Novell
exteNd
Composer

5.2 ®
‘ JDBC CONNECT USER’S GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd Composer JDBC Connect User’s Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR

Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: " This product includes software devel oped by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License

Version1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C

W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGESARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 7
1 Welcome to exteNd Composer and JDBC.ttt et e 9
BefOre YOU BegiN. . . .o oo e e 9
ADOUL XIENT CONNECES. . . . ottt ettt e e e e e e e e e e e e e e e e e 9
What 1S JDB C 2 . o oot 9
What DOES JDBC DO7?.ottt e et e e e e e e 10
About exteNd’s IDBC COMPONENEottt e e e e e e e e e e e e e e e 10
What Kinds of Applications Can You Build Using the JDBC Component Editor? 11

2 Getting Started with the JDBC Component Editor. i e e 13
Creating @ JDBC CONNECHION RESOUICE vttt ettt et e et et e e e e e e e e e e e 13
About Constant and Expression Driven Connection Parameters i 13

About JDBC Drivers and Connection POOIS e 14
Creating XML Templates for Your COMPONENt ot e e e e e e e e e 16

3 Creating @aJDBC COmMPONENt . .\ttt ettt et e e e et e e e e 17
Before Creating a JDBC COMPONENL.o o ittt e e e e e e e e 17
About the IDBC Component Editor WINAOWo e e e 20
About the QUENY Pane. 20

4 Performing JDBC ACHONS. . .ottt it 23
ADOUL ACHIONS. .« . ottt e e e 23

The SQL Statement ACHONottt 23
Handling of Binary Data e 24
Prepared StatemeNntS e 24
Creating an SQL Statement using the Wizard e 24
Creating an SQL Statement Manually. e 34
Executing the SQL Statement. e 37
Checking the ReSUIS e e e e e e 38

Using Stored ProCedures e 38

Colons in SQL StatemMeNtS o e e 40

The SQL BatCh ACHON e e e e e e e 40
StArt BalCN . . oo 41
EXECULE BalCh o 41

Discard BatCh 42
Creating BatCh aCtions. e 43
JDBC-Specific Expression Builder Properties e 43
Using Other Actions in the JDBC Component EditOr. e s 44
Handling Errors and SQL MeSSa0ES v v v ottt et ettt e et e 44

5 Using Custom ResUIt Mapping. oottt e e e e e 45
About Default Result Mapping oot e 45
About Custom ResUlt Mapping oot e 46
About Custom Result Mapping and AlIaSeSo a7
Using the MapTarget Tabho e e e e e 48
Looking at a MapTarget EXample e e 50

Using The Detail ROWS Tabo e e e e e e e e e e e 51
Looking at a Detail ROWS EXample e 51

Using the Declare Group/Repeat Tab 53
Looking at a Declare Group/Repeat Example. e 54

B StOred PrOCEAUIES . ..ttt e 57
About Stored Procedure Mapping. oottt e e e 57
BiNdiNg RUIESo e e 58
Using the Stored Procedure Mapping Setup Dialogottt e 58
Returned ReSUIL Sto o e e e e 59

A IDBC GlOSSaIY - . ot ittt et e e e 61

B RESEIVED WWOIaS . . oottt e e e 63

6

JDBC Connect User’s Guide

About This Book

Purpose

This guide describes how to use the exteNd Connect, referred to as the JDBC Component Editor. The
JDBC Component Editor is a standard component editor in exteNd Composer.

Audience

Thisbook isfor developersand systemsintegrators who are planning to use exteNd Composer to develop
database-aware services and components.

Prerequisites

This book assumes prior familiarity with exteNd Composer’s work environment and deployment
options. Some familiarity with Structured Query Language (SQL) is also assumed.

Additional documentation

For the complete set of Novell exteNd exteNd Director documentation, see the Novell Documentation
Web Site (http://www.novell.com/documentati on-index/index.jsp).

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8 JDBC Connect User’s Guide

Welcome to exteNd Composer and JDBC

Before You Begin

Welcome to the Novell exteNd JDBC Connect User’s Guide. This Guide is acompanion to the exteNd
Composer User’s Guide, which details how to use all the features of Composer except for the Connect
Component Editors. So, if you haven't looked at the Composer User’s Guide yet, please familiarize
yourself with it before using this Guide.

exteNd Composer provides separate Component Editors for each Connect, such asthe JDBC connector.
The special features of each component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core component editor (the XML
Map Component Editor), then this Guide should get you started with the JDBC Component Editor.

NOTE: To be successful with this Component Editor, you must be familiar with writing and constructing
SQL statements.

About exteNd Connects

Novell exteNd is built upon asimple hub and spoke architecture. The hub isarobust XML
transformation engine that accepts XML documents, processes the documents, and returns an XML
document. The spokes or Connects are plug-in modules that “XML enable” sources of data that are not
XML-aware. These data sources can be anything from legacy COBOL / VSAM managed information to
Message Queuesto HTML pages. exteNd Connects can be categorized by the integration strategy each
one employsto XML enable an information source. The integration strategies are a reflection of the
major divisions used in modern systems designs for Internet based computing architectures. Depending
on your B2Bi needs, exteNd can integrate your business systems at the User Interface, Program Logic,
and/or Datalevels.

What is JDBC?

JDBC isaJava-based API (Application Programming Interface) for executing SQL statements. While
often mistaken as an acronym meaning “ Java Database Connectivity,” JDBC isin fact not an acronym at
all, but a trademarked name. JDBC consists of a set of classes and interfaces written in the Java
programming language that allowsyou to write one program to access different databases such as Oracle,
Sybase, Informix, etc., rather than needing to write a separate program for each one.

You can write asingle program using the JDBC API and the program is able to send SQL statementsto
the appropriate database. And since the application iswritten in the Java programming language, thereis
no need to write different applicationsto run on different platforms. The combination of Javaand JDBC
lets you write it once and run it anywhere, as the following illustration shows.

Welcome to exteNd Composer and JDBC 9

Oracle Sybase SQL Server

JAVA

Windows UNIX Windows NT

What Does JDBC Do?

JDBC makesit possible to do the following:

+ Establish a connection with a database
+ Send SQL statements (or queries) to be processed by the database
+ Process the results of the database processing

JDBC isalow-level interface used to call SQL commands directly. It isintegrated into Composer to
interface between components and databases, allowing the program to establish connections with the
databases, send the SQL statements, and process the results. Composer provides tools that enable visual
construction of the necessary SQL commands.

About exteNd’s JDBC Component

10

Much like the XML Map Component, the IDBC Component is designed to map, transform, and transfer
data between two different XML templates (i.e., request and response XML documents). However, it is
specialized to make a connection to a database, process SQL statements against the database using
elements from a Message Part within the query, and then map the results of the query to a Part.

A JDBC Component can perform simple data manipul ations, such as mapping and transferring datafrom
one XML document to another, or from an XML document to a database table. It can also perform
sophisticated manipulations, such as requesting data from disparate databases, transforming data from
and to one or more documents, executing SQL transactions against the database, and even transforming
the documentsthemselves. Likean XML Map Component, the JDBC Component can process XSL, send
mail, and post and receive XML documents using the HT TP protocoal.

JDBC Connect User’s Guide

Databases

B

D | g A

XML, XSL, DTD = Processed
Composer

The JDBC Connect uses exteNd Composer as the backplane for XML -based datainteractions, making it
possibleto reach into databases at runtime (and design time). Using exteNd Composer, you can assemble
Action Models within aJDBC Component to carry out sophisticated data transformations, using HTTP
(optionally) asatransport mechanism. Live database connections are available at design time, so that you
can edit and debug SQL queries as part of the design process.

What Kinds of Applications Can You Build Using the JDBC
Component Editor?

You can build any business-to-business application that needsto push datainto or pull datafrom aJDBC-
accessible datastore and uses XML astheinterchange format. For example, you can write an application
that retrieves the description, picture and price of a product from a database and displaysitin the user’s
browser. If the information resides in two or more databases, you can merge the information from
separate databases before displaying it to the user.

Welcome to exteNd Composer and JDBC 11

12 JDBC Connect User’s Guide

Getting Started with the JDBC Component
Editor

Creating a JDBC Connection Resource

Before you create a JIDBC Component, you will find it necessary to create a Connection Resource to
access the SQL database. Each Connect, including the JDBC connector, usesits own Connection type.
Each Connection type is differentiated by the number and types of parameters used to connect to the
specific external data source.

About Constant and Expression Driven Connection Parameters

You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant based parameter uses the value you type in the Connection dialog every time the Connectionis
used. An expression based parameter allowsyou to set the val ue using a programmatic expression, which
can result in a different value each time the connection is used at runtime. This allows the Connection’s
behavior to be flexible and vary based on runtime conditions each time it is used.

For instance, one very simple use of an expression driven parameter in a JDBC Connection would be to
define the User ID and Password as PROJECT Variables (e.g.

PROJECT.XPATH(* USERCONFIG/MyDeployUser”). Thisway when you deploy the project, you can
update the PROJECT Variablesin the Deployment Wizard to values appropriate for the final deployment
environment. At the other extreme, you could have a custom script that queries a Java business object in
the Application Server to determine what User ID and Password to use.

> To switch a parameter from Constant driven to Expression driven:
1 Click the right mouse button in the parameter field you are interested in changing.
2 Select Expression from the context menu and the editor button will appear or become enabled.

3 Click on the button and then create an expression that evaluates to a valid parameter value at
runtime. (Strings should be wrapped in double-quotes.)

|
|'m|' Connection \nfo}
Connection Type |JDEC Caonnection |_|
JDBC Driver |um sgsw jdbe.mss.odbc AgOdbcDriver [Default
JDBC URL debc sssw.odbc XCTutarial
User ID I =

Password I

DB Params | Paste

Deployed Pool Name I Select Al

Allow SQL Transactions [

Clear All
Constant
v Expression

Getting Started with the JDBC Component Editor 13

About JDBC Drivers and Connection Pools
When you create a Connection Resource, you are asked to provide a Driver Name and Connection Pool.

The JDBC Driver sun.jdbc.odbc.JdbcOdbcDriver is part of the JRE (Java Runtime Environment,
which you can find under the Novell exteNd5 directory), and you can use this driver to establish your
connection. But you can also obtain other JIDBC drivers. For instance, the Novell exteNd Application
Server hasitsown JDBC drivers. Also, you can visit the Web site of the vendor for the SQL database
you're using and download their driver(s).

A connection pool isa set of database connections managed by the application server for the various
applications it manages. It provides more efficient use of database and connection resourcesfor multiple
applications running in the same application server. This, in turn, can improve overall system
performance. You can obtain the Pool Name for your application server from your Server Administrator.

For deployments within the Novell exteNd Application Server, the pool name will be JDBC/DBName
where DBName is the name that was used when the connection pool was added to the server. For
example, if you were connecting to the Sampl es50 database provided with the application server, the pool
name would be JDBC/Samples50.

> To create a JDBC connection resource:

1 Select File>New> xObject and select the Resour ce tab. Click on Connection. The“ Create a New
Connection Resource” Wizard appears.

Create a New Connection Resource 1'

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
youwish to communicate with. Enter a name and, optionally, a description forthis Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not caontain the characters: \f: 7" = = || Mames ate case insensitive.

lMame;

iy ewConnection

Description:

FPurpose:
Input:
Output:
Remarks:

(_Next] Cancel

2 TypeaName for the connection object.
3 Optionally, type Description text.

14 JDBC Connect User’s Guide

4

10

11

12

Click Next.

Create a New Connection Resource 5[

Enter a Driver name (2.9, com.sssw.jdbc.oracle8.Driver) and a driver specific URL for the database (e.g.
jdbe:ssswioracle:MyYDE). Enter a connection poal provided by the application server after deployment. Use
the right mouse buttan to create a conditional expression for a connection parameter. Checking ‘Default’
makes this Connection the initial selection when creating a JDBC Component. Use the Test button to check
your connection. You may save connections that fail the test.

Connection Type |JDEiC Connection |L|
JDBC Driver | [Default
JDBC LRL |
User ID I

Password I

DB Params I

Deployed Pool Mame I
Allow SQL Transactions

[Back][Finish][Cancel]

Select JDBC Connection from the Connection Type pull down menu.

Inthe JDBC Driver field, enter the name of the JDBC driver you want to use. For example,
com.mysgl.jdbc.Driver for the Novell exteNd driver. (For more information see “ About JDBC
Drivers and Connection Pools’ on page 14.)

NOTE: This parameter, and all subsequent parameters in this dialog, can be dynamically set using
Expressions. See “About Constant and Expression Driven Connection Parameters” earlier in this
chapter.

Inthe JDBC URI field, enter the location of the database you want to reach. For example,
jdbc:mysql://localhost:63306/samples50 where jdbc:mysql: isrequired syntax by the driver and
samples50 isan ODBC Data Source Name defined on the specific computer where the component
will run. In this example the database is installed on the localhost at port 63306. For deployment,
you may maintain connections directly to the database, provided that the server allows for ODBC
connectivity. The more likely scenario isthat you will want to take advantage of the power of the
application server in managing database access. In that case, you need to provide the connection
pool name as described below.

NOTE: The JDBC Driver and JDBC URI fields are both case sensitive.
Enter avalid User I D to sign on to the selected database.
Enter avalid Password for the selected database.

Inthe DB Paramsfield, enter any database-specific parameters that might apply to your
connection. Note that parameters should be entered as name=value pairs. If more than one
name=value param is specified, separate the pairs using semicolons, e.g.,
paraml=true;param2=true;param3=false.

NOTE: If no database-specific parameters will be used, enter false in this field.

Enter aPool Name if required. For more information, see “ About JDBC Drivers and Connection
Pools’ on page 14.

NOTE: Connection pooling is only operational in the deployment environment. Setting the name
here will not affect Composer connections. Only the deployed project will be affected.

Check the Allow SQL Transactions checkbox if you intend to exercise direct control over
transactions (using SQL Begin, Commit, and Rollback verbs) in your component’s Action Model.
NOTE: This checkbox is mainly for backwards compatiblity with pre 5.0 versions of Composer. If
transactions are required, it is recommended that this checkbox remain unchecked. Explicit SQL
"BEGIN", "COMMIT", or "ROLLBACK" actions should be substituted with the Composer Transaction
action. This action uses JTA to manage the transaction. The Transaction action is available form the
Composer Action>Advanced Actions Menu.

Checking the Allow SQL Transactions box has a number of effects:

Getting Started with the JDBC Component Editor 15

+ It turns auto-commit off for the JIDBC driver. (The state of the auto-commit flag is restored,
however, at the end of the transaction, before returning the connection back to the pool.)

+ Itcausesall SQL commit and rollback commands to be translated to the corresponding JDBC
connection calls.

+ It causes Composer Enterprise Server to check the final Execute SQL Action in the component
to see that the final action isacommit or arollback. If thefinal action is not acommit or
rollback, Composer Enterprise Server performs arollback by default, so that adirty connection
(that is, a connection with uncommitted changes) is not inadvertently returned to the poal.

NOTE: For a further discussion of the Allow SQL Transactions checkbox, see the Transactions
chapter of the exteNd Composer Application Server Guide for your application server.

13 Check the Default checkbox if you would like to use the current connection as the default
connection for any new JDBC Components you create in your project.

14 Click Test to seeif your connection is successful. A “success’ or “failure” message appears for
your connection. You can continue creating the resource, even if your connection fails.

NOTE: This does not test the connection pool (if defined).

15 Click Finish. The newly-created resource connection object appears in the Composer Connection
Resource detail pane.

¥ exteNd Composer: ActionExamples : 10l =|
File Edit View Tools Window Help

D=0 08X Novell
O Resource (2

B Code Table
E Image
Java Server Page

[v]

Map

[Mame]J
InventorySystem
OrrECtion o Mew Connection

Resource
| &prosect

| @ Loe [O\ Find][F waten][Todo]
Feady

Creating XML Templates for Your Component

16

In addition to a connection resource, a JDBC component also requires that you have already created
XML templates so that you have sample documents for designing your component. (See Chapter 5,
Creating XML Templates, in the Composer User’s Guide for more information.)

Also, if your component design callsfor any other xObject resources such as custom scripts or codetable
maps, it isbest to create these before creating the JIDBC Component. For more information, see Creating
Custom Scripts in the Composer User’s Guide.

JDBC Connect User’s Guide

Creating a JDBC Component

Before Creating a JDBC Component

Aswith al exteNd components, the first step in creating a JDBC component isto specify the XML

templates needed. (For more information, see Creating a New XML Template in the separate Composer

User’s Guide.) Once you' ve specified the XML templates, you can create a component, using the
template's sample documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating a JDBC component, you can select a JDBC connection or you can

create anew one. If you create the connection beforehand, thenit isavailableto all new JDBC

components. (See “Creating a JDBC Connection Resource” on page 13.)

> To create anew JDBC component:

1

3

Select File>New>xObject. Select the Component tab and then JDBC.

NOTE: Alternatively, under Component in the Composer Navigator pane, you can highlight JDBC,

click the right mouse button, then select New.

The “ Create aNew JDBC Component” Wizard appears.

Create a New JDBC Component

A JDBC component is used to push XML data into relational databases or pull data from thern into XML
documents. This wizard will guide you through the creation of a JDEC Companent. Please enter a name
and, optionally, a description for the JDEC component. The name will appear in the Composer Detail Pane
and in choice lists when you are prompted for abjects in Composer. The name may not contain the
characters:\ f:% "= = | Mames are case insensitive {.e. MyObjectMame is the same as myabjecthame).

Iame:

My DECComponent

Description:

Furpose:
Input:
Output
Remarks:

[|[Next][Cancel

Enter a Name for the new JDBC Component.

4 Optionally, type Description text.

Creating a JDBC Component

17

18

5 Click Next. The XML Input/Output Property Info panel of the New JDBC Component Wizard
appears.

Create a New JDBC Component 5[

Specify one or more XML Templates to help design Input to this Component orWeh Service and only one ta
design Output. The sample XML Documents in each Template are design time aids to help you build Action
Madels for the component. The samples are not actually used at runtime after deployment ta your application
server. The ldentifier is fixed and represents the name used ta refer ta the XML Document during component
execution. Selecting System {ANY} allows you to use an empty template {i.e. accept any document as Input).

Input Message

Part | Template Category | Template Name

|
input [{5ystem) [4y [v]|

Output Message

Part | Template Category | Template Name

|
Output [system} [J[garivy [

[Back][Next][Cancel]

6 Specify the Input and Output templates as follows.

*

*

Type in aname for the template under Part if you wish the nameto appear inthe DOM as
something other than “Input”.

Select aTemplate Category if it is different than the default category.
Select a Template Name from the list of XML templatesin the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY?} as the Input or Output template. For more information, see “Creating an Output
DOM without Using a Template” in the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

Create a New JDBC Component x|

Specify one or more Temp and Fault XbL Templates to help design temporary parts and fault handling for
this Camponent or Web Service. Use Temp documents for creating intermediate results ar holding values
for reference. Specify XML Templates to serve as Fault documents to be passed hack to clients under error
conditions.

Temp Message
Part Template Category Template Name |

Fault Message

Part | Template Category | Template Name |
_SystemFault |{System} |:||{Faurt} \:||
[Back][Next][Cancel]

9 |If desired, specify atemplate to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Select a Template
Category if it is different than the default category. Then select a Template Name from the list of
XML templatesin the selected Template Category.

JDBC Connect User’s Guide

10

11

12

13

14

Under the “Fault Message” pane, select an XML template to be used to pass back to clients when

an error condition occurs.

As above, to add additional input XML templates, click Add and choose a Template Category and

Template Name for each. Repeat as many times as desired. To remove an input XML template,

select an entry and click Delete.

Click Next. The Connection Info panel of the “ Create a New JDBC Component” Wizard appears.

Create a New JDEC Component 1‘

Specifywhich Connection you wish to use far this Component or Service. To change any connection
parameters, you must change them in the Connection Resource ohject or create a new Connection
Resource ofthe same type with different parameters.

Connection |\nverﬂury8y5‘tem |i|

JDBC Driver |

JDBC URL |

Uszer ID I

Password I

DB Params I

Deplayed Pool hizme |

Allow SQL Transactions

[Back][Finish][Cancel]

Select aJDBC Connection from the pull down list. For more information on the JDBC
Connection, see “Creating a JDBC Connection Resource” on page 13.

Click Finish. The component is created and the JDBC Component Editor appears.

W exteNd Composer: TutorialEnd [JDBC: InventorylLookup] =[]
File Edit View Component Action Animate Tools Window Help Ho -8 x
DEeEdE Y00 9SS Novell
\'3@ InventoryLookup }[E@ WyJDBECampanent |
s
@ Input Data 0 x | sQL Statement | Result Mapping|[Result Text|
=)< > PRODUCTREGLU Data: Operators/Heywords:
e yming http dfwarwr compozer coZ| - AgAccessRights hsaL [~]
[LORg437 - hghgents . [E-SELECT
[-AgContents
[=)- Aglnfo
[+ AgResources . [INSERT
[=)- InventorySystem [l Math
@ Output Data [Z-ProductSystem [Relational L
(=) <> INVENTORYSTAT ‘E'- ‘Logical |E|
L=l
€3 CATEGORY SQL Statement: [Execute As Prepared
3 OMHAND SELECT * FROM InventorySystemn WHERE SKL
L C0ST “InputXPath"PRODUCTREQUESTISKUY
L > oTaT) 1111171111111 11 111171111 777777
PEBEFO
é Nat|Ve EnV|r0nment [T rmnmnnkup
— R - — LOG "ir'in" + "Component starting...” + ™ir'm" TO Systern Output using Log Level 5
Pane is empty until v
Liv'aFxecute SQL: SELECT * FROM InventorySystem WHERE SKU ="Input.XPath{"PROI|
“ "
an SQL Statement’ EF MAP $TempINVENTORYSTATUS/SKU TO $OutputINVENTORYSTATUS/SKU
. . AR $TempANVENTORYSTATUSI/CATEGORY Via Code Table Map InventoryDisplay' T,
action is added =
SB MAP $TempINVENTORYSTATUS/STATUS TO $0utput INVENTORYSTATUSISTATUS
I L0G "win" + “End of Companent.” + *win" TO System Output using Log Level §
<] J B
Ready

Creating a JDBC Component

19

About the JDBC Component Editor Window

The JDBC Component Editor includes all the functionality of the XML Map Component Editor. It
contains mapping panes for Input and Output XML documents aswell as an Action pane.

The difference, however, isthat the JIDBC Component Editor a so includes a Native Environment pane
common to al Connects. It appears as a grey pane until you create an SQL Statement action, at which
timeit is populated with the Query pane, which is specific to the JDBC connector.

NOTE: To display the Query Pane, you must first select SQL Statement from the Action menu and
create an SQL action. Otherwise, the pane remains greyed out.

W extenNd Composer: TutorialEnd [JDBC: Inventorylookup] =10l x|
File Edit View Component Action Animate Tools Window Help HEO - & x
DEedE *d0 X 49 S Novell
[3@ InventoryLookup][%@ MyJDBCComponent |
@ Input Data Ox
[=-<> PRODUCTREGL
L uming hitp:hansni composer.co
Input Native Environment
mapping pane pane
® Ooutput Data Ox @& G- Eﬁ k= G (]
=< > [NVENTORYSTAT)
:: SKU i LOG "irn” + "Component starting...” + "r'n™ TO System
<> SELE\%%RY S0 Execute S0L. SELECT *FROM InventorySystern WHERE
<> cosT E=1 TO $OutputINVEN
<> cTaT E=3 . GORY Via Code T
Output 5 Action Model pane s o soutputatr
mapping pane W "rin" TO System OL
O BJ
Peady

About the Query Pane

20

When the Query pane (i.e., the activated Native Environment pane) is showing—that is, when an SQL
Statement action is selected—it becomes afully functional SQL environment for creating and testing
queriesin real time. From this pane, you can perform the following:

+ Takedatafrom an Input Message (or other available Message Part) and useit to create or modify an
SQL Query against arelational data source

+ Taketheresults of that query and put it into aMessage Part (e.g., Temp, Output, MyDom, etc.)

The Query pane includes three tabs: the SQL Statement tab, the Results Mapping tab, and the Results
Text tab.

JDBC Connect User’s Guide

SQL Statement Tab

When the Query panefirst opens, it displaysthe SQL Statement tabin alive SQL environment. The SQL
Statement tab iswhereyou'll write or build SQL commands. (Seeillustration below.) It may be necessary

to resize the SQL Statement pane in order to see the SQL edit box. You can build whole or partial

statements by doubleclicking nodes in the Data and/or SQL Operatorstrees, or by typing SQL straight

into the bottom of the window.

saL Statementl ResultMapping' ResultText'
Operatorsikeywords:

|| =saL -
---Math j
[-Relational

J - Logical

E--Functions
d Loape d

I- Execute As Prepared

SQL Staternent:

SELECT * FROM InventorySystern WHERE SkU
="Input ¥Path"PRODUCTREQUEST/SKU"Y

Result Mapping Tab

Result Text Tab

The Result Mapping tab allows you to map the result of your database query into an XML document. It
also allows you to designate the exact XML branch element under which you' d like the query result to

appear. The Result Mapping tab is shown below.

SGL Staterment Result Mapping | Result Textl

Result Row Placement
Enterthe XML element to place results under:

frems =

[IMVENTORYSTATUS 74

i* |7 Create element names as column names
|7 Create elements if column is null
I- Include datatype info in element attribute

|_ Generate Row numbers
0 Custom Column/Ron'Group |

I_ Stored Procedure mapping

The Result Text tab (see below) displays the actual SQL statement sent and the data that was returned
following the execution of the database query. Thisis helpful if errant data shows up in a Temporary or
Output Part. You can compare the data from the Result Text tab with the datain the XML Messageto see

where the error occurred.

|' SOL Statement || Result Mapping | Result Text]

EXECUTED:
SELECT * FROM InventarySystem WHERE SKU ='LORS437"

Sk CATEGORY OMHAND COST STATUS

LORE43T 1 0 275 Out of
Stacki{on re-arder)

Creating a JDBC Component

21

22 JDBC Connect User’s Guide

Performing JDBC Actions

About Actions

An action issimilar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. Please see the chapters in the Composer User’s Guide devoted to Actions.

Within the JIDBC Component Editor, aset of instructions for processing XML documents or
communicating with non-XML data sourcesis created as part of an Action Model. The Action Model
performs all data mapping, data transformation, data transfer between SQL databases and XML
documents, and data transfer within components and services.

An Action Model is made up of alist of actions. All actionswithin an Action Model work together. As
an example, one Action Model might contain individual actions that read invoice data from a disk,
retrieve datafrom an inventory database, map the result to atemporary XML document, make a
conversion, and map the converted datato an output XML document.

The Action Model mentioned above would be composed of several discrete actions. These actions
would:

+ Open aninvoice document and perform an SQL command to retrieve invoice data from a database
+ Maptheresult to atemporary XML document
+ Convert anumeric code using a Code Table and map the result to an Output XML document

Two of the actions available in Composer are specific to JDBC Components. These are the SQL
Statement Action and the SQL Batch Action.

Mew Action] SOL Statement...
SQL Batch...
Advanced]
Data Euchbanos e

These actions are described below.

The SQL Statement Action

The SQL Statement action is most commonly used to query an existing database and then map the result
toan XML document. However, thefull set of SQL Data Manipulation Language (DML) statements can
be utilized (including database inserts, deletes, and updates).

There are two waysto use the SQL Statement Action. Thefirst isto create your SQL statement using the
wizard. The second isto create a custom SQL statement either by typing it in directly or by selecting
command statements from the ECM A Script Expression Builder. In either case, you should be familiar
with SQL database commands and with the structure of the database(s) you are querying in order to
create valid statements with the SQL Statement action.

Performing JDBC Actions 23

Handling of Binary Data

When you abtain binary data from a database that supports binary types (such as MySQL , which
supports CHAR BINARY, VARCHAR BINARY, TINYBLOB, BLOB, MEDIUMBLOB, and
LONGBLOB binaries), you are dealing with data that potentially contains characters and/or character
combinations that areillegal in XML.

NOTE: Merely mapping such data into a CDATA section is not a satisfactory solution, because some
characters (such as “angle brackets”) are illegal in CDATA. Also, the character-combo “]]>" is not allowed
within CDATA, since it signals the end of a CDATA section.

One satisfactory way to handle binary datais to use Base64 encoding, which essentially turns arbitrary
byte streamsinto XML-safe ASCII streams. Composer’s default behavior isto automatically Base64-
encode binary data whenever possible, such aswhen binary data are returned from a database during a
SELECT or other "read” operation. Conversely, Composer will automatically Base64-decode binary
databefore INSERTing or otherwise pushing it into adatabase. You do not haveto take any special action
to make this happen.

If you want to take direct control over encoding or decoding of data, you can do so with the Composer-
defined ECM A Script extension methods base64Encode() and base64Decode(). The former takes a
byte[] array argument and returns a String. The latter takes a String and returns a byte| | array.

Prepared Statements

The JDBC Connect hasthe ability to prepare (or precompile) SQL commands and cache them in memory
so that when the same command executes over and over again (for example, in aloop), the cached
statement can be reused, with new argument values inserted as need be. This can be a significant
performance optimization in cases where statements execute many times.

You can designate any SQL statement as a“ prepared statement,” whether it was created manually or via
thewizard, by using the “ Execute as prepared” checkbox. This checkbox islocated on thefirst dialog of
the wizard, and also provided just above the SQL edit box for manually created SQL Statements:

|_ Execute A= Frepared

By default, this checkbox is unchecked. For SQL Statement actions that are executed only oncein the
course of aservice'slifetime, it is recommended that you leave the checkbox disabled. For statements
inside loops, the checkbox can be checked.

NOTE: You may want to do some benchmarking to determine whether and to what degree using the
Execute as Prepared checkbox is beneficial in a given application.

Creating an SQL Statement using the Wizard

The SQL Creation wizard |eads you through the process of creating an SQL query. Composer offersyou
the ability to create SQL statementsusing the SELECT, DELETE, INSERT and UPDATE commands. Of
course, the userid with which you access the database must have the privileges required to perform these
actions for your JDBC component to work correctly. Most userids will be ableto SELECT from tables
by default, but often you must have special permission to perform DELETE, INSERT and UPDATE
actions on tables. Check with your Database Administrator if you are in doubt.

The SQL SELECT Statement

24

The SQL Select Statement is used to select and return datafrom atable. For examples on how to use the
SQL Select statement, refer to http://www.w3schools.com/sgl/sql_select.asp. Depending on the size and
structure of your table, asimple SELECT statement may return alot of data. For thisreason, SELECT
statements are often filtered using a WHERE clause.

JDBC Connect User’s Guide

> To create an SQL SELECT Statement action using the wizard:
1 Create or open aJDBC Component.
2 Highlight alinein the Action Model where you want to place the SQL Statement action. The new
action will be inserted below the line you highlight.
3 Fromthe Action menu, select New Action, then SQL Satement.
4 Indicate that you wish to Create a SQL statement using the wizard.

Create a New SOL Statement. ll

You may choose between creating a custam S0L statement ar creating a SQL statement
using the wizard. For SGL statements requiring multiple tables, create a custom SGL
statement.

O Create Custom SQL statement

@® Create a SOL statement using the wizard

Statement Type:

SELECT [v]

[|[Next][Finish][Cancel

5 Choose SELECT asthe Statement Type.
6 Click Next to display the dialog which allows you to choose a table from which to select your data.

Create a New S0L Statement. LI
Choaose one table and the calumns within the table that you want the SELECT statement t
return.

Tables and Columns:
[+ O AgResources [~]
[#- O InventorySystem
=} ® ProductSystem
SKU r
NAME
DESCRIPTION
) MANUFACTURER
[LISTPRICE
[CJ IMAGEFILE
([IMAGEHEIGHT L
] IMAGEWIDTH [~]
[Back][][Finish][Cancel]

7 Select the table and columns used for the SELECT statement by checking the radio button check
boxes associated with the required columns of the table you wish to use. You will notice that if you
hover your cursor over a column, descriptive information about that column, such asits TY PE and
whether or not it can beaNULL field appears.

NOTE: You can select or deselect all the columns in a table by checking or unchecking the box at
the table level.

Performing JDBC Actions 25

8 Click Next to bring up another dialog, which allows you to select columnsto usein your WHERE
statement to filter the results of the SELECT statement.

Create a New SOL Statement. il

Choose the Column(s) you want to use in the SELECT staterment's WHERE clause to filter
the result set.

Tables and Columns:

= @ ProductSystem
SKU
CJNAME
] DESCRIPTION
[CJMANUFACTURER
CJLISTPRICE
[IMAGEFILE
[IMAGEHEIGHT
I IMAGEWIDTH

[Back][Next][Finish][Cancel]

9 Click Next to moveto the fina dialog, in which you specify the Target Message Part and X Path
placement for the results of your SQL Statement.

Create a New SOL Statement. x|

Select a Part and enter the Target ¥Path for the result. If multiple rows are returned, the
¥Path mustinclude a Row Target{e. 0. RESULTINFO/RCWY). Choose the options as
required.

Target

(® ®XPath: putput [~] () Expression:

[RESULTINFOIROWY [

Options
Create element names as column names
Create elements if column is null
[Include datatype info in element attribute

] Generate Row numbers

[Back | |[Eopinisho] [cancel |
You can either specify an XPath, or select Expression to go to the ECMA Script Expression Builder
and

Optionally, you may also choose to:
+ Create element names as column name.

+ Createelementsif column isnull. This creates XML elements with empty content if the
column returned has no data.

+ Includedatatypeinfoin element attribute. This creates an attribute for each element
indicating the data type of the result column.

+ Generaterow numbers (if applicable).
10 Click Finish to create the action and return to the JIDBC Component Editor.

26 JDBC Connect User’s Guide

WHERE Clauses

The execute SQL SELECT statement isnow displayed and highlighted in the Action Model. When focus
ison this new action, the Native Environment Pane displays a two-tabbed dialog which includes a
WHERE tab and aResult Text tab. WHERE will be visible by default. Thistab will be used tofilter the
result set.

[WHERE | Result Text |

G = {dp =} Value

‘ |sHL [~| LIKE
Mot Equal To
- Less Than
Greater Than
@ @ Ej r{ﬂ Q == Less Than or Equal Te
=] SampleJDBClnventoryl ool == Greater Than or Equal Te
ﬁ”’ LOG"rn" « "Comg, LIKE Search for a Pattern g LogLeveld

L1 wecute SOL SELE BETWEEN An Inclusive Range R
ﬁ MAP $TempiINVEN] MOT BETWEEN An Exclusive Rangs US/SKU J
n & d Im A (= 1 i o -,

== AN A L O T AT e AL o P

> Filtering the resultset using the WHERE tab:

1 Select the Columnsyou wishto filter using the dropdown menu. Thislist is populated according to
the columnsyou chose in step three of the wizard. You may select one or more columns with which
tofilter thelist. To add a column to the filter for the result set, click on the + icon. To delete a
column, click the - icon. Columns can also be selected by group. To add a group, click the {+icon.
To delete agroup, click the -} icon.

2 Select aRelation from the dropdown list. Examples for all these relational operators can be found
at http://lwww.w3schools.com/sgl/sgl_where.asp.

When using the LIKE operator, the % symbol can be used as awildcard character representing any
number of missing characters at the beginning or ending of your matching pattern. Text values
should be surrounded by single quotes, though most databases will also accept double quotes.
It isimportant to note that the BETWEEN...AND operator can be interpreted differently by
different databases. With some, “between” isliteral and only valuesin between your test cases will
be selected. Some databases will include the test casesin your result set also. Some include the first
case but not the last, and vice versa. In general, with SQL, you should follow the advice of that
famous television lawyer and “Never ask a question you don’t already know the answer to.”

3 For Value, either a constant or an expression can be entered. You may also drag and drop fields
from your XML Message Parts to create an expression.

4 TheLogical dropdown menu allows you to create more complex WHERE clauses using And/Or
logic. Or, you may complete the clause by selecting End.

Once you have adjusted your WHERE clause to filter your results appropriately, you will see the
completed SQL statement in the Action Model.

If you open the Result Text tab, you will be able to see the text of the SQL and the results produced by
running the query.

Performing JDBC Actions 27

¥ exteNd Composer: TutorialEnd [JDBC: SampleJDBCInventoryLookup] =[Ol x|

File Edit Wiew Component Action Animate Tools Window Help HO -8 x
D8 Y0 0X @S Novell

|3@ Sample JDBCInventoryLookup w
WHERE | Result Text}

EXECUTED:
SELECT SKU, NAME, DESCRIFTION FROM ProductSystern WHERE SKU='LORS437"

1) MHAME DESCRIFTION

LORS437 Cherry Bookcase Features premium grade cherry in a scratch and dent resistant finish

DEBEE2N
ipleDBECInventoryl ookup
J§/ LOG "rin" + "Companent starting...” + "ir'n" TO System Output using Log Level §
Lie/BFzecute SQL SELECT: SELECT SKU, NAME, DESCRIPTION FROM ProductSystem WHERE SKU=Input. XPath{"PRODUCTREQUES
ﬁ MAP $TempANVENTORYSTATUS/SKU TO $OutputINVENTORYSTATUS/SKU
ﬁ MAP $TermpINVENTORYSTATUS/CATEGORY Via Code Table Map InvertoryDisplay' TO $O0utputINVENTORYSTATUS/ICATEGORY
ﬁ MAP $TempINVENTORYSTATUS/STATUS TO $OutputINVENTORYSTATUS/STATUS
J§/ LOG "rin" + “End of Component.” + "rin" TO System Output using Log Level 5

<] B
Peady

The SQL DELETE Statement

28

Delete statementsin SQL are used to delete entire rows from tables. If you wish to delete, null out or
otherwise modify individual column values within rowsin atable, you should use the MODIFY
command (described below). The stepsto follow to create an SQL DELETE statement are fairly similar
to those for creating an SQL SELECT statement.

> To create an SQL DELETE Statement action using the wizard:
1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL Statement action. The new
action will be inserted below the line you highlight.

3 Fromthe Action menu, select New Action, then SQL Statement.
4 Indicate that you wish to Create a SQL statement using the wizard.
5 Select DELETE for your Statement Type.

6 Click Next to select the table from which rows will be deleted using the DELETE statement.

Create a Mew S0OL Statement. il
Selectthe table frame which DELETE staterment to delete rowes.

Tables and Columns:

- O AgResources [~]
[F- O InventorySystem
[} ® ProductSystem

[Finish |[Cancel |

Back |[i

JDBC Connect User’s Guide

Only one table can be checked at atime. In the case of DELETE, you will not be able to select
individual columns at this point in the wizard. This screen is for table selection only, and the
columns are all selected and grayed out, indicating that they will all be available for selectionin the
next dialog of the wizard.

Click Next to open the next dialog, from which you will select the column(s) which will be used by
the DELETE statement’s WHERE clause to filter the records which will be deleted.

Create a New SOL Statement. x|

Choose the Columnis) youwantto use in the DELETE staterment's WHERE clause.
Warning: Ifyou do not specify a WHERE clause, ALL records will be deleted.

Tables and Columns:

=} @ ProductSystem
SKU
I NAME
I DESCRIPTION
I MANUFACTURER
CILISTPRICE
[IMAGEFILE
I IMAGEHEIGHT
[IMAGEWIDTH

[Back]| |[Finish][Cancel]

Click Finish to create the new action and display it in the Action Model. As described above in the
SELECT statement, the WHERE tab will be displayed. Use the WHERE filtering (described in
“WHERE Clauses’ above) to complete your SQL Delete statement. The Result Text tab shows the
text of the SQL and the results produced by running the statement.

The SQL INSERT Statement

Insert statementsin SQL are used to insert entire rows into tables. If you wish to insert or otherwise
modify individual column values within rowsin atable, you should use the MODIFY command
(described below). The stepsto follow to create an SQL INSERT statement are also fairly similar to those
for creating an SQL SELECT statement.

> To create an SQL INSERT Statement action using the wizard:

1
2

3

N

Create or open a JDBC Component.

Highlight aline in the Action Model where you want to place the SQL Statement action. The new
action will be inserted below the line you highlight.

From the Action menu, select New Action, then SQL Statement.
Indicate that you wish to Create a SQL statement using the wizard.
Select INSERT for your Statement Type.

Performing JDBC Actions 29

6 Click Next to select the table(s) into which rows will be inserted by the INSERT statement. At the
same time, select the columns which will be provided with new data by the statement.

Create a New SOL Statement. x|

Selectthe table intowhich a new row will be inserted. Selectthe columns in the table for
which the INSERT statement will provide data.

Tables and Columns:

[+) AgAccessRights [~]

[O AgAgents

[O AgContents

[Z- O Aginfo

[} O AgResources

=} @ InventorySystem
SKU
CATEGORY
ONHAND
COST
[JSTATUS

-
(Back | N Fioish. | Cancel |

7 Click Finish to insert the new SQL Insert Statement into your Action Model and return to the
Component Editor.

The Native Environment Pane displaystwo tabs: Column Values and Result Text. Column Valueswill be

displayed by default.
¥ exteNd Composer: TutorialEnd [JDBC: SampleJDECInventory! 18] =l
File Edit \iew Component Action Animate Tools Window Help HEO -2 x
D@8 Yyd10X QS Novell
|3® SampleJDBC Inventory Lookup]
@ Input Data B x| |[Column Values | Resuit Text |
== pPRrRO([Table: InventorySystem
[hitpeihwiie. cOmpaser.com
Lo olloraaaT Column Walue |
Sk Output P ath " INVENTORYSTATUSISIKLM @ -
CATEGORY 1 @ -
OMHARD 200 @ -
COST 275 -
@ Output L Bx 174

S |MVENTORYSTATLUS

Lorss’ & [l CR BB @ 1

[=]--Sample JDBCInventoryl_ookup |A |

Rie - zecute SOL INSERT: INSERT INTO InventorySystem
@ MAFP $TempINVENTORYSTATUS/SKU TO $0utput.|'lNUE|7|
<] 0] B

|SOLItpLIt SIVENTORYSTATLS /STATUS

Specifying Column Values

30

The Column Values pane displays a table with two columns. The first presents alist of the columns
selected during the final step of the SQL Insert wizard. In the second column, you will define the values
for the columns of the row to beinserted. You also have the ability to drag and drop datafrom aMessage
Part to the Value column, as shown in the SKU example above.

Asaways, the Result Text tab shows the text of the SQL and the results produced by running the
statement. You will notice that Composer automatically surrounds non-numeric data with single quotes.

JDBC Connect User’s Guide

Column Values | Resuilt Text]

EXECUTED:
INSERT INTO InventorySystemn (SKU, GATEGORY, ONHAND, COST) VALUES (LORS45T', 1, 200, 275)

SQLCODE=0
UFDATECOUMT =1

The SQL UPDATE Statement

Update statementsin SQL are used to modify data within the rows and/or columns of atable. The steps
tofollow to create an SQL UPDATE statement are also fairly similar to those for creating an SQL
SELECT statement.

> To create an SQL UPDATE Statement action using the wizard:
1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL Statement action. The new
action will be inserted below the line you highlight.

3 Fromthe Action menu, select New Action, then SQL Satement.
4 Indicate that you wish to Create a SQL statement using the wizard.
5 Select UPDATE for your Statement Type.

6 Click Next to select the table(s) and columns to modify with the SQL statement.

Create a New SOL Statement. x|
Selectthe table and columnis) that will be modified by UPDATE statement.

Tables and Columns:

= O AgAccessRights

[z} O AgAgents

[O AgContents

[} O Aginfo

- O AgResources

= ® InventorySystem
SKU
CATEGORY
ONHAND
COST
CJSTATUS

[Back [Wexi.i](Finish |[Cancel |

1>]

<l

Performing JDBC Actions 31

7 Click Next to bring up the final dialog, which allows you to select which columns will be used by
the WHERE clause of the Update statement.

Create a New S0L Statement. X|
Choaose the Columnds) you want to use in the UPDATE statement's WHERE clause ta filtel
the result set.

Tables and Columns:

= @ InventorySystem
SKU
I CATEGORY
1 ONHAND
Ccost
O status

[Back]| |[Finish][Cancel]

8 Select the appropriate columns and click Finish to complete the action and add it to the Action
Model.

Just aswith the SELECT and DEL ETE commands, the Native Environment Pane will display a Where
tab and a Result Text Tab. In this case, though, it will also display a Column Values tab as seen with the
Insert command.

Use the Where tab to filter the record set to be updated as demonstrated in “WHERE Clauses’ on page
-27 above. You may select the columns and define the criteriafor those columnsin order to update only
the desired records.

|‘ WHERE || Column Values || Result Text |
b o= i -}

| |SKLI > = % |'ath{"INVENTORYSTATUS/SKU") [- End =

Tab to Column Values to provide the values for each of the columns to be updated. Updating Column
Valuesis demonstrated in “ Specifying Column Values® above.

[WHERET Column Values]I’ Result Text]
Table: Inventorysystem

Column “alue |
SKL 'SUEZ2234" [B¥ -
CATEGORY 2 @ -
COMHARND 44 @ -
COST 3000 @ -

32 JDBC Connect User’s Guide

Asaways, the Result Text Tab shows the text of the SQL and the results produced by running the
statement. You will notice that Composer automatically surrounds non-numeric data with single quotes.

| WHERE || Column Values I Result Text]

EXECLUTED:

LIPDATE InventorySystem SET SKU = 'LORB437", CATEGORY =2, ONHAND =
366, COST=12, STATUS = "1"WHERE SKU="LORE437"

SQLCODE=0
LIPDATECOLUNT =10

Editing a SQL Statement Created with the Wizard

Once you have created your SQL statement, you may find that you need to edit it. Thisis atwo part

process. Begin by double-clicking onthe EXECUTE SQL actioninthe Action Model. Thiswill bring up
atabbed dialog, as shown below.

Edit SOL Statement x|
|' Table and column selection panel]| WHERE clause column selector || Result Map Properties |

Choose one tahle and the calumns within the table that yvou want the SELECT staterment to
return.

Tables and Columns:

[+ O ApAgents

[#- O AgContents

[*- O Aginfo

[} O AgResources

=} @ InventorySystem
[¥] SKU

[NE

CATEGORY
ONHAND
COST
STATUS

1 C ProductSystem

[<1

These tabs allow you modify the basic Table, Column and Target selections for the SQL Query. The
number of tabs will vary according to the type of SQL Statement you are editing.

+ TheTable and column selection panel tab isavailable for all SQL statement types. It allows you
to modify the tables and/or columns you had chosen to use in your SQL query.

+ The WHERE clause column selector tab is available for the SELECT, DELETE and UPDATE
statement types. Use this tab to modify the columns you had chosen to use for your Where clause.

+ TheResult Map Propertiesisavailable only for SQL SELECT actions created using the Wizard.
Here you can modify the Target location for the results of your query.

Once you have edited the information in these tabs, you may need to further modify the SQL Statement
using the additional tabs available when theiteminthe Action Model isclicked on asingletime, or after
you have clicked on OK in the Edit SQL Statement tabs, described above.

Back in the Native Environment Pane, you will see a screen that resembles the following.

|' WHERE]| Column Values || Result Text |
9 == {qp =}

‘ jsHU M = #|joresar

Again, the number of tabs shown will vary according to the type of SQL Statement.

Performing JDBC Actions 33

+ TheWHERE tabisavailablefor all SELECT, DELETE and Update SQL Statements prepared
using the wizard. Here you can modify the filter chosen to limit your query.

+ TheColumn Valuestab isavailable for INSERT and UPDATE queries. Use this tab to modify the
values you originally designated as being inserted or changed as a result of your SQL statement.

+ TheResult Text tab isavailable for all SQL Statements. It shows the query that was executed and
the results it produced.

Creating an SQL Statement Manually

The manual creation of SQL statements for use in JDBC Componentsis done inside the Query/Result

Mapping Pane.
5 mput ati S0L Statersent | Ragul Mapping | Resun Ted
=< "”"?IE".FWM el | 2512 Operamswons
o tomp|
<> SHLORRIT e G-t Quel’y/Result
o AgComents | Relational - .
hgindo + Lagical
o rerowe i Mapping Pane
i ImvnROrySystem
6 Outpid |7
S0L Stasemant [T Exatute a2 Pinparas
SELECT * FROM IrnentonySysbern WHERE ¢ =" input ¥PathC PROOUCTREQUESTISHLIY S Q L State m e nt
control box
SEABES0N
ftond ook [4
¥ LOG=rn® + “Component starting..” « “va” TO Srstem Output using Log Level &
LW cocule SOL: SELECT * FROM nveniiorySystum WHERE SHL = npul XPath{ PROCUC
5 MAF $TempINVENT GRSTATUSSKU 10 $0uput INVENTORYSTATISSKI -
S5 WAP STomaINVENTORYSTATIS CATEGORY 1ia Code Tabie T0 SOulput BVENTORYSTE
ut of Stock] | U] | _,J
fetion. Execute SOL. SELECT * FROM InvertorySrstum WHERE 51U = Inpul® i PRODUCTREQUES TSI

If you are editing apreviously created action model that already contains SQL Statement actions, you can
make the Query/Result Mapping Pane comeinto view simply by selecting (clicking on) any existing SQL
Statement action. Otherwise, you will create an SQL Statement action.

> To manually create an SQL Statement action:
1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL Statement action. The new
action will be inserted below the line you highlight.

3 From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a Custom SQL Statement. The Query/Result Mapping pane
appears in the Native Environment pane of the JDBC Component Editor window, as shown above.

Building an SQL Statement Manually

34

Building an SQL Statement manually involves bringing together data, operators, and keywords.

> To build an SQL Statement:
1 Placethecursor inthe SQL Statement control box in the Query/Result Mapping pane.

2 Expand the Data columns and/or the Oper ator /K eywor ds by clicking the plus signs. The
illustration below shows Data and Operator/K eywords trees look like with several parent nodes
expanded.

JDBC Connect User’s Guide

3

SQL Staternent | Result Mapping | Result Text'
Data: Operatorsikeywards:

---ngResources $|
E-InventorySystem

[#-INSERT
#-Math

ional

Equal

<> Not Equal

-« Less than

-» Greater than

= Less or equal

= Greater or equal

LK =l

I_ Execute As Prepared

----- DESCRIPTION

------ MANUFACTURER

----- LISTPRICE

----- IMAGEFILE

----- IMAGEHEIGHT |
----- IMAGEWIDTH <A

SQL Staternent:
SELECT * FROM InventorySystern WHERE SKU ="Input XPath{"PRODUCTREQUEST/SKU"Y'

Double-click each Data column and/or Operator/K eywor d that you would like to add to the SQL
Satement box. When you double-click an item, it automatically appearsin the SQL Statement
box at the insertion point.

Optionally, you may drag elements from an open DOM tree (e.g., the Input DOM pane) into the
SQL Satement box.

Optionally check the Execute as Prepared checkbox. (See discussion further above, under
“Prepared Statements’.)

Building an Example Query

Hereis an example SQL statement:

SELECT * FROM ProductSystem WHERE SKU = ':Input.XPath ("PRODUCTREQUEST/SKU")';

In order to build this statement, the component must satisfy the following:

*

The component must be able to use a (previously defined) connection resource to connect to the
database

The database must have atable called ProductSystem that has a column called SKU

The component must have a template containing a sample XML document with aroot element,
PRODUCTREQUEST, that has a child element named SKU

This example statement, in plain English, means:

“Select al columns from the database’s ProductSystem table where arecord’s value in column SKU is
equal to the content of the Input DOM’s PRODUCTREQUEST/SKU element.”

> To build the example statement:

0o N O O~ WN PR

Expand the SQL tree in the Expression builder and double-click SELECT.
Double-click * in the Expression Builder.
Double-click FROM in the Expression Builder.

Type ProductSystem.
Double-click WHERE in the Expression Builder.
Type SKU =.

Select SKU in the Input DOM and drag it into the SQL Statement control.
Optionally type asemicolon (;) at the end of the SQL Statement.

Performing JDBC Actions 35

9 Select File>Save. The Query/Result Pane should look like this:

SeL Statementl ResultMapping] ResuItText]

Data: Operatorsikevwords:

+-AgAccessRights o FOR. BROWSE ﬂ
+-Aghgents

+-AgContents +-DELETE _
+1-Aginfo +-UPDATE

+-AgResources | +-INSERT Rd
S0L Staternent: [Execute As Prepared
SELECT * FROM ProductSystem WHERE SkKU=tInput¥Path"PRODUCTREQUESTISKU™M"

Mapping Results into the Output DOM

When you have created your SQL Statement manually, you must use the Result M apping paneto select
where to place the rows and columns of your resultsinto the XML Document tree.

> To use Result Mapping:
1 Select the Result Mapping tab in the Query/Results M apping pane. The Results Mapping pane
appears.
SQL Statement ResultMapping | Result Textl

Result Row Placement
Enterthe XML element to place results under:

frems =

[INVENTORYSTATUS 4

ol |7 Create element names as column names
p Create elements if column is null
l_ Include datatype info in element attribute

|_ Generate Row numbers

' Custom Column/RonwGroup |
I- Stored Procedure mapping |

2 Under Result Row Placement, select the destination Part to which you would like the result of the
SQL query mapped.

3 Next, select the Part element under which you'd like each result row to appear. If an appropriate
Part is not listed, you may add another XML template using the File>Proper ties>M essages dialog
from the menu. If aPart isnot visible, go to View>XML Documents>Show/Hide.

4 Select options as follows:

Default Result Mapping: Choose the first radio button for standard Column/Row/Group mapping:
+ Create element name as column name.

+ Createdementsif column isnull. This creates XML elements with empty content if the
column returned has no data.

+ Includedatatypeinfoin element attribute. This creates an attribute for each element
indicating the data type of the result column.

+ Generaterow numbers (if applicable).

Custom Result Mapping: Choose the second radio button, Custom Column/Row/Group, to perform
custom column, row, or group mapping (see Chapter 5).

Stored Procedure Mapping: Choose Stored Procedure mapping to map data returned from stored
procedures. (see Chapter 6).

5 Sdect File>Save.

36 JDBC Connect User’s Guide

Editing a Manually Created SQL Statement

To edit a SQL statement once you have created it manually, simply click on the EXECUTE SQL action
inthe Action Model.

[L Statement | Result Mapping || Result Text |

Diata:

l£l-Aginfo
[*}-AgResources
- ImentorySystem

Operatorsieywords:
[~] |=-saL [~]

[- T Y . Ny,

~-SHU

‘CATEGORY

-ONHAND :

~-COST | £ Refational -
_STATUS [+| - Logical v

SQL Statement: [Execute As Prepared

FELECT* FROM ImventorySysterm WHERE SkLI

"Input®¥Path("PRODUCTREQUEST/SIKLMY

+ Usethe SQL Statement Tab to edit the Text of your SQL statement manually or use the methods
above to change your selections of Data, Operators and Keywords.

+ Usethe Result Mapping Tab to modify the target placement for the returned data.
+ Usethe Result Text Tab to show the query that was executed and the results of the query.

Executing the SQL Statement

After you have built the SQL Statement, either manually or using thewizard, click the Execute button to
runit.

Eer: TutonalEnd [JDBC: Inventorylookup]

Component Action Ani ::

ols Window Help

= 0 A0 X4

.
ta || SOL Staterme™ S Re Mapping]ResultTem]
Data: Cperatorsikeywo
ARty COTI g ﬂ - s0L
RE4aT +-AgResources o SELECT
- Iverforvsystem - Execute DELETE
CATEGORY button 5\?1?:%
ONHAND
COST +-UPDATE
STATUS +-INSERT
E-- | = ProductSystem + Math

Performing JDBC Actions 37

Checking the Results

You can check the results of your SQL statement by looking at the data retrieved in the familiar row and
column format. To do so, click the Result Text tab. Thistab isavailablefor all SQL Statements, whether
created manually or using the wizard.

|' sQL Statement] | Result Mapping\l’ Result Text]

ExXECUTED:
SELECT * FROM InventorySystern WHERE SkU ='LORE43T

Sk CATEGORY OMHAMD COsT STATUS

LORE437 1 a 275 Qut af
Stocki{on re-order)

If the query result returned by the SQL statement looks correct, you can continue designing your
component’s Action Model. Otherwise, you can return to the SQL Statement tab and debug your SQL as
necessary.

Using Stored Procedures

Many RDBMSS vendors provide the ability to execute procedural code stored in the RDBM S system.
Using these stored procedures allows for high-performance interfaces that are independent of the
underlying table implementations.

Using stored procedures can be helpful in controlling accessto data. User accessto data can belimited to
the scope of the stored procedure. Limiting accessto datawith stored procedures preserves dataintegrity
by insuring datais entered in a consistent manner. Stored procedures also improve efficiency. They're
memory resident, which speeds execution. Their use decreases network traffic. Productivity isimproved
viatheir use since stored procedures only need to be written and debugged once but can be reused by
many.

While often used interchangeably, for the sake of discussion we' Il differentiate between the terms
Procedures and Functions. A Procedure is a subroutine that doesn’t necessarily return any data but may
viathe call’s parameters or as external result sets. A Function, on the other hand, always returns
something. Both Procedures and Functions can pass Parameters.

Novell exteNd Composer alows you to map parameters to stored procedures and functions, execute
stored procedures and functions and map returned datato DOM/node combinations.

Syntax Requirements

38

In order to package the Procedure or Function call correctly, exteNd Composer requires certain
formatting conventions be followed. For example:

{ —indicatesthat acall to a Function or Procedure follows
} —indicates the end of acall to a Function or Procedure

The syntax for procedures and functions support parameters which may be Expressions, Placeholders or
Constants.

Expression: Expressions may be used to pass variableinput datato aprocedure or function. Expressions
used as parametersin procedure and function calls are preceded with acolon () and enclosed in single
quotes. (e.g. ‘:<variablename>").

Question Mark: Question Marks (?) may be used as parameters and serve as placeholdersto which the
procedure returns data. A question mark is also used for the result in afunction.

JDBC Connect User’s Guide

Constant: Constants are used to passinput datain procedures and functions but, unlike expressions or

placeholders cannot be used to accept returned data. Literal values are enclosed in single quotes.
Rules for Stored Procedure Parameters

Stored procedures may have Input Parameters, Input/Output parameters and Output Parameters.

I nput Parameters:. Input Parameters pass datato stored procedures. I nput Parameters may be Constants
or Expressions.

I nput/Output Parameters: Input/Output Parameters pass data to stored procedures and accept data
returned from stored procedures. Input/Output parameters must be Expressions.

Output Parameters. Output Parametersaccept datareturned from stored procedures. Output parameters
may be either an Expression or a Question Mark as a placeholder.

Using Procedures and Functions in a JDBC Component
For all the examples below the following steps should be executed.
* Add anew SQL action
» Execute as Prepared is set to true (check the checkbox; see“ Prepared Statements’ on page 19).

NOTE: For mapping the results of stored procedures, see Chapter 6.

Syntax for running a Procedure from within exteNd Composer

Procedures that do not return avalue:

{ call [<packagenames>.]<procedurename>[([paraml, param2..,paramn])] }
Example:
{ call composerDemoPackage.spl withParams (‘'12345',’'George’) }

Procedures that return aresult set:
{ call [<packagenames>.]<procedurenames [([paraml, param2..?....paramn])]}

where ?is a parameter to which the result set is returned. A result set may also be returned to other
parameters which contain Expressions.

Example:
{ call composerDemoPackage.sp withParams('93324', ‘:FirstName’, ?)}

In thisexample ‘93324’ isaconstant, ‘:FirstName' isan Expression and ?is a placehol der.

NOTE: Only Oracle returns result sets as parameters. Non-Oracle RDBMSs may return result sets but,
not as parameters.

Backward Compatibility for Oracle Procedures that return a result set:

Prior to version 4.0, exteNd Composer provided support for Oracle Procedures that return result sets as
parameters. To do so, exteNd Composer (prior to version 4.0) required the user to specify the Oracle
Cursor Position within the procedure call. The pre-Composer 4.0 syntax included ocp:n —where ocp
stands for Oracle Cursor Position and :n indicates which parameter contains the cursor. This syntax was
used in pre-4.0 versions of exteNd Composer and is maintained in version 4.0 and greater for backward

compatibility.

{ call [<packagenames>.]<procedurenames[([paraml, param2..0Cp:X....paramn])] }
Example:

{ call composerDemoPackage.sp withParams('93324', ‘Melissa’, ocp:3)}

Performing JDBC Actions 39

Syntax for Calling a

NOTE: The contents of the result set will be returned in the same manner as a standard SELECT
statement. The results will be automatically be mapped to the selected XML Document. The defaults are
Output as the Document and RESULTINFO/ROW as the XPath location.

Function from within Composer

Functions that return aresult set:

{ ? = [<packagenames>].<functionName>[([paraml, param2..,paramn])]}
Example:
{ ? = call composerDemoPackage.fn justOneReturn() }

Backward Compatibility for Oracle Functions that return aresult set:

To provide backward compatibility with pre-4.0 versions of exteNd Composer, the following syntax will
continue to be supported in exteNd Composer 4.0 and greater.

{ ocp:1 = [<packagenames>].<functionNames> [([paraml, param2..,paramn])]}
Example:
{ ocp:1 = call composerDemoPackage.fn justOneReturn() }

Other Methods of Calling Functionsfor Specific Tasks
You may call any function that does not update the database from within a select statement.
Example:

select fn_addMin(4,6) "Sum" from dual

To use afunction that does not return aresult set but updates the database, call it from within afunction
that does return aresult set — see the example fn_callAddMin

Example:

{ ? = call composerDemoPackage.fn callAddMin (22,44) }

Colons in SQL Statements

Colons are special charactersin SQL Statements, because exteNd Composer treats colons as markers
indicating the presence of ECM A Script immediately to theright. Inthe above action, the SQL Statement
includes the string

‘:Input.XPath (“PRODUCTREQUEST/SKU") ’

which contains a colon followed by an ECMA Script expression involving the X Path() method. Without
the colon, the string would be evaluated as a string-literal. With the colon, it is evaluated as an
ECMA Script expression.

NOTE: If you need to use colons as literal values inside SQL Statements, escape every occurrence of a
literal colon with a backslash. Otherwise, you may see errors.

The SQL Batch Action

Most database drivers allow batch execution of SQL statementsin order to minimize demand on
connection resources. For example, auser may want to insert datainto atable in one database and delete
datafrom atable in another database, all in one round trip. Thisis possible with the SQL Batch action.

SQL Batch actions allow you to specify that a particular group of SQL Statement actions should be
accumulated into a single batch and transmitted to the database as a unit.

40 JDBC Connect User’s Guide

Start Batch

Execute Batch

NOTE: SELECT operations may not be used in batches. Use only INSERT, DELETE, and UPDATE
statements.

To accessthe SQL Batch action, right-click inside the action pane and choose New Action > SQL Batch
as shown below.

Mews Action P SGL Staterment
Edit
Disahle Advanced b

Data Exchange »

Process J
Repeat [

Camment...
Companent..
Decizian...
Declare Alias...
Function...
Log...

Map...

Send Mail...
Switch...

There are three SQL Batch commands, each of which places a new action in the action model: Start
Batch, Execute Batch, and Discard Batch.

You must tell Composer where the beginning of abatch occurs, by placing a Start Batch statement before
thefirst SQL Statement in aseries of statementsthat you want to group. This command sets a checkpoint
for rollback purposes (in case the batch does not finish normally).

From thefirst occurrence of this command until the next occurrence of an Execute Batch command (see
below), SQL Statements are merely accumulated, rather than executed. Execution of a batch does not
occur until an Execute Batch command is reached.

Regular (non-SQL) actions, such as Map and Function actions, are not affected by Batch operations. If
you place Map actions, Function actions, or any other non-SQL actionswithin or after agroup of batched
SQL Statement actions, those actionswill execute before the SQL Statementsin your batch, because the
batch cannot execute until an Execute Batch is reached.

An Execute Batch command causes all SQL Statementsin a batch to be sent, as a unit, to the database.
(If no Execute Batch command is issued, none of the SQL Statements in the preceding batch will get
executed.)

An Execute Batch statement can be placed immediately after abatch of SQL Statement actions, or it can
be placed at some point downstream of the batched actions (possibly in one branch of a Decision action).
In other words, you can create abatch in onelocation and executeit, conditionally, from another location
in your action model.

Performing JDBC Actions 41

Discard Batch

The Discard Batch command is amemory-de-allocating command that causes the previously held batch
to go out of scope. It frees the memory held by the preceding batch.

Ordinarily, when an SQL batch executes without error, the batch is discarded automatically after it
executes and there is no need to issue an explicit discard. You would use Discard Batch when you have
an action model that contains two or more sequential SQL batches (each with its own Execute Batch
command) wrapped in Try/On Fault statements. The need for the Discard Batch arises when one of the
upstream batches executes abnormally (generating an exception). In order to continue to another batch,
you need to purge the previous batch from memory (with a Discard Batch in the On Error branch of the
“Try” action). Failure to use Discard Batch under these conditions would cause the next Start Batch to
throw an exception. This scenario is shown in theillustration below.

TRY
Start Batch
(5QL Statements)
Execute Batch
ON FAULT

| Discard Batch |

TRY
Start Batch &
(SQL Statements)

Execute Batch

ON FAULT 1
Discard Batch

In the case depicted above, where there are two SQL batches (each enclosed in a Try/On Error action),
failuretoinclude aDiscard Batch action in the error branch of thefirst Try will cause the next Start Batch
to throw an exception (assuming the first batch fails).

In summary: When two or more batcheswill execute sequentially, wrap eachinaTry/On Error actionand
include a Discard Batch command in the On Error branch of each.

For action modelsinwhich thereisonly asingle SQL batch, Discard Batchisnot necessary. After normal
execution of a(single) batch, memory allocated to the batch is rel eased automatically; and if the batch
returnsan error, the batch will go out of scope (and be garbage-collected) when the component itself goes
out of scope.

42 JDBC Connect User’s Guide

Creating Batch actions

Batch actions are created using the SQL Batch menu command (available from Action > New Action >
SQL Batch in the JIDBC Component Editor main menu, or viaNew Action > SQL Batch in the
contextual menu).

> To create a SQL Batch action:

1 Placethecursor in aline preceding the group of SQL Statementsthat you want to batch. Then press
the right mouse button and select New Action > SQL Batch. The Batch setup dialog appears.

Batch

Choose an option to either Start, Execute, or Discard a
SQL Batch. While in batch mode, all S0L statements
exceptfor a SELECT are included in the Batch.

{¥ Start Batch
" Execute Batch (ends batch)

" Discard Batch {ends batch)

Help oK Cancel

2 Choosethe Sart Batch radio button to insert a Start Batch command in your action model.
Otherwise, choose Execute Batch or Discard Batch, as appropriate.

3 Click OK todismissthe dialog. A new action appears in your action model.

JDBC-Specific Expression Builder Properties

SQL queries can result in certain status and/or error values being returned (for example, the number of
records that were changed by an Update). Often, it isuseful to be able to reference these valuesin
ECMA Script expressions. The Expression Builder pick list (in the top portion of the Expression Editor
window) contains properties that are specific to JDBC Actionsinvolving SQL: namely, SQLSTATE,
SQLCODE, and UPDATECOUNT. (See panel below.)

ﬁ Source Expression
Wariahles: FunctionsMdethods: Cperatars:
@S> Input & Custom Scripts & Math
=< Temp - Docurment #-Relational
=< Qutput - ECMASEript - Logical
<> PROJECT - Extended ECMASCript - String
----""- > Repeat Aliases =
%> Node Aliases
- UPDATECOUNT
~-LASTSQL
"hitpihwane composer comitutorialfproductresponse”
Help Validate OK Cancel

Performing JDBC Actions 43

Using Other Actions in the JDBC Component Editor

In addition to the SQL Statement action, you have al the standard Basic and Advanced Composer
actions at your disposal aswell. The complete listing of Basic Composer Actions can be found in
Chapter 7 of the Composer User’s Guide. Chapter 8 contains alisting of the more Advanced Actions
available to you.

Handling Errors and SQL Messages

SQL returns certain coded values when errors occur (i.e., no record was found in a Query) or as areport
on theresult of certain actions (i.e., how many records were changed by an Update). These results appear
on the Result Text tab asthree special variables|abeled:

+ SQLSTATE
+ SQLCODE
+ UPDATECOUNT
+ LASTSQL

These variables are available to ECM A Script functions you may write and can be used for error handling
within your JDBC component. For instance, you can create a Decision action to process after an SQL
statement. Based on the value returned inthe UPDATECOUNT variable, you can choose one or the other
set of actionsin the two branches of the Decision action. Likewise, error information contained in

SQL STATE or SQLCODE (which are standard SQL status variables) can be used to branch to
appropriate recovery logic in case of error.

The LASTSQL variableis an exteNd-defined string variable which contains the last SQL statement to
actually execute in the component in question. Logging the value of this variable can be useful for
troubleshooting.

44 JDBC Connect User’s Guide

Using Custom Result Mapping

The following sections describe the similarities and differences between default and custom result
mapping for the Execute SQL action. Custom mapping features are described in detail.

About Default Result Mapping

The mapping of datareturned from an Execute SQL action is determined by specifications on the Result
M apping tab inthe SQL Mapping pane. Thetwo Result Row Placement controlsallow you to determine
where in the target document to place the result set data. The drop down list specifies the Message Part
or Repeat alias context and the Expression edit box specifies the X Path location within the Context.

The Context is either the name of aPart in the component or the name of a Repeat alias already specified
in the component (where the Repeat aliasitself represents a Message Part context and X Path location).

The Expression edit box specifies an X Path, the last element of which acts as the parent element for the
returned resultsand will receivethedata. Thelast element that receivesthe dataiscalled the Row Tar get.
If multiple rows are returned, then multiple Row Targets will be created. Each column returned in arow

will appear as achild element of each Row Target.

¥ extend Composer: TutorialEnd [JDBC: Sample]JDBCInventorylLookup]
File Edit View Component Action Animate Tools Window Help

O=RE8 00X 9 <

=10l x|

HO -8 x

Novell

B Output O x

Data
[=-<> RESULTINFO
E<>ROW T
<35k M
<> CATEGORY |3
<>O0NHAND [0

['sQL statement | Resuit Mapping

Result Row Placement:

utput

]| Resuit Text |

Enter the XML element to place results under.

<>cosT 409 |RESULT\NFOJROW

<> STATUS Out of Stock(on re-order)
<> ROW
<> ROW
<> ROW
H-<>ROW
<> ROW
F-<>ROW
<> ROW
[F- <> RoW
[F- <> RoW

FSEAEEFE2I

O Custam Column/RonrGroup |

[Stored Procedure mapping |

SampleJDBCInventorylookup
ﬁf’ LOG "irn® + "Component starting...” + "rn" TO Systern Output using Log Level &
Lo/ <ecute SQL: SELECT * FROM InventorySystem

<TT

[_[>]

=]

Ready

By default, the Row Target is named “RO

" and isachild of aroot element named

“RESULTINFO,” and the results are written to Output, as shown above. Notice that no checkboxes are

checked in the Result Mapping pane.

You can change the result mapping to use any target X Path of your choice. For example, you can usethe
Result Mapping tab to specify a Row Target such as Temp/RESULTINFO/Result as shown in the

graphic below.

Using Custom Result Mapping 45

¥ exteNd Composer: TutorialEnd [IDBC: SampleJDBCInventorylookup] =]]

File Edit View Component Action Animate Tools Window Help BO -8 x
D@3 00X Q< Novell
® Output |Data O x| [soL statement [Resuft Mapping |[Resut Text|
Result Roww Placement
Enteithe S slementio piace results under:
Emp ~
= Temp Data O %]
[5<> RESULTINFD _y =] RESULTINF OIROWY g
<> [
<> 35KU CHR1111
<> CATEGORY A @ [Create slement names as column names
<> ONHAMND 0 [C] reate elements if column is null
<> COsT 999 [Z] Include datatype info in element attribute
<> 5TATUS Out of Stock{on re-order) [C] Generate Row numbers
(<> ROW _—
<> ROW L | O Custom Galumn/RowGroup | |
(<> Row @l [conn |
¥ Stored Procedure mapping
(<> ROw | \
[<> ROw [~]

PEEEEIIN

ﬁ” LOG™rn" + "Component starting..." + "\rin" TO System Output using Log Level &
L/ xecute SOL: SELECT * FROM InventorySystem

[1>

[<T 1

|STemp /RESULTIMNFO/ROW

Result Mapping functionality includes the following default behaviors:

+ Target element names created in the document are the same as column names returned in the result
Set

o All columns returned in the result set are mapped to the target document

+ All columns are mapped to the same parent target el ement

+ All rowsare placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with the underscore
character since XML does not permit spaces in element names.

About Custom Result Mapping

46

Use custom result mapping to:

+ Create target element names different than the column names returned
Map columns to different row targets

Group the result set data by one or more columns

+ Map only group information

+ Map group and detail information

*
*

Custom result mapping is accessed via the Custom ... button on the Result Mapping tab.

@) Custom Column/RowdGroup

If you click thisbutton, you will be presented with adialog that has three tabs, |abeled Map Target, Detail
Rows, and Declare Group/Repeat.

JDBC Connect User’s Guide

Custom Mapping Settings x|
|' Map Target][Detail Rows |[Declare Group /Repeat |
I W
Columns Context Target XPath Basef4 encode |
il MyTemp INVENTOR Y PRODUCTDetailTheCategory O
2 MyTemp IN'VENTOR'Y /PRODUCTDetail MySKU 2]
3 MyTemp IN'VENTOR'Y /PRODUCTDetailMyCnhand 2]
4 MyTemp IN'VENTOR'Y /PRODUCTDetailMyCost 2]
s O
Felp ©

The use of thisdialog is discussed in detail below.

About Custom Result Mapping and Aliases

Novell exteNd Composer’sdefault mapping behavior isto iterate through alist of one or morenodes (i.e.,
elements specified by an XPath pattern) from a source document, and map them to a single target
document X Path location. If thetarget |ocation doesn’t exist, Composer createsit. If you know the source
list is greater than one, you must indicate to exteNd Composer whether you wish to map to the same
physical target location for each member of the sourcelist (i.e., overwrite the data in the specified
physical target location), or create anew physical target location for each member of the sourcelist (i.e.,
add new target locations as the repeated source is mapped). You indicate that you want to map each
member of the sourcelist to the same physical target location by specifying the Context as an actual
DOM name. You indicate that you want to map each member of the source list to a new physical target
location by specifying the Context using an alias.

NOTE: This is also true for the Repeat for Element and the Repeat for Group actions.

You can think of the multiplerows of datareturned by a SELECT statement asarepeating set of elements
inan XML document. In that case, you may choose to create a Declare Group action creating alist of
Groups and Detail elementswithin the Groups. Then you would create a Repeat for Group action to
process the Group list or detail of each Group. The Custom Map Target, Detail Rows, and Declare
Group/Repeat tabs provide asimilar alias ability for repeating rowsin SQL result sets asthe Declare
Group and Repeat for Group actions do for repeating elements in a document.

Using Custom Result Mapping 47

Using the MapTarget Tab

48

The Map Target tab is used to:

+ Create your own target element names for each result set column
+ Specify atarget Context for each result set column

The Map Target tab controls the mapping of each returned row’sindividual columns. For each column,
you specify a Context — Target X Path combination. The Context — Target X Path combination is specified
for each column in the order they are listed in the projection list for the SELECT statement in your
Execute SQL action. You cannot use Custom Result Mapping without filling in the Map Target tab.

The Map Target table will initially appear without any rows. Use the + icon to add additional rows. Use
the - icon to delete rows. Use the up and down arrows to arrange the rows of the Map Target table.

Column: This number refersto the columnsin the order they are listed in your SELECT statement.

Context: This specifies the target document for the column. The Target X Path will be appended to the
Context to produce the full XPath location for the column in the target document. The Context can be a:

+ Document — You may use this choice if your result set contains only one row, otherwise each
additional row will overwrite the previous row’s data.

+ Detail Alias— A Detail Aliasisdefined on the Detail Rows tab and consists of a Document name
and partial Target XPath. Or the Detail Alias may consist of a Group Alias (defined on the Declare
Group/Repeat tab) and partial Target X Path location. Using a Detail Aliastells exteNd Composer
to create a new physical target location for each member of the sourcelist (i.e., each row in aresult
Set).

+ Group Alias— A Group Aliasis defined on the Declare Group/Repeat tab and consists of a
Document name and partial X Path location. Using a Group Aliastells exteNd Composer to create a
new physical target location once for each Group in the sourcelist (i.e., where each group
represents multiple rows in aresult set).

+ Repeat Alias— If the Execute SQL action is contained with a Repeat action in your Action Model
you may choose its Target alias. In this case, the Context will resolve to a Document and partial
XPath to which the Target XPath (see below) will be appended.

When grouping and mapping detail column data, the Declare Group/Repeat, Detail Rows, and Map
Target tab work together to define the complete XPath location for the column. (Seeillustration.) For
instance, acolumn on the Map Target tab will be represented by a Context and X Path. The Context may
be aDetail Alias defined on the Detail Rowstab. The Detail Aliasin turn will represent another Context
and X Path. Its Context may be a Group Aliasdefined on the Declare Group/Repeat tab. Finally the Group
Aliasitself will represent another Context and X Path.

By defining the Group and Detail aliases separately, you are able to map rowswith duplicate column data
(the basisfor your groups) just onceinto group header elementsby using the Group alias asacontext, and
map columns with unique data (the detail of your groups) multiple times within the group header
elements by using a Detail Alias whose Context isaGroup Alias.

Target XPath: Thisisan XPath fragment that specifies the custom name to be given to the column and
optionally pre-pended by any additional parent elements. The Target XPath will be pre-pended by the
Context to produce the final location for the column in the target document.

Base64 encode: The checkbox in this column allows you to convert binary datato an XML -safe
representation for usein aDOM element.

NOTE: Composer’s default behavior is to automatically Base64-encode binary data returned from a
database during a SELECT or other "read” operation. This is necessary to ensure that the target XML
node contains no “illegal characters.” See “Handling of Binary Data” on page 24 for additional info.

JDBC Connect User’s Guide

|' Map Target][Detail Rows |[Declare Group/Repeat |
g o= AW

Columns Context Target XPath Baseb4 encode |
1 =»qCATEGORY TheCATEGORY (]
2 MyOutpLtDetail — |[MySKU O
3 Iy OutputDetail My ONHAMND]
4 iy Output Detail MyCOST]

Map Target I Detail Row:] Declare Group/Repeat |
Detail Alias:
" ptyOutpLDetal

Representing:

GHCATEGORY [v]

‘PRODUCTDetaiﬂ 74

Map Target || Dstail Rows | Declare Group /Repeat |

g om W

| Group Alias | Calumns | Context | Target ¥Path |
~—gCATEGORY |[CATEGORY [Output INVENTORY/ACATEGORYIGROUP

The three tabs of the Custorn Mapping Settings dialog can be used to define
sophisticated any-to-any mappings of result-set items to Part elermnent.
Notice how user-defined aliazes (representing, in each case,

& Part context and target XPath) can be substituted back
into earlier tab context slots,

A processing summary for the Map Target tab is shown in the table bel ow.

SQL Results Context = Document Context = Alias

One Row One row target is found or created for the ~ One row target is found or created for the
Returned first (and only) result row. first (and only) result row.

Multiple One row target is found or created for the ~ One row target is created for every result
Rows first result row. Subsequent rows findand row.

Returned map to the same physical target location.

(Without an alias, each row’s data is
overwritten by the next row until only the
last row’s data is left.)

Using Custom Result Mapping 49

Looking at a MapTarget Example

50

Let’s assume your Execute SQL action issued the following statement:
SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

Which returned the following row data:

Category SKU Onhand Cost
3 CHR1111 0 999
2 DAD7777 89 245
4 GAR1234 17 100
1 LOR8437 0 275
1 LOR8438 21 375
4 MOM4666 233 300
4 RAC4567 156 230
4 ZAC9080 4 555

You could fill out the Map Target tab as shown below:

Custom Mapping Settings x|
|' Map Target][Detail Rows |[Declare Group/Repeat |
o m W

Columns Context Target ¥Path Basefd encode |

1 MyTemp INYENTCORY PRODUCTDetail TheCategory O

2 My Temp INVENTOR Y PRODUCTDetailMySKLU O

3 MyTemp INVENTOR Y PRODUCTDetailMyOnhand]

4 My Temp INYENTOR Y PRODUCTDetailMyCost O

s]

Column one according to the SELECT statement will be CATEGORY. The Context isadocument named
“MyTemp” and the target X Path |ocation within the Context will be
“INVENTORY/PRODUCTDetail/TheCATEGORY” . Notice that CATEGORY is being renamed to
TheCATEGORY and being pre-pended with parent elements of INVENTORY/PRODUCTDetail. This
same logic applies to the remaining columns.

However, since we have yet to define or use any aliases, each row’s column datawill be written to the
same four physical target locations specified on the tab. If only one row isreturned, then its data will be
mapped to the target document with no problems. If multiple rows are returned asin our example, then
each successive row’s data will overwrite the previous row’s data until only the last row’s data exists.
(Only in rare cases will this situation be desirable.)

JDBC Connect User’s Guide

) MyTemp Diata

-S> INVENTORY
<> PRODUCTDetail
<> TheCATEGORY |3

> MySKU CHR1111
£ 22 WyOMNHAND 0
L 2 W COST 999

Normally, you usethe Map Target tab by itself if only onerow isreturned and all you wishto do ischange
the names of the target elementsto something different than the column names. (Or if you want to assign
different parent elementsto individual columns.)

To avoid overwriting data with multiple result-set rows, you need to use a Detail Alias from the Detall
Rows tab telling exteNd Composer to create a new physical target location for each row mapped.

Using The Detail Rows Tab

The Detail Rowstab allows you to create a mapping aliastied to either adocument Context or a
Group/Repeat alias Context. Use of the Detail Rows tab is optional.

Detail Alias: Thisisaname you specify that will be referenced as a Context on the Map Target tab for
mapping columnsin aresult set row.

Context: Thisis adocument name or Group/Repeat alias you specify. The Target X Path will be
appended to this Context to produce part of the final location for the column in the target document (the
remaining part comes from the Target X Path on the Map Target tab). The Context can be a

+ Document — Using a Document name tells exteNd Composer to create a new physical target
location once for each row in the result set.

+ Group Alias— A Group Aliasis defined on the Declare Group/Repest tab and consists of a
Document name and partial Target X Path location. Using a Group Aliastells exteNd Composer to
create a new physical target location once for each detail row belonging to each Group (i.e., each
group represents multiple rows in aresult set).

Target XPath: Thisisan XPath fragment that you specify. It will be pre-pended by the Context on this
tab and appended with the Target X Path on the Map Target tab to complete the final location for the
column in the target document.

Looking at a Detail Rows Example

Assuming your Execute SQL action issued the following statement:
SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

You could fill out the Detail Rows tab as shown below:

Using Custom Result Mapping 51

Custom Mapping Settings x|

Map Target | Detail F‘-O“Jf] Declare Group/Repeat |

Detail Alias:

Py TempDetail

Representing:

Py Temp [~ |

‘INVENTORWPRODUCTDetaiI| 4

ok [cancel)

Since the Context MyTemp and Target X Path fragment INVENTORY/PRODUCTDetail are now
specified on the Detail Rows tab (creating a new physical target location for each row), referencesto
them must be replaced on the Map Target tab with the Detail Alias“MyTempDetail.” Continuing the
example used in the previous section, you would update the Map Target tab as follows:

Custom Mapping Settings x|
|' Map Target [Detail Rows][Declare Group J'Repeat]
dh . AW
Columns Context Target XPath Basef4 encode |
1 Iy TempDetai TheCATEGORY]
2 Iy TempDetail My SHU (]}
3 Iy TempDetail My ONHAND (]
4 My TempDetail MyCOST (]
3]
Help @ [ok][cancel |

By using a Detail Alias specified on the Detail Rowstab, you will ensure that if multiple rows are
returned in the result set, each row will create a new physical target location under
INVENTORY/PRODUCTDetail.

When not used in conjunction with the Declare Group/Repeat tab, you can think of the Detail Rows tab
ascreating a“ Repeat for Row” alias. If the Context for aColumn on the Map Target tab isaDetail Alias
(instead of adocument), then exteNd createsanew Target X Path each time arow mapping occurs. Inthis
way, multiplerowsin the result set create multiple Row Targetsin the document without overwriting the
previous row's data. Thisisthe same functionality provided by the Result Mapping tab’s Custom...
option, except that you get to rename the columns.

52 JDBC Connect User’s Guide

TheCATEGORY |2

My S DADTITT
My OMHAND g
MyCOST 245
% & FREODUCTDetall
..... <> ThaCATEGORY |1 |
..... <> pySkl GARIE34
..... <2 MyONHAND 17
..... <> MyCOST 100
=< > PRODUCTDEtal
..... > TheCATEGORY (1 f—
..... <> pySkl LORSHZT
..... <> MyONHAND 0
..... <> MyCOST 275
=< > PRODUCTDEtal
..... <> TheCATEGORY |1
..... <> MysKU @FSB—
..... < 2 by N HARD 21

My COST 375

FIFE e e o

The result set data may not be arranged exactly the way we want, however. For example, the sub-trees
under PRODUCT Detail (seeillustration above) are listed without regard to product category
information. If you look under PRODUCT Detail/TheCATEGORY, you can see that two rows belong
to category 1, and one row each belong to categories 2 and 3. (This exampleisin the Action Examples
project under the Sample directory in your Composer installation. You might want to step through the
JDBC Component from which the above screen shot wastaken, whichis called “ Custom Result Mapping
inJDBC.”)

Perhaps you' d rather see row data grouped according to category. To do this, you need to use a Group
Alias from the Declare Group/Repeat tab.

Using the Declare Group/Repeat Tab
The Declare Group/Repeat tab is used to:

+ Create groups of result set records based on one or more result set columns

+ Create aGroup Aliasto use as a Context for Detail Rows

+ Create aGroup Aliasto use as a Context for Map Targets (creating Group Headers)

By declaring a Group Alias you create a list comprised of the unique values found in a column across

multiple rows. Any Map Target column that usesthe Group Aliaswill map its column dataonly oncefor
each unique Group essentially creating group header information.

In addition, each unique group value pointsto alist of the rowsthat belong to it. Any Detail Aliason the
Detail Rows tab that uses the Group Alias will map its rows together for that group.

Group Alias: Thisisaname you specify that is referenced as a Context on the Map Target and/or Detail
Rows tabs.

Columns: Specify one or more columns separated by acommato create your groups. Using two columns
means that only unique combinations of the concatenated val ues of the two columnswill create agroup.

NOTE: The columns you specify must form the basis of an ORDER BY clause in the SELECT statement
for the Execute SQL action. If you omit the ORDER BY clause, your results will be unpredictable.

Using Custom Result Mapping 53

Context: Thisisadocument name in the component or Repeat for Group or Repeat for Element aliasin
the Action Model that contains the Execute SQL action. The Target X Path is appended to this Context to
produce part of thefinal location for the column in the target document. (The remaining part comes from
the Target X Path on the Map Target tab and optionally from the Target X Path on the Detail Rows tab.)
The Context can be a

+ Document — Using a Document name tells exteNd Composer to write to the same physical
document for each Group.

+ Repeat for Group Alias— If your Execute SQL action isinside a Repeat for Group action in your
Action Model, then you may use its target alias as the Context for each Group. Thistells exteNd
Composer to create new Groups once for each Group processed in the enclosing Repeat for Group
action.

+ Repeat for Element Alias - If your Execute SQL action isinside a Repeat for Element action in
your Action Model, then you may use its target alias as the Context for each Group. Thistells
exteNd Composer to create new Groups once for each repeating element processed in the enclosing
Repeat for Element action.

Target XPath: Thisisan XPath fragment that you specify. It is pre-pended by the Context on thistab and
appended with the Target X Path on the Map Target tab (and optionally with the Target X Path on the
Detail Rows tab) to complete the final location for the column in the target document.

Looking at a Declare Group/Repeat Example

54

Assuming your Execute SQL action issued the following statement:
SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem order by CATEGORY

You could fill out the Detail Rows tab as shown below:

Custom Mapping Settings |

[Wap Targst[Detail Rows | Declare Group/Repeat |
& =AW

Group Alias | Columns | Context | Target ¥Path
QCATEGORY [CATEGORY [Cutput |NVENTORYIACATEGORYIGROUP |

ok [Cancet |

Similar to the example for Detail Rows, since the Context MyTemp (and Target X Path fragment
INVENTORY/PRODUCT) is now specified on the Declare Group/Repeat tab, referencesto it must be
replaced on the Detail Rows tab with the Group Alias“gCATEGORY.” In addition, you are no longer
listing just PRODUCTDetail under INVENTORY but rather groups of PRODUCTDetail so anew
element isintroduced into the Group’s Target X Path called “ ACATEGORY Group.” Thusfor each Group
mapped, anew ACATEGORY Group element is created.

Continuing the example used in the previous two sections, you would update the Detail Rows tab as
follows:

JDBC Connect User’s Guide

Custom Mapping Settings

Map Target | Detail Rows | Declare Group /Repeat

Detail Alias:

Pty OutputDetail

Representing:

BCATEGORY [~]

‘PRODUCTDetaiﬂ 4

l

OK

][Cancel]

Notice that the Context of “MyTemp” has been replaced by the Group Alias gCATEGORY which

represents MyTemp/INVENTORY/ACATEGORY Group. Thismeansthat Detail Rows belonging to the
Group are the only ones mapped, instead of all the Detail Rows.

Continuing the example used in the previous two sections, you would update the Map Target tab as

follows:

Custom Mapping Settings x|

Map Target | Detail Rows | Declare Group/Repeat |
g o= W

Columns Context Target XPath | Base64 encode |

1 gCATEGOR'Y TheCATEGORY (]

2 IWyOutputDetail [MySKU OJ

3 IyOutputDetal MyONHAND OJ

4 MyOutputDetail [MyCOST OJ

5 |]]

Help (& [ok][cancel |

We have replaced the Context for the CATEGORY column with the Group Alias. This means that

CATEGORY is only mapped once for each Group instead of once for each detail row.

Using Custom Result Mapping

55

56

Data

B WMyTemp
-4 > INVENTORY
£ > ACATEGORYGroup
o TheCATEGORY
£-<>PRODUCTDeta
MySkL
My CIMHAND
MyCost
B > ACATEGORYGraup
o TheCATEGORY
£ > PRODUCTDeta
MySkL
My COMHAND
hiyCost
=< > ACATEGORYGraup
= TheCATEGORY

g

CHR1111

0

9949

2

DADTTTY

89

245

4

When you declare a Group Alias, the result set rows are scanned and organized into groups establishing
how many processing loops will occur during mapping. If eight rows arein the result set with only four
4,1,1,4,4,4) thentherewill befour group mappingloops(e.g., 1, 2, 3, 4) and
eight detail loopstied to their appropriate group mapping loops (e.g., group one hasits two detail rows,
group two hasits one detail row, group three hasits one detail row, and group four hasits four detail

different values(e.g., 3, 2,

rows).

Using the prior graphics, you can trace how the final context for the Map Target columnsis constructed
for Column one and Column two. Column one isthe CATEGORY from the result set. Its namein the
DOM will be TheCATEGORY. Its ancestor €lements are determined by the context “gCATEGORY”
defined as MyTemp/INVENTORY /ACATEGORY Group on the Declare Group/Repeat tab. So the final

XPath for CATEGORY is:

Output/INVENTORY/ACATEGORYGroup/TheCATEGORY

Since the context for TheCATEGORY isa Group alias, it will be mapped once for each group or four

times as determined earlier.

Column two isthe SKU data from the result set. Its name in the DOM will be MySKU. Its ancestor
elements are determined by the context “MyTempDetail” defined to be gCATEGORY (defined above)
plus PRODUCTDetail. So the final context for the column will be
MyTemp/INVENTORY/ACATEGORY Group/PRODUCT Detail/MySKU. Since the context for

it ismapped once for each Detail Row. However, each Detail Row hasa
Context of aGroup Alias limiting mapping to only those detail rows that belong to the Group.

MySKU isaDetail Alias,

JDBC Connect User’s Guide

Stored Procedures

Novell exteNd Composer supports the mapping of data returned by stored procedures. The following
sections describes the stored procedure mapping features.

About Stored Procedure Mapping

Novell exteNd Composer allows for mapping the data returned by stored procedures to DOM/Node
combinations. To do so, select the Sored Procedure mapping checkbox on the Result Mappingtabin
the Query/Results M apping Pane.

S0L Staternent ResultMapping | ResultTe}{'t]

Result Row Placement
Enter the XML element to place results unden

[remp =

INYEMTORYSTATUS

f* |v Create element names as column names
W Create elements if column is null
Include datatype info in element attribute

Generate Row numbers

% Custom Column/Row'Group
| [w| Stored Procedure mapping Setup... | |

Thiswill enable the Setup... button. Press the Setup... button to display the Setup dialog for Sored
Procedure Mapping.

Stared Procedure Mapping:
op o= [Returns Result Get
Id | Gual | Drata Type | Scale | hiap | Context Target XPath
Help OK! Cancel

Stored Procedures 57

Binding Rules

Itisimportant to understand exteNd Composer bindsto all Expressionsand placehol ders represented by
Question Marks placeholders (e.g. either ‘:<expression>' or ?) but not Constants (e.g. ‘abc’).

Using the Stored Procedure Mapping Setup Dialog

58

The Stored Procedure Mapping Setup dialog is used to map the datareturned by a stored procedure. The
Setup dialog allows you to specify Context - Target XPath combinations for the returned data.

Usethe + and - controls to add and delete Context - Target X Path combinations.

Oracle RDBM Ssreturn result sets as parameters. Non-Oracle RDBM Ss return result sets but, not as
parameters. Select the Returns Result Set check box when result sets are returned by non-Oracle
RDBM Ss. Selecting the Returns Result Set check box for non-Oracle RDBM Ss enable exteNd
Composer to find the returned result set.

NOTE: All Expressions and placeholders (e.g. ?) must be specified in the Stored Procedure Mapping
Setup dialog in order to correctly map the returned data.

For each returned Input/Output parameter (which may be expressions) and each Output parameter
(which may be either an expression or a ?) (seethe Rulesfor Stored Procedures section in Chapter 4),
complete the following:

Id: Based onthe SQL parameters, Id isthe number sequence of the return valuesyou’ re expecting. Using
Id, you will need to explicitly specify the sequence positions of each of the parameters containing either
expressions (e.g. ‘:<ExpressionName>") or placeholders (e.g. ?). For example, the following procedure
call hasthree parameters: a constant, ‘ Process', a placeholder, ? and an expression, ‘:Smith’. The value
‘Process does not need an Id in the Stored Procedure M apping pane since exteNd Composer does not
bind to values. The Id entries for the placeholder - ? and the variable *:Smith’ are, respectively, 2 and 3.
exteNd Composer binds to variables and placeholders, therefore, they must be specified in the Stored
Procedure M apping panein order to properly map the data returned by a stored procedure.

Example:
{ call DemoPackage.sp withParams('Process', ?, ':Smith') }

Qual: Qual qualifiesthe parameter as an I nput parameter, an Output parameter or as an Input/Output
parameter.

Data Type: Data Typeisadrop down list which provides the following options: VARCHAR,
DECIMAL, DATE, BINARY or Oracle Result Set. When Oracle Result Set is selected as an Input
parameter (Qual=In), Context and Target X Path do not apply (N/A) and are, therefore, disabled.

Scale: The value of Scale specifies the decimal place precision.
Map: The Map checkbox is selected to map the parameter.

Context: this specifies the target document for the column. The Target X Path will be appended to the
Context to produce the full XPath location for the column in the target document. The Context can be a:

+ Document — You may use this choice if your result set contains only one row, otherwise each
additional row will overwrite the previous row’s data.

+ Detail Alias— A Detail Aliasisdefined on the Detail Rows tab and consists of a Document name
and partial Target XPath. Or the Detail Alias may consist of a Group Alias (defined on the Declare
Group/Repeat tab) and partial Target X Path location. Using a Detail Aliastells exteNd Composer
to create a new physical target location for each member of the sourcelist (i.e., each row in aresult
Set).

JDBC Connect User’s Guide

+ Group Alias— A Group Aliasis defined on the Declare Group/Repeat tab and consists of a
Document name and partial X Path location. Using a Group Aliastells exteNd Composer to create a
new physical target location once for each Group in the sourcelist (i.e., where each group
represents multiple rows in aresult set).

+ Repeat Alias— If the Execute SQL action is contained with a Repeat action in your Action Model
you may choose its Target alias. In this case, the Context will resolve to a Document and partial
XPath to which the Target XPath (see below) will be appended.

+ --viastandard -- will use the Result M apping tab’s Result Row Placement specification.

+ --Viacustom-- will use the settings on the Custom M apping Settings dialog.

When grouping and mapping detail column data, the Declare Group/Repeat, Detail Rows, and Map
Target tab work together to define the complete X Path location for the column. (Seeillustration.) For
instance, acolumn on the Map Target tab will be represented by a Context and X Path. The Context may
be aDetail Alias defined on the Detail Rowstab. The Detail Aliasin turn will represent another Context
and X Path. Its Context may be a Group Aliasdefined on the Declare Group/Repeat tab. Finally the Group
Aliasitself will represent another Context and X Path.

By defining the Group and Detail aliases separately, you are able to map rowswith duplicate column data
(the basisfor your groups) just onceinto group header elementsby using the Group alias asacontext, and
map columns with unique data (the detail of your groups) multiple times within the group header
elements by using a Detail Alias whose Context isa Group Alias.

Target XPath: Thisisan XPath fragment which will be appended to Context to specify the full XPath
location int the target document.

Returned Result Set

A result set is mapped to a document with elements created from the result set’s column names.

+ Target element names created in the document are the same as column names returned in the result
set

o All columns returned in the result set are mapped to the target document

+ All columns are mapped to the same parent target element

+ All rowsare placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with an underscore
character since XML does not permit spaces in element names.

Stored Procedures 59

60 JDBC Connect User’s Guide

JDBC Glossary

Connection Pool A set of database connections managed by the application server for the various
applications it manages.

Custom Result Mapping The Custom Result Mapping dialog provides asimilar alias ability for
repeating rowsin SQL result sets as the Declare Group and Repeat for Group actions do for
repeating el ementsin a document.

Declare Group/Repeat Tab Thistab of the Custom Results Mapping dialog is used to create groups
of result set records on one or more result set columns, create a Group Alias to use as a Context for
Detail Rows, and create a Group Aliasto use asaContext for Map Targets (creating Group Headers).

Detail Rows Tab Thistab of the Custom Results Mapping dialog allowsyou to createamapping alias
tied to either adocument Context or a Group/Repeat alias Context. Use of the Detail Rowstabis

optional.
DOM A Document Object Model (DOM) isan XML document constructed as an object in a software
program's memory. It provides standard methods for manipulating the object. In Composer, DOM
isoften synonymouswith XML Document. DOMs arerepresented as hierarchical treeswithasingle

root node.
DOM Context The name of aDOM (Input, Output, Temp, etc.), or the name of a Repeat alias
previously defined in the component. (The alias itself representsa DOM context, representing the

nodepath hierarchy upstream of a given element.)

Execute SQL Action Sameas SQL Statement Action.

JDBC A Suntrademark for the Java API for accessing relational database data. It is commonly
assumed to mean Java Database Connectivity.

Map Target Tab Thistab of the Custom Results Mapping dialog is used to create target element
names for each result set column and specify atarget Context for each result set column.

A paneinthe JDBC Component Editor that simulates an actual SQL

Native Environment Pane
environment when you issue a query.

Query/Result Mapping Pane (Same asthe Native Environment Pane.) A panein the JDBC
Component Editor that includes three tabs: the SQL Statement tab, the Result Mapping tab, and the

Results Text tab.
Result Mapping Tab A tabin the Query/Result Mapping Pane that allows you to map the result of
your database query to an XML document.

Result Text Tab A tab in the Query/Result Mapping Pane that displays the actual datathat was
returned following the execution of the database query.

JDBC Glossary 61

62

Row Target The receiving element in amapping operation is called the row target. It represents a
specific position in the DOM tree of an XML file.

SQL Statement Action Most commonly used to query an existing database and then map the result
to an XML document.

SQL Statement Tab A tab in the Query/Result Mapping Pane that allows you to write or build SQL
commands.

SQLCODE A global ECMA Script variable created by the execution of SQL statements. Contains a
status code generated by the database engine.

SQLSTATE A global ECMA Script variable created by the execution of SQL statements. Contains
information generated by the database engine.

UPDATECOUNT A global ECMA Script variable created by the execution of SQL statements.
Contains a count of the number of rows changed by the database engine.

JDBC Connect User’s Guide

Reserved Words

The following terms are reserved words in exteNd Composer for the JDBC Connect and should be
avoided in any user created |abels or objects.

*

*

*

*

SQLCODE
SQLSTATE
UPDATECOUNT
LASTSQL

Reserved Words

63

64 JDBC Connect User’s Guide

Index

Symbols

% wildcard 27

A

action menu 44
action model 23
actions

overview 23

using basic and advanced 44
advanced actions 44
dias

and custom result mapping 47
Allow SQL Transactions 15
And/Or logic in aWHERE clause 27
auto-commit 16

B

base64 encode 48
base64Decode() 24
base64Encode() 24

basic actions 44

batch actions (see SQL Batch) 40
BETWEEN...AND operator 27

C

code table map, creating 16
colons, specia meaning in SQL action 40
commit 16
component

creating new 17
component editor window 20
connection

creating 13

dirty 16
connection pool 14

definition of 61

Constant and Expression Driven Connections 13

context 48, 53

creating SQL using the Wizard 24

Custom Mapping Settings 59

custom result mapping 46, 47
definition of 61

custom script
creating 16

D

Data Type 58
database-specific parameters 15
DB Params 15
declare group/repeat example 54
Declare Group/Repeat tab 53
definition of 61
default result mapping 45
detail alias
used as acontext 48, 58
detail rows example 51
Detail Rowstab
definition of 61
Discard Batch 42
document, used as a context 48, 58

E

ECMA Script

in SQL Statements 40
ECMA Script functions, using 44
errors and SQL messages 44
example query 35
Execute as Prepared 24
Execute Batch 41
Execute SQL action

definition of 61
executing the SQL statement 37
Expressions 58

G
group alias
creating 53
used as acontext 48, 59

Id 58

65

J

JOBC

creating XML templates for 16

definition of 61
overview 9
what doesit do 10
JDBC component
about 10
creating new 17
JDBC Component Editor
about the window 20
building applications 11
JDBC connection pools 14
JDBC connection resource 13
JDBC drivers 14
JDBC wizard 24

L

LASTSQL 44
LIKE operator 27

M

map target
example 50

Map Target tab 48
definition of 61

N

native environment pane
definition of 61

@)

Oracle Result Set 58

P

Perry Mason 27
precompiled SQL 24
prepared SQL statements 24

Q

Qual 58

query, building an example 35

Query/Result mapping pane 20
definition of 61

Query/Result Mapping Pane. 34

66

R

Relational operators 27
repeat alias
creating 53
used as acontext 48, 59
Result Mapping 59
result mapping
using custom 46
using default 45
result mapping tab 21
definition of 61
result text tab 21
definition of 61
rollback 16
row target 45

S

S3SglAnywhereAuth 15
Scale 58
scope of SQL batches 42
SQL
prepared statements 24
transaction verbs 15
SQL Anywhere 15
SQL Batch Action 40
SQL messages 44
SQL SELECT Statements 24
SQL statement
building 34
checking the results 38
executing 37
SQL statement action
definition of 62
SQL statement tab 21
definition of 62
SQL wizard 24
SQLCODE 44
definition of 62
SQLSTATE 44
definition of 62
Start Batch 41
Stored Procedure Mapping 57

T

target element names 48
target X Path 48, 53, 59
Temp XML Document 18
transactions

auto-commit flag 16

SQL 15
Try/On Error 42

U

UPDATECOUNT 44
definition of 62

W

WHERE Clauses

filtering within the wizard 27
WHERE clauses

And/Or logic 27
wildcards 27

X

XML template
creating 16

67

68

	About This Book
	1 Welcome to exteNd Composer and JDBC
	Before You Begin
	About exteNd Connects
	What is JDBC?
	What Does JDBC Do?
	About exteNd’s JDBC Component
	What Kinds of Applications Can You Build Using the JDBC Component Editor?

	2 Getting Started with the JDBC Component Editor
	Creating a JDBC Connection Resource
	About Constant and Expression Driven Connection Parameters
	About JDBC Drivers and Connection Pools

	Creating XML Templates for Your Component

	3 Creating a JDBC Component
	Before Creating a JDBC Component
	About the JDBC Component Editor Window
	About the Query Pane

	4 Performing JDBC Actions
	About Actions
	The SQL Statement Action
	Handling of Binary Data
	Prepared Statements
	Creating an SQL Statement using the Wizard
	Creating an SQL Statement Manually
	Executing the SQL Statement
	Checking the Results
	Using Stored Procedures
	Colons in SQL Statements

	The SQL Batch Action
	Start Batch
	Execute Batch
	Discard Batch

	Creating Batch actions
	JDBC-Specific Expression Builder Properties
	Using Other Actions in the JDBC Component Editor
	Handling Errors and SQL Messages

	5 Using Custom Result Mapping
	About Default Result Mapping
	About Custom Result Mapping
	About Custom Result Mapping and Aliases
	Using the MapTarget Tab
	Looking at a MapTarget Example

	Using The Detail Rows Tab
	Looking at a Detail Rows Example

	Using the Declare Group/Repeat Tab
	Looking at a Declare Group/Repeat Example

	6 Stored Procedures
	About Stored Procedure Mapping
	Binding Rules
	Using the Stored Procedure Mapping Setup Dialog
	Returned Result Set

	A JDBC Glossary
	B Reserved Words
	Index

