
Novell

m
w w w . n o v e l l . c o

exteNd
Composer

5 . 2
E D I C ON N E CT US E R ’ S G U I DE

Legal Notices
Copyright © 2004-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patents pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd Composer EDI Connect User’s Guide

May 2005
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne, GroupWise, iChain, NetWare, and Novell are registered trademarks of Novell, Inc.

eDirectory, exteNd, exteNd Composer, exteNd Director, jBroker, Novell eGuide, and Nsure are trademarks of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote products derived from this software without prior
written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of the
Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Autonomy
Copyright ©1996-2000 Autonomy, Inc.

Bouncy Castle
License Copyright (c) 2000 - 2004 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Castor Library
The original license is found at http://www.castor.org/license.html

The code of this project is released under a BSD-like license [license.txt]:

Copyright 1999-2004 (C) Intalio Inc., and others. All Rights Reserved.

Redistribution and use of this software and associated documentation ("Software"), with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name "ExoLab" must not be used to endorse or promote products derived from this Software without prior written permission of Intalio Inc.
For written permission, please contact info@exolab.org.

4. Products derived from this Software may not be called "Castor" nor may "Castor" appear in their names without prior written permission of Intalio
Inc. Exolab, Castor and Intalio are trademarks of Intalio Inc.

5. Due credit should be given to the ExoLab? Project (http://www.exolab.org/).

THIS SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes software
developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Indiana University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact http://www.extreme.indiana.edu/.

5. Products derived from this software may not use "Indiana University" name nor may "Indiana University" appear in their name, without prior
written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in
the documentation and/or other materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this software without prior written permission. For written
permission, please contact license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software itself
an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."

Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or

royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be
included (hypertext is preferred, text is permitted) within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We recommend you provide URIs to the location from
which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

6 EDI Connect User’s Guide

Contents

About This Book. 9

1 Welcome to exteNd Composer and EDI User Interface . 11
Before You Begin. 11
About exteNd Composer Connects . 11
What is EDI? . 12

HL7 Support . 12
SAP Support . 13

What is XML? . 13
Combining XML Structure with EDI Rules. 13

Why change from EDI to XML EDI? . 13
What is the EDI Connect? . 14
What Applications Can You Build Using the EDI User Interface Component Editor? . 15

2 Getting Started with the EDI Component Editor . 17
Receiving EDI Transmissions . 17
Structure of an EDI Transaction . 17
The Sample Transactions . 19

Steps Commonly Used to Create a EDI Component . 19
About Resources. 19
About Composer’s EDI Metadata . 20

Creating EDI Interchange Metadata . 20
Creating EDI Document Resource Metadata . 22
Editing Resource or Document Metadata . 24
Creating XML Templates for Your Component . 25
EDI Document Resource Editor. 25

3 Creating an EDI Component . 29
Before Creating an EDI Component . 29
About the EDI Component Editor Window. 32

About the EDI Native Environment Pane . 32
Viewing the documents in the Component Editor . 34

About the Functional Acknowledgement DOM . 34

4 Performing EDI Actions. 35
The Action Model. 35
About exteNd Composer EDI Objects . 36
About EDI-Specific Actions . 37
EDI Specific Expression Builder Extensions . 46

The Transmission . 46
The Interchange Object. 47
The Document Object . 48
Custom Script Function. 49

Processing Inbound EDI Documents. 49
Processing Outbound EDI Documents . 54
Using Other Actions in the EDI Component Editor . 57
Handling Errors and Messages . 57

5 EDI Logon Components,Connections and Connection Pools . 59
About EDI Terminal Session Performance . 59
Connection Pool Architecture . 59
About the EDI Logon Connection . 60
7

Connection Pooling with a Single Sign-On. 61
About the EDI Logon Component . 62

LOGON Actions . 62
KEEPALIVE Actions. 63
LOGOFF Actions . 64
Logon Component Execution . 64

Creating a Connection Pool . 65
Overview . 65

Creating a Connection . 65
Creating a Logon Component. 65
Creating a Logon Connection . 67
Creating a EDI Terminal Component . 69

A ANSI X.12 Segment Mnemonics . 71

B EDIFACT Segment Mnemonics. 73

C HL7 Segment Mnemonics . 75

D SAP Support Segment Mnemonics . 77

E Metadata and Inbound Processing. 79
Purpose. 79

Add Choice Processing for Metadata. 79

F EDI Data Type Validation Rules . 81
Inbound and Outbound Rules . 81
Inbound Processing — Implied Decimal Point Processing. 81
Outbound Processing — Padding and Truncating . 82
Outbound Processing — Implied Decimal Point Processing . 82

G Testing . 83
Environmental Differences between Animation Testing and Deployment Testing . 83

H EDI Glossary. 85

Index ... 89
8 EDI Connect User’s Guide

About This Book

Purpose

The guide describes how to use exteNd Composer EDI Connect, referred to as the EDI Component
Editor. The EDI Component Editor is a separately-installed component editor in exteNd Composer.

Audience

The audience for the guide is developers and system integrators using exteNd Composer to create
services and components which integrate EDI applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s development
environment and deployment options. You must also have an understanding of the EDI environment.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell Documentation Web
Site (http://www.novell.com/documentation-index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to exteNd Composer and EDI, gives a definition and overview of the EDI
Component Editor.

Chapter 2, Getting Started with the EDI Component Editor, describes the necessary preparations for
creating an EDI component.

Chapter 3, Creating an EDI Component, describes the parts of the component editor.

Chapter 4, Performing EDI Actions, describes how to use the basic EDI actions.

Appendix A, ANSI X.12 Segment Mnemonics, describes the segments commonly used in ANSI X.12
interchanges

Appendix B, EDIFACT Segment Mnemonics, describes the segments commonly used in Edifact
interchanges.

Appendix C, HL7Segment Mnemonics, describes the segments commonly used in HL7 interchanges.

Appendix D, SAP Support Segment Mnemonics, describes the segments commonly used in SAP
interchanges.

Appendix E, Metadata and Inbound Processing, describes how to process a new tag to the metadata
during Inbound Processing.

Appendix F, EDI Data Type Validation Rules, describes when to use specific rules for Inbound and
Outbound processing.

Appendix G, Testing, describes environmental differences between animation testing and deployment
testing.
9

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Appendix H, Glossary, a glossary of common terms used in EDI and in this guide.

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections

Form selections

Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers

File names

Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply

Technical terms used for the first time

Title of other Novell publications

Monospaced typeface indicates:

Method names

Code examples

System input

Operating system objects
10 EDI Connect User’s Guide

1 Welcome to exteNd Composer and EDI User
Interface

Before You Begin
Welcome to the EDI Connect Guide. This Guide is a companion to the exteNd Composer User’s Guide,
which details how to use all the features of Composer, except the Connect Component Editors. So, if you
haven’t looked at the User’s Guide yet, please familiarize yourself with it before using this Guide.

exteNd Composer provides separate Component Editors for each Connect. The special features of each
component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core component editor (the XML
Map Component Editor), then this Guide should get you started with the EDI Component Editor.

Before you can begin working with the EDI Connect you must have installed it into your existing exteNd
Composer. Likewise, before you can run any Services built with this connector in the Composer
Enterprise Server environment, you must have already installed the server-side software for this
connector into Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the EDI environment and
the applications that you want to XML-enable.

About exteNd Composer Connects
exteNd Composer is built upon a simple hub and spoke architecture. The hub is a robust XML
transformation engine that accepts requests via XML documents, performs transformation processes on
those documents and interfaces with XML-enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modules that "XML- enable" sources of data that are not
XML aware, bringing their data into the hub for processing as XML. These data sources can be anything
from legacy applications to Message Queues to HTML pages.

exteNd Composer Connects can be categorized by the integration strategy each one employs to XML
enable an information source. The integration strategies are a reflection of the major divisions used in
modern systems designs for Internet-based computing architectures. Depending on your B2B needs and
the architecture of your legacy applications, exteNd Composer can integrate your business systems at the
User Interface, Program Logic, or Data levels.
Welcome to exteNd Composer and EDI User Interface 11

Table 4-1

What is EDI?
EDI stands for Electronic Data Interchange, a standardized electronic format for interchange of
information between computer applications. An EDI transaction involves extracting data from a
computer, translating the data into an appropriate EDI format, transmitting the payload, translating and
interpreting the received transmission, and importing the data into the receiving application (where the
data can undergo further processing). EDI extends to all trade and trade related activities. Three main
areas of activity include commerce, transport and government.

Rules for the encoding of business data in EDI format are contained in two specifications: ANSI X.12
and EDIFACT. Typically, EDI documents relevant to specific business operations (such as purchase
orders, invoices, etc.) are encoded as EDI documents, which are grouped together into a unit called an
interchange. One or more interchanges can be grouped to form an interchange set, which is the unit of
transmission. Individual interchanges will conform to a single standard (EDIFACT or ANSI X.12), but
interchange sets may contain interchanges of diverse types.

EDIFACT is a set of standards and guidelines for the electronic interchange of structured data, approved
and published by the United Nations Economic Commission for Europe. The standard is published in the
United Nations Trade Data Interchange Directory (UNTDID). Further information about EDIFACT can
be found at http://www.unece.org/trade/untdid.

ANSI X.12 comprises the set of EDI specifications maintained by members of Committee X.12 of the
American National Standards Institute. ANSI is a private, non-profit organization responsible for the
development and approval of voluntary consensus standards in North America. Its membership includes
over 1000 well-known companies and organizations.

Further information about ANSI X.12 can be found at http://www.disa.org, the web site of the Data
Interchange Standards Organization.

HL7 Support

The Health Level Seven (HL7) is a standard for EDI in all healthcare environments, especially hospitals.
HL7 Standard defines the messages as they are exchanged among application entities and the procedures
used to exchange them. It operates at the seventh level of the ISO model for Open System
Interconnection (OSI). HL7 conforms to the requirements of ANSI. The HL7 structure contains one
document per interchange with data fields combined into segments separated by segment separator
characters. Further information about HL7 can be found at http://www.hl7.org, the web site of the
Health Level Seven Standard for electronic data exchange in all healthcare environments.
12 EDI Connect User’s Guide

http://www.unece.org/trade/untdid
http://www.disa.org

SAP Support

SAP (Service Access Point) supports the EDI process by providing EDI-enabled applications capable of
sending and receiving IDoc messages. IDocs are SAP’s proprietary format for exchanging data between
business applications.IDocs are based on EDI standards, closer to EDIFACT standards than ANSIX12.
IDoc format is compatible with most EDI standards. IDoc structure consists of several segments and
segments consisting of several data fields. One IDoc contains one document per interchange with a fixed
length of field sequences. Further information about SAP and EDI can be found at
http://www.geocities.com/sap_edi, the web site of the SAP R3 Electronic Data Interchange.

What is XML?
XML stands for Extensible Markup Language and is a World Wide Web Consortium (WWW3)
recommendation that defines data meaning rather than its presentation. XML is a subset dialect of the
Standard Generalized Markup Language (SGML), which was developed to interchange technical
documentation and other forms of technical data.

XML works by allowing users to define a set of tags that are embedded into a file that contains the
information being communicated. The tags, which have starting and ending forms, explains exactly what
the data in the tagged section of the document is intended to mean. Each set of tags is defined in a a
separate file in the form of a document type definition (DTD).

XML has provided increased structure to the Web and is being widely used. Now XML is being used with
EDI.

Combining XML Structure with EDI Rules

In XML, each document is an object and each element of the document is an object. These objects are
defined in the DTD. By using the XML tag set, EDI “objects” can be either passed or reference other
stored objects. The “rules” of EDI can be applied to objects via the Document Object Model (DOM). By
using the DOM, XML/EDI documents are able to combine the content, the rules that control the
transaction and the view in one file/transaction.

exteNd Composer lets you build XML documents, navigate within their structure, and add, modify, or
delete elements and content. Anything found within an XML document can be manipulated using a DOM
method. Composer supports all DOM methods recommended by WWW3. For more information on
DOM, refer to the section, Creating an XML Map Component in the exteNd Composer’s User Guide.

Why change from EDI to XML EDI?
There are a variety of reasons to make a transition from the traditional EDI to XML-based EDI. Some of
these reasons are listed below.

Most business have not adopted traditional EDI because it’s expensive to deploy

Private networks (VANs) are more expensive to use than the internet

XML-based transactions are faster, more reliable and secure

XML is less expensive to build and maintain as well as change

XML allows the organization of information to reflect forms that are comprehensible for users
while retaining capability for machine processing.

XML provides a methodology to describe the structure in which data resides, which can be widely
implemented.

XML-based data is compatible and provides portability for data in documents
Welcome to exteNd Composer and EDI User Interface 13

The benefits of XML-enabled EDI include:

Access to interactive transactions enabled by the Web rather than being limited to a “system” or
“batch” transactions

Access to a greater number of trading partners

Ability to interface with legacy systems while building on web technology

What is the EDI Connect?
The EDI Connect extracts the messages from an EDI transmission into XML or converts from XML to a
given standard. These rules are contained in two specifications: ANSI X.12 and EDIFACT. Refer to
Appendix A for a brief list of segment-header mnemonics for ANSI X.12 and Appendix B for similar
mnemonics pertaining to EDIFACT transmissions.

For an Inbound EDI transmission, the input to the connector is an XML document that has the entire
transmission in a CDATA node. For an outbound EDI transmission, the connector has the capability to
format an EDI transmission in a given node in an XML document, again wrapped as CDATA.

The encapsulation of rules for transformation is stored as XML files (the so-called “metadata” for the
EDI). These files are divided into two categories: interchange processing XML and document processing
XML. The Interchange processing XML files describe how to parse an EDI transmission. Interchange
Processing is automatic and requires you to tell the connector to process the interchange. The Document-
processing XML metadata describes how to parse an individual document. Document Processing
requires you to identify the metadata to use.

When the component editor is active and EDI actions are taking place, the Native Environment Pane
displays the raw content of the EDI transmission, with the current document segment (pertinent to the
current action) highlighted in blue. See below. If you set a breakpoint, then perform animation, the Native
Environment Pane will only refresh after the breakpoint is reached by stepping into the next action.

EDI Screens appear in the Native Environment pane
14 EDI Connect User’s Guide

What Applications Can You Build Using the EDI User Interface
Component Editor?

The EDI User Interface Component Editor allows you to extend any XML integration you are building
to include any of your business applications that support EDI-based interactions (See exteNd Composer
User’s Guide for more information.)
Welcome to exteNd Composer and EDI User Interface 15

16 EDI Connect User’s Guide

2 Getting Started with the EDI Component Editor

Receiving EDI Transmissions
There are several ways in which EDI Transmissions are received: via custom service triggers, Internet-
EDI or from a file system. A custom service trigger is built by the customer. The Internet- EDI trigger is
a standard Composer service trigger. The file system contains the data which will be brought into the
Composer service. The diagram below shows how the interactions work.

Structure of an EDI Transaction
Traditionally, a printed transaction such as an invoice, would be sent via mail on a preprinted form as
follows:

For those unfamiliar with EDI, a transaction set can be thought of as a document. The document (or
transaction) has general parts called paragraphs that are divided into sentences (or segments). The
sentences are then broken apart further into words (or elements) and words can be divided into letters (or
sub-elements).
Getting Started with the EDI Component Editor 17

For example:

Where:

The bracket emphasizes an entire transaction set.

The shaded area shows a complete segment.

The double underline shows a single element

The bolded “ST” denotes a Segment ID.

Notice each element including the Segment ID is separated by a character called a delimiter. In this
document an asterisk (*). Also notice each segment ends with a character called a segment terminator. In
this document it is the (A) character. Although not used in this document, on occasion, elements can be
broken apart further into sub-elements. When this occurs, a character denoting a sub-element separator
will also be present.

Each transmission can be broken down into five distinct areas: Communications Transport Protocol,
Interchange Control Wrap (ISA & IEA), Functional Group Wrap (GS & GE), Transaction Set Wrap (ST
& SE), and the body of the transaction. The following diagram illustrates this structure:

A transaction can also be broken down into four distinct areas: envelope, header, detail, and summary
information. In order to transmit an EDI document, special segments known as “envelope wraps” enclose
the transaction set. The envelopes contain IDs and other pertinent information allowing the document to
be electronically transferred to and from the appropriate locations. The header area pertains to
information that is common to the entire transaction set. The detail area, which can occur or loop multiple
times, refers to baseline item information. The summary area contains information such as order quantity
totals, that also pertains to the entire transaction. Several samples of this breakdown are shown in this
document at the beginning of each transaction section.

'

18 EDI Connect User’s Guide

This structure provides great flexibility for both composing electronic documents and changing them
later without causing disruption to existing processes. This structure also permits document adaptation
by different organizations. However, this flexibility causes the electronic document to be somewhat
difficult to read or decipher directly. This is why “translation” software is required.

The Sample Transactions
For demonstration purposes, one transaction is issued throughout this document. The sample presented
is divided into Inbound and Outbound processing actions. The sample transaction represents a scenario
of processing a certain type of purchase order, in ANSI X12 format with a document name, for example,
V4010-850. The steps listed below are followed to explain the transaction processing. Refer to Chapter
4 “Performing EDI Actions,” for the sample transaction.

Steps Commonly Used to Create a EDI Component

The steps used in creating a simple EDI component are as follows:

Inbound Actions:

1 Process EDI Transmission

2 Get next EDI Interchange

3 Get next EDI Document

4 Transform EDI to XML

Outbound Actions:

5 Create EDI Transmission

6 Create EDI Interchange

7 Transform XML to EDI

8 Put EDI Interchange (place envelope object into envelope set)

Refer to Chapter 4 “Performing EDI Actions,” for a description of each of these Actions.

About Resources

When you create a Resource for the EDI Component, you have two choices: a Document Resource, and
an EDI Interchange. The benefit of having two resources is that exteNd Composer for the EDI Connect
can handle the complex transmission of multiple documents including both ANSIX.12 and EDIFACT all
in one transmission.
Getting Started with the EDI Component Editor 19

The Document Metadata Resource describes the translation information for a particular document type,
i.e. V4010-850 Purchase Order in ANSI.X12 format.

The Interchange Metadata Resource contains metadata that describes the transformation metadata for a
set of documents of the same standard, i.e. a set of ANSI.X12 documents. An example of such metadata
would be the common separators used in the set of documents in an EDI interchange.

The EDI-to-XML and XML-to-EDI transformation process is driven by a metadata description of the
target document. The metadata is represented in XML and is input to the transformation engine as an in-
memory DOM.

About Composer’s EDI Metadata

Metadata, as discussed here, refers to a structured set of elements that describe an EDI document’s
layout. EDI metadata provides the format and rules for an EDI document or transaction. Although there
is an EDI standard for each document, trading partners often modify the rules to meet their business
needs. For example, a given document segment might be considered optional according to the standard,
but for a particular relationship the partners may decide that it is required. Another example might be that
partners decide that a valid code for a field might include more items that the baseline standard.

Sample EDI Document Metadata (ANSIX12, EDIFACT, HIPAA and HL7) can be downloaded from
http://forge.novell.com/modules/xfmod/project/?composeredi. Because of the variations in the
implementation of the EDI standard from document to document, this metadata is intended only as a
starting point for EDI translations. You will probably have to customize the metadata before it can be
used in your environment.

The EDI Connect for Composer comes with various Metadata Resources (which show up in the nav
frame of Composer’s UI), such as the EDI Interchange Metadata resource list. These metadata
documents essentially describe various types of EDI interchanges in an XML format Composer can
understand. Composer will consult the appropriate metadata resources to determine how to parse a given
EDI interchange.

You can examine the contents of your metadata resources in the Composer UI, just as you’d do with any
other XML file. Depending on how you want to view the document, you can look at the metadata in tree
view or text view. The latter is just a raw text-editor view of the XML.

Creating EDI Interchange Metadata
EDI Interchange Metadata can be created automatically when you create a new component; however,
you can create it manually if you need to import a specially formatted file.

To create EDI Interchange Metadata:

1 From the Composer File menu, select New > xObject, then open the Resource tab and select EDI
Interchange Metadata.

NOTE: Alternatively, you can highlight Resource in the Composer window category pane, right
click your mouse button, then select New. A dialog box allows you to select the type of Resource
you wish to create. In this example, click on EDI Interchange.

2 The Create a New Resource Wizard appears. Type a name for the resource.
20 EDI Connect User’s Guide

http://forge.novell.com/modules/xfmod/project/?composeredi

3 Click Finish. The newly-created resource object appears in EDI Interchange Screen.

4 From the Menu bar, select Resource>Import Metadata.

5 The dialog box appears, click on Browse button to locate the file and click OK.

6 The information is populated in the screen
Getting Started with the EDI Component Editor 21

Creating EDI Document Resource Metadata

To create EDI Document Resource Metadata:

1 From the Composer File menu, select New > xObject, then open the Resource tab and select EDI
Resource Metadata.

NOTE: Alternatively, you can highlight Resource in the Composer window category pane, right
click your mouse button, then select New. A dialog box allows you to select the type of Resource
you wish to create. In this example, click on EDI Document.

2 The Create a New Resource Wizard appears. Type a name for the resource.

3 In the Metadata File Format, click in the checkbox to import a SEF file. Use the Browse button to
locate the file.

4 Click Finish. The newly-created resource object appears in EDI Document Screen.
22 EDI Connect User’s Guide

5 From the Menu Bar on this screen, click on Resource and select Load Sample EDI Input.

6 The following dialog appears. Click on the Browse button to select the Input file you wish to load,
then click OK.

7 The following screen appears with the left pane displaying the EDI transmission, the right pane
blank (awaiting test results), and the bottom pane displaying metadata.
Getting Started with the EDI Component Editor 23

Editing Resource or Document Metadata
If you want to add or edit data in the Metadata screen, you can do so by using the following procedure.

To Edit the Resource or Document Metadata

1 In the Metadata Screen, change the view from tree to text by clicking on the RMB and selecting
View>Text.

2 A line starting with Message appears. Position the cursor after Message, press the space bar on
yoour keyboard and a drop down list of possible entries appears. Double click on the selection you
want to add.

3 Type in the data you want to add.

4 Change the view from text to tree by clicking on the RMB and selecting View>Tree.

5 The additions or edits can now be viewed in the tree as shown below.
24 EDI Connect User’s Guide

Creating XML Templates for Your Component
You can create a template for your document by using an option from the EDI Document Resource Editor
which is accessible from the Menu Bar in Resources.

To Generate an XML Template

1 From the EDI Document Editor Menu Bar, select Resource, then Generate XML Template.

2 Sample Name: Enter the name of the sample.

Template Category: From the dropdown list, select the type of template

Template Name: From the dropdown list, select the name of the template

Checkboxes: Check to include any of the following listed below, otherwise leave blank.

• Include Optional Segment Groups:

• Include Optional Segments

• Include Optional Data Element Groups

• Include Optional Data Elements

• Include Data Element Codes

Maximum Repeat Level: Enter the number of levels you want it to repeat.

3 Click OK to complete.

EDI Document Resource Editor
The EDI Document Resource Component Editor supports the following functions:

Generate XML Templates (previously explained in Creating Templates)

Import Metadata

Export Metadata

Load Sample EDI Input (previously explained in the sample in Creating an EDI Resource)

Load Sample XML Input

Test

Save Test Results

The EDI Document Resource Editor is composed of three panels to contain the transformation metadata,
the sample input (EDI or XML) and the Test Results (XML or EDI)
Getting Started with the EDI Component Editor 25

All the functions are active with the exception of Test and Save Test Results. These functions are
available once a sample input document is loaded. Description of the functions are provided.

Import Metadata

This function allows you to import the EDI Resource metadata in its native format.

From the Menu Bar on this screen, click on Resource and select Import Metadata.The following dialog
appears. Click on the Browse button to select the Input file you wish to import, then click OK.

Export Metadata

This function allows you to export the EDI Resource metadata in its native format.

From the Menu Bar on this screen, click on Resource and select Export Metadata.The following dialog
appears. Click on the Browse button to select the location for the file you wish to export, then click OK.

Load Sample XML Input

This function allows you to load a sample input document. The input panel is context sensitive. When the
input sample is XML, a read-only XML tree panel displays the sample. The output panel contains the
resulting EDI output of the “test” function.
26 EDI Connect User’s Guide

From the Menu Bar on this screen, click on Resource and select Load Sample XML Input.The
following dialog appears. Click on the Browse button to select the Input file you wish to import, then
click OK.

Test

This function is only available when a sample input document is loaded. When the sample input
document is EDI, an outbound test is run with XML results displayed in a read-only XML tree panel. If
the XML tree panel does not have any contents, then the test function was not run or the test had a fatal
error.

If the input sample is XML, the output panel contains the resulting EDI output of the “test” function as a
read-only text control. If the text control does not have any contents, then the test function was not run or
the test had a fatal error.

You can save the XML or EDI output to a file by using the Save Test Results function.

From the Menu Bar on this screen, click on Resource and select Test.The following dialog appears. Click
on the Browse button to select the file you wish to Test, then click OK.

Save Test Results

This function is only available after a successful test has been completed. You may save your XML or
EDI output to a file on your system.

From the Menu Bar on this screen, click on Resource and select Save Test Results.The following dialog
appears. Click on the Browse button to select the directory where you wish to Test, name the file and then
click OK.
Getting Started with the EDI Component Editor 27

28 EDI Connect User’s Guide

3 Creating an EDI Component

Before Creating an EDI Component
As with all exteNd Composer components, the first step in creating an EDI component is to specify the
XML templates needed. For more information, see the Chapter 2, Generating XML Template or Creating
a New XML Template in the Composer User’s Guide.

Once you’ve specified the XML templates, you can create a component, using the template’s sample
documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating an EDI component, you must first create Resources for
Interchanges and Documents.

To create a new EDI Component:

1 Select File>New> xObject. Open the Component tab and select EDI.

NOTE: Alternatively, under Component in the Composer window category pane you can highlight
EDI, click the right mouse button, then select New.

2 The Create a New EDI Component Wizard appears.

3 Enter a Name for the new EDI Component.

4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New EDI Component Wizard
appears.
Creating an EDI Component 29

6 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
DOM without Using a Template” in the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

9 If desired, specify a template to be used as a scratchpad under the Temp Message pane of the dialog
window. This can be useful if you need a place to hold values that will only be used temporarily
during the execution of your component or are for reference only. Select a Template Category if it
is different than the default category. Then select a Template Name from the list of XML templates
in the selected Template Category.

10 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.
30 EDI Connect User’s Guide

11 As above, to add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

12 Click Next. Select an XML template type by clicking on the desired radio button. If you click on
Inbound or Outbound, a generic set of Map Actions will be created for you. If you click on none,
you will need to manually create the actions. In this example, select Inbound.

13 Click Finish. The following screen appears. As you can see in Map action pane, a series of generic
actions have been automatically created for you. To customize each line, double-click on each
action and a dialog will appear requiring you to input certain information. The actions that appear
are the same as those created manually in Chapter 4 “Performing EDI Actions.”
Creating an EDI Component 31

About the EDI Component Editor Window
The EDI Component Editor includes all the functionality of the XML Map Component Editor. It contains
mapping panes for Input and Output XML documents as well as an Action pane.

About the EDI Native Environment Pane

The EDI Native Environment pane shows the current Interchange Set in which the current area is
highlighted.

For Inbound Processing, the Process Interchange set puts the entire EDI transaction set to the Native
Environment pane and all the text is black. Proceeding to Get Next Interchange, text color of the current
interchange turns to blue and the rest of the text is black. When you Get Next Document, the text changes
to blue for the current document while the rest of the text remains black.

For Outbound Processing, Create EDI Interchange puts the interchange into the Native Environment
Pane and the text is black. Proceeding to Transform EDI to XML, the text color of the current document
turns to blue and the rest of the text remains black. When you Put EDI Interchange, the color of the
current interchange text is blue while the rest of the text remains black.

Making The EDI Action Detail DOM visible:

1 Select View/Window Layout from the Component Window Menu.

2 The Window Layout dialog appears and allows you to adjust the placement of the panels in the
Window. Use the drop-down arrow in the four different fields, and select the placement of the
Panes.

Input
pane

Output
pane

Action Model pane

Native Environment pane
32 EDI Connect User’s Guide

3 Click OK to close the dialog. Click Reset if you decide to change your settings.

To arrange the view of the XML documents in the component editor:

1 Select View/XML Documents>Show/Hide

2 By using the directional buttons, you can move the Panes from the Invisible column to the Visible
Column or vice versa. You can also choose the order in which visible selections appear on the
screen.

3 Click OK to save your settings. Click Reset if you decide to change your settings.
Creating an EDI Component 33

Viewing the documents in the Component Editor

To view the window layout in the Component Editor:

From the View Menu, select Window Layout.

Window Layout

The Window Layout dialog allows you to adjust the placement of the panels in the Window. Use the drop-
down arrow in the four different fields, and select the placement of the Panes.

About the Functional Acknowledgement DOM

The Functional Acknowledgement DOM contains an EDI message that is sent in response to the receipt
of an EDI interchange or packet of interchanges to notify the sender of the original message that it was
received. It acknowledges only the receipt of the interchange or interchange packet, and does not imply
agreement with, or understanding of, its content.
34 EDI Connect User’s Guide

4 Performing EDI Actions

In Composer, an action is similar to a programming statement in that it takes input in the form of
parameters and performs a specific task. The actions you can create using the EDI component editor
include not only the standard actions available in all Composer components (Map, Function, etc.) but
special EDI-related actions. These are the subject of this chapter. (For information on standard actions,
please see the chapters in the Composer User’s Guide devoted to Actions.)

Within the EDI Component Editor, a set of instructions for processing XML documents or
communicating with non-XML data sources is created as part of an Action Model. The Action Model
contains all of your component’s actions. It implements the logic of your component, performing all data
mapping, data transformation, data transfer between (for example) mainframes and XML documents,
and data transfer within and between components and services.

The Action Model
An Action Model is made up of a list of actions. For example, one EDI Action Model might process
inbound data (in the form of an EDI transmission) into XML, optionally perform mappings on the XML,
and then convert the XML data for outbound processing.

The Action Model mentioned above might be composed of several actions, including:

Inbound Actions:

Process EDI Transmission

Get next EDI Interchange

Get next EDI Document

Transform EDI to XML

Read EDI File

Outbound Actions:

Create EDI Transmission object

Create EDI Interchange object

Transform XML document(s) to EDI

Put EDI Interchange

Write EDI File

See further below for the complete list of EDI actions and their appearance in the menu tree.
Performing EDI Actions 35

About exteNd Composer EDI Objects
Before getting into the details of EDI objects, their methods, it’s helpful to know something about the
structure of an EDI transmission. The contents of an EDI transmission can vary from a single EDI
document type inside a single interchange format, to multiple document types inside multiple
interchange formats. The more complex scenario is represented in the graphic below.

For maximum flexibility, exteNd Composer provides three EDI objects and eight Actions (four Inbound
and four Outbound) for manipulating the various levels of EDI objects. In addition, each object exposes
a variety of ECMAScript methods, which can be seen in the Expression builders available in various
exteNd Composer actions. The ECMAScript objects allow easy manipulation of EDI elements.

The various EDI-related actions are described in more detail in the next section.
36 EDI Connect User’s Guide

About EDI-Specific Actions
The Connect for EDI includes several actions that are specific to the EDI and are not included with a
standard Composer install. From the Action Menu, you may select Inbound or Outbound Actions. The
menu commands for the Inbound Actions are as follows:

The Outbound Actions are in their own submenu as shown below:
Performing EDI Actions 37

The following table explains the purpose of each of the Inbound and Outbound Actions.

Basic Actions Description

Process EDI
Transmission

Creates a Transmission (an Interchange set object)
from the EDI contents of a DOM. This action is used
in processing inbound EDI transactions.

Get Next EDI
Interchange

Creates an Interchange object by selecting the first
or next Interchange from an Interchange Set. This
action is used in processing inbound EDI
transmissions.

Get Next EDI Group Creates an EDI Group object by selecting the first
or next Group from an Interchange. This action is
used in processing inbound EDI transmissions. It is
optional, since not all EDI transmissions contain
grouped transactions.

Get Next EDI Document Creates an EDI Document object by selecting the
first or next Document from an Interchange. This
action is used in processing inbound EDI
transmissions.

Transform EDI to XML Transforms the contents of an EDI Document object
into XML based on a Document Transform
Resource. This action is used in processing
inbound EDI transmissions.

 EDI File Read Allows a file format that is not XML to be read into
EDI.

Create EDI
Transmission

Creates a Transmission (an Interchange object)
from the XML contents of a DOM containing
Interchange data based on an Interchange
Transform Resource. This action is used in
processing outbound EDI Transmissions.

Create EDI Interchange Creates an Interchange Set object. This action is
used in processing outbound EDI transmissions.

Create EDI Group Some EDI interchanges wrapper groups of
transactions. This optional action supports the
construction of groups of documents.

Transform XML to EDI Creates an EDI Document object from the contents
of a DOM by transforming the contents based on a
Document Transform Resource. The results are
placed into an Interchange object. This action is
used in processing outbound EDI transmissions.

Put EDI Interchange Inserts an Interchange object into an Interchange
Set object. This action is used in processing
outbound EDI transmissions.

Put EDI Group This optional action supports the insertion of groups
of documents into an interchange.

 EDI File Write Allows a file to be written into another format from
XML.
38 EDI Connect User’s Guide

Process EDI Transmission

The Input to an EDI Component must be a DOM containing the inbound EDI transmission in an XML
CDATA section. The purpose of the Process EDI Transmission action is to extract the inbound
transmission from the DOM and put it into the Transmission where more powerful actions and methods
can be applied. To extract the transmission, you must supply the Source XPath of the CDATA section and
a name with which others can refer to the Transmission. The easiest way to specify the XPath is to click
on the XPath expression builder, open the tree elements of the DOM containing the transmission, and
double-click the appropriate node.

Alternatively, you can write an ECMAScript expression that conditionally selects different DOM nodes
depending on some other non-EDI criteria that might be present as data in the DOM or PROJECT
Variables.

The Interchange Metadata tab on this dialog (see illustration below) has a list-builder to allow you to
specify a list of different metadata templates that Composer can consult when attempting to parse the EDI
transmission. The metadata definitions come from the EDI Interchange Metadata resources in your
resource list. (See “Creating EDI Interchange Metadata” in the chapter on getting started with the EDI
Connect.)
Performing EDI Actions 39

Get Next EDI Interchange

Once a Transmission has been created, you can perform a Get Next EDI Interchange action against it. The
purpose of the Get Next EDI Interchange action is to extract an interchange from the Transmission and
create an Interchange object. Then you can query the properties of the interchange such as its EDI
Standard, SenderID and UsageIndicator to determine additional processing paths in your
Action Model. To extract the Interchange, you must supply the name of the target Transmission and a
name to give to the extracted interchange. You cannot have more than one Interchange instantiated at a
time from a Transmission. If you perform two Get Next EDI Interchange actions in a row, you will have
one Interchange instance to work with, that being the second one from the Transmission.

Get Next EDI Group

Some EDI transmissions encapsulate groups of documents. For example, there may be a business process
in which batches of documents move in parallel, analogous to “carbon copies” of a form being handed
off to different departments: “The yellow copy goes to Accounting, the pink copy goes to Legal . . .” and
so on. An interchange might contain groups of documents representing the various copies/versions of a
transaction record that need to be passed through the system.

Not all EDI transmissions use this metaphor. Many times, an EDI transmission will merely wrapper one
batch of documents, with all documents in the batch being of the same type.

The Get Next EDI Group action allows you to fetch groups one-by-one, presumably in advance of a loop
operation where you’d perform some kind of processing on each document within the fetched group.

The setup dialog for this action is shown below.

Get Next EDI Document

Once an interchange object has been created, you can perform a Get Next EDI Document action against
it. The purpose of the Get Next EDI Document action is to extract a Document from an Interchange and
create a Document object. Then you can query the properties of the Document such as its Document
Type, EDI Standard, Standard Version, SenderID and UsageIndicator to determine additional processing
paths in your Action Model. To extract the Document, you must supply the name of the target
Interchange and a name to give to the extracted Document. You cannot have more than one Document
instantiated at a time from an Interchange. If you perform two Get Next EDI Document actions in a row,
you will have one Document instance to work with, that being the second one from the interchange.
40 EDI Connect User’s Guide

Transform EDI to XML

Once a Document object has been created, you can perform a Transform EDI to XML action against it.
The purpose of the Transform EDI to XML action is to apply a Document Transform Resource against the
document and create an XML representation of the document in a target DOM you specify. To perform a
transform, you must supply the name of the EDI Document object you wish to transform, a target DOM
and XPath, and the name of the Document Metadata to apply. You may also conditionally apply different
Transform Resources by writing an ECMAScript expression for the Document Metadata. After
executing this action, an EDI Document will be in XML format and can be shuttled to other exteNd
Composer Components for backend processing such as inserting records into a CICS system or database.
Performing EDI Actions 41

EDI File Read

To read EDI files off a disk or network, create an EDI File Read action and supply a URL for the source
file:

Also specify an XPath or ECMAScript statement that will resolve to the destination where you want the
EDI file placed. You may optionally specify that the file contents be wrappered in a CDATA section.

Create EDI Transmission

Before you can dispatch one or more EDI Interchanges from an EDI component, it must be contained in
a Transmission. The purpose of the Create EDI Transmission action, is to create a Transmission (an
Interchange Set object) into which you can subsequently insert EDI Interchanges. To create a
Transmission, you must only supply a name for it.
42 EDI Connect User’s Guide

Create EDI Interchange

In creating an outbound EDI Transmission, you will typically start with the transmission data in XML
format. Before you can transform an EDI Document in XML format to its EDI Document representation,
you must create an Interchange object to contain the EDI Document. The purpose of the Create EDI
Interchange action, is to create an interchange object into which you can subsequently insert EDI
Documents. To create an interchange, you must supply a name for it, a Source XPath identifying where
to find the Interchange data, and an Interchange Metadata that identifies the EDI Standard (i.e. ANSIX.12
or EDIFACT) you wish to create. In determining the Interchange Resource, you can specify an
ECMAScript expression that queries other sources of data to conditionally apply the appropriate
standard.

Create EDI Group

As explained above (under Get Next EDI Group), some EDI transmissions support the notion of
documents being aggregated into groups. If you are creating an outbound transmission and you want to
be able to collect related documents into groups, this action will let you do it.

The setup dialog for the Create EDI Group action is depicted below.

Transform XML to EDI

Once an outbound Interchange object has been created, you can perform a Transform XML to EDI action
against it. The purpose of the Transform XML to EDI action is to apply a Document Metadata against the
XML, you specify and create an EDI representation of it in an Interchange you specify. To perform a
transform, you must supply the name of the Source of the XML you wish to transform, a target EDI
Interchange object, and the name of the Document Metadata to apply. If the Source XPath you specify
returns more than one node, each of which contains EDI document data, then all the documents will be
put into the target Interchange.
Performing EDI Actions 43

You may also conditionally apply different Transform Resources by writing an ECMAScript expression
for the Document Metadata based on the data in the other DOMSs or PROJECT Variables.

Put EDI Interchange

Once an Outbound Interchange Set object has been created, you can perform a Put EDI Interchange
action against. The purpose of the Put EDI Interchange action is to insert an Interchange into a
Transmission in preparation for an outbound dispatch. To create a Put EDI Interchange action, you must
supply the name of the Source Interchange and the name of the Transmission. Once you have added one
or more Interchanges to a Transmission, it is ready to be dispatched from the EDI Component.
Dispatching an EDI Transmission is usually accomplished by a Map Action from the Transmission to the
Output DOM. The Map Action source is defined as an ECMAScript expression (i.e.
theTransmissionName.getValue()) and the target of the Map action specifies the Output DOM and an
XPath that creates a CDATA section. Alternatively, you can Map the Interchange Set data to a temp DOM
and dispatch it via an XML Interchange action.
44 EDI Connect User’s Guide

Put EDI Group

If your outbound transmission will contain grouped documents, you can use this action to insert groups
into the outgoing transmission. The setup dialog is shown below.

EDI File Write

This action implements file writing (disk I/O). You specify the target location as a URL.

NOTE: Currently, only the file:// protocol is supported.

The setup dialog asks for an XPath (or optionally, an ECMAScript) expression pointing to the data
source, and a URL and encoding algorithm for writing the output file. See below.
Performing EDI Actions 45

EDI Specific Expression Builder Extensions
The Connect for EDI exposes a number of EDI-specific ECMAScript globals and object extensions,
which are visible in Expression Builder picklists. The items are listed under the node labelled “EDI.”
There are three child nodes: Transmission, Interchange and Document and they are shown in the
following screen.

In addition, you can obtain more complete online help by clicking Help in the lower left corner of the
dialog.

The Transmission

An entire EDI transmission is represented by an Interchange Set object. For inbound processing, it will
be the first EDI object created and holds the contents of the transmission. A Transmission, (or
Interchange Set object) is referenced by a user-supplied name and provides the following two methods.

 Method Description

string getValue() Returns the contents of the Transmission in the
Native EDI format. This method is usually called
during outbound processing to write the final
Transmission to a DOM. It is typically an
Expression in the Source of a Map action.
Example:
theTransmissionName.getValue()

Boolean
hasMoreInterchanges()

Returns true if the Transmission contains more
Interchanges for processing. This method is usually
called when the Transmission is used as the end
condition in a Repeat for While action that
iteratively processes the contents of an interchange
Set. Returns false if there are no more
Interchanges available for processing. Example:
theTransmissionName.hasMoreInterchang
es()

picktree nodes
EDI-specific
46 EDI Connect User’s Guide

The Interchange Object

An Interchange object represents a collection of EDI documents of the same EDI Standard type, such as
ANSI X.12. An Interchange object is referenced by a user-supplied name and provides the following
methods:

 Method Description

EDIDocument getNext
Document()

Returns the first or next EDI Document object from
an Interchange object. Example:
myInterchange.getNextDocument()

string getSenderID() Returns the SenderID information from an
interchange. This method is usually used to help
determine what Document type or interchange
format to use in an XML to EDI Transform action.
Example:
myInterchangeName.getSenderID()

string
getSenderIDQualifier()

Usually returns a code value used to help resolve
the SenderID. This method is usually used to help
determine what Document type or Interchange
format to use in an XML to EDI Transform action.
Example:
myInterchangeName.getSenderIDQualifie
r()

string getStandard() Returns a string indicating the EDI Standard of the
Interchange. Example:
myInterchangeName.getStandard() might
return “ANSIX.12” or “EDIFACT.” This method will
usually be used in an Inbound Transform EDI to
XML Action to determine which Document
Transform Resource to use.

string
getUsageIndicator()

Returns one of the following values: P, T, or U. “P”
indicates a production transaction, “T” indicates a
test transaction, and “U” indicates unknown. This
method only applies to ANSIX.12 documents.

Boolean
hasMoreDocuments()

Returns true if the Interchange contains more
Documents for processing. This method is usually
called when the Interchange is used as the end
condition in a Repeat for While Action that
iteratively processes the Documents in an
Interchange. Returns false if there are more
Documents available for processing. Example:
myInterchangeName.hasMoreDocuments()
Performing EDI Actions 47

The Document Object

A Document object represents an EDI message of a particular type, such as an ANSI 850 Purchase Order.
A Document object is referenced by a user-supplied name and provides the following methods:

 Method Description

string getControlID() Returns the ControlID information from an
interchange.

string getDocType() Returns the particular type of document within the
EDI standard. Example:
myDocumentName.getDocType() might return
“850” for an ANSIX.12 Purchase Order. This
method will usually be used in an inbound
Transform EDI to XML action to determine which
Document Transform Resource to use.

string getSenderID() Returns the SenderID information from an
interchange. This method is usually used to help
determine what Document type or Interchange
format to use in an XML to EDI Transform action.
Example:
myInterchangeName.getSenderID()

string
getSenderIDQualifier()

Usually returns a code value used to help resolve
the SenderID. This method is usually used to help
determine what Document type or Interchange
format to use in an XML to EDI Transform action.
Example:
myInterchangeName.getSenderIDQualifie
r()

string getStandard() Returns a string indicating the EDI Standard of the
Document.
Example:myDocumentName.getStandard()
might return “ANSIX.12 or “EDIFACT.” This method
will usually be used in an Inbound Transform EDI to
XML Action to determine which Document
Transform Resource to use.

string getValue() Returns the contents of the Document in the native
EDI format. It is typically an Expression in the
Source of a Map Action. Example:
myInterchangeSetName.getValue()

string getVersion() Returns the version number of the EDI standard
used to encode the EDI transmission.
48 EDI Connect User’s Guide

Custom Script Function

On occasion your EDI application may call for sending out an EDI Transmission wrapped in a
CDATASection node in an XML document, the same way it currently must arrive in an inbound
document. Below is a Custom Script function that will take the contents of an EDI Transmission and
place it into an Output node of your choice.

/**/
// function name: EDIintoCDATA(sourceData, targetEDINode)
// Description: creates a CDATA section on the specified XPath
// sourceData: (Required) A string that is data to put into the CDATA
// e.g. theTransmissionOjbect.getValue()
// targetEDINode: (Required) The XPath location to contain the CDATA
// section.
// The CDATASection will be appended to this element.
// Note: this must be a single node object and not a
// nodelist (i.e. use the item() method on the NodeList
// object:
// Output.XPath("rootelement/somechild").item(0)
// Returns: Nothing. The CDATASection containing the sourceData
// is appended to the specified targetEDINode
/**/
function EDIintoCDATA(sourceData, targetEDINode)
{
 // get the owner document of the targetEDINode to create a CDATASection
 var theDoc = targetEDINode.getOwnerDocument();

 // create the CDATASection
 var theCDATASection = theDoc.createCDATASection(sourceData);

 // attach the CDATASection
 targetEDINode.appendChild(theCDATASection);

}

Processing Inbound EDI Documents
As noted previously, it’s possible for a single EDI Transmission to contain a heterogeneous mix of
documents encoded per different EDI Standards (such as ANSI X.12 and EDIFACT). The Connect for
EDI provides four actions and three objects designed to handle both simple and complex Interchange
Sets. To process an inbound EDI transmission, the following key activities need to be performed:

Create a Process EDI Transmission action with which to extract EDI Interchanges

Create an interchange object from which to extract EDI Documents

Create a Document object to transform into XML

Transform a Document object into XML which can be fed to other exteNd Composer Components
or Services
Performing EDI Actions 49

To Process an Inbound EDI Transmission

1 Create an EDI component according to the instruction in “To create a new EDI Component” in
Chapter 3 of this manual. Once created, the new EDI component editor appears.

2 On the Menu bar, click the Action menu and select New Action>Inbound>Process EDI
Transmission. The Process Transmission dialog appears.

3 On the Action Parameters Tab, specify an XPath or ECMAScript expression that identifies the
location of the Inbound EDI in a DOM. Then specify a name for the Target Transmission Name
to be created.

4 Optionally, you may select the Interchange Metadata Tab and control which Interchanges within
the Transmission are processed by placing Interchange Resources you created in the Active list. To
ignore an interchange, place its Resource in the Inactive list. The result of a Process EDI
Transmission action is to create an EDI Transmission with a name you specify.
50 EDI Connect User’s Guide

5 Next create a Repeat While action. Since the Transmission may contain more than one
Interchange, the Repeat While action allows you to iterate through the Transmission and extract
Interchanges one at a time. Enter the While condition as
theTransactionSet.hasMoreInterchanges() and click OK to close the dialog. The While
condition will take advantage of the hasMoreInterchanges() method available on the Interchange
Set object. Inside the While action you will create a Get Next Interchange action, which when
executed will increment a pointer in the Transmission for the hasMoreInterchanges() method.
Click OK to close the dialog.

6 With focus on the Loop Action node of the While action, click the Action menu and select New
Action>Inbound>Get Next EDI Interchange. The Get Next EDI Interchange dialog appears.
Enter the name of the Source Transmission created in the previous EDI action. Then specify a
name for the Target Interchange that this action will extract from the interchange Set. Click OK
to close the dialog.

7 Determine, at this point, whether your EDI transmission contains groups of documents, or just
documents. The next steps assume that you are iterating over documents in an EDI interchange that
contains only one type of document. If you are iterating over groups (and documents within
groups), you will naturally have to create one more nested loop, utilizing the Get Next EDI Group
action to loop over groups. You’d use exactly the same procedures outlined below, only looping on
groups first, before dropping down to the loop-over-documents level.

8 Next create another Repeat While action. Since an Interchange may contain more than one
Document, the Repeat While action allows you to iterate through an interchange and extract
Documents one at a time. Similar to the Interchange Set object, an Interchange has a hasMore
Documents() method. Enter the While condition as myInterchange.hasMoreDocuments() and
click OK to close the dialog.
Performing EDI Actions 51

NOTE: If there is an error while processing a set of documents due to a “bad” document, exteNd
Composer allows you to automatically skip that document and continue processing. You can
accomplish this by wrapping the Get Next Document action in a Try/OnError action as shown in the
illustration below.

Troubleshooting

If you want to see that an error has occurred, you must add a Function action that, for example,
displays an alert message or writes to System.out. You would insert this action in the OnError
branch of your Try/OnError clause. Do this by highlighting OnError in the action model, RMB,
click on New Action>Function. Enter the appropriate ECMAScript expression, such as
alert(“My error message”), and click OK. The new Function action is added at that point in
the action model when it executes, you will see an error dialog (alert) pop up. Obviously, this is a
design-time-only tactic, since alert dialogs are not useful on the server at runtime. To write to
System.out instead, enter the following expression in the Function action dialog:

java.lang.System.out.println(“My error msg.”);

This line of code will write a message to the Log pane of the Composer UI at design time and to the
system output on the server at runtime.

Note that you can also insert a Log action (one of the standard Composer actions) inside the
OnError branch in order to issue log messages. The advantage of this technique is that priority
filtering of messages can be applied. (That is, only messages with an assigned priority above a
certain threshold level will be logged. See the Composer User Guide for details.)
52 EDI Connect User’s Guide

1 With focus on the Loop Action node of the While action, click the Action menu and select New
Action>Inbound>Get Next EDI Document. The Get Next EDI Document dialog appears. Enter
the name of the Interchange object created previously. Then specify a name for the Target EDI
Document that this action will extract from the Interchange. Click OK to close the dialog.

2 Now that you have separated an Interchange from the Interchange Set and a Document from the
Interchange, you are ready to transform the EDI into XML using a Transform EDI to XML action.
With focus on the Loop Action node of the While action, click on the Action menu and select New
Action>Inbound>Transform EDI to XML. The Transform EDI to XML dialog appears. Enter
the name of the extracted Document you wish to transform, a Target XPath for the results and
the name of a Document Transform Resource to use.

NOTE: The Interchange Transform Resource can be an ECMAScript expression allowing you to
conditionally pick a transform resource based on other related information.

There is an Options Section which allows you to select additional criteria by clicking on the
checkbox.

Format numeric fields to include decimal point - If checked, Inbound Implied Decimal Fields
have a decimal point added to them at the appropriate spot. For example, a format of N2 and a data
value of “100” yields “1.00.” If unchecked, the decimal point is not added.

NOTE: Please refer to Appendix D on Data Type Validation Rules for more information as well as
Appendix C on Metadata and Inbound Processing.

3 The preceding steps have now gotten a single EDI document into XML which can now be supplied
to other exteNd Composer Components or Services before the next EDI document/Interchange is
extracted in your loop processing. With focus on the Loop Action node of the inner While action,
create a Component action and pass in the results of your EDI transform. Your action model should
resemble the one below.
Performing EDI Actions 53

NOTE: The Map action in the second While loop uses the getInterchangeInfo() method of the
Interchange object to transform Interchange related information and map it to the DOM that will
eventually hold the transformed document.

Processing Outbound EDI Documents
As noted in the previous section, it’s possible for a single EDI Transmission to contain a complex mixture
of documents encoded in different EDI Standards. exteNd Composer provides four simple actions and
three objects designed to handle both simple and complex Interchange Sets. To process an Outbound
EDI, the following key activities need to be performed:

• create a Transmission, into which EDI Interchanges will be inserted,

• create an Interchange object into which EDI Documents will be inserted,

• create a Document object by transforming XML from a DOM and inserting it into an Interchange
object,

• inserting an Interchange into a Transmission which can be processed by other exteNd Composer
Actions (XML Interchange), Components or Services.

To Process an Outbound EDI Transmission

1 Create an EDI component according to the instruction in “To create a new EDI Component” in
Chapter 3 of this manual. Once created, the new EDI component editor appears.
54 EDI Connect User’s Guide

2 On the Menu bar, click the Action menu and select New Action>Outbound>Create EDI
Transmission. The Create EDI Interchange Set dialog appears. Enter a name for the
Transmission. The Transmission is the container for an entire EDI transmission that may contain
multiple Interchanges and Documents. Click OK to close the dialog.

3 On the menu bar, click the Action menu and select New Action>Outbound>Create EDI
Interchange. The Create EDI Interchange dialog appears. Enter the name you wish to give the
Interchange object. Then enter the Source XPath where exteNd Composer will find the
information to construct the Interchange. Finally, enter the name of the EDI Transform
Resource in the Metadata field for the Interchange object.

NOTE: The Transform Resource can be an ECMAScript expression allowing you to conditionally
pick a transform resource based on other related information. Click OK to close the dialog.

4 On the Menu bar, click the Action Menu and select New Action>Outbound>Transform XML
to EDI. The Create Transform XML to EDI dialog appears. Enter the Source XPath of the XML
data to transform into an EDI Document object. The XPath location you specify and all its
descendants will be transformed into a Document object. Enter the name of the Target
Interchange to insert the Document object into. Finally, Enter the name of the Document
Transform Resource in the Metadata field to use in creating the Document object.

There is an Options Section which allows you to select additional criteria by clicking on the
checkbox. It includes the following choices:

Auto pad/truncate alphanumeric fields - If checked, AN Field processing includes padding with
blanks on the right to match MinLength attribute and truncating from right to match MaxLength
attribute, If unchecked, no padding or truncating is performed.

Auto pad/truncate numeric fields - If checked, N*Field processing includes padding with zeroes
on the left to match MinLength attribute and truncating fields from left to match MaxLength
attribute. If unchecked, no padding or truncating is performed.

Treat numeric fields as requiring implied decimal point fixup - If checked, N* Field processing
assumes XML input field has a decimal point in the correct place and uses that information to
properly format EDI. For example, an N1 formatted field with a value of “1.0” results in “10.”. If
unchecked, the data is moved into EDI unchanged.

NOTE: Please refer to Appendix D on Data Type Validation Rules for more information.
Performing EDI Actions 55

5 Now that you have a Document object inside a Interchange object, you are ready to insert the
Transmission. On the Menu bar, click the Action menu and select New Action>Outbound>Put
EDI Interchange. The Put EDI Interchange dialog appears. Enter the name of the Interchange to
insert. Then Enter the name of the Transmission. Click OK to close the dialog.

6 The preceding steps have now gotten a single EDI Document into a single Interchange and the
Interchange into the Transmission. All it takes now is a single Map Action to extract all the EDI
data from the Transmission and put it into an XML DOM which can then be supplied to other
exteNd Composer Components or Services for final outbound processing. The Map action as
shown, uses the getValue() method available on the Transmission (an Interchange) object. Your
action model should follow the general pattern of the one shown.
56 EDI Connect User’s Guide

Using Other Actions in the EDI Component Editor
In addition to the Map Screen, you have all the standard Basic and Advanced Composer actions at your
disposal as well. The complete listing of Basic Composer Actions can be found in Chapter 7 of the
Composer User’s Guide. Chapter 8 contains a listing of the more Advanced Actions available to you.

Handling Errors and Messages
This section describes common errors you may see while executing the animation tools.

Warning: Error Executing Component. Can’t Extract Next Interchange from the Set

One cause of this error may be that the wrong Interchange Resource is being used to extract an
Interchange from an Inbound EDI. The Process EDI Transmission action allows you to control which
EDI Standards are applied against an EDI when extracting interchanges. These options are set on the
Interchange Metadata tab of the Process EDI Transmission action. If the Inbound EDI is in EDIFACT
format, but the Interchange Resource being applied is ANSIX12 then this error can occur. Change the
Applied list of standards to include the one needed by the Inbound EDI.
Performing EDI Actions 57

58 EDI Connect User’s Guide

5 EDI Logon Components,Connections and
Connection Pools

About EDI Terminal Session Performance
A normal EDI Terminal Component may perform satisfactorily on your testing workstation within
xCommerce Designer, however, after deploying to a production application server environment, you may
discover that the Service encapsulating this component performs slowly under load. This is not unusual
and is similar to problems experienced in the earlier days of database systems that supported multiple
users. The problem can usually be traced to the time spent on a variety of steps needed in a typical
Terminal session transaction. Ignoring the actual execution of the transaction itself, these steps include:

1 securing a connection to the host

2 user authentication

3 navigation through a menu system to point where the transaction can be launched

4 signing the user off and closing the connection when the transaction is finished.

While it may seem small for an individual transaction, this one to one relationship of a EDI Terminal
component to the session overhead becomes problematic under heavy transaction loads typical of many
WEB sites and/or application server environments. xCommerce minimizes the repetitive session
overhead by providing two special objects: a Connection Resource type called a EDI Logon Connection
and the EDI Logon Component.

Connection Pool Architecture
When you install the EDI Terminal Enterprise Enabler, three types of Connection Resources are added to
the Connection creation wizard: an EDI Connection, an EDI Connection and a EDI Logon Connection
(henceforth a Logon Connection). The EDI connections are true connections and, when used by a EDI
Terminal component, can establish a session with a host system.

The EDI Logon Connection, however, is different. It defines a pool of available User Ids and uses a EDI
Logon Component (henceforth a Logon Component) to execute connection related actions for each User
Id. It is the Logon Component that actually establishes connections using either a EDI or Connection.
The Logon Component will be discussed later, but it is important to note that a Logon Connection and
Logon Component must be used together to establish connection pools.
EDI Logon Components,Connections and Connection Pools 59

Normally, when a EDI Terminal component activates a connection defined using a single User ID and
password, that connection’s User ID is unavailable to another instance of the component or a different
component that uses the same connection definition.

The Logon Connection provides performance benefits by making additional User IDs available to
establish new connections eliminating the serial wait time for other components to finish, and by reusing
a connection when possible to avoid session overhead.

In the diagram above, notice that each active EDI Terminal Component has its own User ID, its own
instance of the Logon Component and its own instance of the Connection Resource. Also notice that the
execution of the multiple EDI Terminal Components that would otherwise use the same Connection
Resource and cause repetitive serial logon overhead, can instead reuse a User ID/Logon
Component/Connection instance provided by a single Logon Connection. Finally, note that at Design
time, the user only created one Logon Connection object, one Logon Component object, and one
Connection object. The Logon Connection takes care of creating individual instances for each User ID at
runtime.

The combination of a Logon Connection, its Logon Component, and its Connection are what constitute
a Connection Pool. The key factor in deciding when you need to define and deploy additional Connection
Pools, is when one or more EDI Terminal Components need to use a different launch screen in the Logon
Component.

About the EDI Logon Connection
The Logon Connection is not a true connection object like a EDI Connection Resource, but more
descriptively, a pool of User IDs that have a variety of connection management parameters associated
with them. One key parameter is the use of a Logon Component for all the User IDs that performs initial
Logon tasks and menu navigation to a launch screen.
60 EDI Connect User’s Guide

In addition to specifying a Logon Component, the Logon Connection provides the following User ID
pool functionality:

1 allows the specification of multiple User IDs in advance ensuring that clients are able to secure a
connection when one is needed

2 allows the reuse of a User ID/connection once it is established to eliminate repeated user
authentications and disconnects

3 allows a single User ID to use multiple connections if this is supported by the host system

4 keeps a connection active to prevent host timeouts during inactive periods

5 specify when to remove a connection from the active pool

6 set a timeout period to wait for a fully active pool to provide a free connection

7 specify error handling dependent on the state of the Logon Component used by the Logon
Connection

In order for multiple instances of a EDI Terminal component or different EDI Terminal components to
use a single Logon Connection, the following conditions must be met:

1 All the EDI Terminal components must use the same Connection Resource (thereby sharing the
EDI Host, Port and data encoding parameters or EDI connection Gateway and Server parameters)

2 All the EDI Terminal components must have a common launch screen in the host system from
which they can begin execution (see “About the EDI Logon Component” below for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multiple logins from a single user ID, you may have circumstances
where you wish to pool the single User ID. This can be accomplished by performing the following steps:

Specify a User ID/Password in the Connection Resource used by the logon Component

On the Pool Info dialog of the Logon Connection, specify a Pool Size greater than 1

Do NOT check the Override the UID/PWD setting in the Pool Info dialog of the logon
Connection.

These steps will cause each pool slot to use the User ID and Password contained in the Connection object
and not use and user IDs from the pool.
EDI Logon Components,Connections and Connection Pools 61

About the EDI Logon Component
The Logon Component is a special component whose Action Model is designed to manage a connection
that will be used by multiple EDI Terminal components. The Logon Component is in most respects the
same as EDI Terminal components except for two key differences:

1 Its Action Model is organized and executed by connection tasks: Logon Actions, KeepAlive
Actions and Logoff Actions

2 A Logon Component is not executed by another component or service but instead by a logon
Connection.

3 A Logon Component must and can only be used in conjunction with a Logon Connection.

The connection tasks of a Logon Component provide three additional performance benefits when used
with a Logon Connection.

LOGON actions navigate through the host environment and park at a desired launch screen in the
host system when a User ID from the Pool first activates a connection to the host. The EDI
Terminal components that subsequently reuse the connection have the performance benefit of
already being at the launch screen and won’t incur the overhead of navigating to the launch screen
as if they had come in under their own new session.

KEEPALIVE actions prevent the host from dropping a connection if it is not used within a standard
timeout period.

LOFGOFF actions exit the host environment in a manner you prescribe for all the connections
made by User IDs from the pool.

LOGON Actions

Actions you place in the LOGON group are primarily concerned with signing into the host security
screen and then navigating through the host menu system to a launch screen where each EDI Terminal
component’s Action Model will start. It is important that any EDI Terminal component using a Logon
component be able to start execution at the same common screen. Otherwise, the performance gains of
avoiding navigation overhead won’t be realized and more importantly, the odd EDI terminal component
won’t work.

Logon Actions are created the same way as in the EDI Terminal Component that does not use a Logon
Connection. You use the Record feature to create the actions necessary to enter sign on information such
as User ID and Password as well as your initial menu choices to arrive at the launch screen. The other
important thing to remember is to use the User IDs and Passwords from the Logon Connection Pool. To
do this you need to map the two special system variables called USERID and PASSWORD to the
appropriate fields on the screen. By using these two variables, xCommerce will automatically map their
values from the next active and free Pool slot.
62 EDI Connect User’s Guide

The launch screen must be a common point of execution for all the EDI Terminal Components using the
User ID pool provided by a Logon Connection. To get to the launch screen you create Actions as you
would in a normal EDI Terminal component. The LOGON actions in a Logon Component are executed
only once when a new connection is established.

So if a User ID pool of three entries is fully used and reused by the execution of a component 15 times,
the overhead of navigating to a menu item that executes the transaction of interest will only occur three
times. Likewise, there will only be three Logons to the host because LOGON actions are only executed
once - when a new connection is activated (not when it is reused).

KEEPALIVE Actions

The KEEPALIVE heading is where you place actions that will create activity and interact with the host
which keeps occurring over the connection used by the Logon Component. KEEPALIVE actions usually
involve sending an AID key like <ENTER> to the host. However, if after sending the AID key the screen
changes to one different than the launch screen, you must be sure to return the Logon Component to the
launch screen in the KEEPALIVE section. Failure to do so will leave the next component at an incorrect
screen causing it to fail.
EDI Logon Components,Connections and Connection Pools 63

The Pool Info dialog of a Logon Connection is where you control how often the KEEPALIVE actions
will execute. If you specify in your Logon Connection pool that you would like to keep a free connection
active for 2 minutes, but the host will normally drop a connection after one minute of activity, you can
specify keyboard actions to let the host know the connection is still active such as sending an
<ENTER>key.

KEEPALIVE actions may be executed multiple times, but after the KeepAlive Time Period defined on
the Pool Info dialog of the Logon Connection.

NOTE: The execution of the KEEP ALIVE actions does not cause the Inactivity Lifetime clock to reset in
the Logon Connection. Only a EDI Terminal component’s execution will reset the Inactivity Lifetime.

LOGOFF Actions

Logoff actions essentially navigate the User ID properly out of the host system. Logoff actions execute
only once for a connection and only when a connection times out (i.e. the Inactivity Lifetime expires) or
the connection is closed via the EDI Server console.

Logon Component Execution

Each time a User ID is activated from the Logon Connection Pool, an instance of the Logon Component
is created and associated with that User ID. Then the Logon actions are executed until the desired launch
screen is reached. At this point the EDI Terminal component execution begins. When it is finished
another EDI Terminal component using the same Logon Connection may begin executing, starting from
the same launch screen.
64 EDI Connect User’s Guide

If another component doesn’t begin executing, then the connection enters an active but free state defined
by the Inactivity Lifetime and KeepAlive settings on the Pool Info dialog of the Logon Connection. IF
the Keep Alive period (e.g. 2 minutes) is shorter than the Inactivity Lifetime (e.g. 120 minutes), then
when the KeepAlive Period ends, the KeepAlive actions will be executed (preventing a host timeout and
dropped connection) and the KeepAlive Period begins anew. The Inactivity Period and KeepAlive Period
are defined on the Pool Info dialog of the Logon Connection.

A logon Component’s execution lifetime is dependent on the activity of the Logon Connection that uses
it. As long as one entry in the Logon Connection pool is active, then one instance of the Logon
Component will be in memory (in a live state). A Logon Component will cease execution when the last
remaining pool entry expires due to inactivity. The only other way to stop execution of a Logon
Component is through the EDI Console on the Server.

Creating a Connection Pool

Overview

When creating a EDI Terminal component, you must first create the Connection object it needs first.
Similarly, when creating the object comprising a Connection Pool, you must create the needed objects
first, which implies starting at the host and working your way backwards to the EDI Terminal Component
that will access the host. A typical sequence of steps for creating a Connection Pool is:

Create the host Connection

Create the Logon Component that uses the Connection

Create Logon Connection that uses the Logon Component

Create one or more EDI Terminal Components that use the Logon Connection

Creating a Connection
This step is simple. Create a new Connection Resource as described in Chapter 2 of this Guide. Even
though you will be using User IDs and Passwords defined in the Logon Connection later, you should still
define one in the Connection as well. This will be needed when you define the Logon Component in the
next step. Alternatively, you can simply use an existing Connection Resource.

Creating a Logon Component

To create a EDI Logon Component:

1 From the Designer File menu, select New xObject, then Component, then EDI Logon.

The Header Info panel of the New xObject Wizard appears.
EDI Logon Components,Connections and Connection Pools 65

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next and the Connection Info panel appears.

5 Select a Connection from the drop down list.

6 Click Finish and the Logon Component Editor appears.

NOTE: Recording actions follows a series of steps. The cursor must be positioned over LOGON,
turn record on, when you are done, turn Record off. Position the cursor to KEEPALIVE, turn Record
on, when you are done, turn Record off. Position the cursor to LOGOFF, turn record on, when you
are done, turn record off.

7 Record LOGON Actions for logging into the host and navigating to the launch screen using the
same Recording techniques described in Chapter 4 of this Guide.

8 Edit the LOGON Map actions that enter a User ID and Password to instead use the special
USERISD and PASSWORD variables described in the section titled “EDI Specific Expression
Builder Extensions” in Chapter 4 of this Guide.

9 Create the needed SEND Key actions in the KEEPALIVE section of the Action Model (a quick
way is to copy an existing SEND key action, Paste it, and then modify the key code sent).

10 Record LOGOFF actions for properly exiting the host.

11 Save and close the logon Component.
66 EDI Connect User’s Guide

Creating a Logon Connection

To create a EDI Logon Connection:

1 From the Designer File menu, select New xObject, then Resource, then Connection or you can
click on the icon. The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next and the Connection Info panel appears.

5 For the Connection Type select “EDI Logon Connection” from the drop down list.

6 In the Logon Via control, select the Logon Component you just created.

7 Click on the Pool Info button and the Pool Info dialog appears.
EDI Logon Components,Connections and Connection Pools 67

8 Enter a Pool Size number. This represents the total number of connections you wish to make
available in this pool. For each connection, you will be expected to supply a UserID/Password
combination later.

9 Enter a KeepAlive time period. This number represents (in minutes) how often you wish to execute
the KEEPALIVE actions in the associated Logon Component whenever the connection is active but
free (i.e. not being used by a EDI Terminal component). The number you enter here should be less
than the Timeout period defined on the host for an inactive connection.

10 Enter an Inactivity Lifetime. This number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to its inactive state
in the pool, it will incur the overhead of logging in and navigating host screens when it is re-
activated.

11 Enter an Entry Wait time in seconds. This time represents how long a EDI Terminal component will
wait for a free connection when all the pool entries are active and in use. If this time period is
reached, an Exception will be thrown to the Application Server.

12 Checking Override UID/PWD means you wish to specify User ID/Password combinations for use
in the connection pool. When checked, this activates the Set USERIDs button. Click on the button
to display the Set USERIDs and PASSWORDS dialog.

Enter as many USERID/PASSWORD combinations until you reach the size of the pool you
specified and click OK.
68 EDI Connect User’s Guide

13 You may optionally check the Reuse Connection Only if expression is true control. This control
allows you to enter an expression that checks to make sure the launch Screen is still present each
time a new EDI Component is about to reuse an active free connection. Under circumstances
unrelated to your xCommerce Service, its possible the Launch Screen will be replaced by the host
with a different screen. For instance, if there is a system ABEND on the host, the launch screen in
the Logon Component may be replaced by a System Message screen. For instructions on how to
create this expression, see the section: “Handling System Messages” in Chapter 2 of this Guide.

14 Click OK to return to the Connection Info panel.

15 Click on Finish and the Logon Connection is saved.

Creating a EDI Terminal Component
At this point, you are ready to create a EDI Logon Component that can use the Connection Pool. For the
most part, you will build the component as you would a normal EDI Terminal component, the only
difference being is the Connection you specify on the New xObject Wizard.

To create a EDI Terminal Component:

1 From the Designer File menu, select New xObject, then Component, then EDI Terminal.The
Header Info panel of the New xObject Wizard appears.

2 Type a Name for the component.

3 Optionally, type Description text.

4 Click Next and the XML Property Info panel appears.

5 Select the necessary Input and Output Templates and click Next, and the Connection Info panel
appears.

6 Select the Logon Connection you created and click on Next, and the Component editor appears.

7 Build the component according to instructions in Chapter 3 of this Guide.
EDI Logon Components,Connections and Connection Pools 69

70 EDI Connect User’s Guide

A ANSI X.12 Segment Mnemonics

ANSI X.12
Segment Purpose Notes
ISA Interchange

Header
Contains delims, sender, receiver, control number

GS Group
header

Contains message version

ST Set Header Start of message 1, contains message type
… Message specific segments
SE Set Trailer End of message 1

ST Set Header Start of message n, contains message type
… Message specific segments
SE Set Trailer End of message n

GE Group

Trailer
End of group, contains transaction count

ISE Interchange
Trailer

End of transmission, includes functional group count.

ANSI X.12 Segment Mnemonics 71

72 EDI Connect User’s Guide

B EDIFACT Segment Mnemonics

Edifact
Segment Purpose Notes
UNA Contains delims (optional?)
UNB Interchange

Header
Contains sender, receiver, control number

UNH Message
Header

Start of message 1, contains message type, message
version

… Message specific segments
UNT Message

trailer
End of message 1, contains segment count

UNH Message

Header
Start of message 1, contains message type, message
version

… Message specific segments
UNT Message

trailer
End of message 1, contains segment count

… Message specific segments
UNZ Interchange

Trailer
End of transmission, includes message.

EDIFACT Segment Mnemonics 73

74 EDI Connect User’s Guide

C HL7 Segment Mnemonics

HL7 version 2.31
Segment Purpose Notes
MSH Interchange

Header
Contains delims, sender, receiver, control number,
message type and character set

HL7 Segment Mnemonics 75

76 EDI Connect User’s Guide

D SAP Support Segment Mnemonics

SAP Support version 4.0 and version 3.0-3.1
Segment Purpose Notes
EDI_DC40
or
EDI_DC

Interchange
Header

Contains delims, sender, receiver, control number,
message type and message version(embedded in
the control message type)

SAP Support Segment Mnemonics 77

78 EDI Connect User’s Guide

E Metadata and Inbound Processing

Purpose
The purpose of this new tag “choice” is to allow for implementation-specific processing. The structure of
the metadata is based on matching.

Add Choice Processing for Metadata

The EDI connector allows you to process a new tag to the metadata only during Inbound Transmissions.
If it is detected on an Outbound Transmission, the conversion fails with an exception. The tag has the
following format:

<CHOICE id="HL">
<SegmentGroup id="HL" match=XXX>
<SegmentGroup id="HL" match=XXX>
<SegmentGroup id="HL" match=XXX>

</CHOICE>

Processing is as follows:

If the metadata appears as above, the converter detects a choice block and shows the next segment using
the data element delimiter. It publishes each element to a local evaluator using the Segment ID plus a
logical expression based on the values of the fields (i.e. HL01, HL02, etc.) or true/false as the key. The
converter than evaluates the match attribute of each Segment Group. If it evaluates to “true” (first match
it finds), that segment group is used to convert the EDI transmission. Note that choices may be nested.
Metadata and Inbound Processing 79

80 EDI Connect User’s Guide

F EDI Data Type Validation Rules

The SEF import loses datatype information and type information is not fully utilized during the
conversion process. In order to solve this problem, modify the SEF import code so all datatype
information is preserved. Apply the datatypes rules outlined below for both Inbound and Outbound
processing.

Inbound and Outbound Rules

NOTE: If the rule is violated, then an EDI exception occurs.

Inbound Processing — Implied Decimal Point Processing

Datatype Verification

DT date is in format YYMMDD, CCYYMMDD, YYMMDD-
YYMMDD, or CCYYMMDD-CCYYMMDD

TM HHMM, HHMMSS, HHMMSSD, or HHMMSSDD

where HH is Hour 0-23

MM is Minutes 0-59

SS is seconds 0-59

D is tenths 0-9

DD is hundredths 0-99

N* Verify numeric

Datatype Verification

N* Add a decimal point to the field at the index specified (i.e.
N1 applied to “100” yields “10.0.” If a decimal point already
exists, the converter sends an exception. Note: The
maximum field length rule shall not count the decimal point.
N3 applied to “2” yields “0.002.”

If the format numeric checkbox is not checked, move the
data in unchanged.

If the checkbox is checked or unchecked, and a decimal
point exists in the EDI field, the converter sends an
exception.
EDI Data Type Validation Rules 81

Outbound Processing — Padding and Truncating

NOTE: No padding or truncating is performed with Inbound Processing.

Outbound Processing — Implied Decimal Point Processing

Datatype Verification

AN If the auto pad alphanumeric is checked,

If <minLength, fields are padded with blanks on right.

If >maxLength, fields are truncated on right.

N* If the auto pad numeric is checked,

If <minLength, fields are padded with zeroes on left.

If >maxLength, fields are truncated on left.

Datatype Verification

N* If the Treat Numeric Fields as requiring fixup, remove
decimal point from number, fixing up the result to proper
format for implied decimal point. If the decimal point is not at
the correct location, assume the number is correct, pad the
result with zeroes to correctly account for the implied
decimal point, if possible. If not, an exception occurs and a
loss of significant digits in the process. (i.e. N1 applied to
either “100” or “1.00” yields “100”, but applied to “10.0” is
when an exception occurs.) The error message contains the
offending value and the format along with a message
explaining that implied decimal point processing yields loss
of precision.

If the Treat Numeric Fields as requiring fixup is not checked,
and the decimal point in the number, the converter sends an
exception. If there is no decimal point in the number and
there are only digits, move the number into the EDI
transmission unchanged.
82 EDI Connect User’s Guide

G Testing

Environmental Differences between Animation Testing and
Deployment Testing

There are significant environmental differences between Animation testing in Composer and
Deployment testing. Both types of testing are needed to adequately verify the components and services
you build. The differences are detailed in the table below.

Testing in Composer Deployment Testing

OS Win98 or WinNT or Win
2000.

WinNT or Sun Solaris.

Platform JRE (Java Runtime
Environment).

Application Server
complete with JRE support
for Failover, Security,
Connection Mgt., etc.

Component or
Service Startup

Directly from Composer. By Service Triggers only
(i.e., deployment Servlets
or EJBs).

xObject access From disk files. From a JAR file in
Application Server.

Runtime Context Test individual
components or
components running
within a service.

Always from within a
service.

Service and
Component Inputs

Input documents
frequently come from
sample XML documents
on the local machine as
well as DOMs from other
services or components.

Input documents are
passed into the services
and components via
Service Triggers, or DOMs
from other services or
components.

Project Variables
for:
* Log File Paths
* DTD URLs
* XSL URLs
* Send Mail Server
* XML Inter-
change URLs

Usually point to locations
on local machine (but
could be on Servers or
Web).

Should point to locations
on production Servers and
Web.

Testing Tools In addition to Log actions,
you can use dialog boxes
(ECMAScript alert()
function) to display
runtime values.

No dialog boxes can be
used.
Testing 83

84 EDI Connect User’s Guide

H EDI Glossary

ANSI Acronym for the American National Standards Institute.

ANSI standard A document published by ANSI that has been approved through the consensus
process of public announcement and review. Each of these standards must have been developed by
an ANSI committee and must be revisited by that committee within five years for update.

ANSI ASC X12 The Accredited Standards Committee X12 comprises government and industry
members from north America who create EDI draft standards for submission to ANSI.

CDATA A declaration inside an XML document that prevents any character data inside the CDATA
section from being interpreted as XML markup language.

Data Element The basic unit of information in the EDI standards containing a set of values that
represents a singular fact. It may be a single-character code, a literal description, or a numeric value.
Examples of a data element are: price, product code and product attribute such as size or color.

Data Element Separator A unique character preceding each data element that is used to delimit data
elements within a data segment.

Data Element Type A data element may be one of six types: numeric, decimal, identifier, string, data
or time.

Data segment A well-defined string of alternating data elements and data element separators. The
electronic equivalent of a line item on a business form.

Delimiters These consist of two levels of separators and a terminator. the delimiters are an integral part
of the transferred data stream. Delimiters are specified in the interchange header and may not be used
in a data element value elsewhere in the interchange. From the highest to lowest level, the separators
and terminator are segment terminator, data element separator and subelement separator.

Document A block of information which composes an EDI transaction.

Direct Transmission The exchange of data from the computer of the sending party directly to the
computer of the receiving party. A third party value added service is not used in a direct transmission
code.

EDI The standard abbreviation for Electronic Data Interchange. a format in which business data is
represented using national or international standards.

EDIFACT Electronic Document Interchange for Administration, Commerce and Transportation. “UN”
was added to EDIFACT to indicate messages are approved by the United nations international
standards for EDI.

EDI translation The conversion of application data to and from an EDI standard format.

Electronic Commerce Transacting business via electronic means.
EDI Glossary 85

Electronic Data Interchange The computer transfer of business transactions using industry standard
message formats.

Electronic Envelope Catch-all term for the electronic address, communications transport protocols,
and control information. It is the electronic analogy of a paper envelope, i.e. a communications
package.

Electronic Envelope The place where EDI transmission is stored for pickup or delivery within a third
party service provider’s system. Trading partners can also maintain mailboxes within their own
domain.

Flat File A computer file where all the information is run together in a single character string.

Functional Acknowledgment A message or transaction set transmitted by the receiver of an EDI
transaction to the sender, indicating receipt and syntactical acceptability of data transmitted
according to an EDI standard. The functional acknowledgement allows the receiving party to report
back to the sending party problems encountered by the syntax analyzer as the data are interpreted. It
is not intended to serve as an acknowledgement of data content.

Functional Group A group of one or messages or transaction sets bounded by a functional group
header segment and a functional group trailer segment. It is a collection of electronic document
information for the same business application.

HL7 Health Level 7

IDocs IDoc is a container that can be used to exchange data between any two processes. IDoc
represents an IDoc type and IDoc data. IDocs are based on EDI standards, closer to EDIFACT
standards than ANSIX12. IDoc format is compatible with most EDI standards.

Interchange The combination of header, trailer and other control segments that define the start and
end of an individual EDI message.

Mapping The process of identifying the relationship of the EDI standard data elements to application
software data elements.

Message The entire data stream including the outer envelope. (USA) The equivalent of transaction set
in the USA. (International)

SAP Service Access Point

SEF Stands for Standard Exchange Format.

SMTP Acronym for Simple Mail Transfer Protocol.

Syntax The rules which define the structure of EDI standards.

Trading Partner The sender or receiver involved in the exchange of EDI transmissions.

Transaction set The transaction set defines, in the standard syntax, information of business or
strategic significance. It consists of a transaction set header segment, one or more data segments in
a specified order, and a transaction set trailer segment. (USA) Known as a message in EDIFACT. It
is the electronic equivalent of a business document or business form. (International)

UN/EDIFACT See EDIFACT.

VAN Standard abbreviation for Value-Added Network.
86 EDI Connect User’s Guide

Value Added Network A network that leases communication lines from a communications carrier
and allows others to use this service for a fee.

XML Stands for eXtensible Markup Language.
EDI Glossary 87

88 EDI Connect User’s Guide

Index
A
About Metadata 20
About Resources 19
About the Functional Acknowledgement DOM 32
action menu 57
Action Mode 35
actions

overview 35
using basic and advanced 57

advanced actions 57
ANSI 85
ANSI ASC X12 85
ANSI standard 85
ANSI X.12 12
assword 61

B
basic actions 57
Boolean hasMoreDocuments() 47
Boolean hasMoreInterchanges() 46
building applications 15

C
CDATA 85
CDATA section 39
component editor window 32
Connection Pool Architecture 59
Create EDI Group 38
Create EDI Interchange 43
Create EDI Interchange Set 38
Create EDI Transmission 38, 42
Creating a Connection Pool 65
Creating a EDI Terminal Component 69
Creating a Logon Connection 67
Creating an EDI Interchange Metadata 20
Creating XML Templates for Your Component 25
Custom Script Function 49
custom service trigger 17

D
Data 85
Data Element 85
Data Element Separator 85

Data Element Type 85
Data segment 85
Delimiters 85
detail 18
Direct Transmission 85
Document 85
Document Metadata Resource 20
DTD 13

E
ECMAScript 36
EDI 12, 85
EDI component

before creating 29
creating new 29

EDI component editor
about the window 32
building applications 15
getting started 17

EDI Connect, about 14
EDI Document Resource Component Editor 25
EDI File Read 38
EDI File Write 38
EDI Logon Component 62
EDI native environment pane 32
EDI Rules 13
EDI specific

actions 37
EDI Terminal Session Performance 59
EDI translation 85
EDI transmission 14, 46
EDIDocument getNext Document(47
EDIFACT 12, 85
Electronic Commerce 85
Electronic Data Interchange 86
Electronic Envelope 86
envelope 18
environmental differences between animation and deployment

testing 83
Errors and Messages 57
exteNd Composer Connects, about 11

F
Flat File 86
Functional Acknowledgement 34
Functional Acknowledgment 86
89

Functional Group 86

G
Get Next EDI Document 38, 40
Get Next EDI Group 38
Get Next EDI Interchange 38, 40
grouping 38

H
header 18
HL7 86
HL7 Support 12

I
IDocs 86
Inbound EDI transmission 14
Interchange 86
Interchange Metadata Resource 20
Interchange processing 14

M
Mapping 86
Message 86
metadata 14

N
native environment pane 32

O
Outbound EDI transmission 14

P
Process an Outbound EDI Transmission 54
Process EDI Transmission 38, 39
Processing Inbound EDI Documents 49
Processing Outbound EDI Documents 54
Put EDI Group 38
Put EDI Interchange 38, 44

R
Receiving EDI Transmissions 17
Repeat While action 51

S
sample transactions 19
SAP 86
SAP Support 13
SEF 86
SGML 13
SMTP 86
Steps Commonly Used to Create a EDI Component 19
string getControlID() 48
string getDocType() 48
string getSenderID() 47, 48
string getSenderIDQualifier() 47, 48
string getStandard() 47, 48
string getUsageIndicator() 47
string getValue() 46, 48
string getVersion() 48
Structure of an EDI Transaction 17
summary information 18
Syntax 86

T
Testing 79, 83
The Document Object 48
The Interchange Object 47
Trading Partner 86
transaction 18
Transaction set 86
transactions, sample 19
Transform EDI to XML 38, 41
Transform XML to EDI 38, 43

U
UN/EDIFACT 86

V
Value Added Network 87
VAN 86

W
Warning 57
Window Layout 32

X
XML 13, 87
XSL 83
90

	About This Book
	1 Welcome to exteNd Composer and EDI User Interface
	Before You Begin
	About exteNd Composer Connects
	What is EDI?
	HL7 Support
	SAP Support

	What is XML?
	Combining XML Structure with EDI Rules

	Why change from EDI to XML EDI?
	What is the EDI Connect?
	What Applications Can You Build Using the EDI User Interface Component Editor?

	2 Getting Started with the EDI Component Editor
	Receiving EDI Transmissions
	Structure of an EDI Transaction
	The Sample Transactions
	Steps Commonly Used to Create a EDI Component
	About Resources
	About Composer’s EDI Metadata

	Creating EDI Interchange Metadata
	Creating EDI Document Resource Metadata
	Editing Resource or Document Metadata
	Creating XML Templates for Your Component
	EDI Document Resource Editor

	3 Creating an EDI Component
	Before Creating an EDI Component
	About the EDI Component Editor Window
	About the EDI Native Environment Pane

	Viewing the documents in the Component Editor
	About the Functional Acknowledgement DOM

	4 Performing EDI Actions
	The Action Model
	About exteNd Composer EDI Objects
	About EDI-Specific Actions
	EDI Specific Expression Builder Extensions
	The Transmission
	The Interchange Object
	The Document Object
	Custom Script Function

	Processing Inbound EDI Documents
	Processing Outbound EDI Documents
	Using Other Actions in the EDI Component Editor
	Handling Errors and Messages

	5 EDI Logon Components,Connections and Connection Pools
	About EDI Terminal Session Performance
	Connection Pool Architecture
	About the EDI Logon Connection
	Connection Pooling with a Single Sign-On

	About the EDI Logon Component
	LOGON Actions
	KEEPALIVE Actions
	LOGOFF Actions
	Logon Component Execution

	Creating a Connection Pool
	Overview

	Creating a Connection
	Creating a Logon Component
	Creating a Logon Connection
	Creating a EDI Terminal Component

	A ANSI X.12 Segment Mnemonics
	B EDIFACT Segment Mnemonics
	C HL7 Segment Mnemonics
	D SAP Support Segment Mnemonics
	E Metadata and Inbound Processing
	Purpose
	Add Choice Processing for Metadata

	F EDI Data Type Validation Rules
	Inbound and Outbound Rules
	Inbound Processing — Implied Decimal Point Processing
	Outbound Processing — Padding and Truncating
	Outbound Processing — Implied Decimal Point Processing

	G Testing
	Environmental Differences between Animation Testing and Deployment Testing

	H EDI Glossary
	Index

