
Novell

m
w w w . n o v e l l . c o

exteNd
Composer

5 . 2
H T M L  C O N NE C T  U SE R ’ S  GU I DE



Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or 
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written 
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express 
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to 
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties 
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell 
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved. 

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC 

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and 
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright 
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its 
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of 
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA  02451
U.S.A.

www.novell.com 
exteNd Composer HTML Connect User’s Guide

June 2004
Online Documentation:  To access the online documemntation for this and other Novell products, and to get updates, see 
www.novell.com/documentation.

New http://www.novell.com/documentation/


Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC. 

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided  that the following conditions are met: 1. 
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary 
form must reproduce the above copyright  notice, this list of conditions and  the following disclaimer in the documentation and/or other materials 
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: 
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may 
appear in the software itself, if and wherever such third-party  acknowledgments normally appear. 4. The names "Apache" and "Apache Software 
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written  permission, 
please contact  apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their  name, 
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY  AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO 
EVENT SHALL  THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY  DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR  TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT  OF THE USE  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. 
Redistributions of source code must retain the above copyright notice, this list of conditions, and the  following disclaimer. 2. Redistributions in 
binary form must reproduce the above copyright notice, this list of conditions, and  the disclaimer that follows these conditions in the documentation 
and/or other materials provided with the  distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this 
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not 
be called "JDOM", nor may "JDOM" appear in their  name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with  the redistribution and/or in the software 
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)." 
Alternatively, the acknowledgment may be graphical using the logos available at  http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO 
EVENT SHALL  THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
GOODS OR SERVICES; LOSS OF  USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems,  JavaBeans, Enterprise JavaBeans, JavaServer 



Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, 
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is 
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java 
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other 
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided  that the following conditions are met: 1. 
Redistributions of source code must retain the above copyright notice, this list of conditions and the  following disclaimer. 2. Redistributions in binary 
form must reproduce the above copyright notice, this list of conditions and  the following disclaimer in the documentation and/or other materials 
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: 
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this 
acknowledgment may appear in the software itself, if and wherever such third-party  acknowledgments normally appear. 4. The names "Indiana 
University" and "Indiana University Extreme! Lab" must not be used to endorse  or promote products derived from this software without prior written 
permission. For written permission,  please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana 
University" name nor may "Indiana  University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF  ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights 
Reserved. Customer is prohibited from accessing the functionality of  the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being  provided by the copyright holders under the 
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the 
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without  modification, for any purpose and without fee or 
royalty is hereby granted, provided that you include the following  on ALL copies of the software and documentation or portions thereof, including 
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual 
property disclaimers, notices, or terms and conditions. If none exist,  the W3C Software Short Notice should be included (hypertext is preferred, text 
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes 
were made. (We  recommend you provide URIs to the location from which the code is derived.) 

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT  HOLDERS MAKE NO REPRESENTATIONS OR 
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING  BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS 
FOR ANY  PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY 
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER  RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR  CONSEQUENTIAL DAMAGES ARISING 
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior 
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.



Contents

About This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Welcome to exteNd Composer and HTML Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
About exteNd Connects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
What is the HTML Connect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
About Composer’s HTML Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
About Secure Socket Layer Support (SSL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Other Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
About Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
About Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
About JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
What Applications Can You Build Using the HTML User Interface Component Editor? . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Getting Started with the HTML Component Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The Sample Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Steps Commonly Used to Create an HTML Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Proxy Server Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

About HTML Connection Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
HTTP Authentication Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
HTTP Basic Authentication Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
HTTP Digest Authentication Connection Resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
HTTP NTLM Authentication Connection Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Creating XML Templates for Your Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Creating an HTML Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Before Creating an HTML Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
About the HTML Component Editor Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
About the HTML Native Environment Pane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

About the ScreenDoc DOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
About HTML-Specific Menu Bar Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
About HTML-Specific Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Performing HTML Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
About Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Recording an HTML Session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Recording an HTML Session using Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Editing an HTML Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Editing a Previously Recorded Action Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Changing an Existing Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Adding a New Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Deleting an Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Executing Your HTML Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Using the Animation Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Using Other Actions in the HTML Component Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Using the XML Interchange Action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
JavaScript versus ECMAScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
User Agent Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Handling Errors and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5



A Digital Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Environmental Differences between Animation Testing and Deployment Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C HTTP Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Detailed Code Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D Actions Created When Form Field Values Are Modified Interactively  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

E Internal Scripts used by Recorded Function Actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F HTML Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

G Reserved Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6   HTML Connect User’s Guide



About This Book

Purpose 

This guide describes how to use the HTML Component Editor, which is the design-time portion of the 
exteNd Composer HTML Connect.

Audience

This book is for systems analysts, programmers, and others who intend to build applications or services 
that require a web-page “screen scraper” component capable of accessing non-secure as well as secure 
web pages using HTTP basic authentication, digest authentication, or NTLM security procedures.

Prerequisites

This book assumes prior familiarity with the exteNd Composer design-time environment and Composer 
application-building metaphors. You should also be familiar with HTML, HTTP session behavior, HTTP 
error messages, and related concepts.

Additional documentation

For the complete set of Novell exteNd exteNd Director documentation, see the Novell Documentation 
Web Site: 

http://www.novell.com/documentation-index/index.jsp.
7

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp


8   HTML Connect User’s Guide



1 Welcome to exteNd Composer and HTML 
Connect

Welcome to the Connect for HTML User’s Guide. This Guide is a companion to the exteNd Composer 
User’s Guide, which details how to use all the features of Composer, except the Connect Component 
Editors. So if you haven’t looked at the User’s Guide yet, please familiarize yourself with it before using 
this Guide.

Novell exteNd Composer provides separate Component Editors for each Connect, like HTML. The 
special features of each component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core component editor, the XML Map 
Component Editor, then this Guide should get you started with the HTML Component Editor. 

Before you can begin working with the HTML Connect you must have installed it into your existing 
exteNd Composer. Likewise, before you can run any Services built with this Connect in the Composer 
Enterprise Server environment, you must have already installed the Server side software for this Connect 
into Composer Enterprise Server.

NOTE:  To be successful with this Component Editor, you must be familiar with the HTML environment 
and the applications that you want to XML-enable.

About exteNd Connects
Novell exteNd Composer is built upon a simple hub and spoke architecture. The hub is a robust XML 
transformation engine that accepts requests via XML documents, performs transformation processes on 
those documents (with or without the participation of other XML-enabled services), and returns an XML 
response document. The spokes, or Connects, are plug-in modules that "XML-enable" sources of data 
that are not XML aware, bringing their data into the hub for processing as XML. These data sources can 
be anything from legacy applications to Message Queues to HTML pages, as shown below.
Welcome to exteNd Composer and HTML Connect 9



Composer Connects can be categorized by the integration strategy each one employs to XML enable an 
information source. The integration strategies are a reflection of the major divisions used in modern 
systems designs for Internet-based computing architectures. (See illustration below.) Depending on your 
B2B needs and the architecture of your legacy applications, Novell exteNd can integrate your business 
systems at the User Interface, Program Logic, or Data levels.

What is the HTML Connect?
Composer’s HTML Connect allows you to record navigation and interactions with standard Web Sites 
using the User Interface integration strategy by hooking into the HTML information stream (like a 
browser does) for later playback as a B2B service. The term HTML (Hyper Text Markup Language) is 
used for documents published on the World Wide Web. The HTML Connect uses a utility called Tidy 
which transforms hard to read and often syntactically incorrect HTML information into a clearly layered 
XHTML document. 

NOTE:  The HTML Connect does not process Flash, applets, nor ActiveX controls. JavaScript is 
supported: see discussion further below.
10   HTML Connect User’s Guide



About Composer’s HTML Component
Much like the XML Map component, the HTML Component is designed to map, transform, and transfer 
data between two different XML templates (i.e., request and response XML documents). However, it is 
specialized to make a connection to an Internet or Extranet application as viewed by a web page, process 
the data using elements from a DOM, and then map the results to an output DOM. You can then act upon 
the output DOM in any way that makes sense for your integration application. 

An HTML Component can perform simple data manipulations, such as mapping and transferring data 
from an XML document into an HTML form, or perform “screen scraping” of an HTML transaction, 
putting the data into an XML document. The HTML Component has all the functionality of the XML 
Map component and can process XSL, send mail, and post and receive XML documents using the HTTP 
protocol.

HTML page appears in the Native Environment Pane
Welcome to exteNd Composer and HTML Connect 11



About Secure Socket Layer Support (SSL)
The HTML Connect is capable of providing secure connections between exteNd Composer and the target 
Web Site. This security is accomplished by using Secure Socket Layer Support 3 (SSL.3) Composer 
supports both client and server side digital certificates. The HTML Connect uses the HTTP Basic 
Authentication connection resource type to set up the security to interact with sites on the internet. The 
SSL protocol allows for authenticated and encrypted communication between the browser and server. To 
enable this security, the Composer application must have access to, and be able to process the digital 
certificates required by, the target web site. This means that these certificates must be installed on the 
your web server (Novell, Jakarta Tomcat, WebLogic, or Websphere) as well as in the HTML Connect. To 
accomplish this, Composer provides two methods. For server-side certificates, the HTML Connect ships 
with approximately 100 industry-standard digital certificates in the jar file agrootca.jar, located in the 
Designer/lib directory. 

If you need to add a server-side certificate that is not included, refer to the documentation provided with 
your application server on how to maintain certificates. Also refer to the appendix for a list of certificates 
that are supported and how to add a new server-side certificate in Composer. For client-side certificates, 
Composer supports DER encoded binary x509 certificates. To associate the certificate, Composer allows 
you to specify the certificate in the HTTP Basic Authentication connection resource. 

Other Protocols

The HTML Component Editor supports only the HTTP/S protocol. URLs that use file://, ldap://, ftp://, 
or other schemes are not honored.

NOTE:  The file:// protocol is supported by Composer’s URL/File Read and URL/File Write actions (which 
can be used in any kind of component, not just HTML). Consult the chapter on Advanced Actions in the 
Composer User’s Guide for more information.

About Cookies
A cookie is a text file that gets stored by the browser. One main purpose of cookies is to identify the user 
(the HTTP client) to the host: for instance, to maintain log-on status when moving from page to page in 
a website, or to maintain the current session while shopping using a shopping cart on a website. Cookies 
are general mechanisms which server side connections can use to both store and retrieve information on 
the client side of the connection. There are two types of cookies: session cookies that are active only for 
the duration of the session and persistent cookies that are kept on disk in the computer and are available 
each time you access that site.

The HTML Connect supports session cookies. This means that if required by a site, the HTML Connect 
will create a cookie for the time that the component is active. The cookie will be set once and then go 
away when the component finishes executing. During testing, the restart of animation or the execution of 
the component will discard any cookies before execution begins, as each execution of the component is 
treated as a new session. Cookie persistence is not supported. 

About Frames
This version of the HTML Connect supports pages with frames. The HTMLScreenDoc will contain a 
DOM for a loaded page. When you click on the HTML panel or drag and drop information into the input 
controls of one of the frames, the HTMLScreenDoc will display a DOM for this frame. If the frame is to 
be changed at this time, a new SetFrame action is created and recorded in the Map Action.
12   HTML Connect User’s Guide



About JavaScript
The HTML Connect supports JavaScript in web pages, to the extent necessary to process “redirects” and 
capture your design-time interactions with forms and form widgets so that you can work with scripted 
pages in the HTML Component Editor in seamless fashion. 

There are certain limitations to JavaScript support in the HTML Component Editor. The limitations are 
mainly rendering-related. For example, you will not see button-rollover effects, and it’s possible you will 
not be able to use a page that relies heavily on JavaScript-powered CSS or “DHTML” effects. In many 
cases, pages will look different in the component editor’s native environmental panel than in your regular 
web browser, but you will still be able to “record” your interactions with the page so as to capture the 
kinds of data you need and/or map your own data into a webform. The only way to know for sure is to try 
working with a particular web page. 

Another thing to be aware of is that many web-page authors choose to use nonstandard, browser-specific 
JavaScript extensions that a standards-strict HTML client will not be able to understand. Because there 
are so many possible permutations of browser version, language version, HTML and DOM versions, 
nonstandard language extensions, nonstandard vendor implementations of standards-based language 
extensions, etc., it is impossible to predict whether a given web page’s scripts will execute properly in 
Composer’s HTML Component Editor, without testing. 

NOTE:  Many web sites, especially those with mission-critical webforms, offer non-JavaScript versions of 
their pages for use by customers who either have older browsers or have chosen to turn JavaScript off. 
When this is the case, you should use the non-JavaScript version of the web site (or web page) when 
building your components. 

What Applications Can You Build Using the HTML User Interface 
Component Editor?

The HTML User Interface Component Editor allows the extension of any XML integration you are 
building to include any of your business applications that require HTML-based interactions (See exteNd 
Composer User’s Guide for more information.) For example, you may have an application that retrieves 
a product’s description, picture, price, and inventory from regularly updated databases and displays it on 
a Web browser. By using the HTML Component Editor, you can now get the current product information 
from the website and the static information (e.g., the picture) from the database and merge the 
information from these separate information sources before displaying it to a user. This provides the same 
up-to-date information to both your internal and external users.
Welcome to exteNd Composer and HTML Connect 13



14   HTML Connect User’s Guide



2 Getting Started with the HTML Component 
Editor

The Sample Transactions
For demonstration purposes, one transaction is used throughout this document in the sample presented. 
You will be navigating to a Web site and entering a SKU number into a form to drive an inquiry. Also, 
you will change various options to retrieve different information from the Web site screen. You will be 
able see the details of the HTML Web page by viewing an XHTML representation of the Web page in an 
object called the ScreenDoc DOM. You can see the interaction of your selections and the result of them 
in the Action Pane. You will also be able to modify and edit your actions before saving your service.

Steps Commonly Used to Create an HTML Component

There are many ways to go about creating HTML Components; however, the most commonly used steps 
in creating a simple HTML Component are as follows:

1 Create XML Templates required for any Inputs into the HTML or Outputs from the HTML 
transaction.

2 If you are going to access a secure site, create a Connection Resource containing any necessary 
security information.

3 Create an HTML Component.

4 Enter Record mode and navigate to Web page(s) for the information you want to capture.

5 Drag and drop information from the Input Part into the Web page to drive form interactions and 
drag and drop results from the Web page into the Output Part. 

6 Edit actions if necessary.

7 Execute and test the component.

8 Save the component.

Proxy Server Settings

If your organization requires web users to go through a proxy server in order to get to the Web, you will 
need to provide proxy settings that Composer can use for “tunneling out” through the proxy. 

NOTE:  This is both a design-time and runtime issue. See further discussion below.

To configure Proxy Server Settings:

1 In Composer’s Tools menu, choose Configuration to bring up the Configuration dialog (as shown 
above).

2 Click the checkbox labelled Use a proxy server. The Advanced button at the far right of the dialog 
will become enabled, along with the text fields labelled Address and Port.

3 In the Address text field, enter the IP address of the proxy server.

4 In the Port field, enter the appropriate port number.
Getting Started with the HTML Component Editor 15



5 To expose additional settings, click the Advanced button. A new dialog appears:

6 If you wish to specify a different proxy address and/or port for FTP access than for HTTP access, 
make sure the Use the same proxy server for all protocols checkbox is unchecked. (Otherwise, 
the FTP text field will remain disabled.) Then supply the IP address and Port information for the 
FTP proxy in the text fields provided.

7 If your proxy server requires NTLM authentication in order to access its services, check the 
Requires NTLM Authentication checkbox.

8 If you did not check the Requires NTLM Authentication checkbox, continue to step 13. The Set 
button will be enabled if you have checked the Requires NTLM Authentication checkbox. Click 
this button. A new dialog appears.

9 In the User field, enter the user name that you were issued for authentication.

10 In the Password field, enter your password.

11 In the Domain field, enter the name of the realm to which this authentication procedure applies.

12 Click OK to dismiss the dialog.

13 In the Proxy Settings dialog, in the text area labelled Do not use proxy server for addresses 
beginning with, enter a domain name if you wish to exclude certain domains from the 
authentication-handshake procedure. (A common case here is that you might want to exclude 
localhost and/or other in-house test domains.) You may enter multiple domains, separated by the 
pipe character.

14 Finally, use OK to dismiss the dialog.
16   HTML Connect User’s Guide



Proxy Settings for Runtime

If your HTML Components, once deployed, will still need to “tunnel out” through a proxy, you will want 
to carry your proxy settings over to the runtime environment. 

The proxy settings you enter in the Configuration dialog are stored in a file called xconfig.xml (in 
Composer’s \bin directory). In order for those settings to remain active for deployed components, you 
will need to make sure that the xconfig.xml file for Composer Enterprise Server (which exists on the app 
server) contains your proxy info. Open the design-side xconfig file in a text editor and look for the 
PROXYSERVERINFO element. You will see a section of data that looks approximately like:

<PROXYSERVERINFO>
      <USEPROXYSERVER Desc="If on, the additional PROXY options are enabled (valid 
values are on | off)">on</USEPROXYSERVER>
      <HTTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a 
proxy enter name here.">127.7.7.7</HTTPPROXYHOST>
      <HTTPPROXYPORT Desc="Port number HTTPPROXYHOST listens 
on.">8008</HTTPPROXYPORT>
      <HTTPNONPROXYHOSTS Desc="List of hosts that do not require a Proxy.  Each 
hostname must be seperated by a pipe &apos;|&apos;.">localhost</HTTPNONPROXYHOSTS>
      <FTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a proxy 
enter name here.">127.7.7.7</FTPPROXYHOST>
      <FTPPROXYPORT Desc="Port number FTPPROXYHOST listens 
on.">8008</FTPPROXYPORT>
      <NTLMCREDENTIALS>
        <PROXYNTLMPROTECTED>on</PROXYNTLMPROTECTED>
        <NTLMUSER>MikeM</NTLMUSER>
        <NTLMPWD>ABYZsjbDcOk=

</NTLMPWD>
        <NTLMDOMAIN>Argonaut</NTLMDOMAIN>
      </NTLMCREDENTIALS>
</PROXYSERVERINFO>

Copy this section over to your server-side xconfig.xml file. 

About HTML Connection Resources
The Enterprise Connect for HTML is somewhat different than other types of Connectors in that no 
special connection resources need to be created in order to use it, as long as there are no special security 
requirements for visiting sites. The only time you will need to create special connection resources for 
your HTML Component is when one or more of your HTML Actions will be accessing secure web pages 
through HTTPS, Digest HTTP authentication, or NTLM (NT LAN Manager). In that case, you will need 
to set up one or more HTTP connection resources (as described further below) for each secure site that 
you intend to visit. You will then assign the appropriate connection resource to each HTML Action in 
your Action Model. (The procedure for associating a connection resource with an HTML Action is 
discussed in detail in Chapter 4 on page 35.)

HTTP Authentication Types

Three main types of authentication are used in “secure” HTTP communication: Basic Authentication, 
Digest Authentication, and NTLM (NT LAN Manager). Composer offers three types of HTTP 
Connection Resources, corresponding to these three authentication protocols.
Getting Started with the HTML Component Editor 17



Basic Authentication

Basic Authentication is the most common type of HTTP authentication. If an HTTP client, such as a web 
browser, requests a page that is part of a protected realm, the server responds with a 401 Unauthorized 
status code and includes a WWW-Authenticate header field in its response. This header field must 
contain at least one authentication challenge applicable to the requested page. The client then makes 
another request, this time including an Authentication header field which contains the client's credentials. 
If the server accepts the credentials, it returns the requested page. Otherwise, it returns another 401 
Unauthorized response to inform the client the authentication has failed.

One weakness of this type of scheme is that the user’s credentials are transmitted “in the clear” and hence 
are susceptible to appropriation by eavesdroppers. 

Digest Authentication

Digest Authentication works similarly to Basic Authentication, except that the user’s credentials are 
encrypted before being sent over HTTP. Of course, merely encrypting a password before sending it over 
an open line doesn’t add much safety, because the encrypted password can still be sniffed by a malicious 
program or individual and reused later. To keep this from happening,a host that supports Digest 
Authentication is required to generate a unique transaction ID value that can be associated with a given 
client-host session, and this unique per-transaction value—called a nonce—must be transmitted to the 
client and back from client to host as part of the authentication challenge. The significance of the nonce 
is that it can be used exactly once. If a hacker tries to reuse a stolen user-credential/nonce combo, 
authentication will fail since the nonce will be recognized by the host as having already been used. It is 
the host’s responsibility to generate nonces and keep track of their use. Therefore you needn’t concern 
yourself with this aspect of authentication when setting up an HTTP DigestAuthentication connection 
resource.

NTLM Authentication

NTLM (or NT LAN Manager) Authentication is a Microsoft-proprietary authentication protocol. It 
involves transmission of a hashed key to the server; rehashing of the key to a new value, which is nonce-
appended and sent back to the client, and resending (by the client) of a newly rehashed key. The hash 
algorithms on each end are different, and since a nonce is involved (see above), the scheme is relatively 
secure against replay attacks. 

NTLM authentication is often encountered at the local proxy level as well as at the target website or 
remote host. If you are going out through an NTLM-protected proxy, you will want to set your NTLM 
options in the Tools > Configuration dialog as shown earlier in the section called “Proxy Server 
Settings”. If you will be visiting a web site that issues NTLM challenges, you will need to set up an HTTP 
NTLM Authentication connection resource as described below.

HTTP Basic Authentication Resource

The HTTP Basic Authentication connection type is provided as a means of letting you specify a 
security certificate and password info for access to a secure site. You will typically create one HTTP 
Basic Authentication connection resource for each secure site you visit. Later, you will assign the 
appropriate connection resource to each HTML Action that requires secure site access, per the 
description on page 35. 

To create an HTML Connection Resource for a secure site:

1 From the Composer File menu, select New> xObject, then open the Resource tab and select 
Connection.

NOTE:  Alternatively, you can highlight Connection in the Composer window category pane, right 
click your mouse button, then select New.
18   HTML Connect User’s Guide



The “Create a New Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.

5 Select HTTP Basic Authentication Connection from the Connection Type pull down menu.

6 Enter a User ID and Password. These are not actually submitted during the establishment of a 
connection. They are simply defined here (the password is encrypted). The user will have access to 
UserID and Password variables from ECMAScript, allowing them to map UserID and Password as 
values into the screen. This way, no one ever sees the passwords.

7 If the site requires a client-side certificate:

Choose a Client Certificate by clicking on the Browse button and selecting the certificate file 
you want to use for this service connection.

Choose a Client Private key by clicking on the Browse button and selecting the client key file 
for security. 

For steps above, please see Appendix A of this document for more detailed instructions about 
Digital Certificates.

Enter the Password for the Private key. Private key is another level of security for the owner of 
the Client Private Key.

8 Enter a Connection Timeout value in seconds. This represents the maximum amount of time that 
your component will wait for the web page to download. If a connection is not established or the 
page doesn’t download in the time allotted, an exception is thrown.
Getting Started with the HTML Component Editor 19



9 Select the Default check box if you wish for this connection resource to be the first one shown in 
the pulldown list in the HTML Action setup dialog (page 35) from this point on. 

10 Click Finish. The connection resource is created.

HTTP Digest Authentication Connection Resource

The HTTP Digest Authentication connection type is provided as a means of letting you specify a 
username, password, and (optionally) a security certificate for access to a secure site that uses Digest 
Authnetication as described above. You will typically create one HTTP Digest Authentication 
connection resource for each secure site you visit. In building your component, you will assign the 
appropriate connection resource to each HTML Action that requires secure site access, per the 
description on page 36.  

To create an HTTP Digest Authentication Connection Resource: 

See the procedure for the HTTP Basic Authentication Connection Resource, above. The dialogs are 
the same except for the words Basic and Digest. 

HTTP NTLM Authentication Connection Resource 

The HTTP NTLM Authentication connection type is provided as a means of letting you specify the 
credentials needed for access to a secure site that uses NTLM Authnetication. 

You will typically create one HTTP NTLM Authentication connection resource for each secure site you 
visit. In building your component, you will assign the appropriate connection resource to each HTML 
Action that requires secure site access, per the description on page 36. 

To create an HTTP NTLM Authentication Connection Resource: 

1 From the Composer File menu, select New> xObject, then open the Resource tab and select 
Connection. 

NOTE:  Alternatively, you can highlight Connection in the Composer window category pane, right 
click your mouse button, then select New.

The “Create a New Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.
20   HTML Connect User’s Guide



5 Select HTTP NTLM Authentication Connection from the Connection Type pull down menu.

6 Enter a User ID and Password.

7 Enter the Domain name for the site (as in “http://www.domain.com”).

8 If the site requires a client-side certificate:

• Choose a Client Certificate by clicking on the Browse button and selecting the certificate file 
you want to use for this service connection.

• Choose a Client Private key by clicking on the Browse button and selecting the client key file for 
security.

NOTE:  For steps above, please see Appendix A of this document for more detailed instructions 
about Digital Certificates.

• Enter the Password for the Private key. Private key is another level of security for the owner of 
the Client Private Key.

9 Enter a Connection Timeout value in seconds. This represents the maximum amount of time that 
your component will wait for the web page to download. If a connection is not established or the 
page doesn’t download in the time allotted, an exception is thrown.

10 Select the Default check box if you wish for this connection resource to be the first one shown in 
the pulldown list in the HTML Action setup dialog (page 36) from this point on.

11 Click Finish. The connection resource is created.

Creating XML Templates for Your Component
In addition to a connection resource, an HTML Component may also require that you have already 
created XML templates so that you have sample documents for designing your component. See Chapter 
5, Creating XML Templates in the exteNd Composer User’s Guide for more information.
Getting Started with the HTML Component Editor 21



22   HTML Connect User’s Guide



3 Creating an HTML Component

Before Creating an HTML Component
As with all exteNd components, the first step in creating an HTML Component is to specify any XML 
templates needed. For more information, see Creating a New XML Template in the Composer User’s 
Guide.

Once you’ve specified the XML templates, you can create a component, using the template’s sample 
documents to represent the inputs and outputs processed by your component.

To create a new HTML Component:

1 Select File>New> xObject then open the Component tab and select HTML. The Create a New 
HTML Component Wizard appears.

2 Enter a Name for the new HTML Component.

3 Optionally, type Description text.
Creating an HTML Component 23



4 Click Next. The XML Property Info panel of the New HTML Component Wizard appears.

5 Specify the Input and Output templates (also called Messages).

Type in a name for the template under Part if you wish the name to appear in the Component 
Editor as something other than “Input” or “Output.”

Select a Template Category if it is different than the default category. In the example above, the 
Office Supply Category has been selected.

Select a Template Name from the list of XML templates in the selected Template Category. In 
the example above, Product Request has been selected for the Input Template.

To add additional input XML templates, click Add and repeat steps 2 through 4.

To remove an input XML template, select an entry and click Delete.

6 Select an XML template as an output using the same methods described in the previous step.

NOTE:  You can specify an input or output XML template that contains no structure by selecting 
{System}{ANY} as the Output template. For more information, see “Creating an Output Message 
without Using a Template” in the Composer User’s Guide.

7 Click Next to go the Temp and Fault XML template dialog. 

8 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the 
dialog window. This can be useful if you need a place to hold values that will only be used 
temporarily during the execution of your component or are for reference only. Under the “Fault 
Message” pane, select an XML template to be used to pass back to clients when a fault condition 
occurs. 

9 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when 
an error condition occurs.
24   HTML Connect User’s Guide



10 As above, to add additional temp or fault XML templates, click Add and choose a Template 
Category and Template Name for each. Repeat as many times as desired. To remove an XML 
template, select an entry and click Delete.

11 Click Finish. The component is created and the HTML Component Editor appears, as shown 
below.

About the HTML Component Editor Window
The HTML Component Editor includes all the functionality of the XML Map Component Editor. For the 
HTML Connect, it contains mapping panes for Input and Output XML documents as well as an Action 
pane. 

There are two key differences, however. The first is that the HTML Component Editor also includes a 
Native Environment Pane common to all Connects. It contains a web browser window with an address 
line at the top along with two buttons: Go and Stop. The second difference is the addition of an XML 
DOM called ScreenDoc to the component editor window. This DOM presents an XML document 
representation of each screen received from the website and is available for reference and creating 
mapping actions within the component. In addition, the ScreenDoc DOM is available in the expression 
builder, allowing the user to easily reference a screen field. 

Input pane

Output 
pane

Action Model pane

ScreenDoc 

Native Environment
Pane
Creating an HTML Component 25



About the HTML Native Environment Pane
From the HTML Native Environment pane, you can perform the following:

Map data from an Input XML document (or other available DOM) and use it as input for an HTML 
screen field or HTML form. For example, you could drag a SKU number from an input DOM into 
the part field of an HTML inquiry form, and return data associated with that part number, such as 
description and price. 

Map the data from the HTML screen and put it into an Output XML document (or other available 
DOM, e.g., Temp, MyDom, etc.).

Build B2B services that interact with secure Web sites using SSL3 and Digital Certificates.

Except for “rich content” pages containing Flash, Quicktime movies, etc. (which will render in non-rich 
form; Composer will ignore the media elements), the HTML Native Environment Pane functions exactly 
as you would expect a web browser to function and allows you to do the same sorts of things.

About the ScreenDoc DOM

The ScreenDoc DOM is an XML document representation (actually XHTML after the Web page has 
been processed by Tidy) of the current web page displayed in the browser of the Native Environment 
pane. All Mapping actions to and from the screen display (including drag and drop) actually reference 
elements in the ScreenDoc DOM. This provides you with the advantage of being able to see and 
reference your familiar application screens while at the same time working with them as XML 
documents.

How it works

Each time a web page is received by the component, several things happen simultaneously:

The original HTML Web page is displayed in the Native Environment pane. 

The original HTML is processed by Tidy, creating an XHTML version of the web page that is then 
displayed in the ScreenDoc DOM. You can now use any Action on the ScreenDoc DOM as you 
would any other XML document. 

An HTML Action is created (during Record mode only) containing the URI of the received Web 
page including any parameters sent to the host. 

The end result of displaying the Web page as XHTML is that the ScreenDoc DOM can be quite large. Its 
use is primarily intended for finding hidden fields, verifying fields, parameter field values, and in cases 
where it is convenient, mapping from the ScreenDoc DOM to the Output DOM using Composer’s drag 
and drop features.

NOTE:  Normally it is much quicker and more efficient to map directly to and from the Native Environment 
pane using drag-and-drop instead of mapping to the ScreenDoc DOM. The XHTML in the ScreenDoc 
DOM displays all details of the Web page including attributes related to fonts, table attributes, etc. To avoid 
mapping this irrelevant data, use Drag and Drop when possible, dragging directly to and from the Native 
Environment Pane.
26   HTML Connect User’s Guide



Making the ScreenDoc DOM visible:

1 Select View/Window Layout from the Component Window Menu.

2 The Window Layout dialog appears and allows you to adjust the placement of the panels in the 
Window. Use the drop-down arrow in the four different fields, and select the placement of the 
Panes.

3 Click OK to close the dialog. Click Reset if you decide to change your settings.

To arrange the view of the XML documents in the component editor:

1 Select View/XML Documents>Show/Hide

2 By using the directional buttons, you can move the Panes from the Invisible column to the Visible 
Column or vice versa. You can also choose the order in which visible selections appear on the 
screen.

3 Click OK to save your settings. Click Reset if you decide to change your settings.
Creating an HTML Component 27



About HTML-Specific Menu Bar Items

When you are using the HTML Connect editing environment, Composer’s main menus have certain 
commands that are specific to the HTML Connect.

View Menu

HTML Text—This command brings up a window that displays the HTML code (source code) for the 
page that is currently displayed in the Native Environment Pane. This is similar to View/Source in 
Netscape or Internet Explorer. See below.

Component Menu

Start Recording—This command will result in Composer creating actions dynamically as you interact 
in real time with the Native Environment Pane.

To turn recording off, click the Record button (see next section). The button acts as a toggle.
28   HTML Connect User’s Guide



About HTML-Specific Buttons

Record

The HTML Connect puts an additional tool button on the component editor tool bar: the Record button. 
The Record button results in Composer putting new actions in the Action Model as you interact with 
HTML screens. 

Execute/Execute All

Next to the Record button, you will find Execute/Execute All buttons. These buttons allow you to run 
selected actions in your component, or the entire action model, respectively.

Off On

Record

Execute Execute All

Execute/Execute All
Creating an HTML Component 29



30   HTML Connect User’s Guide



4 Performing HTML Actions

About Actions
An action is similar to a programming statement in that it takes input in the form of parameters and 
performs specific tasks. Please see the chapters in the Composer User’s Guide devoted to Actions.

Within the HTML Component Editor, a set of instructions for processing XML documents or 
communicating with non-XML data sources is created as part of an Action Model. The Action Model 
performs all data mapping, data transformation, data transfer between the Web site screen and XML 
documents, and data transfer within components and services.

The HTML Connect has two HTML-related actions: HTML Action and Set Frame. The HTML action 
accesses a URI and encodes parameters for the URI Actions. HTML Actions include HTTP Get and 
HTTP Post. These action types are referred to as methods that request data. HTTP Get is a method that 
gets the file with a query consisting of the specified form-data. The data is urlencoded, turned into a 
string, appended to the end of the URL, and then sent as a query string. 

There can be multiple frames on a Web page and each frame has its own document. In order to set the 
context of the frame, the Set Frame Action, which is automatically generated, allows you to set the 
context of the selected frame, so that the DOM reflects the contents of that frame. 

HTTP Post is a request type that posts data to the specified URI using specific headers. HTTP Post sends 
larger amounts of information to the server to process. Of course, this is dependent upon the embedded 
form on the Web page. The data is first URIencoded and then turned into a string of the form used. The 
response to an action can be a redirect. A redirect is automatically handled and requires no interaction 
from the user.

When Composer receives an HTTP content stream consisting of HTML, it will render it at design time 
in the Native Environment Pane. Using a checkbox in the HTML Action dialog, you can turn JavaScript 
support on or off. If you turn it on, you will be able to interact with scripted pages, including forms that 
use JavaScript event handlers. (This is subject to certain limitations. See “JavaScript versus 
ECMAScript” and “User Agent Info” later in this chapter.) 

Recording an HTML Session
The HTML Component differs from other components because a major portion of the Action Model is 
built for you automatically. This happens as you interact with a remote site in a live HTTP session in 
Composer, while you are using Composer’s “recording” capability to capture your activities as a set of 
actions in the Action Model. In other components, you must manually create actions in the Action Model, 
which then perform mapping, transformation, and other tasks. When you create an HTML Component, 
you essentially record the requests and responses to and from the website, which are captured as a 
combination of HTML Actions, Map Actions, and Function Actions in the Action Model pane. 
Performing HTML Actions 31



To record a simple HTML session:

1 Create an HTML Component per the instructions in “How to Create an HTML Component” in 
Chapter 3 of this Guide. In creating the HTML Component shown in this example, the Office 
Supply Product Request and Product Response templates were selected for Input and Output 
respectively. Once created, the new HTML Component appears in the HTML Component Editor 
window.

2 Enter an address in the URI field. In the example, the address used is: 
http://localhost/XCTutorial/loriconproductsearch. Click on the GO button or press the Enter 
key on your keyboard.

3 Click the Record button and the current Web page is captured as an HTML Action in the Action 
Model (see below).

Target URIRecord button

HTML Action is automatically added to Action Model.
32   HTML Connect User’s Guide



4 Drag the SKU information “LOR8437” from the Input DOM into the entry field on the form 
displayed in the Native Environment Pane and drop it into the field. A Map Action will be created 
in the Action Pane.

5 In the Native Environment Pane, after entering the SKU, deselect the default option and click on 
the radio button for Product and Inventory. 

NOTE:  A Map Action is automatically created in the Action Pane when a new selection is made 
when interacting with the form in the Native Environment pane. A Function Action is created in the 
Action Pane when you deselect a previous selection within the form. For example, in this sample, 
you deselected the default radio button and selected the Product and Inventory and clicked on that 
radio button. In this case, both types of Actions, Function and Map, are created in the Action Pane. 
Please refer to Appendix D for a complete listing of actions created as a result of interacting with the 
HTML visual controls.

6 Click on the checkbox to Omit Product Description.

NOTE:  New actions will be created in the Action Model as you interact with form controls in the 
Native Environment Pane. In this example, you clicked in the checkbox and selected Omit Product 
Description. 

7 Click on the Submit button. The new Web page appears with the search information that was 
requested.

8 Drag and drop an element from the search results screen to the Ouput DOM: For example, drag 
“$410” into the LISTPRICE field in the Output DOM. The data you drag and drop appears in red.
Performing HTML Actions 33



9 If you wish, you can continue to drag and drop data elements from the search results screen to the 
desired field in the Output DOM until complete. Each time an element is dragged from the search 
results page to the Output DOM an action is recorded in the Action Model pane.

NOTE:  Notice that the HTML ScreenDoc DOM, which mirrors the Web page in the Native 
environment, is being updated as each action occurs. You can see more details by expanding the 
HTMLScreenDoc tree.

10 Click the Record button to turn off the recording mode.

11 Start animation by clicking on the Animate icon and stepping through the actions in the Action 
Pane by repeatedly clicking the Step Into icon. (See below.)

12 When the process is complete, a small dialog appears. Click OK.

On the following screen, notice that the Output DOM contains only the “$410” that was requested from 
the Web page. 
34   HTML Connect User’s Guide



Recording an HTML Session using Frames
If the Web page you are using contains multiple frames, HTML Connect will create and record a Set 
Frame Action in the Map Screen when you click from frame to frame or drag and drop data into a DOM. 
The HTML Screen Doc will show a DOM for this frame. 

To record a HTML Session using Pages Containing Frames

1 Create an HTML Component per the instructions in How to Create an HTML Component in 
Chapter 3 of this Guide. In creating the HTML Component shown in this example, simple 
templates are used for Input and Output respectively. Once created, the new HTML Component 
appears in the HTML Component Editor window.

2 Enter an address in the URI field. In this example, the address used is: 
http://localhost/XCTutorial/Silverstream/Objectstore/General/LoriconHome.html

3 Click on the GO button or press the Enter key on your keyboard.

4 Click the Record button and the current Web page is captured as an HTML Action in the Action 
Model. 

In this example, click on Product Lookup. In the Map Action Pane, you can see that a Set Frame 
action was created to show that you now entered a different frame. The actions following are then 
recorded.
Performing HTML Actions 35



5 After making your selection, a Login Screen appears requesting Username and Password. 

6 Enter your Username and Password. In this example, both the Username and Password is loricon. 
Click on the Login button. Notice the actions created in the Map Action pane.

7 Enter the SKU, which for our example is LOR8437 and click on the Submit button.
36   HTML Connect User’s Guide



8 Once you click the Submit button, your response to your request will appear in the Navigation Pane 
(see below).

Editing an HTML Action
Once an HTML Action has been created (in Record mode), you can edit various parameters associated 
with it. See below.

To edit links and parameters in the HTML Action

1 Doubleclick an existing HTML Action in the Action Model. The HTML Action dialog appears, as 
shown below.

2 Enter an address of a Web site screen you want to navigate to in the URL field. You can either type 
the string or click on the Expression icon and create an ECMAScript expression that specifies the 
URL of interest. The URL can also be obtained via XPath. (Use the radio button provided.)

NOTE:  If you enter the URL directly (as shown above), in ECMAScript mode, be sure to surround 
it with double quotes.
Performing HTML Actions 37



3 Select the Method type by click on the radio button for GET or POST. You will most often choose 
GET.

4 Optionally select an HTTP Connection Resource from the pulldown list. This list is prepopulated 
with the names of any HTTP Connection Resources that exist in the current project. 

NOTE:  You would normally specify an HTTP Resource only when using a secure connection or a 
connection on which you wish to set a timeout value.

5 Click the Follow Redirects checkbox if you want your HTML Action to honor redirections at 
runtime by default.

6 Optionally check the Enable JavaScript checkbox if the site you are going to requires a 
JavaScript-enabled browser.

NOTE:  Composer does not implement every JavaScript extension supported by every browser 
type. Hence, you may run into situation where a particular site uses scripts that are problematic in 
Composer. This can only be uncovered by testing. 

7 The Parameters section contains three radio buttons: None, Form and Manual. Select one of the 
radio buttons. 

None selects no parameters. 

Form allows you to select a form by name from the pulldown list. The list will show every form 
embedded in the HTML page. Selecting a form will cause the fields contained in that form to show 
up (by Name, Type, and Value) in the table at the bottom of the dialog.

Manual allows you to add a Name, Type, and Value for a new form field for any form. It also 
allows you to remove any field from the selected form. (These changes cause the ScreenDoc DOM 
to update appropriately.) After selecting the ADD button, enter information for Name, Type, and 
Value for the new field. The DELETE button allows you to delete a field from the list if you wish 
to do so. When you click in the Value area, the Expression icon appears. Click on the icon and the 
Expression Builder dialog appears, which allows you to easily create your expression using picklist 
items.

NOTE:  Because this is an ECMAScript string, it must be enclosed in double-quotes.

8 Click OK when finished and return to the HTML Action dialog.

9 Close the HTML Action dialog by clicking OK. 

10 Save the component.
38   HTML Connect User’s Guide



Editing a Previously Recorded Action Model

You will undoubtedly encounter times when you need to edit a previously recorded action model. Unlike 
editing other components, editing an HTML Component requires extra attention. When an HTML 
Component executes, it plays back a sequence of actions that expect certain Web pages and data to appear 
in order to work properly. So when editing a component you must be careful not to make the action model 
sequence inconsistent with the Web page execution sequence you recorded earlier.

In general, to ensure successful edits, the following recommendations apply:

Do not cut or copy HTML Actions and paste them into other locations in your action model.

Carefully check and edit individual Map actions that interact with the HTMLScreenDoc DOM after 
copying and pasting any Map actions.

Use Composer's drag-and-drop features to add new Map actions that interact with the screen. 

The safest procedure when editing or adding actions is to Animate to the line of interest in your Action 
Model, pause animation, and turn on Record mode. This will prevent your Action Model from getting out 
of sync with the proper ScreenDoc DOM and /or fields within a specific ScreenDoc DOM.

Changing an Existing Action

The following procedure will explain how to change an existing action in a previously recorded session.

To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the previously recorded Action Model that you’d like to edit. 
The component appears in the HTML Component Editor window. 

2 Locate the action in the Action Model where you’d like to make your edit and highlight the action.
Performing HTML Actions 39



3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.

4 Click the Start Animation button. The animation tools become active.

5 Click the Run to Breakpoint/End button. The Action Model executes all of the actions from the 
beginning to the breakpoint you set in step 3 above and appears as shown.

6 Click the Pause button on the animation tool bar.

7 In the Component Editor tool bar, click the Record button.

8 Execute any additional actions that you’d like to make to the Action Model.

9 Click the Record button a second time to turn off the recording mode.

10 Select File, then Save, or click the Save button on the Component Editor tool bar.

11 Follow the instructions in “Using Animation Tools” to test your component.

Toggle breakpoint

Step to Breakpoint/EndStart animation
40   HTML Connect User’s Guide



Adding a New Action

The following procedure explains how to add a new action in a previously recorded session.

To Add a Action to a previously recorded Action Model:

1 Open the component that includes the previously recorded Action Model that you’d like to add an 
action in. The component appears in the HTML Component Editor window. 

2 Locate the action in the Action Model where you’d like to make your addition and highlight the 
action.

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.

Toggle breakpoint
Performing HTML Actions 41



4 Click the Start Animation button. The animation tools become active.

5 Click the Run to Breakpoint/End button. The Action Model executes all of the actions from the 
beginning to the breakpoint you set in step 3 above and appears as shown.

6 Click the Pause button on the animation tool bar.

7 In the Component Editor tool bar, click the Record button.

8 Highlight the action line and RMB on Action > New Action > Html Action. (Or just doubleclick 
the line.) The HTML Action dialog appears. 

9 After entering completing the required fields on the screen, click the OK button. The new action 
will be added directly under the one highlighted.

10 Click the Record button a second time to turn off the recording mode.

Run to Breakpoint/EndStart animation

Run to 
breakpoint 
end
42   HTML Connect User’s Guide



11 Select File, then Save, or click the Save button on the Component Editor tool bar.

12 Follow the instructions in “Using Animation Tools” to test your component.

13 The action will be added directly after the highlighted line.

Deleting an Action

The following procedure explains how to delete an action in a previously recorded session.

To Delete an Action to a previously recorded Action Model:

1 Highlight the action line that you want to delete and click on the RMB and select Delete from the 
menu. You may also highlight the line and press the Delete button on your keyboard.

Executing Your HTML Component
Composer includes animation tools that allow you to test your component. On the HTML Component 
Editor tool bar you’ll find the Execute button, which allows you to execute the entire Action Model and 
verify that your component works as you intend.

To execute an HTML Component:

1 Open an HTML Component. The HTML Component Editor window appears.

Execute button

Animation tools
Performing HTML Actions 43



2 Select the Execute button. The actions in the Action Model execute and, when complete, a message 
appears.

3 Click OK. 

4 From the View menu, select Expand XML Documents. This expands all of the parents, children, 
data elements, etc. of the XML Documents, which allows you to see the results of the executed 
component. If you do not expand the XML Documents, you won’t see if the data you wanted to 
move from the HTML environment made it to the Output DOM.

Using the Animation Tools
In the Action Model, you’ll find animation tools that allow you to test a particular section of the Action 
Model by setting one or more breakpoints. This way, you can run through the actions that work properly, 
stop at the actions that are giving you trouble, and then troubleshoot the problem actions one at a time. 

NOTE:  The following procedure is a brief example of the functionality of the animation tools. For a 
complete description of all the animation tools and their functionality, please refer to the exteNd Composer 
User’s Guide.

To run the animation:

1 Open an HTML Component. The component appears in the HTML Component Editor window. 

NOTE:  Animation and Recording are mutually exclusive modes in the component. In order to 
record during animation, you must either pause or stop animation and then turn on Record mode.
44   HTML Connect User’s Guide



2 Click the Start Animation button in the Action Model tool bar, or press F5 on the keyboard. All of 
the tools on the tool bar become active. 

3 Click the Step Into button. The HTML Action will become highlighted. Click the Step Into button 
again. The first Map Screen action becomes highlighted.

4 Click the Step Into button again. Notice in the Native Environment Pane that the SKU is filled in.

Step into

Step over

Run to breakpoint

Highlighted 
action
Performing HTML Actions 45



5 Click on the Step Into button again. Then click on the Step again and into you reach the Map 
Action.

6 Notice that in the Native Environment pane the radio buttons changed.

Click the Step Into button again.
46   HTML Connect User’s Guide



7 Notice the Native Environment Pane now displays the checkmark selection in the Omit Product 
Description.

8 Click the Step Into button again. In the Action Model, the highlighted action is an HTML action.

9 Click the Step Into button again. After stepping into the next action the Native Environment Pane 
will reflect the next Web page screen.

10 Click the Step Into button again.
Performing HTML Actions 47



11 Once complete, the following message appears.

12 Click OK. Notice the Output DOM; it now contains the drag and drop information, “$410,” in the 
ListPrice field. See below.

Using Other Actions in the HTML Component Editor
In addition to the Map Action, you have all the standard Basic and Advanced Composer actions at your 
disposal as well. The complete listing of Basic Composer Actions can be found in Chapter 7 of the 
Composer User’s Guide. Chapter 8 contains a listing of the more Advanced Actions available to you. 
The XML Interchange Advanced Data Exchange action is particularly relevant to the HTML connect, 
so it is discussed in detail below.

Using the XML Interchange Action
The XML Interchange Action allows you to read or write an external XML document into a DOM into 
the component from a specific URI. 

To use the XML Interchange Action:

1 Create a new XML Map component and choose from the main Menu bar, Action>New Action> 
Data Exchange>XML Interchange.
48   HTML Connect User’s Guide



2 The dialog box appears.

.

3 From the dropdown list, select the Interchange Type. You can select Get, Put, Post or Post with 
response.

4 Enter the Interchange URL Expression or click on the source expression icon. 

5 If you want to add or delete a parameter and value to the Header, click on the HTTP Header 
Params button and the following dialog appears.

6 Click on the plus sign icon (+) to add a row or click on the minus (-) to delete a row. Click on the 
Source Expression icon to enter a header value expression.

7 Click OK and return to the HTTP Header Parameters dialog, click OK again and return to the XML 
Interchange dialog.

8 Select a Connection Name from the dropdown list.

9 Specify a Connection Timeout value (in seconds), or leave as zero. Whatever value you place here 
will override any value specified in your connection resource.

10 Document Handle field will default to Output. The name of this Document Handle will change 
according to the selection you made in the Interchange Type field.

11 Response Part Document Handle is active only when you select Post with Response from the 
Interchange Type dropdown list.

12 Click OK and a map action is then created dependent upon your selections. 
Performing HTML Actions 49



Performance
XPath evaluations can take a significant amount of time when a DOM representation of an HTML page 
is large and complex. The amount of time spent in XPath evaluation can vary a great deal depending not 
only on page complexity, but the XPath processor used. The Xalan processor, which is the default XPath 
engine used by the exteNd Composer HTML Connect, employs a depth-first node-walking algorithm, 
which gives good performance on small to medium-sized HTML pages of low complexity. The Jaxen 
Xpath processor, on the other hand, uses a breadth-first algorithm, which gives better performance on 
large and/or complex DOMs. 

The exteNd Composer HTML Connect allows you to choose the XPath engine you want to use. To 
change the processor, call the setXPathProcessor() method on the DOM object in question (usually 
HTMLScreenDoc), supplying a string argument of “xalan” (default) or “jaxen.” For example, create a 
new Function action and enter an expression as follows in the Function dialog::

When you are doing load testing or performance tuning, you should try each XPath processor to see 
which is better for your particular application.

NOTE:  If your application has bugs when running under one XPath processor but not with the other, it is 
most likely because your application depends on DOM nodes being returned (from XPath expressions) in 
a given order. Always remember, when using any XPath expression that returns a node list, that the 
ordering of nodes in the node list is not predictable. This is standard XPath behavior across all processors. 
Your application should not depend on node objects being returned in any particular order.

JavaScript versus ECMAScript
ECMAScript is the standards-body-blessed “core language” underlying JavaScript. (Consult ECMA 
Standard Number 262, published by Ecma International, formerly the European Computer 
Manufacturers Association. For details, go to http://www.ecma-international.org/.) JavaScript is a 
superset of ECMAScript: It is ECMAScript plus the various browser extensions objects and methods 
supported by the browser-makers, plus HTML DOM extensions. The HTML Connect “understands” the 
most common JavaScript browser extensions, including many Netscape and Mozilla objects, but not 
JScript-specific or Internet Explorer-specific methods. 

User Agent Info
HTTP clients can identify themselves to a web server by a User-Agent request-header field. The server 
can use this information in a variety of ways. (For instance, it can tailor outgoing content to suit a 
particular browser type, perhaps redirecting a Mozilla user to pages containing Mozilla-specific markup, 
or Internet Explorer users to pages containing IE-specific scripts or markup.) Since user-agent info is also 
available as a JavaScript property, web-page authors often use JavaScript to learn which kind of browser 
the page is running in. 

Composer’s HTML Connect uses the following User-Agent string:
50   HTML Connect User’s Guide

http://www.ecma-international.org/


Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.0.2) Gecko/20030208 
Netscape/7.02

(This represents one continuous string. Linewrapping is unintentional.)

Web page scripts can inspect this property by means of:

browserType = navigator.userAgent;

The “navigator” object is a standard browser-JavaScript construct, supported by Composer. 

In essence, any components you build using the HTML Connect for Composer will “appear to be” a 
Mozilla browser to any servers or scripts that check the user-agent property.

Handling Errors and Messages
In the event a Get operation is not successful, the HTTP status code will be available via ECMAScript in 
the HTMLStatusCode property. Also, a property called HTMLStatusMsg will contain a string with 
information about the error condition. The contents of these properties can be captured in log messages 
using Log Actions. (See the Section on “The Log Action” of the Composer User’s Guide for more 
information about Log Actions.)

NOTE:  Refer to Appendix C for a complete listing of HTTP Status Codes.

If a script inside an HTML page that uses JavaScript is not understood by Composer, you may see this 
message in the logs or Output tab:

java.lang.RuntimeException: com.novell.mozilla.javascript.PropertyException: 
Constructor for "TypeError" not found.

(Linewrap is unintentional.) 

Bear in mind that some web pages assume Internet Explorer compatability or use IE JavaScript/JScript 
objects that are not supported by Mozilla clients. (For all intents, Composer’s HTML Connect is a 
Mozilla client. See “User Agent Info” above.) This can be a possible source of trouble. If your component 
is “scraping” a page intended for Microsoft IE clients, and or if you are going against a page that uses 
MSIE-dependent scripting constructs, your component may not work as expected. There is little you can 
do at this point, unless the site in question offers non-scripted pages for use by clients that lack script 
support or that have JavaScript turned off. 
Performing HTML Actions 51



52   HTML Connect User’s Guide



A Digital Certificates

HTML Connect supports ninety-eight (98) digital certificates in the jar file agrootca.jar. The following 
table lists the certificates. If you need to add a certificate to the jar file, use the procedure described 
following the table.

Authorities Certification Supported by exteNd

ABA.ECOM Root CA

Baltimore EZ by DST

Belgacom E-Trust Primary CA

CA Data

Certiposte Classe A Personne

Certipose Serveur

Certisign - Authoridade Certificadora - AC2

Certisign - Authoridade Certificadora - AC4

Certisign - Authoridade Certificadora - AC1S

Certisign - Authoridade Certificadora - AC3S

Class 1 Primary CA

Class 1 Public Primary Certification Authority - G2

Class 1 Public Primary Certification Authority - G2_2

Class 1 Public Primary Certification Authority

Class 1 Public Primary Certification Authority_2

Class 2Primary CA

Class 2 Public Primary Certification Authority - G2

Class 2 Public Primary Certification Authority - G2_2

Class 2 Public Primary Certification Authority - G2

Class 2 Public Primary Certification Authority- G2_2

Class 3 Primary CA

Class 3 Public Primary Certification Authority - G2

Class 3 Public Primary Certification Authority - G2_2

Class 3 Public Primary Certification Authority

Class 3 Public Primary Certification Authority_2

Class 3P Primary CA
Digital Certificates 53



Class 3TS Primary CA

Class 4 Public Primary Certificate Authority - G2

Class 4 Public Primary Certificate Authority - G2_2

Commercial Certification Authority

Deutsche Telekom Root CA 1

Deutsche Telekom Root CA 2

DST (ANX Network) CA

DST (NRF) RootCA

DST (UPS) RootCA

DST RootCA X1

DST RootCA X2

DST-Entrust GTI CA

DSTCA E1

DSTCA E2

Entrust.net Secure Server Certification Authority

Equifax Secure eBusiness CA

Equifax Secure Global eBusiness CA

FESTE, Public Notary Certs

FESTE, Verified Certs

First Data Digital Certificates Inc. Certification Authority

FNMT Clase 2 CA

getcacert

GlobalSign Root CA

GTE CyberTrust Global Root

GTE CyberTrust Root

GTE CyberTrust Root_2

IPS SERVIDORES

KeyWitness 2048 Root

Microsoft Authenticode(tm) Root Authority

Microsoft Corporation

Microsoft Root Authority

NetLock Expressz (Class C) Tanusitvanykiado

NetLock Kozjegyzoi (Class A) Tanusitvanykiado

NetLock Uzleti (Class B) Tanusitvanykiado

PTT Post Root CA

Authorities Certification Supported by exteNd
54   HTML Connect User’s Guide



Secure Server Certification Authority

SecureNet CA Class A

SecureNet CA Class B

SecureNet CA Root

SecureNet CA SGC Root

SecureSign RootCA1

SecureSign RootCA2

SecureSign RootCA3

SERVICIOS DE CERTIFICACION - A.N.C.

SIA Secure Client CA

SIA Secure Server CA

Swisskey Root CA

TC TrustCenter Class 1 CA

TC TrustCenter Class 2 CA

TC TrustCenter Class 3 CA

TC TrustCenter Class 4 CA

TC TrustCenter TimeStamping CA

Thawte Personal Basic CA

Thawte Personal Freemail CA

Thawte Personal Premium CA

Thawte Premium Server CA

Thawte Server CA

Thawte Timestamping CA

UTN - STATCorp SGC

UTN - USERFirst-Client Authentication and Email

UTN - USERFirst-Hardware

UTN - USERFirst-Network Application

UTN - USERFirst-Object

ValiCert Class 1 Policy Validation Authority

ValiCert Class 2 Policy Validation Authority

ValiCert Class 3 Policy Validation Authority

VeriSign Commercial Software Publishers CA

VeriSign Commercial Software Publishers CA_2

VeriSign IndividualSoftware Publishers CA

VeriSign IndividualSoftware Publishers CA_2

Authorities Certification Supported by exteNd
Digital Certificates 55



To add an additional trusted certificate authority to exteNd:

1 In a WinZip utility program, open the Designer/lib/xcroota.jar file.

2 Click Add, browse from the directory you want to add the file.

3 Add the file to the rest of the files listed within the xcroota.jar file. Close the WinZip program.

4 Restart your server.

VeriSign, Inc.

Xcert EZ by DST

Authorities Certification Supported by exteNd
56   HTML Connect User’s Guide



B Testing

Environmental Differences between Animation Testing and 
Deployment Testing

There are significant environmental differences between Animation testing in Composer and 
Deployment testing. Both types of testing are needed to adequately verify the components and services 
you build. The differences are detailed in the table below.

Issue Testing in Composer Deployment Testing

Images in HTML pages Rendered in Native Environment 
Pane.

No rendering.

Error handling Error messages appear in Native 
Environment Pane.

HTTP status codes can be 
captured via Log Actions.

Project Variables for:
* Log File Paths
* DTD URIs
* XSL URIs
* Send Mail Server
* XML Inter-
change URIs

Usually point to locations on local 
machine (but could be on Servers 
or Web).

Should point to locations on 
production Servers and Web.

Testing Tools In addition to Log actions, you can 
use dialog boxes, via ECMAScript 
alert() function, to display runtime 
values.

No dialog boxes can be used.
Testing 57



58   HTML Connect User’s Guide



C HTTP Status Codes

The HTTP Status Code is a 3-digit integer result code summarizing the outcome of a particular HTTP 
request. These codes are summarized below. The first digit of the Status Code defines the class of 
response. The last two digits have no particular “category” meaning. 

There are five classes of Status Code based on the first digit of the code: 

Detailed Code Semantics

100  Continue

101 Switching Protocols

200  OK

201  Created

202  Accepted

203  Non-Authoritative Information

204  No Content

205  Reset Content

206Partial Content

300  Multiple Choices

301  Moved Permanently

302  Found

303  See Other

304  Not Modified

305  Use Proxy

307 Temporary Redirect

400  Bad Request

401  Unauthorized

402  Payment Required

1xx Informational Request received, continuing process

2xx Success The request was successfully received, understood, and accepted

3xx Redirection Further action must be taken to complete the request

4xx Client Error The request contains bad syntax or cannot be fulfilled

5xx Server Error The server failed to fulfill an apparently valid request
HTTP Status Codes 59



403  Forbidden

404  Not Found

405  Method Not Allowed

406  Not Acceptable

407  Proxy Authentication Required

408  Request Time-out

409  Conflict

410  Gone

411  Length Required

412  Precondition Failed

413  Request Entity Too Large

414  Request-URI Too Large

415  Unsupported Media Type

416  Requested range not satisfiable

417 Expectation Failed

500  Internal Server Error

501  Not Implemented

502  Bad Gateway

503  Service Unavailable

504  Gateway Timeout

505  HTTP Version not supported

extension-code = 3DIGIT Reason-Phrase  = *<TEXT, excluding CR, LF>

NOTE:  HTTP status codes are extensible. HTTP applications are not required to understand the 
meaning of all registered status codes, though such understanding is obviously desirable. 
60   HTML Connect User’s Guide



D Actions Created When Form Field Values Are 
Modified Interactively

When you are in Record mode and you interact with form fields inside the web page currently displayed 
in the Native Environment Pane, appropriate actions are automatically added to the Action Model in real 
time. For example, when you enter text into a text field in an HTML page, a Map Action is automatically 
generated. The following table shows which types of Actions are autogenerated in the Action Model 
when various field types are manipulated.

Field Type and User Action Action(s) Created in the Action Model

User enters (or drags) 
text into a text field

Map Action:

MAP string TO HTMLScreenDoc.XPath( path )

User checks a check box Map Action. Example:

MAP true TO HTMLScreenDoc.XPath("//input[@name = 'safe' 
and @value = 'on' ]").createXPath("/@checked")

User unchecks a check 
box

Function Action. Example:

CALL removeCheckedAttr(HTMLScreenDoc.XPath("//input[@name 
= 'safe' ]"));

User selects a radio 
button

Map Action. Example:

HTMLScreenDoc.XPath("//input[@name = 'safe' and @value = 
'on' ]").createXPath("/@checked")

User deselects a radio 
button

Function Action. Example:

CALL removeCheckedAttr(HTMLScreenDoc.XPath("//input[@name 
= 'safe' ]"));

User selects an item from 
a dropdown list 

Function Action. Example:

updateSelectedAttr(HTMLScreenDoc.XPath("/descendant::sele
ct[@name = 'num']/option"), '20 ');

User toggles an item in a 
list box

Function Action:

CALL toggleListSelectedAttr( DOMelement, string, boolean )

NOTE:  See next Appendix for source code and usage of this and 
related custom ECMAScript function.

User clicks Submit button Map Action followed by HTTP Post (typically). Example:

CALL HTMLScreenDoc.XPath("//input[@name = 'Mode' and 
@value = 'SEARCH' ]").createXPath("/@checked")
HTTP/HTML Post From "http://www.xyz.com/search.php"
Actions Created When Form Field Values Are Modified Interactively 61



62   HTML Connect User’s Guide



E Internal Scripts used by Recorded Function 
Actions

// These ECMAScript functions are invoked from Function Actions created
// in the HTML Connect when a user makes certain selections on HTML FORM
// based visual controls. 
/**********************************************************/
// Functionname: removeSelectedAttr(nodelist)
// Description:  removes 'selected' attribute from a control 
// nodelist:     is required, the list of nodes to remove attribute from
// Returns:      void
// Note:         Uses DOM Element methods getAttribute() 
// and removeAttribute()
/**********************************************************/
function removeSelectedAttr(nodelist)
{
   for(var elem in nodelist)
   {
      var attr = elem.getAttribute("selected");
      if(attr != null)
         elem.removeAttribute("selected");
   }
}

/**********************************************************/
// Functionname: updateSelectedAttr(nodelist, asRExpr)
// Description:  Method to update list selection for a COMBO BOX. A Combo Box can
//               have one value selected. This method compares the passed in
//               expression and creates selected attr for the one element whose
//               attribute matches the passed in param and removes selected attr
//               for the rest of the items, in case they have selected attr 
present
// nodelist:     is required, is the list of option nodes
// asRExpr:      is required, is the right hand side expression
// Returns:      void
// Note:         Uses DOM Element methods getAttribute() and removeAttribute()
/******************************************************************/
function updateSelectedAttr(nodelist, asRExpr)
{
   for(var elem in nodelist)
   {
      // get the node value. Call back exteNd 
      var lVal1 = 
Packages.com.sssw.b2b.rt.GNVXMLDocument.getNodeStringValue(elem);

      // trim leading and trailing blanks on both side of the expressions
      // before comparison
      var lVal = new java.lang.String(lVal1);
      lVal = lVal.trim();
      var rVal = new java.lang.String(asRExpr);
      var rVal = rVal.trim();
      if(lVal == rVal)
         elem.setAttribute("selected", "selected");
      else 
      {
Internal Scripts used by Recorded Function Actions 63



         var attr = elem.getAttribute("selected");
         if(attr != null)
            elem.removeAttribute("selected");
      }
   }
}

/**********************************************************/
// Functionname: removeCheckedAttr(nodelist)
// Description:  Method to remove 'checked' attribute for RADIO BUTTONS,
//               CHECKBOXES, PUSH BUTTONS etc.
// nodelist:     (required) list of nodes for which 'checked' attr needs
//               to be turned off.
// Returns:      void
// Note:         Uses DOM Element methods getAttribute() 
// and removeAttribute()
/*********************************************************/
function removeCheckedAttr(nodelist)
{
   for(var elem in nodelist)
   {
      var attr = elem.getAttribute("checked");
      if(attr != null)
         elem.removeAttribute("checked");
   }
}

***************************************************/
// Functionname: toggleListSelectedAttr(elem, asValue, abAddAttr)
// Description:  Method to create selected attribute 
// for a MULTI-SELECTION LIST BOX in case the boolean
// passed in param abAddAttr is true, and
// remove selected attr in case abAddAttr is false.
// elem: DOM element for which 'selected' attr is either to be
//               created or removed.
// asValue: value to be matched for the 'option' desendant element.
// abAddAttr:    boolean. When true, creates 'selected' attr 
// for the 'option'
//               element  for which the value matched with 
// asValue and removes
//               'selected' attr in the event the flag is false.
// Returns:      void
// Note:         Uses DOM Element methods getAttribute() 
// and removeAttribute()
/*********************************************************/
function toggleListSelectedAttr(elem, asValue, abAddAttr)
{
   // find all descendant elements by the name 'option'
   var lOptionList = elem.getElementsByTagName("option");
   for(var child in lOptionList)
   {
      // get value attr for the child
      var lsChildAttrVal = child.getAttribute("value");
      if(lsChildAttrVal == asValue)
      {
         // for the child whose value matches passed in value,
         // create attr in case abAddAttr is true or remove otherwise
         if(abAddAttr == true)
         {
            child.setAttribute("selected", "selected");
         }
         else
         {
            child.removeAttribute("selected");
         }
         break;
64   HTML Connect User’s Guide



      }
   }
}

Internal Scripts used by Recorded Function Actions 65



66   HTML Connect User’s Guide



F HTML Glossary

Cookie A text file or string that stores state information. Some cookies are scoped to the HTTP session 
only (no longer existing once the client application shuts down) while others are persistent by virtue 
of being written to a storage device.

Digital Certificate Enables secure communication with a Web server.

Field A unit of data contained in a form. A field may be a label to display on the screen, an item of data, 
or an interactive widget of some kind. Some fields may be hidden (and thus have no visual interface.) 
Each field has its own attributes that determine how it is displayed and if the area can be modified.

Frames Some HTML pages are displayed in discrete panes with draggable dividers. These panes are 
called frames. The FRAMESET tag is used to create a group of frames. Each frame has its own 
FRAME tag. The source code for an HTML page that contains frames does not contain the detailed 
HTML code for the individual frames; instead, the SRC attribute of the FRAME element directs the 
browser to the appropriate URI for the frame.

HTML Hyper Text Markup Language

HTTP HyperText Transfer Protocol.

HTTP GET A method that gets the file at a specified URI using URIencoded form data appended to the 
target URI.

HTTP POST A method that posts data to a specified URI (which usually points to a CGI script on the 
server).

HTTPS The “secure” version of HTTP.

Native Environment Pane A pane in the HTML Component Editor that provides an emulation of an 
actual HTML terminal session.

Map Screen Action A special non-editable action that indicates the location in an Action Model 
where a new data is received. Any actions intended to interact with this screen must be placed 
subordinate to the Map Action’s Screen Actions line in the Action Model.

Redirection An attempt to send the client to a new destination URI. Redirection may occur as a result 
of a Refresh directive in the <META> elements of an HTML page, a specific Refresh directive 
issued by the server (in the HTTP header of a response), or a script (typically JavaScript) inside the 
HTML page.

ScreenDoc A special DOM that can be displayed in the HTML Component Editor representing the 
current HTML page as an XML document.

SSL Secure Socket Layer Support

TIDY A utility used to transform hard to read HTML into clearly layered markup text.
HTML Glossary 67



URI Uniform Resource Locator. The URI expresses the location of the web resource as well as the 
protocol that should be used to communicate thereto.

Web Browser A display window where the actual contents of a HTML document is displayed.

XHTML HTML meeting the minimum “well-formedness” requirements of the XML standard.
68   HTML Connect User’s Guide



G Reserved Words

The following terms are reserved words in exteNd Composer for the HTML Connect and should be 
avoided in any user created labels or variable names.

Get

Post

Put

Redirect

HTML

ScreenDoc

FrameSet

theComponent
Reserved Words 69



70   HTML Connect User’s Guide



Index
A
About HTML- Specific Buttons 29
About HTML- Specific Menu Bar Items 28
action menu 48
Action Model 31

editing previously recorded 39
Actions

internal scripts used by recorded function actions 63
actions

created when modifying form field values 61
overview 31
using basic and advanced 48

ActiveX 10
ADD button 38
Adding A New Action 41
advanced actions 48
animation

running 44
using tools 44

animation and deployment testing 57
authentication 18
auto-generated actions 61

B
basic actions 48
browser compatibility issues 51

C
certificate 18
certificates 53
Certisign 53
Changing an Existing Action 39
Client Certificate 19
Component Editor 25
Component Menu 28
Connection Resources 17
Cookie 67
cookie 12
Cookies 12
cookies

persistent 12
session 12

custom ECMAScript functions 63
CyberTrust 54

D
DELETE button 38
Deleting an Action 43
Detailed Code Semantics 59
Digital Certificate 67
digital certificates 12, 53
Document Handle 49
drag-and-drop 26, 34

E
Ecma International 50
ECMAScript 19

trapping errors with 51
Editing a HTML Action 35
Editing an HTML Action 37
Enable JavaScript 38
environmental differences 57
Executing Your HTML Component 43
Expand XML Documents 44
eXtend Connects

about 9

F
field, definition of 67
fields, adding to ScreenDoc DOM 38
Frames 12
Function Action 33
Function Actions 61

G
Gecko 50

H
HTML 67
HTML Component, creating 23
HTML Connection Resources 17
HTMLScreenDoc 34
HTMLStatusCode property 51
71



HTMLStatusMsg 51
HTTP GET 67
HTTP POST 67
HTTP Status Codes 59
HTTPS 17

J
JavaScript 13
JavaScript versus ECMAScript 50
JavaScript, toggling support for 38
Jaxen 50
JScript 50

L
links and parameters, editing 37
load testing 50

M
Map Action 33
Map Screen action, definition of 67
Method type 38
Mozilla 50
multiple frames 35

N
native environment pane, definition of 67
NetLock 54
node objects 50
node order, in nodelists 50

O
ordering of nodes 50

P
Parameters 38
passwords 19
Performance 50
Post, HTTP 31
private key 19

R
recording 31

editing and 39
Recording a HTML Session using Frames 35
Redirect 67
Redirect checkbox 38
removeCheckedAttr() function 63
removeSelectedAttr() function 63
request header 50

Run to Breakpoint/End 40, 42

S
sample transactions 15
ScreenDoc DOM 26
ScreenDoc, definition of 67
Secure Socket Layer Support 12
SecureNet 55
session cookies 12
setXPathProcessor() method 50
SSL 12, 67
SSL3 26
Step Into 46

T
Temp XML Document 24
TIDY 10, 67
To record a HTML Session using Multiple Frames 35
Toggle Breakpoint 40, 41
toggleListSelectedAttr() function 63
transactions, sample 15

U
updateSelectedAttr() function 63
URL 68
URL Actions 31
User Agent Info 50
Using the XML Interchange Action 48

V
ValiCert 55
VeriSign 55
View Menu 28

W
Web Browser 68
Window Layout 27

X
Xalan 50
xcrootca.jar 12
XHTML 10, 26, 68
XML templates 11
XPath 50
XPath processors (Xalan/Jaxen) 50
XSL 57
72


	About This Book
	1 Welcome to exteNd Composer and HTML Connect
	About exteNd Connects
	What is the HTML Connect?
	About Composer’s HTML Component
	About Secure Socket Layer Support (SSL)
	Other Protocols

	About Cookies
	About Frames
	About JavaScript
	What Applications Can You Build Using the HTML User Interface Component Editor?

	2 Getting Started with the HTML Component Editor
	The Sample Transactions
	Steps Commonly Used to Create an HTML Component
	Proxy Server Settings

	About HTML Connection Resources
	HTTP Authentication Types
	HTTP Basic Authentication Resource
	HTTP Digest Authentication Connection Resource
	HTTP NTLM Authentication Connection Resource

	Creating XML Templates for Your Component

	3 Creating an HTML Component
	Before Creating an HTML Component
	About the HTML Component Editor Window
	About the HTML Native Environment Pane
	About the ScreenDoc DOM
	About HTML-Specific Menu Bar Items
	About HTML-Specific Buttons


	4 Performing HTML Actions
	About Actions
	Recording an HTML Session
	Recording an HTML Session using Frames
	Editing an HTML Action
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Adding a New Action
	Deleting an Action

	Executing Your HTML Component
	Using the Animation Tools
	Using Other Actions in the HTML Component Editor
	Using the XML Interchange Action
	Performance
	JavaScript versus ECMAScript
	User Agent Info
	Handling Errors and Messages

	A Digital Certificates
	B Testing
	Environmental Differences between Animation Testing and Deployment Testing

	C HTTP Status Codes
	Detailed Code Semantics

	D Actions Created When Form Field Values Are Modified Interactively
	E Internal Scripts used by Recorded Function Actions
	F HTML Glossary
	G Reserved Words
	Index

