {

String merged = getKeyTemplate().getValue(context);
context.setValue(merged, (getResolve() ?

getData().getValue(context
) : getData().getTemplate()));
 }

Notes on string template example

This action defines three properties that appear in the Rule Editor:

EboStringTemplateSingle The code instantiates two template objects for each
template property. The first property (Key-template) will be resolved to get its data
representation. The second property (Data) is resolved only if the Resolve control is
selected.
48 exteNd Director Rules Guide

doAction() Gets the properties and implements these methods:

Using generic property panels
The Rule subsystem supports a set of data types for which it can automatically generate
generic property panels. For each supported data type, the Rule Editor renders a
preselected GUI control in the property panel. All you need to do is implement
JavaBean accessor methods for each property.

Here is a list of the supported data types and the associated controls:

Method Description

getValue() The template method that resolves the key value for Key_template

setValue() The context method that sets the Key-template value on the
whiteboard—and:

If Resolve is false, sets the Data value string on the whiteboard

If Resolve is true, uses template.getValue() to resolve the key
value

Supported data type GUI control

java.lang.String

char

int

long

double

float

TextField

boolean Checkbox

com.sssw.re.core.EboStringTemplateSingle TextField

com.sssw.re.core.EboStringTemplateMulti TextArea

com.sssw.re.condtion.Compare

com.sssw.re.core.EboRule

DropDownListBox
exteNd Director Rules Guide-49

Developing Custom Conditions and Actions 49

Creating a custom property panel
If you prefer to create your own property panel rather than use the generic controls, you
can implement the getParameterPanel() method to specify a custom user interface. The
Rule Editor requires the custom interface to be defined as a JPanel; it will not create a
custom property panel based on any other type of portlet returned by
getParameterPanel().

When including the getParameterPanel() method in a condition or action, you must
implement a listener interface to allow the controls in the JPanel to respond to user
actions.

Example of using a custom JPanel

This is the code that defines the property panel for the installed condition CheckTime:

// ...
// Return a custom ui component to be used for editing this
// condition.
 public java.awt.Component getParameterPanel() {

JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.X_AXIS));
p.add(new JLabel(caResource.getString("between the hours

of")));
p.add(FROM = new JComboBox(getHours()));
p.add(new JLabel(caResource.getString("and")));
p.add(TO = new JComboBox(getHours()));
FROM.setAlignmentY(JComponent.CENTER_ALIGNMENT);
TO.setAlignmentY(JComponent.CENTER_ALIGNMENT);
FROM.setSelectedIndex(from);
TO.setSelectedIndex(to);
FROM.addItemListener(this);
TO.addItemListener(this);
return p;

}

// Return a vector of hours for selection in the ui.
 private Vector getHours() {

if (hours == null) {
hours = new Vector();
hours.addElement(caResource.getString("12 am"));
hours.addElement(caResource.getString("1 am"));
hours.addElement(caResource.getString("2 am"));

 // ...
50 exteNd Director Rules Guide

Notes on custom JPanel example

Here is the custom property panel generated by the code:

JComboBox implementation The variables TO and FROM are defined as ints.
Using a generic panel would result in text fields for each property. Instead,
getParameterPanel() instantiates a JPanel and implements a pair of JComboBox
controls, providing a dropdown list of time selections in the Rule Editor. The code
defines a local method, getHours(), that uses a Vector to fill in the values of the combo
boxes.

Resource bundle The code uses a resource bundle caResource to localize the
labels for the ComboBox. For information, see “Using resource bundles” on page 53.

Writing a BeanInfo class
You can write a BeanInfo class for any condition and action to specify the appearance
of attributes in the property panel. For example, you can use a BeanInfo class for:

Specifying a display name for each property
Implementing localization for property names and static text strings that appear
on the panel for each property

NOTE: Using a BeanInfo class is the recommended way to implement resource
bundles for localization. For information about resource bundles, see “Using resource
bundles” on page 53.
exteNd Director Rules Guide-51

Developing Custom Conditions and Actions 51

Like JavaBeans, BeanInfo classes require their associated condition or action classes
to specify properties as member variables with associated get and set methods.

To create a BeanInfo class:

1 Create a Java class in your preferred Java editor. The class must extend
EboBeanInfo and implement these code elements:

2 Name the BeanInfo class by appending BeanInfo to the name of the associated
condition or action class.
For example: if your class name is CheckCondition, the BeanInfo class must be
named CheckConditionBeanInfo.

For an example of a BeanInfo class, see “Example of a BeanInfo class” on
page 53.

Code element Description

imports For conditions:
package com.sssw.re.condition.*

For actions:
package com.sssw.re.action.*

For conditions and actions:
com.sssw.re.core.*

java.beans.*

getClazz() method Returns the condition or action class associated
with the BeanInfo class

PropertyDescriptor[] pds Provides information to the Rule Editor for
generating the property panel for the condition or
action

The array should be the same size as the number
of properties you want to appear in the property
panel

PropertyDescriptor pd Defines a descriptor for (each) property

Each individual property descriptor is added to the
property descriptor array
52 exteNd Director Rules Guide

Using resource bundles
Resource bundles are a standard feature of the Java JDK used for localization. You can
store any object, string, number, or other data in a resource bundle. To create a resource
bundle, you need to create either a Java class that extends ListResourceBundle or a
properties file that contains static strings. For each locale you want to support, you
provide a separate version of the resource bundle.

You can use resource bundles to implement localization in conditions, actions, and
associated BeanInfo classes. Here is a recommended approach:

1 Create resource bundles for all locales supported by your application.
2 In your condition, action, or BeanInfo class, declare ResourceBundle objects that

reference your resource bundles by calling the EboResourceBundle.getBundle()
method. This simplest version of this method takes one argument, the fully
qualified name of your resource bundle class.
For example: if your resource bundle is MyBundle.class located in package
locales, your declaration should look like this:

static com.sssw.re.util.EboResourceBundle eoCABundle =
com.sssw.re.util.EboResourceBundle.getBundle("locales.MyBundle"
)

3 Access the data in the resource bundle by calling get methods on the
ResourceBundle object.
For example: if your resource bundle contains localized strings, call the
getString() method on the ResourceBundle object, passing the key associated
with the desired string value.

NOTE: For complete information on creating resource bundles, see the reference
documentation for the ResourceBundle, ListResourceBundle, and
PropertyResourceBundle classes in the Java standard API documentation. All these
classes are in the java.util package.

Example of a BeanInfo class

This is the code that defines the BeanInfo class for the installed condition CheckTime:

package com.sssw.re.condition;
import com.sssw.re.core.*;
import java.beans.*;

public class CheckTimeBeanInfo extends EboBeanInfo {

// Resource Bundle definition
 static com.sssw.re.util.EboResourceBundle eoCABundle =
 com.sssw.re.util.EboResourceBundle.getBundle(
EboConstant.CA_BUNDLE,
 getClass().getClassLoader());

public Class getClazz() {
exteNd Director Rules Guide-53

Developing Custom Conditions and Actions 53

return com.sssw.re.condition.CheckTime.class;
}

public PropertyDescriptor[] getPropertyDescriptors() {
PropertyDescriptor[] pds = new PropertyDescriptor[2];
PropertyDescriptor pd;
pd = super.getPropertyDescriptor("From");
pd.setDisplayName(eoCABundle.getString("From"));
pds[0] = pd;
pd = super.getPropertyDescriptor("To");
pd.setDisplayName(eoCABundle.getString("To"));
pds[1] = pd;
return pds;

}

}

Notes on the BeanInfoClass example

Getting the resource bundle Uses EboResourceBundle.getBundle() to get the
name of the resource bundle for the installed conditions and actions stored in
CA_BUNDLE and get the class loader.

Defining property descriptors Since the CheckTime condition defines two
properties, it requires two property descriptors—as indicated in the array declaration.

Specifying a display name for a property You can use the setDisplayName()
method to specify a property name. When the Rule Editor generates the property panel,
it uses this display name as the label for the UI control associated with the property.
The setDisplayName() method is called on the property descriptor and takes a string
argument. This example shows the recommended approach for implementing resource
bundles. It uses key values To and From—passing them to the resource bundle so that
the Rule Editor displays a localized string.
54 exteNd Director Rules Guide

II
 Tools PART II
Describes how to use the Director Workbench tools to design rules and
pipelines and write custom conditions and actions

• Chapter 4, “Rule and Macro Editors”
• Chapter 5, “Condition and Action Wizards”
• Chapter 6, “Pipeline and Binding Editors”

4
 Rule and Macro Editors Chapter 4
This chapter describes how to create and edit rules in exteNd Director. It has the
following sections:

Accessing the Rule Editor
Using conditions
Using actions
Using cases
Testing, editing, and saving rules
Working with condition and action macros

For background information about using rules in exteNd Director applications,
see Chapter 2, “How You Use Rules”.

Accessing the Rule Editor
The Rule Editor is where you create rules to use in a portlet or JSP page in your
application. You build a rule by selecting from predefined conditions and actions. Each
rule definition is saved as an XML file in a specified directory in your exteNd Director
project.
57

To access the Rule Editor:

1 From the exteNd Director menu, select File>New.
2 In the New File dialog, select the Rules Engine tab:

3 Select the Rule icon.
The Rule Editor displays in the upper-right panel:
58 exteNd Director Rules Guide

reCandAWizards.html
reCandAWizards.html

About the rule tree view
Graphically, a rule is a combination of one or more conditions (When) and one or more
actions (Do) that produces some result. It has the form:

When the combination of some conditions is true,
Do some actions;

Otherwise Do some other actions.

Each When-Do statement is called a node and maps to a decision node in XML. You
can also embed case statements within a parent node, as described in “Using cases” on
page 65.

The Otherwise Do section is executed only when all nodes in the rule evaluate to false.

Naming a rule
You invoke the rule name when firing a rule.

You can specify a rule owner as part of the identifier; doing so allows you to organize
your rules by application and avoids possible naming conflicts with other applications.
You can use the Rule API to access rules associated with an owner.

To name a rule:

1 In exteNd Director, open the Rule Editor.
2 Enter the rule name in the ID text box. For example:

myrule
3 (Optional) To specify the owner, use the format ownername.rulename. For

example:
myapp.myrule

4 (Optional) Enter a description in the Description text box.

Using conditions
A condition is a Java class containing logic that returns true or false. The installed
conditions are implemented as JavaBeans that in many cases allow you to set relevant
properties. You can add multiple conditions for a rule and manipulate those conditions
in various ways.

Default condition The default value for a condition is When:On. In cases where
you always want the associated actions to execute (for certain types of pipelines, for
example), you can leave the default and just select actions for the Do section.
exteNd Director Rules Guide-59

Rule and Macro Editors 59

Reusing a series of conditions If you have a series of conditions that you might
want to reuse in another rule, you can create a macro for it. For more information, see
“Working with condition and action macros” on page 68.

To add a condition:

1 In the Rule Editor, select the When section where you want to enter the
condition and right-click to display the condition popup menu:

2 Select Add Condition.
The condition property panel displays. The dropdown lists all installed
conditions plus any custom conditions you have written and deployed.

3 Select the condition you want.
The settable properties for the condition display on the panel.

For information about using the installed conditions, see Chapter 8,
“Installed Conditions”.
60 exteNd Director Rules Guide

4 Set the properties as required and exit the panel.
The condition description appears in the Rule Editor. For example, choosing the
Check Month condition displays a result like this:

To add more conditions:

1 In the Rule Editor, select the description of the condition below which you want
to add a condition. To add the condition at the top, select the appropriate When
element.

2 Right-click and select Add condition from the popup menu.
3 Add the condition as described in “To add a condition:” on page 60.

By default, the condition is added with the AND operator, meaning that this
condition and the previous condition must be true for the Do section to execute.

Selecting a logical operator for processing When you have two or more
conditions in a series, you can specify the OR operator if you want either condition to
be true and specify the NOT operator if you want a condition to be false.

To toggle the operator between AND and OR:

1 Select the condition containing the operator.
2 Right-click and select AND/OR from the popup menu.

To toggle the NOT operator to and from NOT:

1 Select the condition where you want to add or remove the operator.
2 Right-click and select NOT/NOT.
exteNd Director Rules Guide-61

Rule and Macro Editors 61

Editing and deleting conditions
This table lists other ways to edit conditions in the Rule Editor:

Deactivating a condition
If you want a condition not to be evaluated but do not want to delete it from the rule,
you can deactivate it.

To toggle a condition between activate and deactivate:

1 Select the condition.
2 Right-click and select Active/Inactive from the popup menu.

Using actions
An action is a Java class that does something based on the condition it is associated
with in a rule. Actions are added to the Do and Otherwise Do sections of a decision
node. The Do section is activated if the When section of the node evaluates to true. The
Otherwise Do section is executed when the When section is false.

For many of the installed actions, you can set relevant properties in the Rule Editor.
You can also embed cases in an action and control the processing between decision
nodes.

Default action The default value for an action is return true.

To specify any other action (including return false), you need to add an action.

To Do this

Move a condition up
or down

1 Select the condition you want to move.

2 Right-click and select Move Up or Move Down from the
popup menu.

Edit condition
properties

1 Select the condition you want to edit.

2 Right-click and select Edit from the popup menu.

The property panel for the condition displays.

3 Edit the properties and close the panel.

Delete a condition 1 Select the condition you want to delete.

2 Right-click and select Delete from the popup menu.
62 exteNd Director Rules Guide

To add actions:

1 With the Rule Editor open, select the Do or Otherwise Do section where you
want to enter the action, and right-click to display the conditions.

2 Select Add Action.
The action property panel displays. The dropdown lists all the installed actions
plus any custom actions you have written and deployed.

3 Select the action you want.
The settable properties for the condition display on the panel.

For information about properties, see Chapter 7, “Installed Actions”.
4 Set the properties as required and exit the panel.

The action description appears in the Rule Editor. For example, choosing the
DenyAccess action displays a result like this:

To add additional actions for this node, repeat this procedure.

To add a case for an action:

1 In the Rule Editor, select the action where you want to insert a case.
2 Right-click and select Add Case from the popup menu.
exteNd Director Rules Guide-63

Rule and Macro Editors 63

Editing and deleting actions
This section describes other ways to edit actions in the Rule Editor:

Deactivating an action
If you want a condition not to be evaluated but do not want to delete it from the rule,
you can deactivate it.

To toggle an action between activate and deactivate:

1 Select the action.
2 Right-click and select Active/Inactive from the popup menu.

To Do this

Move an action
up or down

1 Select the action you want to move.

2 Right-click and select Move Up or Move Down from the
popup menu.

Edit action
properties

1 Select the action you want to edit.

2 Right-click and select Edit from the popup menu.

The property panel for the action displays.

3 Edit the properties and close the panel.

Delete an action 1 Select the action you want to delete.

2 Right-click and select Delete from the popup menu.
64 exteNd Director Rules Guide

Using cases
You can add When-Do statements to a parent node to make case statements (or child
nodes) in a rule. Adding cases expands the tree control for the rule. You can add a case
at the top (When) or in an embedded (Do) level of your logic:

You can handle the flow of processing for cases in two ways:

Break specifies that if the When section is true, the rule ends with that case.
Continue specifies that after the rule does the actions for the case, it goes on to
evaluate the next node.

To add a case to a rule:

1 Select the When, Do, or Otherwise Do section where you want to add a case.
2 Right-click and select Add Case from the popup menu.

The Rule Editor adds a decision node (When-Do statement).
3 Repeat Step 2 for each additional case.
4 Use the Rule Editor to add conditions and actions for each node.

To toggle the case processing value:

1 Select the Do section you want to change.
2 Right-click and select Break/Continue from the popup menu.
exteNd Director Rules Guide-65

Rule and Macro Editors 65

Adding case descriptions
If you have a complex rule with many cases, you can add a description for each to make
them easier to identify. The description appears next to the When section that begins
the case.

To add a case description:

1 Select the When section for the case you want to add the description to.
2 Right-click and choose Edit Description from the popup menu.
3 Add the description in the dialog and click OK.

The description appears in the Rule Editor.

Using other case commands
The Rule Editor provides various other ways to manipulate cases.

To use other case commands:

1 Select the When section of the case.
2 Right-click and select the appropriate command from the popup menu:

To Do this

Delete the case Click Delete Case

Deactivate/activate a case Click Active/Inactive

Copy a case Click Copy Case

Paste a case Select the point where you want to
paste and click Paste Case

Move a case up one level in the
logic

Click Move Case Up

Move a case down one level in the
logic

Click Move Case Down
66 exteNd Director Rules Guide

Testing, editing, and saving rules

Testing rules
There are a couple of ways you can test rules before deploying them:

Using the Run Rule command
Using the RuleWrapper portlet

Using the Run Rule command

The Run Rule command displays rule return values in the development environment
Output Pane. Use this command to verify that the rule is returning the correct values at
each logic point. The Run Rule command does not display actual return values, like
HTML data.

To run a rule:

With the Rule Editor open, select the Run Rule icon from the exteNd Director
menu:

Output for return values displays on the development environment Output Pane.
To clear the Output Pane:

Place the cursor anywhere in the pane.
Right-click and select Clear.

TIP: You can use the RuleWrapper portlet in the installed MyPortal application to
display the result of any rule that returns HTML.

Saving and editing rules

To save a rule:

1 With the rule open in the Rule Editor, select File>Save from the exteNd Director
menu or press Ctrl-S.
The contents of the rule definitions folder display in your project resource set.

2 Save the rule and exit the dialog.

To edit a rule:

1 Navigate to the location of the rule XML descriptor in your project.
2 Double-click the rule XML file.
exteNd Director Rules Guide-67

Rule and Macro Editors 67

locator cdLocator.html#Ruledescriptor
cdResourceSet.html

Working with condition and action macros
Macros allow you to save conditions and actions in reusable groups. For example, you
might have standard logic that uses multiple conditions. Similarly, you might have a
group of discrete actions that you want to fire under different conditions. Macros
provide a higher level of organization while preserving the flexibility of using single
conditions and actions.

Each macro is saved as an XML file. After you create a macro, you can add it to a
condition and action in the Rule Editor.

Using condition macros
This section describes how to create a condition macro and use it in a rule.

To create a condition macro:

1 From the exteNd Director menu, select File>New.
2 In the New File dialog, select the Rules Engine tab.
3 Select the Condition Macro icon:

The Condition Macro Editor displays:

4 Specify a name and description at the top of the Macro Editor.
The name you specify is the default file name for the macro XML file.

5 Click the When section in the tree view.
6 Select Add Condition.

The condition property panel displays.
68 exteNd Director Rules Guide

7 Select a condition from the dropdown, as described in “To add a condition:” on
page 60.

8 To add another condition, select the existing condition and right-click.
9 Add more conditions, as described in “To add more conditions:” on page 61.
10 Select an operator, as described in “Selecting a logical operator for processing”

on page 61.
11 Edit, move, or delete conditions, as described in “Editing and deleting

conditions” on page 62.

Saving and editing a condition macro

When you save a condition macro, exteNd Director opens the appropriate subdirectory
of your project’s resource set.

To save a condition macro:

1 With your macro open in the Condition Macro Editor, select File>Save from the
exteNd Director menu or press Ctrl-S.
The contents of the rule-conditions-macro folder display in your project resource
set.

2 Save the macro and exit the dialog.

To edit a condition macro:

1 Navigate to the location of the condition macro descriptor.
2 Double-click the file.

Using a condition macro in a rule

After you save the macro in an appropriate directory, you can use it in a rule.

To use a condition macro in a rule:

1 Open the rule in the Rule Editor.
2 Select the point in the When section where you want to add the macro.
3 Right-click and choose Insert Macro or Add Macro.

A dropdown list of condition macro descriptions displays:

4 Select a macro and click OK.
exteNd Director Rules Guide-69

Rule and Macro Editors 69

cdResourceSet.html
locator cdLocator.html#Ruleconditionmacrodescriptor
cdResourceSet.html
cdResourceSet.html

To delete, inactivate, or move a macro within the rule:

1 Select the macro in the Rule Editor and right-click.
2 Select the appropriate command from the popup menu.

Using action macros
This section describes how to create an action macro and use it in the Rule Editor.

To create an action macro:

1 From the exteNd Director menu, select File>New.
2 In the New File dialog, click the Rules Engine tab.
3 Select the Action Macro icon:

The Action Macro Editor displays:

4 Specify a name and description at the top of the Action Macro Editor.
The name you specify is the default file name for the macro XML file.

5 Click the Do section in the tree view.
6 Right-click and choose Add Action.

The action property panel displays.
7 Select an action from the dropdown menu, as described in “To add actions:” on

page 63.
8 To add another action, select the existing action and right-click.
9 Add more actions, as described in “To add a case for an action:” on page 63.
70 exteNd Director Rules Guide

10 Edit, move, or delete actions, as described in “Editing and deleting actions” on
page 64.

Saving and editing an action macro

When you save an action macro, exteNd Director opens the appropriate subdirectory
of your project’s resource set.

To save an action macro:

1 With your macro open in the Action Macro Editor, select File>Save from the
exteNd Director menu or press Ctrl-S.
The contents of the rule-action-macro folder display in your project resource set.

2 Save the macro and exit the dialog.

To edit an action macro:

1 Navigate to the location of the action macro descriptor.
2 Double-click the file.

Using an action macro in a rule

After you save the action macro in an appropriate directory, you can use it in a rule.

To use an action macro in a rule:

1 Open the rule in the Rule Editor.
2 Select the point in the Do section where you want to add the macro.
3 Right-click and choose Insert Macro or Add Macro.

A dropdown list of action macro descriptions displays:

4 Select a macro and click OK.

To delete, inactivate, or move a macro within a rule:

1 Select the macro in the Rule Editor and right-click.
2 Select the appropriate command from the popup menu.
exteNd Director Rules Guide-71

Rule and Macro Editors 71

cdResourceSet.html
locator cdLocator.html#Ruleactionmacrodescriptor
cdResourceSet.html

72 exteNd Director Rules Guide

5
 Condition and Action Wizards Chapter 5
This chapter describes how to use the Condition Wizard and Action Wizard in exteNd
Director to create custom conditions and actions. It includes these topics:

Using the Condition Wizard and Action Wizard
Using Java templates to define custom conditions and actions
Using condition and action properties
Deploying custom conditions and actions

For background information, see Chapter 3, “Developing Custom Conditions
and Actions”.

Using the Condition Wizard and Action Wizard
The exteNd Director installation includes a set of conditions and actions that are
accessible from the Rule Editor. You can also create your own conditions and actions
and access them in the same way.

exteNd Director provides a Condition Wizard and an Action Wizard to create a Java
source file template.

To use the Condition Wizard or Action Wizard:

1 From the exteNd Director menu, select File>New.
2 In the New File dialog, select the Rules Engine tab.
73

3 Select the Condition or Action icon:

The appropriate wizard panel displays:
74 exteNd Director Rules Guide

4 Complete the information in the wizard panel:

5 Click Finish.
Based on your information, exteNd Director creates a Java template for creating
either a custom condition or a custom action.

Using Java templates to define custom conditions and
actions

This section describes the methods defined in the condition and action Java templates.

For a summary of methods, see “About the template methods” on page 77.

Condition template
The defining method for a condition is EbiCondition.doCondition(), where you place
the logic for the condition.

Here is the template generated for a condition named myCondition in package
myconditions:

package myconditions;

/**
 myCondition

Option What to do

Class Name Enter a name for the class.

Package (Optional) Enter a package name.

By default, exteNd Director adds the class to your
project source layout in the Resource
Set/resource.spf/src directory. If you specify a
package, it will be appended to /src.

Resource Set Enter the resource set to use for this condition or
action.

The resource set determines the source and archive
locations for the elements in your project. For more
information, see the chapter on using the resource set
in Developing exteNd Director Applications.

Include logging code Check if you want the code template to include logging
code for error tracing and debugging messages.
exteNd Director Rules Guide-75

Condition and Action Wizards 75

cdResourceSet.html

*/
public class myCondition implements com.sssw.re.api.EbiCondition
{
 // An Instance of a log for error/trace reporting
 private com.sssw.fw.api.EbiLog log =
 com.sssw.fw.log.EboLogFactory.getLog(
com.sssw.fw.log.EboLogFactory.RE);
 /**
 * return a component (JPanel) that represents the editor of
the
 condition,
 * OR return null if you would like an editor generated
automatically.
 */
 public java.awt.Component getParameterPanel () {
 return null;
 }

 public boolean doCondition(com.sssw.re.api.EbiContext context)
throws
 com.sssw.re.exception.EboConditionException {
 // Only log items if the log level indicates we should
 if (log.isTrace()) {
 log.trace("myCondition in doCondition method");
 }
 // Place your condition code here...
 return false;
 }

 public String toString() {
 return "<i>myCondition</i>";
 }
}

Action template
The defining method for an action is EbiAction.doAction(), where you place the logic
for the action.

Here is the template generated for a condition named myAction in package
myactions:

package myactions;

/**
 myAction
*/
public class myAction implements com.sssw.re.api.EbiAction
{
 // An Instance of a log for error/trace reporting
 private com.sssw.fw.api.EbiLog log =
76 exteNd Director Rules Guide

 com.sssw.fw.log.EboLogFactory.getLog(
com.sssw.fw.log.EboLogFactory.RE);
 /**
 * return a component (JPanel) that represents the editor of the
action,
 * OR return null if you would like an editor generated
automatically.
 */
 public java.awt.Component getParameterPanel () {
 return null;
 }

 public void doAction(com.sssw.re.api.EbiContext context) throws
 com.sssw.re.exception.EboActionException {
 // Only log items if the log level indicates we should
 if (log.isTrace()) {
 log.trace("myAction in doAction method");
 }
 // Place your action code here...
 context.setResponsePhrase("myAction");
 }

 public String toString() {
 return "<i>myAction</i>";
 }
}

About the template methods
A condition requires implementing the doCondition() method, and an action requires
implementing the doAction() method. The other methods are the same for both Java
condition and action templates:

Template method Usage What it does

getLog() Optional Lets you generate trace and error
messages for debugging. This
method appears if you checked
Include logging code in the wizard.

getParameterPanel() Optional Lets you create a custom property
panel for the condition or action. The
Rule subsystem will provide default
controls for some data types.

For more information, see
“Using condition and action
properties” on page 79.
exteNd Director Rules Guide-77

Condition and Action Wizards 77

doCondition() Condition Wizard
only
Required

Fulfills the requirements of the
EbiCondition interface. In this
method, you write code that makes
comparisons or evaluates property
values and returns a boolean value.

The EbiContext object is passed to
doCondition() so you can access the
current session, user, and portlet.

For more information, see
“Defining logic for a condition” on
page 41.

doAction() Action Wizard
only
Required

Fulfills the requirements of the
interface. In this method, you write
code that performs actions based on
whether the associated condition
evaluates to true or false. This
method typically returns the result of
a business rule.

The result returned might be a simple
boolean value or information
accessed from a database. You can
design rules that return formatted
content that the portlet can include in
its generated content, or you can
change the portlet’s processing
based on the rule’s action value.

The EbiContext object is passed to
doAction() so that you can access
the current session, user, and portlet.

For more information, see
“Defining logic for an action” on
page 43.

toString() method Required Returns a String that describes the
condition and its current settings as a
phrase. Typically, the phrase calls
the properties’ get methods to
include property values. The Rule
Editor displays this phrase in the rule
definition.

For more information, see
“Defining a condition or action rule
descriptor” on page 44.

Template method Usage What it does
78 exteNd Director Rules Guide

Using condition and action properties
Typically, conditions and actions are implemented as JavaBeans that include properties
you can set in the Rule Editor. Here are the code elements you can use for rendering
properties:

Property element type Usage For information see

JavaBeans By defining properties, you
allow conditions and actions to
be customized in the Rule
Editor for use in a variety of
rules.

“Defining JavaBeans” on
page 45

Generic properties The Rule subsystem provides
default controls for most data
types that you can use in your
JavaBean implementation.

“Using generic property
panels” on page 49

Custom property
panel

If you prefer to create your own
property panel rather than use
generic properties, you can
implement the
getParameterPanel() method.

“Creating a custom
property panel” on
page 50

Runtime properties The Rule subsystem provides
string template data types that
allow properties in conditions
and actions to be set
dynamically from runtime
whiteboard values.

“Defining runtime
properties” on page 46

BeanInfo class You can include a BeanInfo
class to provide formatted
property descriptions and to
implement Java resource
bundles for localization.

“Writing a BeanInfo
class” on page 51

Resource bundles Java resource bundles provide
localized descriptions for
property panels.

“Using resource
bundles” on page 53
exteNd Director Rules Guide-79

Condition and Action Wizards 79

Deploying custom conditions and actions
After you have completed your condition or action source file, you need to compile it.
exteNd Director then places the result in your resource set. This allows the Rule Editor
to find and display the runtime version when you select it from the condition or action
dropdown menu.

Compiling the condition or action source code

To compile the condition or action source:

1 Highlight the file in exteNd Director Source view.
2 Right-click and choose Compile from the popup menu.

exteNd Director compiles the source. If there are no compile errors, exteNd
Director stores the result in the resource set in your project archive.
Now you can select the condition or action in the Rule Editor.

Deploying support files
If you have any supporting files such as a BeanInfo class, they must be archived in an
appropriate location before you can access the condition or action in the Rule Editor.
The location must be specified in the libPath of your ResourceSet.war project web.xml
file.
80 exteNd Director Rules Guide

6
 Pipeline and Binding Editors Chapter 6
This chapter describes how to use the Pipeline and Binding Editors in exteNd Director
to set up a rules pipeline. It has these sections:

Basic steps of setting up a pipeline
Creating and editing a pipeline
Binding rules to a user, group, or pipeline

Basic steps of setting up a pipeline
A pipeline is a mechanism for running a set of rules that are associated with specific
users or groups, or for running any set of rules in a prescribed sequence.

Here is the basic procedure for setting up a pipeline:

1 Use the Pipeline Editor to create a pipeline and associate it with one or more of
the three binding steps (types): User, Group, and Pipeline.

2 Use the Binding Editor to bind rules to a user, group, or pipeline.

After you set up a pipeline, you fire the rules defined in the pipeline by calling the
validate() method in your application:

If the pipeline includes the User or Group step, the Rule subsystem fires the rules
defined in the user or group binding definition when the user or group member is
in the current application context.
If the pipeline includes the Pipeline step, the Rule subsystem fires the rules
defined in the pipeline step defined for the pipeline being validated.

The rest of this chapter describes how to create a pipeline in the Pipeline Editor and
define a rule binding in the Binding Editor.
81

For background information about using pipelines in exteNd Director
applications, see Chapter 2, “How You Use Rules”.

Creating and editing a pipeline
You use exteNd Director’s Pipeline Editor to create a pipeline and associate it with a
step or steps.

Creating a pipeline

To create a pipeline:

1 From the exteNd Director menu, select File>New.
2 In the New File dialog, select the Rules Engine tab.
3 Select the Pipeline icon:
82 exteNd Director Rules Guide

The General tab of the Pipeline Editor displays:

4 Enter information on the General tab:

5 Select the Steps tab.

Option What to do

ID Enter a pipeline ID. This is the string you supply for exteNd
Director API method calls, including the validate() method.

Description (Optional) Add a description.

Active? Select to make the pipeline active. Only active pipelines can
be validated.

Generate log
info?

(Optional) Select to generate pipeline processing and
debugging messages to your server console.
exteNd Director Rules Guide-83

Pipeline and Binding Editors 83

6 In the Available steps section, select a step and click Add to Selected:

The step is added to the Selected steps section:

7 Add other steps as needed.
If you add more than one step, the rules defined in the corresponding binding will
fire in the order of the steps in the Selected steps section.

To reorder a selected step, select it and click Up or Down.
To remove a selected step, select it and click Remove from selected.

8 Select File>Save or press Ctrl-S.
The contents of the pipeline definitions folder display in your project resource
set.

9 Specify a name and click Save.
10 Exit the editor by choosing the exit icon in the upper-right corner.

Editing a pipeline

To edit a pipeline:

1 In your project source or archive layout in exteNd Director, navigate to the
pipeline XML descriptor.

2 Double-click the file to open it in the Pipeline Editor.
84 exteNd Director Rules Guide

cdResourceSet.html
cdResourceSet.html
locator cdLocator.html#Rulepipelinedescriptor

Binding rules to a user, group, or pipeline
You use the Binding Editor to bind a rule or set of rules to a selected user, group, or
pipeline.

Creating a rule binding

To define a rule binding:

1 From the exteNd Director main menu select File>New.
2 In the New File dialog, select the Rules Engine tab.
3 Select the Group Bindings, Pipeline Bindings, or User Bindings icon.

The appropriate binding editor displays. The name of the text box at the top of
the editor depends on which icon you selected.

4 Make the appropriate entry in the text box:

5 In the Available rules section, select a rule and click Add to Selected.
The rule is added to the Selected rules section.

6 Add other rules as needed. Rules will fire in the order in which they appear in the
list.

To reorder a rule, select it and click the Up or Down button.
To remove a selected rule, select it and click Remove from selected.

7 Choose File>Save or press Ctrl-S.
A dialog displays with the contents of the appropriate binding definitions in your
project resource set.

8 Specify a name and click Save.
9 Exit the editor by choosing the exit icon in the upper-right corner.

Binding text box What you do

User Enter a valid user ID in the User text box.

NOTE: If you are accessing an LDAP realm specify the
distinguished name—for example: cn=sample,ou=users

Group Enter a valid group ID in the Group text box.

NOTE: If you are accessing an LDAP realm specify the
distinguished name—for example:
cn=managers,ou=management

Pipeline Select a pipeline ID from the dropdown list.
exteNd Director Rules Guide-85

Pipeline and Binding Editors 85

cdResourceSet.html

Editing a rule binding

To edit a binding:

1 In your project source or archive layout in exteNd Director, navigate to the
location of the binding XML definition in your project resource set:

User binding descriptor
Group binding descriptor
Pipeline binding descriptor

2 Double-click the file to open it in the Binding Editor.
86 exteNd Director Rules Guide

locator cdLocator.html#Ruleuserbindingdescriptor
locator cdLocator.html#Rulegroupbindingdescriptor
locator cdLocator.html#Rulepipelinebindingdescriptor

III
 Reference PART III
Describes the Director installed conditions and actions and the JSP rules tag
library

• Chapter 7, “Installed Actions”
• Chapter 8, “Installed Conditions”
• Chapter 9, “Rule JSP Tag Library”

7
 Installed Actions Chapter 7
This chapter describes the actions installed with your exteNd Director project. It has
these sections:

Accessing condition and action sources
Properties that support string templates
Properties that support database drivers and URLs
Alphabetical list of actions

For background information, see Chapter 4, “Rule and Macro Editors”.

Accessing condition and action sources
Condition and action class files, sources, and supporting files are contained in JAR
files that are added to your project when you create it. The default location for the JARs
in your project is ResourceSet/Web-INF/lib. These are the JARs that are added,
depending on the subsystem(s) you select in the wizard:

Subsystem(s) selected JAR file added

Rule RuleCA.jar

Rule and Portal PortalCA.jar

Rule and Workflow WorkflowRE.jar

Rule, Portal, and Content Management CQA.jar
89

Properties that support string templates

!valueOf template
Some of the condition and action properties support the !valueOf template. Properties
that support this feature have the ^ character.

You can either enter the actual value you want to use or specify a whiteboard key that
holds the value you want. Use this format:

!valueOf.keyname

You can also specify a key that holds the name of another key. To get a value from
another key, specify !valueOf.anotherkey.

For more information about the !valueOf construct, see “Using whiteboard
values” on page 26.

Scoped path support
The ^ template fields also support the substitution syntax for scoped paths. You can
specify a scoped path using this format:

${spath}

For more information, see the section on working with scoped paths in
Developing exteNd Director Applications.

Properties that support database drivers and URLs
Some of the conditions and actions have properties for accessing a database. These
properties include JDBC Driver and Database Name. These values vary with the
database and server vendors. For details, see your database and application server
documentation.

Here is a list of database drivers and URL patterns for some of the databases supported
in exteNd Director:

Database/server Driver class name Database name

Sybase ASA
(exteNd™
application
server)

com.sssw.jdbc.mss.odbc.
AgOdbcDriver
Default

jdbc:sssw:odbc:Database
Name
Default
90 exteNd Director Rules Guide

cdScopedPaths.html

Microsoft SQL
Server
(exteNd
application
server)

com.sssw.jdbc.mss.odbc.
AgOdbcDriver

jdbc:sssw:odbc:Database
Name

Microsoft SQL
Server
(WebLogic)

weblogic.jdbc.mssqlserver4.
Driver

jdbc:weblogic:mssqlserver4:
DatabaseName@server:
port

NOTE: You can specify
either the IP address or the
server host name

DB2 COM.ibm.db2.jdbc.app.DB2
Driver

jdbc:db2:DatabaseName

Oracle Thin oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@server:
port:SID

NOTE: You can specify
either the IP address or the
server host name

Oracle
(exteNd
application
server)

com.sssw.jdbc.oracle8.Driver jdbc:sssw:oracle:DatabaseN
ame

Oracle
(WebLogic)

weblogic.jdbc.oci.Driver jdbc:weblogic:oracle:
DatabaseName

Sybase ASE com.sybase.jdbc2.jdbc.Syb
Driver

jdbc:sybase:Tds:server:
port/DatabaseName

NOTE: You can specify
either the IP address or the
server host name

Database/server Driver class name Database name
exteNd Director Rules Guide-91

Installed Actions 91

Alphabetical list of actions
Add
Add Eraser
Calculate Age
Clear Request Data From Whiteboard
Create Collection Of Objects From SQL
Default
Delete Cookie
Deny Access
Display Component
Display Cookies
Display Request Headers
Display Whiteboard
Divide
Drop Cookie User ID
Fire Rule
Flush
Format Date
Get Cookie Value
Get User Property
Log User Off
Multiply
Query
Remove From Whiteboard
Return As Decimal Format
Return As Html Body
Return As Html Bold
Return As Html Break
Return As Html Checkbox
Return As Html File Upload
Return As Html Hidden Field
Return As Html JavaScript
Return As Html Option List
Return As Html Password
Return As Html Radio Button
Return As Html Reset Button
Return As Html Scripted Button
Return As Html Submit Button
92 exteNd Director Rules Guide

Return As Html Table
Return As Html Text Area
Return As Html Text Field
Return As XML
Return Authentication Required
Return False
Return Response
Return Response With Default
Return True
Save Cookies To Whiteboard
Save Form Get Data To Whiteboard
Save Request Data To Whiteboard
Save To Whiteboard
Send Mailer SMTP
Set Component Parameter
Set Cookie Value
Set Date On Whiteboard
Set Expired
Set Next Activity
Set Pipeline Status
Set Response Header
Set Response Status
Set User Property
Set Workitem Priority
Set Workitem Value
SQL Hierarchy
SQL String
Stop Rule Processing
Subtract

Add

Description Performs addition. The value you specify is added to a value stored in a whiteboard
key. The whiteboard key then contains the new, incremented value. No response status
or response phrase is set.
exteNd Director Rules Guide-93

Installed Actions 93

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Add Eraser

Description Specifies that a whiteboard key will be removed at some future time: either after a
number of seconds or after a number of times accessed.

Properties

Usage To use the activation counter, set seconds to zero. To use seconds, set the activation
counter to zero.

Calculate Age

Description Calculates the difference in years between a date on the whiteboard and the current
date and stores the difference in another whiteboard key. The value is saved as an
integer.

Properties

Property Description

Whiteboard Key ^ The keyname of a numeric value stored on the whiteboard. If
the key doesn’t exist, this action adds it. If its value is not
numeric, it is treated as zero for the arithmetic operation.

Value The numeric value you want to add to the value of the
whiteboard key.

Property Description

Activation Counter The number of times the whiteboard key’s value can be
accessed before it is deleted. Setting the key and getting the
key’s value both increment the activation counter.

Eraser Name The name of the whiteboard key you want to have erased.

Seconds The number of seconds the key will stay on the whiteboard.

Property Description

Detail Key The key in which you want to store the difference between the two
dates.
94 exteNd Director Rules Guide

Usage Code in the application must add a key to the whiteboard using the name you specified
in Date Key, or you could use the Save To Whiteboard action. The data type of its value
must be Date.

Clear Request Data From Whiteboard

Description Removes a key and its value from the whiteboard. If the key doesn’t exist, nothing
happens.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage If you use a template for Detail Key, you need to add the key to the whiteboard either
in your application or through another action (see the Save To Whiteboard action).

Create Collection Of Objects From SQL

Description Creates a Vector of objects from a specified database column and makes the Vector
available from the whiteboard through a specified detail key.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Date Key The key containing the date you want to compare to the current date.
(The current date is the date the rule is run.)

Property Description

Detail Key ^ The name of the whiteboard key to be removed.

Property Description

Key Column ^ The name of the column for the SQL WHERE clause.

User ID ^ The user ID expected by the database.

Detail Key ^ The name of the key that holds the object Vector name.

Password ^ The password expected by the database.

Object Name ^ The name of the object or objects to retrieve for the SQL
WHERE clause.

Property Description
exteNd Director Rules Guide-95

Installed Actions 95

Default

Description Does nothing. Use this action when you want nothing to happen if the conditions are
met.

Usage You can use the Default action as a placeholder as you work on a rule.

To set a success status code, you can use the Set Response Status action instead of the
Default action. Portal code that uses the rule can check the status code to confirm that
the rule ran correctly.

See also Set Response Status action

Delete Cookie

Description Deletes a cookie from the user’s Web browser or other client. If the cookie exists, this
action sets the cookie’s age to zero, and that signals the browser to delete it. No status
code is set. If the cookie does not exist, nothing happens.

Properties

SQL String ^ The SQL statement you want to execute.

NOTE: If you are using a template key for this value, place
the expression in quotes—for example:

“!valueOf.mySQL”

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Database Name ^ The URL for the database. The format for the URL depends
on the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Property Description

Cookie Name The name of the cookie you want to delete.

Property Description
96 exteNd Director Rules Guide

Deny Access

Description Sets the response status and response phrase. Application code can check the response
status and act accordingly. The response status is set to 403 and the response phrase is
set to the specified message. (Neither the console nor the log displays the response
status.)

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage Application code can display this text to the user to explain what this action is doing.

Display Component

Description Displays the contents of a component.

Properties

Display Cookies

Description Displays the cookies and their values in the Rule subsystem log. By default, the log
output displays on the server console.

Usage Use this action when debugging a rule.

See also For information on configuring logs, see the chapter on logging information in
Developing exteNd Director Applications.

Display Request Headers

Description Displays the parameters in the request header and their values in the Rule subsystem
log. By default, the log output displays on the server console.

Usage Use this action when debugging a rule.

Property Description

Message ^ The text to store in the response phrase.

Property Description

CID The component ID
exteNd Director Rules Guide-97

Installed Actions 97

cdLogging.html

See also For information on configuring logs, see the chapter on error handling in Developing
exteNd Director Applications.

Display Whiteboard

Description Displays the whiteboard keys and their values in the Rule subsystem log. By default,
the log output displays on the server console.

Usage Use this action when debugging a rule.

See also For information on configuring logs, see the chapter on logging information in
Developing exteNd Director Applications.

Divide

Description Performs division. The value you specify is divided into a value stored in a whiteboard
key. The whiteboard key then contains the quotient of the division. If the divisor value
is zero, the whiteboard key’s value is set to the text Infinity. No response status or
response phrase is set.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Drop Cookie User ID

Description Drops a cookie named userID into the browser with a value of the portal user’s ID. No
response status or response phrase is set. If the user has disabled cookies, nothing
happens. Success or failure is reported in the log; the default log output is displayed on
the server console.

Property Description

Whiteboard Key ^ The keyname of a numeric value stored on the whiteboard. If
the key doesn’t exist, this action creates it. If its value is not
numeric, it is treated as zero for the division operation.

Value The numeric value you want to divide into the value of the
whiteboard key.
98 exteNd Director Rules Guide

cdLogging.html
cdLogging.html

Properties

Fire Rule

Description Executes a rule.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Flush

Description Tells the system to empty the caches that hold rules.

Format Date

Description Gets a whiteboard Timestamp value stored in a specified Date key, formats it for the
current locale, and saves the result to the whiteboard in the specified Detail key. If the
value for Date Key is not a valid Timestamp object, the Detail Key is set to an empty
string.

Properties

See also Set Date On Whiteboard action

Property Description

Maximum Number of Days The number of days before the cookie expires.

Property Description

Rule ID ^ The ID of the rule you want to fire. Specify the ID (it is displayed in the
Rule Editor).

Property Description

Detail Key The name of the key used to save the formatted date text.

Date Key The name of the key containing a Timestamp object. The Timestamp
specifies the date you want to format.
exteNd Director Rules Guide-99

Installed Actions 99

Get Cookie Value

Description Gets the value of the specified cookie. Sets the response phrase to the cookie value.

Properties

Get User Property

Description Gets the value of a user attribute for the current portal context. The attribute must be
set on the whiteboard in the specified key.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

See also Set User Property action

Check User Property condition

Log User Off

Description Resets the user to Anonymous and removes all key/value pairs from the whiteboard.
No response status or response phrase is set.

Multiply

Description Performs multiplication. The value you specify is multiplied by a value stored in a
whiteboard key. The whiteboard key then contains the result of the multiplication. No
response status or response phrase is set.

Property Description

Stop Processing When checked, this action terminates the rule after getting the
cookie value, regardless of the continue setting for the case.

Cookie Name The name of the cookie whose value you want.

Property Description

Key ^ The name of the attribute.
100 exteNd Director Rules Guide

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Query

Description Returns the result of a query to the Content Management subsystem as an XML string.

Usage This action is used by the Content Query sample application.

See also Section on using the Content Query action in the Content Management Guide.

Remove From Whiteboard

Description Removes a value and its key from the whiteboard. No response status or response
phrase is set.

Properties

Return As Decimal Format

Description Formats a decimal value as text using the specified formatting. The formatted number
is stored as text in the key specified by Detail Key. The response type is set to TEXT
and the response status is set to 302.

Property Description

Whiteboard Key ^ The keyname of a numeric value stored on the whiteboard. If
the key doesn’t exist, this action creates it. If the key’s value is
not numeric, it is treated as zero for the multiplication
operation.

Value The numeric value you want to multiply by the value of
Whiteboard Key.

Property Description

Whiteboard Key The name of the key you want to remove.
exteNd Director Rules Guide-101

Installed Actions 101

cmgContentQueryApp.html#UsingtheContentQueryaction

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage You can add special characters such as currency and percent signs. This action does not
support formatting as phone numbers and other nonarithmetic formats.

Return As Html Body

Description Returns the opening of an HTML BODY tag with a color attribute. This action:

Sets the response phrase to <body bgColor="colorvalue">
Sets the response type to TEXT
Sets the response status to 302
Ends rule processing

Property Description

Max. Number of
Integers

The maximum number of digits in the formatted number. If there
are more digits in the actual number, digits on the left are
dropped.

Min. Number of
Integers

The minimum number of digits in the formatted number. If the
number has fewer digits, extra zeros are added on the left.

Detail Key ^ The name of a key that holds the number you want to format. If
the key doesn’t exist, this action creates it. If the key’s value is
not numeric, the number is set to zero.

Min. Decimal
Places

The minimum number of decimal places. Zeros are added on
the right if necessary.

Max. Decimal
Places

The maximum number of decimal places. Digits are truncated on
the right if necessary.

Grouping Select this to include a separator character every so many digits,
specified by the grouping size and counting left from the decimal
point. In an American locale, the separator is a comma.

Grouping Size The number of digits between separators.

Mask Specifies special characters to add to the formatted number,
such as currency or percent. Other formatting you might put in a
mask (such as commas, periods, or dashes) is ignored.
102 exteNd Director Rules Guide

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Bold

Description Returns the specified text enclosed in HTML bold tags (sets the response phrase to
value). No response status or response type is set.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Break

Description Returns the specified text preceded or followed by HTML break tags, setting the
response phrase to one of the following:

If you select Before:
value
If you select After: value

If you select both:
value

This action does not set the response status or response type.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Background Color ^ A color value specified as text that would be recognized by
a browser. You can specify a hexadecimal value (such as
#FFFFFF) or a browser-supported color name.

Property Description

Value ^ The text you want to format with bold tags.

Property Description

Value ^ The text to which you want to add break tags.

After When selected, a break tag is added after the text.

Before When selected, a break tag is added before the text.
exteNd Director Rules Guide-103

Installed Actions 103

Return As Html Checkbox

Description Returns HTML for a check box. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="CHECKBOX" VALUE="important" NAME="cb1" CHECKED>

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html File Upload

Description Returns HTML for a file upload field. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="FILE" VALUE="Select a file" NAME="fileupload"
ACCEPT="image/*, text/html">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Name ^ A name for the check box, which becomes the value of the
NAME attribute.

Stop Processing When selected, the rule ends after this action.

Value ^ The value assigned to the VALUE attribute of the check box.
This value is returned to the server when the check box is
selected.

Checked When selected, adds the CHECKED attribute to the HTML.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description

Name ^ A name for the field, which becomes the value of the NAME
attribute.
104 exteNd Director Rules Guide

Return As Html Hidden Field

Description Returns HTML for a hidden field. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="HIDDEN" VALUE="important" NAME="hfld1">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Stop Processing When selected, the rule ends after this action.

Accept ^ A comma-separated list of MIME types for the ACCEPT
attribute. These are the file types the user can select in the
field. The attribute is not supported by all browsers.

Value ^ The value assigned to the VALUE attribute of the field. In an
HTML page, the value is displayed in the field and replaced by
the value the user enters.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description

Name ^ A name for the hidden field, which becomes the value of the
NAME attribute.

Stop Processing When selected, the rule ends after this action.

Value ^ The value assigned to the VALUE attribute of the field. In an
HTML page, the value is returned to the server when the user
submits the enclosing form.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description
exteNd Director Rules Guide-105

Installed Actions 105

Return As Html JavaScript

Description Returns the JavaScript code you specify enclosed in HTML SCRIPT tags. Sets the
response phrase to HTML that looks something like this:

<SCRIPT LANGUAGE=JavaScript> [your code here] </SCRIPT>

This action sets the response type to TEXT and the response status to 302.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Option List

Description Performs a SQL query and creates an HTML SELECT element from the result set. Sets
the response phrase to HTML that looks something like this:

<SELECT id=opt1 name=opt1 size=1 width= 100">
<OPTION value="portalcorpid">Official
<OPTION value="anonymous">Anonymous
<OPTION value="administrator">User0
<OPTION value="contentadmin">User1
<OPTION value="default">null
<OPTION value="sample">Sample
<OPTION value="testID">Smith
</SELECT>

This action sets the response type to TEXT and the response status to 302. The result
set and SQL statement are stored on the whiteboard (see the Detail Key property in the
table below). If you specify a Detail Key, the rule ends after this action.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

JavaScript ^ The JavaScript code to be returned.

Property Description

HTML Tag The name of the SELECT element. The value is used for the
NAME attribute.

User ID ^ The user ID expected by the database. This is not usually the
same as the portal user ID.
106 exteNd Director Rules Guide

Return As Html Password

Description Returns HTML for a password input field. Sets the response phrase to HTML that
looks something like this:

<INPUT TYPE="PASSWORD" VALUE="PASSWORD" NAME="default" SIZE="25"
MAXLENGTH="50" READONLY>

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

SQL String ^ A SQL statement whose result set contains the values for the list.

NOTE: If you are using a template key for this value, place the
expression in quotes—for example:

“!valueOf.mySQL”

Key Column The column whose values will be used for the VALUE attribute of
each OPTION element.

Size ^ The value for the SIZE attribute, which specifies the number of
items to display in the list. Specify 1 for a dropdown list.

Database
Name ^

The URL for the database. The format for the URL depends on
the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Password ^ The password expected by the database. This is not usually the
same as the portal user’s password.

Detail Key A name used to create whiteboard keys for the result set and SQL
statement. The name is used for the result set, and name.sql is
used for the SQL statement.

Children
Column

The column containing related information. Generally this is left
blank; it requires the database to be organized with parent/child
relationships.

Width (%) ^ The value for the WIDTH attribute, which specifies the width of
the list. This attribute is ignored by some browsers.

Description
Column

The column whose values will be used as the text of each
OPTION element.

Property Description
exteNd Director Rules Guide-107

Installed Actions 107

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Radio Button

Description Returns HTML for a radio button. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="RADIO" VALUE="One" NAME="radio1" CLASS="INPUT">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Read-only Whether the user is allowed to enter a value.

Name ^ A name for the password field, which becomes the value of
the NAME attribute.

Stop Processing When selected, the rule ends after this action.

Maximum Length ^ The maximum number of characters allowed for the
password.

Size ^ The value for the SIZE attribute, which is the width of the
field.

Value ^ The value assigned to the VALUE attribute of the field. In an
HTML page, this is the default value for the password field.
Leave it blank if you don’t want a default.

Append Response? When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description

Name ^ A name for the radio button, which becomes the value of the
NAME attribute.

In HTML, to create a group of radio buttons that work
together, give them all the same name.

Stop Processing When selected, the rule ends after this action.
108 exteNd Director Rules Guide

Return As Html Reset Button

Description Returns HTML for a reset button. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="RESET" VALUE="Reset">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Scripted Button

Description Returns HTML for a reset button. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="BUTTON" VALUE="Cancel" onclick="JavaScript code here">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Value ^ The value for the VALUE attribute. In an HTML page, the
value is returned to the server when the radio button is
selected and its enclosing form is submitted.

Checked When selected, adds the CHECKED attribute to the HTML.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description

Stop Processing When selected, the rule ends after this action.

Value ^ The value for the VALUE attribute, which is the text displayed
on the button.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description
exteNd Director Rules Guide-109

Installed Actions 109

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Submit Button

Description Returns HTML for a submit button. Sets the response phrase to HTML that looks
something like this:

<INPUT TYPE="SUBMIT" VALUE="Submit">

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Stop Processing When selected, the rule ends after this action.

Value ^ The value for the VALUE attribute, which is the text displayed
on the button.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

OnClick ^ JavaScript code to be run when the button is clicked.

Property Description

Stop Processing When selected, the rule ends after this action.

Value ^ The value for the VALUE attribute, which is the text displayed
on the button.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text already there.

Disabled When selected, adds the DISABLED attribute to the HTML.
110 exteNd Director Rules Guide

Return As Html Table

Description Constructs an HTML table tag, using the result set from the SQL query specified to
create associated HTML table row and table data tags, and sets the result in the
specified detail key.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

HTML Tag Appends a NAME or ID attribute to the TABLE tag element.

User ID ^ The user ID expected by the database.

SQL String ^ The SQL statement you want to execute.

Border ^ The value for the HTML table BORDER attribute.

Database
Name ^

The URL for the database. The format for the URL depends on
the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Query String ^ The value for the HTML hyperlink query string.

Cell Spacing ^ The value for the HTML table CELLSPACING attribute.

Display
Headings

When selected, appends the HTML table row for the table
headings to the output buffer.

Password ^ The password expected by the database. This is not necessarily
the same as the application user’s password.

Cell Padding ^ The value for the HTML table CELLPADDING attribute.

Detail Key A name used to create a whiteboard key for the result set and
SQL statement. The name is used for the result set, and
name.sql is used for the SQL statement.

Width ^ The value for the HTML table WIDTH attribute.

Description
Column

The value for the column name in the result set whose data is
used for the HTML OPTION tag DESCRIPTION.
exteNd Director Rules Guide-111

Installed Actions 111

Return As Html Text Area

Description Returns HTML for a multiline text field. Sets the response phrase to HTML that looks
something like this:

<TEXTAREA NAME="txt1" ROWS="25" COLS="50">This is where to enter
text</TEXTAREA>

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return As Html Text Field

Description Returns HTML for a single-line text field. Sets the response phrase to HTML that
looks something like this:

<INPUT TYPE="TEXT" VALUE="TEXT" NAME="default" SIZE="25"
MAXLENGTH="50" READONLY>

This action sets the response type to TEXT and the response status to 302. If Stop
Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Name ^ The name for the field, assigned to the NAME attribute.

Stop Processing When selected, the rule ends after this action.

Columns ^ The width of the text field (specified as a number of
characters) assigned to the COLS attribute.

Value ^ The default text to be displayed in the text field.

Rows ^ The length of the text field (specified as a number of
characters) assigned to the ROWS attribute.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text that is already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Property Description

Read Only When selected, the text cannot be edited.
112 exteNd Director Rules Guide

Return As XML

Description Submits a SQL query and formats the result set as XML. The root element is table, and
its subelements are columns and tuples:

Sets the response phrase to XML that looks something like this:

<table description="test user list" key="test" sqlString="select *
from FWUSERS">
 <columns count="3">

<column value="USERID"/>
 <column value="FIRSTNAME"/>
 <column value="LASTNAME"/>

</columns>
 <tuples count="2">
 <tuple number="1">

<tuple value="portalcorpid"/>
 <tuple value="Portal Corporate Administrator"/>

<tuple value="unknown"/>
</tuple>

 <tuple number="2">

Name ^ The name for the input field, assigned to the NAME attribute.

Stop Processing When selected, the rule ends after this action.

Maximum Length ^ The maximum number of characters allowed, assigned to
the MAXLENGTH attribute.

Size ^ The width of the text field (specified as a number of
characters) assigned to the COLS attribute.

Value ^ The default text displayed in the text field.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text already there.

Disabled When selected, adds the DISABLED attribute to the HTML.

Subelement Description

columns Contains column elements that identify the column names.

tuples Are the rows of data.
Each tuples element contains a tuple element for each row. Each
tuple element contains a subelement for each column in the result
set. The order of these match the column elements. The order of
the elements must be preserved.

Property Description
exteNd Director Rules Guide-113

Installed Actions 113

<tuple value="anonymous"/>
<tuple value="Portal Anonymous User"/>

 <tuple value="unknown"/>
</tuple>

</tuples>
</table>

This action sets the response type to TEXT and the response status to 302. The result
set and SQL statement are stored on the whiteboard (see the Detail Key property in the
table below). If you specify a Detail Key, the rule ends after this action.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

User ID ^ The user ID expected by the database. This is not usually the
same as the portal user ID.

Detail Key A name used to create whiteboard keys for the result set and the
SQL statement. The name is used for the result set, and
name.sql is used for the SQL statement.

Password ^ The password expected by the database. This is not usually the
same as the portal user’s password.

Description Text that will be the value of a description attribute assigned to the
root element, which is called table.

SQL String ^ A SQL statement whose result set contains the data to be
formatted as XML elements.

NOTE: If you are using a template key for this value, place the
expression in quotes—for example:

“!valueOf.mySQL”

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Database
Name ^

The URL for the database. The format for the URL depends on
the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.
114 exteNd Director Rules Guide

Return Authentication Required

Description Sets the context response status to 401, forcing the browser to ask for authentication.

Return False

Description Sets the response status to 412, which signifies the boolean value false.

Return Response

Description Sets the response phrase to the specified text. You can use !valueOf templates to build
a text value from phrases stored on the whiteboard. Sets the response type to TEXT and
the response status to 302. If Stop Processing is checked, rule processing ends.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Return Response With Default

Description Returns text associated with a whiteboard key or uses a default message. Sets the
response phrase to the message, stores the message on the whiteboard, sets the
response type to TEXT, sets the response status to 302, and stops rule processing.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Stop Processing When selected, the rule ends after this action.

Response ^ The response phrase.

Append
Response?

When selected, adds the HTML to the response phrase after
any other text already there.

Property Description

Default ^ A message to use if the Response key doesn’t exist. If the
Response key doesn’t exist or has a null value, a new key is
created whose name is the Response keyname and whose value
is the Default message.

Response ^ A whiteboard key containing the message you want.
exteNd Director Rules Guide-115

Installed Actions 115

Return True

Description Sets the response status to 200, which signifies the boolean value true.

Save Cookies To Whiteboard

Description Puts the cookies the browser has sent onto the whiteboard. The whiteboard keys are
created using the cookie name as the keyname and the cookie’s value as the value for
the key.

See also Save Cookies To Whiteboard condition

Save Form Get Data To Whiteboard

Description Puts the query string from the browser on the whiteboard using the specified key.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

See also Save Form Get Data To Whiteboard condition

Save Request Data To Whiteboard

Description Puts the parameters in the request header on the whiteboard. The names of the request
parameters are used as the whiteboard keys, and the values of the request parameters
are their values.

Property Description

Whiteboard Key ^ The name of the whiteboard key.

See “Properties that support string templates” on
page 90.
116 exteNd Director Rules Guide

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

See also Save Request Data To Whiteboard condition

Save To Whiteboard

Description Saves a value on the whiteboard using the specified keyname. The value is set on the
whiteboard. No response phrase or status is set.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Send Mailer SMTP

Description Sends an e-mail message to a specified e-mail address. No response phrase or status is
set.

Property Description

AutoClear If this action has run before and the Detail Key includes a set of
previously created keys, those keys are removed from the
whiteboard before new keys are created from the current request
data.

Detail Key ^ A whiteboard key in which to store the names of the keys being
created.

NOTE: The keys are stored in a Vector.

Property Description

Whiteboard Key ^ The name to use for the whiteboard key where you want to
save the value.

Data ^ The value you want to save on the whiteboard.

Resolve When selected, !valueOf templates in the Data property are
processed and the stored value contains the result. When not
selected, the text is not evaluated and the whiteboard
contains the text as entered.
exteNd Director Rules Guide-117

Installed Actions 117

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage Use this action to send alerts or logging information to an administrator.

Set Component Parameter

Description Sets the value of a component parameter for the current portal context. The component
parameter must already exist.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Set Cookie Value

Description Creates a cookie or changes its value and expiration date. No response phrase or status
is set.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Subject The subject line for the e-mail.

To A valid e-mail address, in the form recipient@yourcompany.com.

SMTP Host An SMTP mail host. These usually have the form
smtp.yourcompany.com or mail.yourcompany.com.

Message ^ The text of the e-mail.

From The sender’s e-mail address, which is an e-mail address associated
with your portal application.

Property Description

Key ^ The name of the parameter.

Value ^ The value for the parameter.

Property Description

Maximum Number
of Days

The number of days the cookie will exist before the user’s
browser deletes it.
118 exteNd Director Rules Guide

Set Date On Whiteboard

Description Sets the current date on the whiteboard with a specified key and format. The default
format is a timestamp, and the default time is the runtime value. You can specify other
formats and time values.

Properties

Set Expired

Description Sets the context response headers in the browser to be expired. No response phrase or
status is set.

Cookie Value ^ The text value assigned to the cookie.

Cookie Name The cookie’s identifier.

Property Description

Key The key for the date value.

Format The date format. For example:
yyyy-MM-dd k:mm:ss.S

Default time is current (runtime). You can also specify a time value. For
example, the following indicates today at 12 p.m.:

yyyy-MM-dd 00:00:00.000

For information:

About date formats, see the API documentation for
java.text.SimpleDateFormat

About date values, see the API documentation for java.util.Date

Property Description
exteNd Director Rules Guide-119

Installed Actions 119

Set Next Activity

Description Sets the destination link in a workflow process.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage This action is for use with a Rule link in the Workflow Editor.

Set Pipeline Status

Description Sets the active pipeline’s canProcessRequests flag to On/Off for this action.

NOTE: The active status is changed for this action only.

Properties

Set Response Header

Description Sets a named parameter value in the HTTP response header (EbiResponse) using the
keyname and value you specify. No response phrase or status is set.

Properties

Property Description

Addressee ^ User activities only: the user, group, or role defined for the
activity. For nonuser activities, use the default.

NOTE: if you are accessing an LDAP realm, specify the
distinguished name—for example:

cn=sample,ou=users

isRole Check this if the Addressee field is a role.

Activity Name ^ The name of the activity, as defined in the workflow process.

Property Description

On When selected, the pipeline is active for this action.

Property Description

Key The name of the parameter being added to the response header.

Value The text value associated with the parameter name.
120 exteNd Director Rules Guide

Set Response Status

Description Sets the response status to the value you specify. If your rule performs several actions,
the response status will be the last status set.

Properties

Usage To control the status value, make the Set Response Status action the last one in the rule.

Set User Property

Description Sets the value of a user attribute for the current portal context. The user attribute must
exist.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Set Workitem Priority

Description Sets the specified value as an Integer associated with the current workitem.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Status A status value. You must use one of the numeric values identified in
EbiResponse.

For more information, see the API Reference.

Property Description

Key ^ The name of the user attribute.

Value ^ The value for the user attribute.

Property Description

Priority ^ A string value.
exteNd Director Rules Guide-121

Installed Actions 121

Usage This action is for use with a Rule activity or a Rule link in a workflow process.

If you use this action with a Rule link, be sure the action section also sets the next
destination. See Set Next Activity action.

Set Workitem Value

Description Sets the property value for the document associated with a workitem in a workflow
process. The document and property must exist and already have been added to the
workitem. This action handles locking and unlocking of the document to set the
property.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Usage This action is for use with a Rule activity or a Rule link in a workflow process.

If you use this action with a Rule link, be sure the action section also sets the next
destination. See Set Next Activity action.

SQL Hierarchy

Description Does the same as the SQL String action (next). There is no corresponding condition.

SQL String

Description Executes a SQL statement and stores the result on the whiteboard. If more than one
row is returned, only the last row in the result set is saved to the whiteboard.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Document Property ID ^ The ID for the property

Document ID ^ The document ID

Property Value ^ The property value to set

Property Description

User ID ^ The user ID expected by the database.
122 exteNd Director Rules Guide

See also SQL String condition

Stop Rule Processing

Description Ends processing of the current rule by throwing EboActionException. If the rule has
been invoked as part of a rules pipeline, it ends the pipeline too.

Subtract

Description Performs subtraction. The value you specify is subtracted from a value stored in a
whiteboard key. The whiteboard key then contains the result of the subtraction. No
response status or response phrase is set.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Password ^ The password expected by the database. This is not
necessarily the same as the portal user’s password.

SQL String ^ The SQL statement you want to execute.

NOTE: If you are using a template key for this value, place
the expression in quotes—for example:

“!valueOf.mySQL”

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Database Name ^ The URL for the database. The format for the URL depends
on the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Property Description

Whiteboard Key ^ The keyname of a numeric value stored on the whiteboard. If
the key doesn’t exist, this action creates it. If the key’s value is
not numeric, it is treated as zero for the arithmetic operation.

Value The numeric value you want to subtract from the value of the
whiteboard key.

Property Description
exteNd Director Rules Guide-123

Installed Actions 123

124 exteNd Director Rules Guide

8
 Installed Conditions Chapter 8
This chapter describes the conditions installed with your exteNd Director project.

For information:

About how to use conditions and actions in the Rule Editor, see Chapter 4, “Rule
and Macro Editors”.
About accessing sources and supporting files, see “Accessing condition and
action sources” on page 89.

Alphabetical list of conditions
Check Component Parameter
Check Date
Check Date Within Range
Check Day
Check For Cookie
Check Month
Check Request Data
Check Time
Check User
Check User Group
Check User Property
Check Whiteboard
Check Whiteboard Value
Check Whiteboard Value Is Empty
Check Workitem Value
125

Default
Is Form Get Data Available
Is New Session
Save Cookies To Whiteboard
Save Form Get Data To Whiteboard
Save Request Data To Whiteboard
Set Action Off
Set Action On
Set Action On Or Off
PSQL Check For Column
SQL String

Check Component Parameter

Description Compares the portal component parameter value with a value you specify. If the
comparison is true, the condition returns true.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Check Date

Description Compares the current date with the date you specify and returns true if they are the
same.

Property Description

Key ^ The name of the component parameter.

Compare The type of comparison you want to make. Select from the dropdown
list:

For numeric values: use the various equal to, greater than, and less
than conditions

For text: use equal, begins, ends, and contains

Value ^ The value to which you want to compare the parameter.
126 exteNd Director Rules Guide

Properties

Check Date Within Range

Description Returns true when the current date is within the specified range. If the date is out of
range or if you don’t specify a date for both start and end, the condition returns false.

Properties

Check Day

Description Returns true when the current weekday is in the set of selected weekdays.

Properties

Property Description

Date The date you want to check against the current date.

Click Pick Date to use a calendar tool to select a date:

The << and >> buttons change the year

The < and > buttons cycle through the months of the year

Property Description

Start Date The start date of the range. Click the button to use a calendar tool to
select a date.

End Date The end date of the range. Click the button to use a calendar tool to
select a date:

The << and >> buttons change the year

The < and > buttons cycle through the months of the year

Inclusive Whether the start and end dates are considered part of the range:

If selected, the dates are included—the current date must be
greater than or equal to the start and less than or equal to the end

If not selected, the current date must be greater than the start and
less than the end

Property Description

List of weekdays Check one or more weekdays to select them.
exteNd Director Rules Guide-127

Installed Conditions 127

Check For Cookie

Description Returns true if the specified cookie is defined in the user’s browser.

Properties

Check Month

Description Returns true when the current month is in the set of selected months.

Properties

Check Request Data

Description Checks whether a parameter value in the request header matches a value you specify.
If the comparison is true, the condition returns true.

Properties

Check Time

Description Returns true if the current time is between the hours you specify.

Property Description

Cookie Name The name of the cookie you want to find.

Property Description

List of months Check one or more months to select them.

Property Description

Key The name of a request parameter.

Value The value to which you want to compare the parameter.

Condition The type of comparison you want to make:

For numeric values: use the various equal to, greater than, and
less than conditions

For text: use equal, begins, ends, and contains
128 exteNd Director Rules Guide

Properties

Check User

Description Compares the current user with the specified user based on the text of the user ID. If
the comparison is true, the condition returns true.

Properties

Check User Group

Description Returns true if the user is a member of the specified group in the authentication
directory.

NOTE: Users can be assigned to groups in the DAC.

Property Description

hours of ... and ... Select an hour from each of the two dropdown lists to specify
the start and end of the time span.

Property Description

User A user ID defined in your server directory realm.

If you are accessing an LDAP realm, use the distinguished name—for
example:

cn=user,ou=users

Condition The relational operator for the comparison:

The most useful comparisons are equal and not equal

Greater than and less than comparisons are based on the ASCII
values of the characters in the ID

Starts with, ends with, and contains are less useful, since the
condition compares the whole user ID (you can’t specify part of an
ID for the comparison)
exteNd Director Rules Guide-129

Installed Conditions 129

Properties

Check User Property

Description Compares the value of a user attribute for the current context with a value you specify
in the condition property. Returns true if they are the same.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Check Whiteboard

Description Returns true if the specified whiteboard key exists.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Group A group name defined in your server directory realm.

NOTE: If you are accessing an LDAP realm, use the distinguished
name—for example:

cn=managers,ou=management

Property Description

Key ^ The name of the user attribute.

Compare The type of comparison you want to make. Select from the dropdown
list:

For numeric values: use the various equal to, greater than, and less
than conditions

For text: use equal, begins, ends, and contains

Value ^ The value to which you want to compare the attribute value.

Property Description

Whiteboard Key ^ The name of the whiteboard key.
130 exteNd Director Rules Guide

Check Whiteboard Value

Description Compares the value of the specified whiteboard key to a value based on the data type
of the value in the whiteboard key. If the comparison is true, the condition returns true.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Check Whiteboard Value Is Empty

Description Returns true if the value of a whiteboard key is null or an empty string (“”).

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Check Workitem Value

Description Compares a value you specify to a workitem document value and returns true if the
values are the same.

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

Property Description

Value The value to which you want to compare the whiteboard value. The
condition will convert the value you specify to the data type of the
whiteboard value. If the value can’t be converted, the condition
returns false.

Whiteboard
Key ^

The name of the whiteboard key.

Condition Select the relational operator for the comparison.

Property Description

 Whiteboard Key ^ The name of the whiteboard key.

Property Description

Value The value to use for the comparison.

Document ID ^ The document ID containing the property to compare with.
exteNd Director Rules Guide-131

Installed Conditions 131

Usage For use with a Rule activity or Rule link in the Workflow Designer.

See also Workflow Designer chapter in the Workflow Guide

Default

Description This condition does nothing—by returning false. If Default is the only condition in a
When section, the actions for that case won’t be executed.

Is Form Get Data Available

Description Returns true if the request header contains parameters from an HTML form.

Is New Session

Description Returns true if this is the first request for this user’s session.

Save Cookies To Whiteboard

Description Puts the cookies the browser has sent onto the whiteboard. Returns true if successful
and false if an error occurs.

See also Save Cookies To Whiteboard action

Save Form Get Data To Whiteboard

Description Puts the query string from the browser on the whiteboard using the specified key.
Returns true if successful and false if an error occurs.

See also Save Form Get Data To Whiteboard action

Document
Property ID ^

The property ID for the compare value.

Condition Select the relational operator for the comparison.

Property Description
132 exteNd Director Rules Guide

wfDesigner.html

Save Request Data To Whiteboard

Description Puts the parameters in the request header on the whiteboard. The names of the request
parameters are used as the whiteboard keys, and the values of the request parameters
are their values. Returns true if successful and false if an error occurs.

See also Save Request Data To Whiteboard action

Set Action Off

Description Returns false. If it is the only condition in a When section, the actions for that case are
not executed. If there are other conditions, the actions may or may not be executed
depending on the values of the other conditions and the logical operators used.

Set Action On

Description Returns true. If it is the only condition in a When section, the actions for that case are
executed. If there are other conditions, the actions may or may not be executed
depending on the values of the other conditions and the logical operators used.

Set Action On Or Off

Description Returns true if the On? property is selected and false if it is not.

Properties

See also Set Action Off and Set Action On conditions (just above)

PSQL Check For Column

Description Executes a SQL query with a WHERE clause and returns true if the result set contains
any rows. The SQL query is built from the condition’s properties and looks like this:

SELECT fields FROM table WHERE column condition value

Property Description

On? Whether the condition returns true or false.
exteNd Director Rules Guide-133

Installed Conditions 133

Properties Any property with the ^ character supports the !valueOf template construct. For more
information, see “Properties that support string templates” on page 90.

SQL String

Description Executes a SQL query and returns true if the result set contains any rows.

See also SQL String action

Property Description

User ID ^ The user ID expected by the database.

Column The name of a column for the WHERE clause.

Database Name ^ The URL for the database. The format for the URL depends
on the DBMS.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Condition A SQL comparison operator for the WHERE clause.

JDBC Driver ^ The Java class name for the JDBC driver.

For more information, see “Properties that support
database drivers and URLs” on page 90.

Fields The columns to include in the result set. Use an asterisk (*) to
specify all columns.

Value The value you want to match in the WHERE clause.

Password ^ The password expected by the database. This is not
necessarily the same as the portal user’s password.

Table The table for the SQL query.
134 exteNd Director Rules Guide

9
 Rule JSP Tag Library Chapter 9
This chapter describes the JSP tags contained in RuleTag.jar:

doAction
doCondition
conditionalRule
fireRule

For background information, see the chapter on using the exteNd Director tag
libraries in Developing exteNd Director Applications.
135

cdUsingTagLib.html
cdUsingTagLib.html

doAction
Description Fires an exteNd Director action and returns the response phrase.

This tag wraps the doAction() method on the EbiAction interface and the
getResponsePhrase() method on the EbiContext interface.

Syntax <prefix:doAction action="action" id="ID" />

Examples This example shows how to use the doAction tag to insert an action’s response phrase
at the tag location:

<% taglib uri="/re" prefix="re" %>
...
Result of Action is...
<re:doAction action="com.sssw.re.action.ReturnAsHtmlBold" />

This example shows how to use the doAction tag to store an action’s response phrase
in a variable for further processing:

<% taglib uri="/re" prefix="re" %>
...
<re:doAction action="com.sssw.re.action.ReturnAsHtmlBold"
id="results"/>
...
The response phrase is: <%=pageContext.getAttribute("results")%>

Attribute Required?

Request-time
expression
values
supported? Description

action Yes No Specifies the class name for the action
that will be fired.

id No No Specifies the name of the variable that
will be used to store the response phrase.

If no value is specified, the response
phrase is inserted in the page at the
location where the tag appears.
136 exteNd Director Rules Guide

doCondition
Description Fires an exteNd Director condition and returns a string that represents the boolean

value returned by the condition.

This tag wraps the doCondition() method on the EbiCondition interface.

Syntax <prefix:doCondition condition="condition" id="ID" />

Examples This example shows how to use the doCondition tag to insert a condition’s result at the
tag location:

<% taglib uri="/re" prefix="re" %>
...
Result of condition is ...
<re:doCondition condition="com.sssw.re.condition.CheckDate" />

This example shows how to use the doCondition tag to store an action’s response
phrase in a variable for further processing:

<% taglib uri="/re" prefix="re" %>
...
<re:doCondition condition="com.sssw.re.condition.CheckDate"
id="result"/>
...
The result is: <%=pageContext.getAttribute("result")%>

Attribute Required?

Request-time
expression
values
supported? Description

condition Yes No Specifies the class name for the
condition that will be fired.

id No No Specifies the name of the variable that
will be used to store the result of the
condition.

If no value is specified, the result is
inserted in the page at the location
where the tag appears.
exteNd Director Rules Guide-137

Rule JSP Tag Library 137

conditionalRule
Description Fires an exteNd Director rule that returns a true or false result.

This tag wraps the isTrue() method on the EbiRuleManager interface.

Syntax <prefix:conditionalRule rule="rule" owner="owner" id="ID" />

Example <% taglib uri="/re" prefix="re" %>
...
<re:conditionalRule rule="sample.bonus" id="rule1"/></p>
<%=pageContext.getAttribute("rule1")%>

Attribute Required?

Request-time
expression
values
supported? Description

rule Yes No Specifies the ID for the rule that will be
fired.

owner No No Specifies the owner for the rule.

id No No Specifies the name of the variable that
will be used to store the result returned
by the rule.

If no value is specified, a default id of
ruleResult is used.
138 exteNd Director Rules Guide

fireRule
Description Fires an exteNd Director rule and returns the response phrase.

This tag wraps the fireRule() method on the EbiRuleManager interface and the
getResponsePhrase() method on the EbiContext interface.

Syntax <prefix:fireRule rule="rule" owner="owner" id="ID" />

Examples This example shows how to use the fireRule tag to insert a rule’s response phrase at the
tag location:

<% taglib uri="/re" prefix="re" %>
...
<re:fireRule rule="myrule" />

This example shows how to use the fireRule tag to store a rule’s response phrase in a
variable for further processing:

<% taglib uri="/re" prefix="re" %>
...
<re:fireRule rule="myrule" id="results"/>
...
The response phrase is: <%=pageContext.getAttribute("results")%>

Attribute Required?

Request-time
expression
values
supported? Description

rule Yes Yes Specifies the ID for the rule that will be
fired.

owner No No Specifies the owner for the rule.

id No No Specifies the name of the variable that
will be used to store the response
phrase.

If no value is specified, the response
phrase is inserted in the page at the
location where the tag appears.
exteNd Director Rules Guide-139

Rule JSP Tag Library 139

140 exteNd Director Rules Guide

Index
A
action macros

using in the Rule Editor 70
actions

accessing sources 89
adding cases in the Rule Editor 63
deactivating in the Rule Editor 64
defining logic for 43
designing custom 40, 41
installed, reference documentation for 89
installed, working with 25
using in the Rule Editor 62
writing custom 39
see also custom conditions and actions

Action Wizard 73
Add

installed action 93
Add Eraser

installed action 94

B
BeanInfo class

writing for custom conditions and actions 51
bindings

setting up for pipelines 85

C
Calculate Age

installed action 94
cases

in the Rule Editor 65
Check Component Parameter

installed condition 126
Check Date

installed condition 126
Check Date Within Range

installed condition 127
Check Day

installed condition 127

Check For Cookie
installed condition 128

Check Month
installed condition 128

Check Request Data
installed condition 128

Check Time
installed condition 128

Check User
installed condition 129

Check User Group
installed condition 129

Check User Property
installed condition 130

Check Whiteboard
installed condition 130

Check Whiteboard Value
installed condition 131

Check Whiteboard Value Is Empty
installed condition 131

Check Workitem Value
installed condition 131

Clear Request Data From Whiteboard
installed action 95

conditionalRule tag 138
condition macros

using in the Rule Editor 68
conditions

accessing sources 89
adding in the Rule Editor 60
deactivating in the Rule Editor 62
designing custom 40, 41
installed, reference documentation for 125
installed, working with 25
using in the Rule Editor 59
writing custom 39
see also custom conditions and actions

Condition Wizard 73
context methods

for accessing the whiteboard 33
context object

firing rules from 29
cookies

using in rules 25
exteNd Director Rules Guide-141

141

Create Collection Of Objects From SQL
installed action 95

custom conditions and actions
BeanInfo classes 51
choosing a user interface 40
compiling 80
designing 41
properties 41, 45
resource bundles 53
rule descriptors 44
templates 46

custom tags
conditionalRule 138
doAction 136
doCondition 137
fireRule 139

D
database driver

property in conditions and actions 90
database name

property in conditions 90
database URL

property in conditions and actions 90
data types

in custom conditions and actions 49
decision mode

in rules 18
Default

installed action 96
installed condition 132

Delete Cookie
installed action 96

Deny Access
installed action 97

Display Component
installed action 97

Display Cookies
installed action 97

Display Request Headers
installed action 97

Display Whiteboard
installed action 98

Divide
installed action 98

doAction() 78
doAction() method 41, 49, 78
doAction() method (code example) 44

doAction tag 136
doCondition() 78
doCondition() method 41
doCondition() method (code example) 42
doCondition tag 137
Drop Cookie User ID

installed action 98

E
EbiContext

rules and 24
EbiRuleManager

defined 24

F
Fire Rule

installed action 99
fireRule() method 29
fireRule tag 139
fireTemporaryRule() method 29
firing rules

methods for 29
Flush

installed action 99
Format Date

installed action 99

G
getClazz() method

custom conditions and actions and 52
Get Cookie Value

installed action 100
getLog() method

and custom conditions and actions 77
getParameterPanel() method

and custom conditions and actions 77
getResponsePhrase() method 32
getResponseStatus() method 32
getResponseType() method 32
getTemporaryValue() method 33
Get User Property

installed action 100
getValue() method 33, 47, 49
getValueNames() method 33
group binding, in pipelines 85
exteNd Director Rules Guide142

H
hasValue() method 33

I
isFalse() method 29
Is Form Get Data Available

installed condition 132
isTrue() method 29

J
JavaBeans

defining for custom conditions and actions 45
JComboBox

in custom conditions and actions 51
JDBC Driver

property in conditions and actions 90
JPanel

in custom conditions and actions (code example) 50
JSP pages

firing rules from 30

L
Log User Off

installed action 100

M
merge() method 33, 47
Multiply

installed action 100

N
New Session

installed condition 132
now

built-in whiteboard key 26

O
object attributes

accessing from whiteboard 27
owners for rules 30

P
pipelines

benefits of 36
developing 35
editing 84
how they work 36
pipeline binding, setting up 85
setting up, in the Pipeline Editor 81
validating 37

properties
in custom conditions and actions 41, 45

PropertyDescriptor code element 52
property panels

creating in custom conditions and actions 50
designing for conditions and actions 40
generic panels in custom conditions and actions 49

Q
Query

installed action 101

R
Remove From Whiteboard

installed action 101
removeValue() 33
resource bundles

BeanInfo class (code example) 53
in custom conditions and actions 51, 53

response
built-in whiteboard key 26

response phrase
in rules 25

response status
in rules 25

Return As Decimal Format
installed action 101

Return As Html Body
installed action 102
exteNd Director Rules Guide-143

Index 143

Return As Html Bold
installed action 103

Return As Html Break
installed action 103

Return As Html Checkbox
installed action 104

Return As Html File Upload
installed action 104

Return As Html Hidden Field
installed action 105

Return As Html JavaScript
installed action 106

Return As Html Option List
installed action 106

Return As Html Password
installed action 107

Return As Html Radio Button
installed action 108

Return As Html Reset Button
installed action 109

Return As Html Scripted Button
installed action 109

Return As Html Submit Button
installed action 110

Return As Html Table
installed action 111

Return As Html Text Area
installed action 112

Return As Html Text Field
installed action 112

Return As XML
installed action 113

Return Authentication Required
installed action 115

Return False
installed action 115

Return Response
installed action 115

Return Response With Default
installed action 115

Return True
installed action 116

return values
handling in rules (code example) 33

rule binding
creating 85
editing 86

ruleDesc
built-in whiteboard key 27

rule descriptors
defining for a custom condition or action 44

Rule Editor
about 19
accessing 57
caret, meaning of 26
macros defined 19
pipelines defined 19

ruleID
built-in whiteboard key 27

rule manager
about 30
firing rules from 30

rules
accessing and firing 28
and pipelines, developing 23
binding to a user, group, or pipeline 85
boolean results 33
cookies 25
design guidelines 21
editing 67
firing from a JSP page 30
firing from a rule manager 30
firing from the context object 29
getting manager (code example) 30
handling return values (code example) 33
handling the results of 32
how they work 23
in JSP pages 29
methods for firing 29
naming in Rule Editor 59
response phrase 25
response status, setting 25
returning data (code example) 34
running in the Rule Editor 67
saving 67
structure 17
temporary 31
testing 67
understanding 17
using a whiteboard value (code example) 35
!valueOf syntax 26

Rule subsystem
about 17

Run Rule command
in the Rule Editor 67

runtime properties
in conditions and actions 46
exteNd Director Rules Guide144

S
Save Cookies To Whiteboard

installed action 116
installed condition 132

Save Form Get Data To Whiteboard
installed action 116
installed condition 132

Save Request Data To Whiteboard
installed action 116
installed condition 133

Save To Whiteboard
installed action 117

scoped paths
rules, using in 28, 90

Send Mailer SMTP
installed action 117

Set Action Off
installed condition 133

Set Action On
installed condition 133

Set Action On Or Off
installed condition 133

Set Component Parameter
installed action 118

Set Cookie Value
installed action 118

Set Date On Whiteboard
installed action 119

Set Expired
installed action 119

Set Next Activity 120
Set Pipeline Status

installed action 120
Set Response Header

installed action 120
setResponsePhrase() method

about 32
in custom action 43

Set Response Status
installed action 121

setResponseStatus() method
about 32
in custom action 43

setResponseType() method
about 32
in custom action 43

setTemporaryValue() method 33
Set User Property

installed action 121

setValue() method 33, 49
setValueNames() method 33
Set Workitem Priority

installed action 121
Set Workitem Value

installed action 122
SQL Check For Column

installed condition 133
SQL Hierarchy

installed action 122
SQL String

installed action 122
installed condition 134

Stop Rule Processing
installed action 123

string templates
using in custom conditions and actions (code

example) 47
Subtract

installed action 123

T
tag libraries

Rules tag library 135
templates

using in custom conditions and actions 46
using in custom conditions and actions (code

example) 47
today

built-in whiteboard key 26
toString() method

about 78
in conditions and actions 41
in custom conditions and actions (code example) 44

U
uri

built-in whiteboard key 27
user binding

in pipelines 85
userID

built-in whiteboard key 26
exteNd Director Rules Guide-145

Index 145

V
validate() method 37
!valueOf construct 26, 46

W
whiteboard

and object attributes 27
built-in values 26
context methods for accessing 33
defined 24
removing values from 28
using in rules 25
!valueOf syntax 26
values, accessing 28
values, in rules 26

X
XML

and temporary rules 31
exteNd Director Rules Guide146

	Rules Guide
	About This Book
	Concepts
	About Rules in exteNd Director
	Rules and the Rule subsystem
	The Rule subsystem
	What a rule is
	exteNd Director features for rules
	The Rule API

	Why use rules?
	Planning a rules-based application
	When to use rules
	Design guidelines

	How You Use Rules
	How rules work
	Basic process
	Rule application components

	Working with conditions and actions
	Using whiteboard values
	Accessing scoped paths

	Accessing and firing rules
	Methods for firing rules
	Firing rules from the context object
	Firing rules from a rule manager
	Firing rules from a JSP page
	Firing temporary rules

	Handling the result of a rule
	Context methods for accessing HTTP response values
	Context methods for accessing the whiteboard
	Examples of handling return values

	Using pipelines
	Benefits of pipelines
	How pipelines work
	Validating a pipeline

	Developing Custom Conditions and Actions
	About custom conditions and actions
	Designing a condition or action
	Defining logic
	Defining logic for a condition
	Defining logic for an action
	Defining a condition or action rule descriptor

	Defining properties
	Defining JavaBeans
	Defining runtime properties
	Using generic property panels
	Creating a custom property panel
	Writing a BeanInfo class
	Using resource bundles

	Tools
	Rule and Macro Editors
	Accessing the Rule Editor
	About the rule tree view
	Naming a rule

	Using conditions
	Editing and deleting conditions
	Deactivating a condition

	Using actions
	Editing and deleting actions
	Deactivating an action

	Using cases
	Adding case descriptions
	Using other case commands

	Testing, editing, and saving rules
	Testing rules
	Saving and editing rules

	Working with condition and action macros
	Using condition macros
	Using action macros

	Condition and Action Wizards
	Using the Condition Wizard and Action Wizard
	Using Java templates to define custom conditions and actions
	Condition template
	Action template
	About the template methods

	Using condition and action properties
	Deploying custom conditions and actions
	Compiling the condition or action source code
	Deploying support files

	Pipeline and Binding Editors
	Basic steps of setting up a pipeline
	Creating and editing a pipeline
	Creating a pipeline
	Editing a pipeline

	Binding rules to a user, group, or pipeline
	Creating a rule binding
	Editing a rule binding

	Reference
	Installed Actions
	Accessing condition and action sources
	Properties that support string templates
	!valueOf template
	Scoped path support

	Properties that support database drivers and URLs
	Alphabetical list of actions
	Add
	Add Eraser
	Calculate Age
	Clear Request Data From Whiteboard
	Create Collection Of Objects From SQL
	Default
	Delete Cookie
	Deny Access
	Display Component
	Display Cookies
	Display Request Headers
	Display Whiteboard
	Divide
	Drop Cookie User ID
	Fire Rule
	Flush
	Format Date
	Get Cookie Value
	Get User Property
	Log User Off
	Multiply
	Query
	Remove From Whiteboard
	Return As Decimal Format
	Return As Html Body
	Return As Html Bold
	Return As Html Break
	Return As Html Checkbox
	Return As Html File Upload
	Return As Html Hidden Field
	Return As Html JavaScript
	Return As Html Option List
	Return As Html Password
	Return As Html Radio Button
	Return As Html Reset Button
	Return As Html Scripted Button
	Return As Html Submit Button
	Return As Html Table
	Return As Html Text Area
	Return As Html Text Field
	Return As XML
	Return Authentication Required
	Return False
	Return Response
	Return Response With Default
	Return True
	Save Cookies To Whiteboard
	Save Form Get Data To Whiteboard
	Save Request Data To Whiteboard
	Save To Whiteboard
	Send Mailer SMTP
	Set Component Parameter
	Set Cookie Value
	Set Date On Whiteboard
	Set Expired
	Set Next Activity
	Set Pipeline Status
	Set Response Header
	Set Response Status
	Set User Property
	Set Workitem Priority
	Set Workitem Value
	SQL Hierarchy
	SQL String
	Stop Rule Processing
	Subtract

	Installed Conditions
	Alphabetical list of conditions
	Check Component Parameter
	Check Date
	Check Date Within Range
	Check Day
	Check For Cookie
	Check Month
	Check Request Data
	Check Time
	Check User
	Check User Group
	Check User Property
	Check Whiteboard
	Check Whiteboard Value
	Check Whiteboard Value Is Empty
	Check Workitem Value
	Default
	Is Form Get Data Available
	Is New Session
	Save Cookies To Whiteboard
	Save Form Get Data To Whiteboard
	Save Request Data To Whiteboard
	Set Action Off
	Set Action On
	Set Action On Or Off
	PSQL Check For Column
	SQL String

	Rule JSP Tag Library
	doAction
	doCondition
	conditionalRule
	fireRule

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

