
Novell

m
w w w . n o v e l l . c o

exteNd
Composer

5 . 2
J MS C ON N E CT US E R ’ S G U I DE

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd Composer JMS Connect User’s Guide

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 7

1 Welcome to exteNd Composer and JMS . 9
About exteNd Connects. 9
What Is the JMS Connect? . 10
What Needs Does JMS Address? . 11
What Is Enterprise Messaging?. 11
What Are Message Queues?. 12
Will My Message-Based Application Be Slow? . 12
Is Messaging Reliable? . 13
Can Messages Be Part of Transactions? . 13
What Is Point-to-Point Messaging? . 13
What Is Publish/Subscribe Messaging? . 14
What About Delivery Guarantees? . 15
How Are Messages Structured? . 15

Header Information . 15
Body Types . 16

How Are Messages Retrieved? . 16
Message Filtering . 17
Request-Response versus Store/Forward. 17
What Does JMS Not Cover? . 18
About exteNd’s JMS Component. 18

2 Getting Started with the JMS Component Editor . 19
Creating a JMS Connection Resource . 19

About Expression-Driven Connections . 19
About Queue Connections . 20
About Topic Connections . 25

Creating XML Templates for Your Component . 29

3 Creating a JMS Component . 31
Before Creating a JMS Component. 31
About the JMS Component Editor Window . 34
About the Native Environment Pane . 36

4 Creating JMS Actions . 37
About Actions. 37
Actions Unique to the JMS Component Editor . 37

Options Tab . 38
Message Body Tab . 38
Message Header Tab . 39

The Send Message Action. 39
Priority, Mode, and Time to Live . 40
Destination Queue/Topic. 40
Return Address . 42

The Browse Messages Action . 46
The Receive Message Action . 50
5

The Message Transaction Action . 54
What Happens When I Issue a Commit? . 55
What Happens When I Issue a Rollback? . 55
What Happens if I Leave the Session Unresolved? . 55
What Actions Are Included in a Message Transaction? . 55
What Can I Use Message Transactions For?. 56

Using Other Actions in the JMS Component Editor . 57

5 Working with Messages . 59
Mapping Data into the Message Header . 59

Limitations on Header Mapping . 60
Mapping Data to Custom Properties. 61

Limitations on Property Mapping . 62
Working with XML Messages . 62
Working with Copybook Messages. 65

Copybook Message Setup . 66
Copybooks and the Native Environment Pane. 67
Copybook-Specific Context Menu Items . 68
Mapping Data Between Copybook and DOMs. 69

Working with Message Filters (Selectors). 71
Limitations on Filtering . 72
Filtering by Body Type . 72

Request-Response Messaging. 73
Temporary Queues . 73

ECMAScript and the JMS Connect. 75
ECMAScript Method Summary . 77

6 The JMS Service . 79
About the JMS Service . 79
Multiple Listeners . 80
Creating a JMS Service . 80
Deployment of the JMS Service . 83
How Do I Manage Deployed JMS Services? . 83

A JMS Glossary . 85

B Message Selector Syntax . 89
Literals . 89
Identifiers . 89
Expressions . 90
Comparisons. 90
Null Values . 91
Special Considerations . 91

C Message Headers and Properties. 93
Header Fields Defined by JMS . 93

JMSCorrelationID. 93
JMSDeliveryMode . 93
JMSDestination . 93
JMSExpiration . 93
JMSMessageID . 94
JMSPriority. 94
JMSRedelivered. 94
JMSReplyTo. 94
JMSTimestamp . 94
JMSType . 94

Message Properties . 95
JMS-Defined Properties . 95
Provider-Specific Properties. 95
User-Defined Properties. 96
6 JMS Connect User’s Guide

About This Book

Purpose

This guide describes how to use the JMS Component Editor, which is the design-
time portion of the exteNd Composer JMS Connect.

Audience

This book is for systems analysts, programmers, and others who intend to build
applications or services that require a Message Oriented Middleware component,
where the host MOM system in question is compatible with Sun Microsystems’
Java Message Service API.

Prerequisites

This book assumes prior familiarity with the exteNd Composer design-time
environment and Composer application-building metaphors. You should also be
familiar with MOM and JMS concepts.

Additional documentation

For the complete set of Novell exteNd exteNd Director documentation, see the
Novell Documentation Web Site:

http://www.novell.com/documentation-index/index.jsp.
7

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8 JMS Connect User’s Guide

1 Welcome to exteNd Composer and JMS

Welcome to the Novell exteNd JMS Connect User’s Guide. This Guide is a companion to the exteNd
Composer User’s Guide, which details how to use all the features of Composer except for the various
Connect Component Editors. So, if you haven’t looked at the Composer User’s Guide yet, please
familiarize yourself with it before using this Guide.

exteNd Composer provides separate Component Editors for each Connect, such as the JMS Connector.
The special features of each Component Editor are described in individual Guides like this one.

Before you begin working with the JMS Connect, you must have it installed into your existing exteNd
Composer. Likewise, before you can run any Services built with this connector in the exteNd Server
environment, you must have already installed the corresponding Server software for this connector into
exteNd Server.

NOTE: To be successful with this Component Editor, you should be familiar with Message Oriented
Middleware (MOM) concepts and the particular MOM environment (e.g., MQSeries) into which you will be
deploying. While the pages that follow offer a brief introduction to important enterprise-messaging
concepts, a truly comprehensive approach is beyond the scope of this guide. In any event, the discussion
offered here is in no way meant to substitute for the documentation supplied by your JMS provider.

About exteNd Connects
Novell exteNd is built upon a simple hub and spoke architecture. (See illustration below.) The hub is a
robust XML transformation engine that accepts XML documents, processes the documents, and returns
an XML document. The spokes or Connects are plug-in modules that “XML enable” sources of data that
are not XML-aware, bringing their data into the hub for processing as XML. These data sources can be
anything from legacy COBOL/VSAM managed information to Message Queues to HTML pages.
exteNd Connects can be categorized by the integration strategy each one employs to XML enable an
information source. The integration strategies are a reflection of the major divisions used in modern
systems designs for Internet based computing architectures. Depending on your B2Bi needs, exteNd can
integrate your business systems at the User Interface, Program Logic, and/or Data levels.
Welcome to exteNd Composer and JMS 9

Hub and spoke architecture allows exteNd to provide enterprise-wide XML integration via
Connects (EEs).

What Is the JMS Connect?
Java Messaging Service (JMS) is a Java-based interface for using Message Oriented Middleware (MOM)
services, such as provided by IBM’s MQSeries or Progress Software’s SonicMQ. In order for distributed
applications running on Java application servers to make full use of messaging systems, Java-language
clients and Java middle-tier services must have a common way to “speak to” enterprise messaging
products. JMS provides that capability.

Novell exteNd can integrate business systems at the User Interface, Program Logic, and/or
Data levels.
10 JMS Connect User’s Guide

The exteNd JMS Connect allows you to create Components that can send, receive, and/or browse
messages in queues administered by a JMS-based MOM system, using transacted or non-transacted
sessions. JMS-enabled exteNd services are able to enjoy the dual benefits of asynchronous processing
and transport-layer independence that characterize enterprise messaging. Using the JMS Connect, you
will be able to create powerful, flexible applications that make optimal use of system resources while
carrying out potentially complex operations involving remote invocation of objects, assured “once only”
delivery of notifications, and/or distributed transactions.

What Needs Does JMS Address?
The JMS standard was built with several goals in mind:

Provide an Application Programming Interface suitable for creating and manipulating messages in
formats compatible with existing MOM products.

Support many different message-content types, including messages containing Java objects.

Facilitate the development of heterogeneous applications that span operating systems, machine
architectures, transport mechanisms, and computer languages.

JMS is a broadly applicable Java API that is intended to be layered over a wide range of existing and
future Message Oriented Middleware systems, much the same way that JNDI (the Java Name and
Directory Interface) is layered over existing name and directory services.

The complete JMS specification is available at http://java.sun.com/products/jms/.

What Is Enterprise Messaging?
An enterprise messaging system provides for the transport and storage of messages. Messages, in this
context, are packets of information that are produced and/or consumed primarily by enterprise
applications (rather than humans). They may contain key-value pairs, XML documents, serialized Java
objects, or arbitrary byte streams.

One of the main attractions of Message Oriented Middleware is its ability to serve as an abstraction layer
that hides the details of message transport and delivery from diverse clients that may need to
communicate across networks that use different communication protocols. By acting as a
communications gateway, MOM shields clients from connectivity issues that would otherwise impede
development of distributed applications.

Another aspect of enterprise messaging that makes products like MQSeries and SonicMQ so useful is
their ability to link processes in asynchronous fashion. Asynchronous processing means that the
exchange of data between parties does not depend on either party being in direct, realtime contact with
the other. The alternative to asynchronous processing is synchronous processing, wherein a host and a
client (or a peer and a peer) must be in continuous conversation with each other for the entire duration of
a session, without interruption. (An example of a synchronous interchange would be the use of a Remote
Procedure Call in a CICS environment.) While synchronous operations are required for some types of
interactions, there are many kinds of business processes that do not require synchronous communication
between participants. For such processes, asynchronous interaction generally makes the most efficient
use of resources and can dramatically improve system productivity.
Welcome to exteNd Composer and JMS 11

http://java.sun.com/products/jms

A synchronous process is analogous to a restaurant in which every customer orders his meal directly
through a conversation with the chef and the kitchen takes no other orders while the current customer’s
meal is being cooked. Customers line up and must wait, one by one, for every meal to be individually
prepared. Asynchronous processing would be analogous to the more familiar scenario of waiters and
waitresses conveying orders between customers, kitchen, and bar concurrently. In the latter case, the
waiters serve as a messaging channel to the kitchen, where orders are “queued up” and finished meals are
dispersed on an as-available basis. In this example (as in many business processes), much better
efficiencies are possible with asynchronous order processing than with synchronous order processing.

The time-domain decoupling afforded by messaging systems helps make robust, fail-safe operation
possible. One party can be busy—or even offline—when the other party sends (or receives) its message.
The sender can continue processing without needing to wait for an acknowledgement from the receiver.
A network or server can go down, yet not affect the transmission or receipt of a message.

What Are Message Queues?
Asynchronous messaging depends on the fact that messages are sent not to clients, per se, but to queues,
which exist independently of the client processes that use them.

A queue is a holding area or repository in which data elements (messages, in this case) are stored for
eventual retrieval. In a MOM environment, client applications needn’t know how message queues are
structured, maintained, or stored; the details of queue management are handled by the MOM vendor (or
“JMS provider”). Like server nodes, queues are often clustered for purposes of reliability, scalability, and
load balancing.

While FIFO (first-in/first-out) and LIFO (last-in/first-out) queues are familiar constructs in computing,
no order of retrieval is presumed in a message queue. Rather, the retrieval order is open. This means
custom prioritization schemes can be applied to messages so that retrieval order (i.e., consumption order)
is dependent on a client’s needs. Properly exploited, this feature can lead to more efficient overall system
operation. Processing of low-priority messages can be deferred to a time when system resources are
available; low-priority items needn’t interfere with the processing of high-priority ones.

The process of inspecting messages without removing them from the queue is called browsing.

NOTE: The length of time messages are held in a queue, the maximum number of messages a queue
can handle, and the manner in which resource overruns are handled are not defined by the JMS standard.
Consult your MOM vendor’s documentation to learn more about these issues.

Will My Message-Based Application Be Slow?
While some latency occurs in all messaging systems, this does not mean that applications that use
messaging are, of necessity, slow. The asynchronous processing made possible by messaging affords the
possibility of multitasking inside an application, which could (depending on the application) actually
boost throughput. For example, while a customer adds items to his shopping cart, the shopping-cart app
can trigger an inventory-checking component, while another component can calculate shipping charges,
while another component pulls customer information out of a database, etc., all operations taking place
concurrently.

The choice of messaging model (Point-to-Point versus Publish/Subscribe) has important implications for
latency. See “What Is Point-to-Point Messaging?” and “What Is Publish/Subscribe Messaging?” further
below.
12 JMS Connect User’s Guide

Is Messaging Reliable?
While the quality-of-service guarantees offered in Message Oriented Middleware solutions can vary
greatly, and while real-world reliability often depends on administrative issues (such as cluster size and
available resources), all JMS-based messaging services are required to offer assured, once-only delivery
of messages as an option for applications where reliability is paramount. JMS also allows for
configurations that provide a less robust quality of service, so that in cases where speed of delivery might
be more important than assured, once-only delivery, a tailored solution can be built. The reliability of
JMS-based messaging solutions is thus configurable.

In general, strong reliability guarantees are a common feature of JMS-based systems.

Can Messages Be Part of Transactions?
One of the things that makes JMS messaging attractive from a reliability standpoint is that message
sessions can (optionally) incorporate transaction control. A transacted session groups an arbitrary set of
produced and/or consumed messages into a single logical unit of work. When a transaction commits, all
of its inputs (in terms of messages) are acknowledged and all outputs are sent. When a transacted
message session rolls back, any produced messages are destroyed and any messages consumed during
the session are recovered.

An an example, suppose an application builds a group of five messages. A requirement of the application
is that the entire group of five messages must be sent as a batch; or else none of the five must be sent.
Using a JMS Component, the application could be structured such that messages are built and sent
individually, but if a connection closes prematurely (or any other error condition happens, involving any
of the five messages), the entire group is rolled back.

NOTE: JMS does not require that MOM products support distributed transactions. But if such support
exists, JMS does require that such support be implemented via the JTA (Java Transactions API)
XAResource interface. Consult your JMS provider’s documentation to see what kind of distributed
transaction support, if any, is available in your MOM environment.

NOTE: Since distributed transactions are controlled via JTA, the use of message-session commit or
rollback commands in this context will cause a JMS TransactionInProgressException to be thrown.

What Is Point-to-Point Messaging?
Two main messaging paradigms are implemented by MOM vendors: Point-to-Point (PTP) messaging,
and Publish/Subscribe (which is discussed further below). Some vendors implement one or the other;
some implement both.

NOTE: Point-to-point does not imply a synchronous connection in the context of messaging (as it does
in some other contexts, such as discussions of RPC).

In the PTP model, any JMS client can—in theory—send messages to any other JMS client, subject only
to administrative constraints. PTP is an asynchronous, queue-based, peer-to-peer model in which queues
are typically created administratively and have indefinite lifespans. A queue is always available to
receive and hold messages sent to it whether the client or clients using that queue are online or not.

With PTP, a queue functions much like a mailbox. One application might send messages to a queue;
another application might retrieve messages from the same queue. A common case is that a client will
have all its messages delivered to a single queue.
Welcome to exteNd Composer and JMS 13

The Point-to-Point model is a queue-based, peer-to-peer model in which queues act,
essentially, as mailboxes. Client applications can post to a queue, or (as with Application #2
above) browse, retrieve messages one-by-one, or continuously poll the message queue.
Optionally, clients can implement a MessageListener that will act on messages as they are
received.

What Is Publish/Subscribe Messaging?
The Publish/Subscribe (or pub/sub) messaging model—implemented by some (but not all) MOM
vendors—differs from Point-to-Point in the following ways:

Queues are typically shared by multiple clients.

Queues are organized hierarchically into nodes called topics. (This is a typical implementation
scheme, although in fact JMS places no restrictions on what a topic can represent.)

Each topic acts as a kind of mini-message-broker that accumulates and distributes messages
addressed to it.

In a Publish/Subscribe system, queues are usually organized hierarchically into nodes
called topics. Clients may subscribe and/or publish to any number of topics.

Clients in this kind of system use message producer/consumer objects called TopicPublishers and
TopicSubscribers. A client may subscribe to more than one topic; and a client may be both a subscriber
and a publisher.
14 JMS Connect User’s Guide

TopicSubscribers can be durable or non-durable. If a client needs to have access to all messages on a
given topic (including ones that may be published when the subscriber is offline), a durable
TopicSubscriber must be used. Otherwise, the client will have access only to messages that are queued
during the lifetime of a given message-retrieval session.

NOTE: Messages are served to subscribers in serial fashion. Because topics are shared resources (and
because only one subscriber can be serviced at a time), the potential for latency is somewhat greater in
pub/sub messaging than in PTP.

What About Delivery Guarantees?
JMS supports two modes of message delivery.

The PERSISTENT mode instructs the message broker to write the message to a secure store to
insure that the message is not lost in transit due to a system failure.

The NON_PERSISTENT mode does not require the JMS provider to log the message to stable
storage; thus, the message can, in theory, be lost. (The tradeoff here is one of performance. There is
less overhead with a NON_PERSISTENT message.)

A JMS provider is required to deliver a NON_PERSISTENT message at-most-once. This means that
while a message may sometimes be lost, it will never be delivered twice.

By contrast, the delivery guarantee for PERSISTENT messages is once-and-only-once. This means a
provider failure must not cause a message to be lost in transit; and the message must not be delivered
more than once.

NOTE: Once-and-only-once delivery has the important limitation that it cannot and does not guarantee
against message loss due to message expiration, resource overruns, or administrative destruction criteria.
Configuring a message system for maximum reliability requires a thorough understanding of
administrative issues surrounding the particular MOM solution in use.

How Are Messages Structured?
Enterprise messaging products treat messages as persistible, lightweight entities that consist of a header,
a body, and (in the case of JMS-aware products) a property list.The header contains fields used for
message routing and identification. The body contains the application data being sent. Properties provide
a mechanism for adding arbitrary descriptors (actually implemented as extra header fields) to messages
so that clients—or their providers—can select or “filter” messages on the basis of application-specific
criteria.

Header Information

Among the message characteristics defined in the header are an expiration time (which sets the message’s
useful life); message priority (based on a number ranking, from zero to nine); and delivery mode
(PERSISTENT or NON_PERSISTENT).

The header fields defined by JMS are:

JMSCorrelationID

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID
Welcome to exteNd Composer and JMS 15

JMSTimestamp

JMSRedelivered

JMSReplyTo

JMSType

In addition to these predefined header fields (which every JMS message is required to have), there are
JMS-defined property fields (many of which are optional), provider-specific properties, and user
properties.

The semantics of the various header and property fields are discussed in detail in Appendix C.

Body Types

JMS defines five message body types:

1 MapMessage—a message in which the body consists of a set of key-value pairs, wherein the keys
are Java Strings and the values are Java primitive types. Entries may be accessed by sequential
enumeration or randomly by name. (The ordering of key-value pairs is undefined.)

2 TextMessage—a message in which the body is a java.lang.String.

3 StreamMessage—a message whose body consists of a stream of Java primitive values (which are
filled and read sequentially).

4 ObjectMessage—a message containing a Serializable Java object. (For collections of objects, one
of the collection classes defined in JDK 1.2 can be used.)

5 BytesMessage—a message comprising any arbitrary stream of uninterrupted bytes. (This category
is intended for encoding a binary payload, or a special payload to match a vendor’s native message
format.) In Composer, the content of a BytesMessage should be Base64-encoded.

NOTE: Regardless of type, all JMS messages are read-only once posted to a queue.

The JMS Connect allows you to define message payloads using any of the five canonical JMS body
types. In addition, the JMS Connect offers two predefined message types (which are actually wrappers
for two of the predefined JMS body types):

XML—Allows you to send or receive an XML document (based on any XML template of your
choosing) as a message. The complete DOM representation of the XML document is available to
you for mapping and/or manipulation via ECMAScript and XPath; and you can add new nodes to
the template document. This message type wrappers the JMS-defined TextMessage type.

Copybook—Allows you to send or receive a COBOL copybook (as a BytesMessage).

See Chapter 4 for more information.

How Are Messages Retrieved?
JMS provides two mechanisms for client retrieval of messages:

1 Synchronous message retrieval, wherein a timeout value can be specified for terminating the
session should no response occur.

2 Asynchronous retrieval via a MessageListener object whose onMessage() method contains
application logic for processing incoming messages.

NOTE: Here, the terms “synchronous” and “asynchronous” refer to the queue/client communication
session rather than any relationship between sender and client. Senders can always post to queues,
whether or not receiving clients are online; in that sense, all messages are asynchronously received.
16 JMS Connect User’s Guide

In synchronous retrieval, a timeout value can be specified in milliseconds. If no expiration value is
specified, the “receive” session will block indefinitely, until a message arrives. On the other hand, if a
zero wait time is specified, queued messages that meet the applicable selection criteria (if any) will be
retrieved—and the session terminated—immediately.

Asynchronous retrieval treats messages like events and allows clients to be notified immediately (and
take action on) messages as they arrive. Application logic triggered by an onMessage() handler
processes messages transparently, with a minimum of latency. A broadcaster/listener metaphor applies in
this case.

One way to think of it is that in a synchronous-retrieval scenario, the client is pulling data from the queue;
in the asynchronous case, the queue is pushing data at the client.

Message Filtering
Some applications need to filter and/or categorize the messages they send or receive. In some instances,
the receiving application can simply inspect the message body and decide—from the message contents—
whether the message should be acted upon, or discarded. But it is often more efficient for selection
criteria to be exposed in the message header, so that the message body need not be parsed in order to
determine if the message is one that should be acted upon.

Exposing message selection hints in the header portion of a message is a common tactic when multiple
receiving apps are pointed at the same queue. The application that is best suited to handling a given
message type can harvest just the messages it needs, while other applications can act on messages better
suited for them. Administratively, it is more efficient to set up one queue (with multiple receivers
accessing it) than to set up multiple queues, each with a dedicated receiver.

Another factor to consider is that when potential selection criteria are visible (via the header) to a JMS
provider, the provider can avoid delivering messages to clients that might not need them. In effect,
filtering can be delegated to the JMS provider. (This strategy is important in Publish/Subscribe
messaging.)

JMS defines a message selector that can be used for screening messages on a queue. The selector is an
expression (with syntax similar to SQL92) that evaluates to true or false when header field and/or
property values are substituted for their corresponding identifiers in the selector.

The exteNd JMS Connect implements selectors in the Message Filter tab of the Native Environment pane
for all Browse and Receive actions; this allows you to filter incoming messages according to whatever
criteria you select.

See Chapter 4 and Appendix B for more information.

Request-Response versus Store/Forward
A request-response scenario involves an application sending a message in anticipation of receiving a
reply. For example, a credit-clearing application might package customer information into a message and
send that message to a queue, where a receiving application retrieves the message, performs the
necessary database queries and other processing, then replies to the original message.

This is different from the store/forward or “fire and forget” type of scenario in which a message producer
simply places a message on a queue and terminates (or goes on to other processing). Messages that are
sent in this fashion are sometimes called datagrams.
Welcome to exteNd Composer and JMS 17

The JMS Connect supports both kinds of scenarios. However, the request-response scenario must (in this
version of the connector) be implemented using individual Send Message and Receive Message actions.
(That is, there is no one action type that encapsulates a request-response session.) If the request message
and response message share the same queue, the associated send and receive actions can occur serially in
the same JMS Component. But if the outgoing message will be placed on a different queue than the
incoming reply, then two separate JMS Components must be created, since only one queue can be used
per JMS Component.

See Chapter 4 for additional information.

What Does JMS Not Cover?
The JMS standard defines numerous message-system behaviors and data types but does not address
administrative concerns, performance tuning, security, configuration issues, nor a variety of other JMS-
provider functions.

Among the areas not addressed by JMS are:

Load balancing

Scalability

Transparent failover

System-wide error notifications or warnings

User authentication

Secure transport of messages (privacy)

Communications protocols

Message type definitions stored in a repository

Consult your MOM vendor’s documentation for information about any of these features.

About exteNd’s JMS Component
The JMS Connect creates JMS Components which can be incorporated into exteNd services. Much like
the XML Map Component, the JMS Component is designed to map, transform, and transfer data between
incoming or outgoing messages and XML templates. It is specialized to make JMS calls into JMS-aware
messaging systems; automatically fill out needed header information based on information you supply
via a setup wizard; and handle details of packaging message contents according to constraints imposed
by JMS.

Like any data-exchange operation, the JMS Component relies on a Connection Resource. The
Connection Resource in turn specifies important information regarding ports, channels, user identity,
password, queue location, and so forth. Once you’ve set up a JMS Connection Resource, you can use it
to set up a JMS Component that sends messages to (or retrieves messages from) the queue specified in
the resource.
18 JMS Connect User’s Guide

2 Getting Started with the JMS Component Editor

As with other exteNd Connects, creating a usable JMS Component actually begins with creating a JMS
Connection resource, via which communication can occur with a message queue or topic. You will also
want to prepare any XML template documents (XML skeletons, DTDs, and/or XSL stylesheets) with
which your component will work. Getting these items ready is the subject of this chapter.

Creating a JMS Connection Resource
Before you can make use of a JMS Component, you must create a Connection Resource to access the
queue or topic your component will be sending messages to or receiving messages from.

Every Connect, including the JMS Connect, uses its own Connection Resource type. The different
Connection Resources (for JDBC, JMS, ECI, etc.) require varying numbers and types of parameters,
appropriate to the external data source in question. The setup wizard changes appearance dynamically to
reflect this.

Once you create a Connection Resource, you can reuse it for various JMS components that you create,
rather than creating a new connection each time. Also, a Connection Resource, once created, can to some
degree be self-configuring in that its data fields can be linked to ECMAScript expressions that control the
parameter values associated with the connection (see below).

About Expression-Driven Connections

The “Create a New Connection Resource” wizard will let you specify connection parameters in two
ways: as Constants or as Expressions. By default, the wizard’s parameter-entry fields are constant-based,
which means that the value you enter for any given parameter is utilized, unchanged, every time the
connection is used. An expression-based parameter, by contrast, gets its value programmatically, at
runtime, via an ECMAScript expression which you supply in the wizard at design time. The value of an
expression-driven parameter, therefore, can be different each time a connection is used, depending on the
conditions prevailing at runtime.

For example, one very simple use of an expression-driven parameter in a JMS Connection would be to
define the Connection User name as a PROJECT Variable. (From Composer’s main menubar, choose
Tools, then Configuration, then select the Project Variables tab.) Then you could assign the value of
the PROJECT Variable to the Connection User parameter. This way, when you deploy the project, you
use the “Project Variable Remapping Panel” feature of the Deployment Wizard to update the Connection
User name to a value appropriate for the final production environment.

As another example, suppose Queue1 in your MOM environment is scheduled for maintenance on the
15th day of every month, in which case Queue2 should be used instead. You could assign an expression
to the Queue Name parameter of the connection:

(new Date).getDate() == 15 ? "Queue1" : "Queue2"
Getting Started with the JMS Component Editor 19

You can also use an ECMAScript expression to read information from a file on disk, call a Java object in
the Application Server, etc. Thus, the use of expressions to provide parameter information brings great
flexibility and power.

To switch a parameter to Expression-driven mode

1 Position the cursor in the field that you want to attach an expression to. (Note that this does not
apply to the Connection Type field nor to checkboxes.)

2 Click the right mouse button to bring up a context menu.

3 Select Expression from the menu. A blue Expression Editor icon appears to the right of the
parameter field.

4 Type an ECMAScript expression into the field, or click the Expression Editor button and use the
pick lists in the Expression Editor to build an expression that evaluates to a valid parameter value at
runtime.

About Queue Connections

In Message Oriented Middleware systems, queues are administered resources that JMS gains access to
via its own administered objects. JMS administered objects encapsulate information about destinations
and connections in such a way that client apps can use these objects through interfaces that remain
portable.

JMS requires that administered objects (ConnectionFactories and Destinations) be placed in a JNDI
namespace. Therefore, the connection resources needed by an application can always be obtained via
JNDI. But if the name(s) of the provider’s ConnectionFactory objects are known to a given Java
application, that application can create its own connection(s) without going through JNDI.

exteNd offers a connection-via-JNDI facility by default (since JNDI access to administered objects is
guaranteed to be available in every JMS MOM). But in the case of IBM’s MQSeries, exteNd also offers
the option of obtaining queue connections directly using MQSeries classes (which is to say, without
going through JNDI). This offers the user easier setup options, with a more vendor-tailored user interface.

NOTE: If a vendor-specific “direct connection” facility is available, it will be listed as a pulldown-menu
choice in exteNd Composer’s “Create a New Connection Resource” Wizard. You can also verify the
availability of provider-specific connection facilities by checking the contents of <PROVIDERS> under the
JMS <COMPONENT_FACTORY> node of your xconfig.xml file. (The xconfig.xml file is located in your
Composer/bin directory).
20 JMS Connect User’s Guide

To create a JMS Queue Connection Resource Using JNDI

NOTE: The settings in the following graphics are typical for a JNDI connection to a JBrokerMQ
destination.

1 Select File>New>xObject, then open the Resource tab and select Connection. The “Create a
New Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.

5 Using the Connection Type pulldown menu, select JMS JNDI Queue Connection (for Point-to-
Point messaging). The contents of the pane will update to reflect the setup information needed for
the particular connection type you’ve chosen.

6 Enter the name of the queue you want to use in the first field (called Queue Name).

7 In the Connection Factory Name field, enter the QueueConnectionFactory if you are creating a
queue connection, or TopicConnectionFactory if you are creating a topic connection.

8 Enter Connection User and Connection Password info, as applicable. (Optional)

9 Enter the JNDI Subcontext, if needed. (Optional)

10 Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commands in your JMS Component.
Getting Started with the JMS Component Editor 21

NOTE: Issuing JMS Commit or Rollback statements in a JMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.

11 Check the Use Server Initial Context box if you would like your service, once deployed, to obtain
a ConnectionFactory locally, on the server, at runtime. This means you do not have to carry out
steps 15 to 19 below in order for the deployed service to obtain a queue or topic connection.
However, if you intend to send and receive live messages over the connection at design time, you
should also complete all applicable steps below, because Composer needs to be able to find the
ConnectionFactory objects it needs on the remote host. The following settings are aimed at helping
Composer establish connections remotely.

12 Using the vertical scrollbar to the right of the text fields, scroll down to expose the remaining
fields in the dialog. See below.

13 In the Initial Context Factory field, enter the name of your system’s JNDI context factory, such as
com.sun.jndi.fscontext.RefFSContextFactory. (Contact your administrator to obtain this
information.)

14 In the Provider URI field, enter the URI representing the location of the JMS provider’s (or MOM
vendor’s) JNDI context resources. For example, this may look something like
iiop://localhost:3506 or file:///D/MQSeries/java/fscontext.

15 (Optional) In the JNDI Authentication field, enter any required JNDI Authentication string (as
provided by your administrator).

16 (Optional) In the Security Principal field, enter any required JNDI Security Principal’s name (as
provided by your administrator).

17 (Optional) In the Security Credentials field, enter any required JNDI Security Credential string (as
provided by your administrator).

18 (Optional) In the Provider Parameters field, enter any provider-specific name/value pairs that are
necessary for the MOM environment in which you are operating. Separate name/value pairs by a
pipe character (|). For example, parameters for an LDAP provider could be:

java.naming.security.authentication = value |
java.naming.security.credentials = value | java.naming.security.principal
= value

NOTE: Spaces are shown here for clarity. Do not use spaces in your provider-param string.

19 Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JMS Components.
22 JMS Connect User’s Guide

20 Click Test to see if your connection is successful. The Test Options dialog appears.

21 The Test Options dialog asks if you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique CorrelationID) to the queue or topic for which you’re establishing a
connection.

NOTE: Use care not to send this test message in a production environment (i.e., using a live
queue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won’t be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.

22 Click Finish. The newly-created connection resource xObject appears in Composer’s Connection
Resource detail pane.

To create an MQSeries Queue Connection Resource

1 Select File>New>xObject, then open the Resource tab and select Connection. The “Create a New
Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.
Getting Started with the JMS Component Editor 23

4 Click Next to go to the Connection Info pane of the Wizard.

5 Using the Connection Type pulldown menu, choose JMS MQSeries Queue (for Point-to-Point
messaging). The contents of the pane will update to reflect the setup information needed for the
particular connection type you’ve chosen.

6 Enter the name of the queue you want to use in the first field (called Queue Name).

7 Optionally enter a username in the Connection User field.

8 Optionally enter your password in the Connection Password field.

9 In the Host Name field, enter the name of your system’s MQSeries Host Machine Name. (Contact
your administrator, if need be, for this information.)

10 In the Port field, enter the MQSeries Host Machine Port Number. (Contact your administrator, if
need be, for this information.)

11 In the Queue Manager field, enter the MQSeries Queue Manager name for this queue (as provided
by your administrator).

12 In the Channel field, enter the MQSeries Host Machine Channel Name (as provided by your
administrator).

13 If you want to specify a temporary model queue, do so in the Temporary Model Queue field.

14 Using the vertical scrollbar provided, scroll down to expose the remaining fields of the dialog. (In
this case, two checkboxes are exposed.) See below.

15 Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commands in your JMS Component.
24 JMS Connect User’s Guide

NOTE: Issuing JMS Commit or Rollback statements in a JMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.

16 Check the Non-JMS Client checkbox if you wish the connection to be set up using MOM-native
facilities. (In this case, this means that MQSeries objects will be obtained directly, using vendor-
proprietary calls.)

17 Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JMS Components.

18 Click Test to see if your connection is successful. The Test Options dialog appears.

19 The Test Options dialog asks if you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique CorrelationID) to the queue or topic for which you’re establishing a
connection.

NOTE: Use care not to send this test message in a production environment (i.e., using a live
queue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won’t be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.

20 Click Finish. The newly-created connection resource xObject appears in Composer’s Connection
Resource detail pane.

About Topic Connections

When a queue is used in a Publish/Subscribe context (see “What Is Publish/Subscribe Messaging?”), it is
called a topic. The differences between queues and topics are primarily administrative rather than
functional. Therefore, all of the comments regarding Queue Connections in the preceding section apply
equally to Topic Connections as well, except for the fact that in a Publish/Subscribe context, browsing is
not defined. If you need to use a Browse action, you must connect to a queue, not a topic.

To create a JNDI Topic Connection Resource

1 Select File>New>xObject, then open the Resource tab and select Connection. The “Create a
New Connection Resource” Wizard appears.

2 Follow Steps 2, 3, and 4 for filling out the first panel in the wizard as described further above under
“To create a JMS Queue Connection Resource Using JNDI” on page 21.
Getting Started with the JMS Component Editor 25

3 Click Finish on the first panel of the wizard. A new panel appears:

4 Using the Connection Type pulldown menu, select JMS JNDI Topic Connection (for Pub/Sub
messaging). The contents of the pane will update to reflect the setup information needed for this
connection type.

5 Enter the name of the Topic in the first field (called Topic Name).

6 Enter a Durable Subscriber name. (Optional)

7 Enter a Client ID.

8 In the Connection Factory Name field, enter the TopicConnectionFactory name.

9 Enter Connection User and Connection Password info, as applicable. (Optional)

10 Enter the JNDI Subcontext, if needed. (Optional)

11 Check the No Local Messages checkbox if you want to keep your component or service from
receiving messages that it may be sending to a topic that it is listening on. (In other words, check
this box if you want to keep a component from receiving its own messages.)

12 Scroll down to expose the rest of the panel’s fields. See below.

13 Under Transaction Mode, enter False: None, True: Local or XA: Server if you intend to issue
session-level Commit or Rollback commands in your JMS Component.

NOTE: Issuing JMS Commit or Rollback statements in a JMS Component’s action model without
the proper Transaction Mode selected will result in exceptions being thrown.
26 JMS Connect User’s Guide

14 Check the Use Server Initial Context box if you would like your service, once deployed, to obtain
a ConnectionFactory locally, on the server, at runtime. This means you do not have to carry out
steps 15 to 19 below in order for the deployed service to obtain a queue or topic connection.
However, if you intend to send and receive live messages over the connection at design time, you
should complete all applicable steps below, because Composer needs to be able to find the
ConnectionFactory objects it needs on the remote host. The following settings are aimed at helping
Composer establish connections remotely.

15 In the Initial Context Factory field, enter the name of your system’s JNDI context factory, such as
com.sun.jndi.fscontext.RefFSContextFactory. (Contact your administrator to obtain this
information.)

16 In the Provider URI field, enter the URI representing the location of the JMS provider’s (or MOM
vendor’s) JNDI context resources. For example, this may look something like
iiop://localhost:3506 or file:///D/MQSeries/java/fscontext.

17 (Optional) In the JNDI Authentication field, enter any required JNDI Authentication string (as
provided by your administrator).

18 (Optional) In the Security Principal field, enter any required JNDI Security Principal’s name (as
provided by your administrator).

19 (Optional) In the Security Credentials field, enter any required JNDI Security Credential string (as
provided by your administrator).

20 (Optional) In the Provider Parameters field, enter any provider-specific name/value pairs that are
necessary for the MOM environment in which you are operating. Separate name/value pairs by a
pipe character (|). For example, parameters for an LDAP provider could be:

java.naming.security.authentication = value | java.naming.security.credentials
= value | java.naming.security.principal = value

NOTE: Spaces are shown here for clarity. Do not use spaces in your provider-param string.

21 Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JMS Components.

22 Optionally click the Test button to test the connection.

23 Click Finish to exit the wizard.

To create an MQSeries Topic Connection Resource

1 Select File>New>xObject then open the Resource tab and select Connection. The “Create a New
Connection Resource” Wizard appears.

2 Follow Steps 2, 3, and 4 for filling out the first panel in the wizard as described further above under
“To create a JMS Queue Connection Resource Using JNDI”.

3 Click Finish on the first panel of the wizard. A new panel appears:
Getting Started with the JMS Component Editor 27

4 Enter the name of the Topic in the first field (called Topic Name).

5 Enter a Durable Subscriber name. (Optional)

6 Enter a Client ID. (Optional)

7 Enter User ID and Password info, as applicable. (Optional)

8 Enter the Host Name. (Optional)

9 Enter the Port. (Optional)

10 Enter the MQSeries Queue Manager name, if you want to specify one. (See your MQSeries
documentation for advice on when and when not to enforce queue-manager associations.)

11 Scroll down to expose the rest of the fields in this panel of the wizard. See below.

12 Optionally enter a Channel.

13 Check the No Local Messages checkbox if you want to keep your component or service from
receiving messages that it may be sending to a topic that it is listening on. (In other words, check
this box if you want to keep a component from receiving its own messages.)

14 Check the Transacted checkbox (which is unchecked by default) if you intend to issue session-
level Commit or Rollback commands in your JMS Component.

NOTE: Issuing JMS Commit or Rollback statements in a JMS Component’s action model without
the Transacted checkbox being checked will result in exceptions being thrown.

15 Check the Non-JMS Client checkbox if you will be using provider-native message delivery on this
topic (ignoring JMS header information). This option would be of interest if your component were
sending messages intended for a receiver that was using only MQSeries-native (non-JMS-aware)
messaging features.

16 Check the Default checkbox (which is normally unchecked) if you would like this Connection
Resource to appear in setup dialogs by default when you create JMS Components.

17 Optionally click the Test button to test the connection.

18 Click Finish to exit the wizard.
28 JMS Connect User’s Guide

Creating XML Templates for Your Component
In addition to a connection resource, a JMS Component may also use XML stub documents, associated
DTDs, and/or XSL stylesheets to aid in the mapping of message information. If you intend to use such
documents, you should add them to an XML Template resource at this time so that you have sample
documents for designing your component. (See Chapter 5, Creating XML Templates, in the exteNd
Composer User’s Guide for more information.)

Also, if your component design calls for any other xObject resources such as custom scripts or code table
maps, it is best to create these before creating the JMS Component. For more information, see Creating
Custom Scripts in the Composer User’s Guide.
Getting Started with the JMS Component Editor 29

30 JMS Connect User’s Guide

3 Creating a JMS Component

This chapter outlines the process of creating a JMS Component for use in an exteNd web service. At the
same time, the semantics and usage of message header fields and properties are discussed in the context
of JMS messaging; and tips are given for making the most effective use of JMS-based exteNd web
services. You should familiarize yourself with this chapter before creating and deploying web services
that rely on components created with the JMS Connect.

Before Creating a JMS Component
Creating a JMS component requires that you know the answers to the following questions:

Which XML template documents (and/or COBOL copybooks) will you to need in order to map
data into or out of messages? (For more information on XML Template resources, see Creating a
New XML Template in the Composer User’s Guide.)

Which JMS Connection resource will your component(s) use? As part of the process of creating a
JMS component, you can select an existing JMS connection, or you can create a new one. (If you
create the connection beforehand, then it is available to all new JMS components.) See the previous
chapter for step-by-step information on how to set up a JMS Connection resource.

Will you be creating a Browse Messages action? (See “The Browse Messages Action”.) If so, you
will need to choose a queue connection as your connection resource. Browsing is not defined on
topic connections.

Will your service be triggered by messages arriving at a queue/topic? If so, you will need to deploy
your service as a JMS Service. (See Chapter 6, “The JMS Service”.)

Will your message session be transacted? If you intend to issue Commit or Rollback commands,
you must enable transactions in the particular JMS Connection Resource you intend to use (by
checking the “Transacted” checkbox in the Connection Resource setup wizard). For more
information, see the discussion of the “Transacted” checkbox on page 23.

Will you be sending messages, or receiving them? You can send as well as receive messages inside
of a single JMS Component—but only if the same queue (or connection resource) is used. If you
will be sending or receiving to/from two or more different queues or topics, you must create
separate components: one for each connection resource.
Creating a JMS Component 31

To create a new JMS Component:

1 Select File>New>xObject then open the Component tab and select JMS. The “Create a New
JMS Component” Wizard appears.

2 Enter a Name for the new JMS Component.

3 Optionally, type Description text.

4 Click Next. The XML Templates Info panel of the “Create a New JMS Component” Wizard
appears.

5 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

6 Select an XML template for use as an Output Part using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output Part
without Using a Template” in the User’s Guide.
32 JMS Connect User’s Guide

7 Click Next. The XML Temp/Fault Template Info panel of the New HP3000 Terminal Component
Wizard appears.

8 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Specify the
templates as indicated in Step 6 above.

9 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

10 As above, to add additional temp or fault XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To remove an XML
template, select an entry and click Delete.

11 Click Next. The Connection Info panel of the “Create a New JMS Component” Wizard appears.

12 Select a Connection type from the pulldown list. (The pulldown list choices reflect the available
JMS Connection Resources that were created earlier. For more information on creating JMS
Connection Resources, see “Creating a JMS Connection Resource” on page 19).
Creating a JMS Component 33

13 Click Finish. The component is created and the JMS Component Editor appears.

About the JMS Component Editor Window
The JMS Component Editor is similar in appearance to the XML Map Component Editor window (and
in fact includes all the functionality of the XML Map Component Editor, plus additional Action types
specific to messaging). Like all other Component Editors, the JMS Component Editor window includes
an Action Model pane (which is typically in the lower right corner, although it doesn’t have to be), a
Native Environment pane (upper right), and mapping panes for input, output, and/or temporary DOMs.

The Native Environment page appears as a grey pane until you create or highlight a Message Action, at
which time it displays a message status pane containing either two or three tabs, depending on whether
the current Message Action involves browsing, sending, or receiving.

Action Model pane Native Environment pane

Output
pane

Input pane
34 JMS Connect User’s Guide

If you activate the Action menu (or do a right-mouse-click inside the Action Model pane) and select New
Action, you will see that all of the same actions that are available in the XML Map Component are also
available in the JMS Component, but with four new action types:

Browse Messages

Message Transaction

Receive Message

Send Message

The four JMS-specific actions are the subject of the next chapter.
Creating a JMS Component 35

About the Native Environment Pane
The JMS Component Editor’s Native Environment pane (which is initially grey) will display various
types of information associated with a message whenever a JMS Message Action is highlighted in the
Action Model pane. The available categories of information (indicated by tabs at the top of the pane)
include Message Body, Message Header, and Message Filter. The first two categories are common to all
message actions (Send, Receive, and Browse). The Message Filter category, however, is visible only for
Receive and Browse.

In the above illustration, the Message Header tab has been selected (with a Receive Message action
highlighted in the Action Model pane). The Native Environment pane has been enlarged to show all
available message headers and properties. For information on message header and property field usage,
see “Message Headers and Properties” on page 93.

When the Message Body tab is selected, the Native Environment Pane will display content in a manner
appropriate to the body type. For example, if the message contains an XML document, the Native
Environment Pane will display a DOM tree; whereas if the message contains a COBOL copybook, it will
display the contents of the copybook. See “Actions Unique to the JMS Component Editor”(starting on
page 37) for additional information.

When the Message Filter tab is selected, the Native Environment Pane will display a selector-edit area.
See “Working with Message Filters (Selectors)” on page 71 for more information.
36 JMS Connect User’s Guide

4 Creating JMS Actions

About Actions
An action is similar to a programming statement in that it performs a specific, well-defined task, often
with input in the form of parameters. Related actions are often chained together to form a single
functional unit. In exteNd, this functional unit is the Component; actions that make up the Component are
part of an action list or Action Model. (Please see the chapters in the Composer User’s Guide devoted to
Actions.)

The JMS Component Editor allows you to create actions that involve sending, receiving, or browsing
messages, optionally as part of a transaction. The powerful XML mapping capabilities of exteNd
Composer allows you to map XML information between messages and DOMs with ease, while also
permitting the transformation of data with business logic. JMS Components created in exteNd Composer
thus bring sophisticated messaging capabilities to XML integration applications.

Within a Component, an Action Model is made up of a list of related actions that work together to achieve
a desired result. As an example, in a JMS Component, an Action Model might contain actions that read
order data from a queue, map the data to a temporary XML document, perform data transformations on
specific line items, and map the converted data to an output XML document.

The Action Model mentioned above would be composed of several discrete actions. These actions
would:

Perform a Read Message action, perhaps with the aid of filtering

Map message contents to a temporary XML document

Transform data items using a Code Table

Optionally execute other Components

Map the results to an Output XML document

Actions Unique to the JMS Component Editor
The JMS Component editor contains all the core functionality of exteNd Composer’s XML Map
Component editor, plus four connector-specific action types:

Browse Message

Message Transaction

Receive Message

Send Message

Except for the Message Transaction action type (which simply allows you to place Commit and/or
Rollback statements in a JMS Component; see “The Message Transaction Action” further below), the
various message actions all share a common setup dialog. The setup dialog has three tabs:
Creating JMS Actions 37

An Options tab (labelled Send Options, Browse Options, or Receive Options, as appropriate to the
action type)

Message Body tab

Message Header tab

The Browse and Receive dialogs also have a Filter tab (discussed under “The Browse Messages Action”
and “The Receive Message Action” further below).

Options Tab

The Options tab exposes options specific to the type of action in question (Send, Browse, or Receive).
For example, the Send Message action has an Options panel that looks like this:

The options shown in this tab are action-specific, but not message-type-specific. That is to say, the
appearance of this tab will not be different for a BytesMessage than for a MapMessage.

Message Body Tab

The Message Body tab brings up a pane containing setup parameters that differ depending on the
message type:
38 JMS Connect User’s Guide

This pane contains a Message Type pulldown menu as shown above, allowing access to the XML and
Copybook types plus the five predefined JMS message types. Depending on what you select here, the
Body Information Setup pane in the lower portion of the dialog will change. (See the sections that follow
for a more complete description of the various fields and their usage.)

Message Header Tab

The Message Header tab brings up a pane that looks the same for all message action types:

This tab is where you can optionally create custom properties (equivalent to custom header fields) to
supplement the built-in header fields defined by JMS.

Under Header Document Name, you must provide a name that can later be used as a target label for
purposes of mapping values to property fields in the Native Environment pane. (Fields cannot be
assigned values directly in this dialog.) The default name, in the case of the Send Message action, is
Send_HDR.

The Send Message Action
The Send Message action can be used to post messages to a queue or topic. The message priority, delivery
mode (persistent or non-persistent), and Time to Live can be specified on an action-by-action basis. In
addition, you can specify the destination queue or topic on an action-by-action basis and you can
optionally specify a named queue in the JMSReplyTo field of the outgoing message’s header.

The button groups in the Send Options tab of the Send Message action require separate discussion. There
are three button groups. The top group allows you to specify settings related to quality of service. The
middle group allows you to specify a destination queue or different from the one you specified in the
Connection Resource for the component. The bottom group is for letting you specify a “return address”
for your outbound message. Each button group will be discussed in turn.

Click here to add
a custom property

Click here to remove
a custom property

Assign a mapping name
to the header here
Creating JMS Actions 39

Priority, Mode, and Time to Live

The top button group in the Send Options panel allows you to specify properties important to quality of
service:

Send Priority—Lets you assign a priority to the message, from one to nine. The JMS-defined
default priority is four. Use the pulldown menu to override the default. (Note that the
implementation details associated with message priority are not specified by the JMS standard.)

Delivery Mode—Allows you to specify whether the message will be persisted to storage en route
to its destination (for maximum reliability) or delivered more quickly but without recoverability.

Time to Live—Lets you assign a maximum lifetime to the message, in milliseconds. If a zero value
is specified, the message will not expire.

Destination Queue/Topic

The default destination queue for your Send Message action will be the one specified in the JMS
Connection Resource for the component. (To change the default destination from within a JMS
Component, choose File > Component > Connection Info and select a different queue from the
pulldown menu.)

If you want to override the default behavior, you can specify destination queues or topics for Send actions
on an action-by-action basis. To override the default behavior, simply check the Override Connection
Queue/Topic checkbox in the Send Options panel of the Send Message dialog:

Checking the Override Connection Destination box (see above) enables two radio buttons underneath.

The Named radio button allows you to enter a queue or topic name in the accompanying text field
(as a quoted string) or specify the queue/topic using ECMAScript. The ability to specify a script
here means that you can base the choice of queue or topic on custom logic involving conditionals
and/or values obtained at runtime. To create a script that specifies the named queue, click the
Expression icon to the right of the text field; this will bring up the Expression Editor dialog. Type
your script in the Expression Editor (or build it with the aid of the picklists shown there) and click
OK. Your script will appear in the text field. Obviously, the script must ultimately evaluate to a
string representing the name of a particular queue or topic.

NOTE: When you are using an IBM MQSeries queue, you can specify a fully qualified queue URI
in the Use Named text field, such as:

queue://qmanager/queue1?CLIENTTYPE=0
40 JMS Connect User’s Guide

The second radio button in the “Override” button group, Prior Receive’s ReplyTo, will (if
selected) cause the outgoing message to go to the queue or topic specified in the JMSReplyTo field
of the last received message having a non-empty JMSReplyTo field. You would select this radio
button if your Send Message action is specifically aimed at replying to an incoming message (a
prior Receive Message action in the same component).

NOTE: The JMSReplyTo field that is referenced for purposes of this radio button is the last
JMSReplyTo field associated with the last received message (within this component) that has a non-
empty JMSReplyTo field. For example: If your component has three Receive Message actions—A,
B, and C (in that order)—and the JMSReplyTo field was empty on B and C but non-empty for
Message A, setting the Use Prior Receive’s ReplyTo radio button will cause your Send Message
action to use the queue specified by Message A. If all three messages were to have non-empty
ReplyTo fields, and you wanted to reply to Message A, you would not set the Use Prior Receive
radio button. Instead, you would select Use Named and specify an Expression that grabs the
JMSReplyTo element from the header DOM of Message A.

MQSeries-Specific Behavior

In the Override Connection button group, a special Non-JMS Client checkbox will appear if your
connection resource specifies an IBM MQSeries message queue. You can check this box if you are
sending a message to a non-JMS message consumer, which is to say, a user of native MQSeries services.
When this option is used, the assumption is that the receiving process is a non-Java message consumer
that has no knowledge of (for example) JMS rules for header encoding and decoding. Therefore, when
you use this option, you should not assume that any header information will be received by the message
recipient, or that the recipient would know what to do with such information even if it was received. You
should not, for example, specify user-defined header properties of any kind, nor map values into
JMSCorrelationID nor JMSType header fields.

Notwithstanding the above, it’s important to remember that the queue manager (which is JMS-aware)
will still use certain header values even if the message is intended for a non-JMS client. In general, any
header fields that have to do with quality of service (such as JMSDeliveryMode or JMSExpiration) will
be honored by the queue manager, even if Non-JMS Client is checked.

Note that when you are using an IBM MQSeries queue, you can specify a fully qualified queue URI in
the Use Named text field of the Override Connection Queue control group, such as:

queue://qmanager/queue1?CLIENTTYPE=0
Creating JMS Actions 41

Return Address

The lowermost button group in the Send Options panel gives you control over the value that the
JMSReplyTo header field will have in your outgoing message.

By default, the JMSReplyTo field in an outgoing message is empty. You will typically change this
behavior if you want your outgoing message to trigger a reply on the part of a receiver, or if your outgoing
message might elicit a reply (such as an error report) at least some of the time. To override the default
behavior (and specify a return address in the JMSReplyTo field), first check the Specify ReplyTo
checkbox (see above), then select one of the two radio buttons underneath.

There are two possible reply scenarios: asynchronous and synchronous. (It’s important to remember that
in neither case can your component be assured of receiving a reply.) The radio buttons are meant to
accommodate these two scenarios.

The Named radio button implies an asynchronous scenario. When you select this radio button, you
are specifying a queue or topic name in the outbound message’s JMSReplyTo field. In essence, you
are saying to the receiver: “If a reply is sent, be sure it goes to this address.” You must type a queue
name (or topic name) manually, enclosed in quotes, in the associated text field; or create an
ECMAScript expression that evaluates to a queue/topic name.

The Temporary radio button is designed to be used in cases where you expect to receive a reply in
a synchronous manner. When you select this radio button, a temporary queue is created for
purposes of receiving an immediate reply, and the outbound message has the temporary queue
name in its JMSReplyTo header field so that the receiving process knows where to send its
response. (The temporary queue will exist only for the lifetime of your component. See
“Temporary Queues” in the next chapter.)
42 JMS Connect User’s Guide

To create a Send Message action

1 Create or open a JMS Component (as described in the previous chapter).

2 Highlight a line in the Action Model where you want to place the Send Message action. The new
action will be inserted below the line you highlight.

3 From the Action menu, select New Action, then Send Message. The Send Message setup dialog
appears, with the Send Options panel displayed.

4 From the Send Priority pulldown menu, select a priority ranking (from 0 to 9) for your message.
Zero represents the lowest priority; 9, the highest.

NOTE: The details of how this priority value is implemented are not defined by the JMS
specification. Consult your MOM vendor’s documentation for details.

5 From the Delivery Mode pulldown menu, select PERSISTENT or NON_PERSISTENT. (See
“What About Delivery Guarantees?” on page 15 for more information on the meaning of these
terms.)

6 Enter a millisecond value in Time To Live to give your message a finite lifespan; or else enter zero,
if you do not want your message to expire. (See “Message Headers and Properties” on page 93 for
more information on this setting.)

7 If you wish to send your message to a queue or topic other than the one specified in your
connection resource, click the Override Connection Queue checkbox and select the appropriate
radio button as described in the discussion above under .

8 If you wish to specify a value in the JMSReplyTo field of your outgoing message’s header, click the
Specify ReplyTo checkbox and select the appropriate radio button as described in the discussion
above.
Creating JMS Actions 43

9 Click the Message Body tab. A new pane appears.

10 Select one of the seven available message types from the Message Type pulldown menu. (In this
example, the XML type is selected, indicating that the posted message will contain an XML-
formatted text document.)

11 In the Body Information Setup portion of the dialog, enter information as necessary. This portion of
the dialog will vary in appearance depending on the Message Type selected. In this example, the
Message Type is XML; hence, you are prompted to enter information for Body Document Name
(i.e., the name you want to apply to the Message Body DOM), Template Category (the XML
Template resource name), and Template Name (name of the XML stub document you want to apply
to the Message Body, if appropriate). See “Using Other Actions in the JMS Component Editor” on
page 57 for additional information.

12 If you would like to add your own custom Properties to the message header, click on the Message
Header tab. The Message Header pane appears.

13 Enter a Header Document Name (or accept the default name, which begins with Send_HDR).
This name will be shown in the Native Environment Pane as the name of the header tree, for
purposes of mapping values to fields.
44 JMS Connect User’s Guide

14 Click the plus (+) icon to add a Property. Type the name of the custom property under Property
Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property. In the above example, a single custom property called
SKU_PREFIX has been created, specified as a String.

NOTE: You must go to the Native Environment Panel to specify values for your properties. This
dialog merely creates the empty properties.

15 Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

16 Click OK. The JMS Component editor main window appears, containing the new Send action in
the action list.

Note that when the Message Header tab is selected in the Native Environment pane (above), a User
property called SKU_PREFIX is visible. This is the custom property we created in the setup dialog.

Before Send vs. After Send

When a Send Message action has been created, the action list shows “Before Send Maps” and “After
Send Maps” lines. The reason there are two map lists is that some JMS-defined header fields are empty
before the Send action is executed; after the Send, the same fields contain data supplied either by the JMS
provider or by the JMS Component’s internal methods. In particular, the fields that are populated after
Send time are:

JMSDestination

JMSDeliveryMode

JMSExpiration

JMSPriority

JMSMessageID

JMSTimestamp

JMSRedelivered

Any data mapped into these header locations prior to sending a message will be overwritten at Send time.
These fields should be considered read-only; and the data in them should be considered valid only after
a Send.
Creating JMS Actions 45

The header fields that are writable are:

JMSCorrelationID

JMSType

You can double-click in these fields (in the Native Environment Pane) to enter data manually, or you can
use them as drop targets in drag-and-drop mapping from DOMs.

NOTE: The JMSReplyTo field is writable, but not through drag-and-drop or direct editing. To populate this
field, you must use the controls provided in the Send Options tab of the Send Message dialog.

The following graphic shows what the Native Environment pane might look like after a message has
been sent (that is to say, after fields have been auto-populated):

If you wish to use the data in read-only fields for logging purposes, debugging, mapping to an Output
DOM, etc., you should add the relevant Map actions below the “After Send Maps” line in the Action
model. If you have input-DOM data that you wish to map to a header field (such as JMSCorrelationID),
you can use the drag-and-drop method to create mappings between input DOM elements and header
fields as described on page 59.

The Browse Messages Action
A browse operation allows your application to inspect messages from a queue without causing those
messages to be removed from the queue. That is to say, after a browse operation, all messages are still
available on the queue for any consuming application to obtain.

In response to a browse request, a queue manager will return a java.util.Enumeration containing all
available messages, unless a Message Filter (or “selector”) has been specified, in which case only those
messages matching the selector statement will be returned. (For information on using selectors, see
“Working with Message Filters (Selectors)” on page 71.)

In a JMS Component, the Browse Messages action is used to browse messages from a queue. By default,
the queue that will be browsed is the one specified in the JMS Connection Resource for the component.
(To change the default queue from within a JMS Component, choose
File > Component > Connection Info and selected a different queue from the pulldown menu.) You can
also override the default on an action-by-action basis (see below).

NOTE: Browsing is a Point-to-Point operation only. In Publish/Subscribe, browsing is not defined. Your
connection resource should be configured to use a queue (not a topic) if you will be using the Browse
Messages action.
46 JMS Connect User’s Guide

To create a Browse Messages action

1 Create or open a JMS Component (as described in the previous chapter).

2 Highlight a line in the Action Model where you want to place the Browse Messages action. The
new action will be inserted below the line you highlight.

3 From the Action menu, select New Action, then Browse Messages. The Browse Message dialog
appears, with the Browse Options panel displayed.

4 (Optional) If you would like to browse a message queue other than the one specified in your
component’s connection resource, check the Override Connection Queue checkbox (which is
unchecked by default).

Click the Use Named radio button if you wish to specify a queue name manually. (Type the
queue name in the accompanying text field, surrounded in quotes, or build an ECMAScript
expression that evaluates to a queue name.)

Click the Use Sent Message ReplyTo Field radio button if you wish to browse a queue that was
specified in the last Send Message action. (To obtain the destination queue name, exteNd will
search for the last received message that had a non-empty JMSReplyTo field. This may or may
not be the same as the last received message.)

5 If desired, specify a Filter expression in the text field under Filter. (See Appendix B, “Message
Filter Syntax,” for more information.) This is an ECMAScript expression, so be sure to wrap
strings in quotes.
Creating JMS Actions 47

6 Click the Message Body tab. A new panel appears.

7 From the Message Type pulldown menu, select the message type that corresponds to the kind of
message your component is designed to process. This will preconfigure the Message Body to
receive and store incoming data in a format that’s acceptable to your application’s requirements.

NOTE: This choice does not tell exteNd Composer to filter out unwanted message types. A browse
operation, under JMS, always returns an enumeration of all available messages, regardless of body
type.

8 Uncheck the Error on Invalid Message Type checkbox (checked by default) if you do not want
exteNd Composer to throw an exception when an unexpected message body type is encountered.
Normally, a JMS process is designed to “understand” and handle one specific JMS message type
(such as JMSText), which usually means that if an unexpected message type (such as JMSBytes
instead of JMSText) is encountered, processing errors eventually occur. Usually, it is better for
processing problems to be discovered earlier rather than later; hence, the default state of this
checkbox is checked. It is quite possible, however, especially for testing purposes, that you might
want your JMS Component to handle all available messages regardless of body type. In that case,
you’d want to uncheck the box.

9 In the Body Information Setup portion of the dialog, enter whatever information might be
appropriate to the Message Type. (This portion of the dialog will change in appearance according to
the Message Type that you’ve chosen.) In this example, the Message Type is XML; hence, you are
prompted to enter information for Body Document Name (i.e., the name you want to apply to the
Message Body DOM), Template Category (the XML Template resource name), and Template
Name (name of the XML stub document you want to apply to the Message Body, if appropriate).
See “Using Other Actions in the JMS Component Editor” on page 57 for additional information.
48 JMS Connect User’s Guide

10 Click the Message Header tab. A new panel appears.

11 Enter a Mapping Name (or accept the default, which begins with Browse_HDR). This name will
be shown in the Native Environment Pane as the name of the header tree, for mapping purposes.

12 Click the plus (+) icon to add a Property. Type the name of the custom property under Property
Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property.

NOTE: The purpose of this procedure is to build a property list that corresponds to the anticipated
property list of the incoming message(s). If any incoming messages have property fields that aren’t
accounted for here, the extra fields will be ignored and any associated data will be lost.

13 Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

14 Click the Message Filter tab. A new panel appears.

15 If you want to apply a JMS Message Filter to your Browse operation, enter it (and/or build it using
the picklist items) in the text area in the lower half of the dialog. (See “Working with Message
Filters (Selectors)” on page 71 for more information.)
Creating JMS Actions 49

16 Click OK. The JMS Component editor main window appears, with the new Browse action shown
in the action list. (See illsutration.)

Iterating through Messages

When you create a new Browse action, the line “Browse Messages: Type = . . .” appears in the action list,
followed by a line “Browse Message Maps,” followed (in turn) by a line that begins:

WHILE JMSMESSAGE.hasMessages() . . .

Because a JMS browse operation always returns a list of every available message (subject to filtering
constraints; see “Working with Message Filters (Selectors)” on page 71), the JMS Connect automatically
constructs a WHILE loop as part of every Browse Messages action. This loop iterates through each
available message. As part of your action model, you can place whatever Map actions (or other
processing) you might need, within the loop. You can also exercise loop control (using the component
editor’s Break and Continue commands) as you would for any other loop.

Note that as with the Receive Message action (described below), the Native Environment pane for the
Browse Messages action contains Message Body, Message Header, and Message Filter tabs. Working
with these tabs is the subject of the next chapter.

The Receive Message Action
A receive operation allows your application to retrieve a message from a queue. The act of receiving a
message causes that message to be destructively removed from the queue. The only exception to this
occurs when a message session is transacted and a rollback takes place; in that instance, although a
Receive Message action takes place, the message is ultimately not consumed. It remains on the queue.

In response to a receive request, a queue or topic manager will return the first available message, except
when a Message Filter (or “selector”) has been specified, in which case only the first available message
that matches the selector statement will be returned.

In a JMS Component, the Receive Message action is used to obtain a message from a queue or topic. The
queue or topic that will be used is the one specified in the JMS Connection Resource for the component.
(To change queue/topic from within a JMS Component, choose File > Component > Connection Info
and selected a different queue or topic from the pulldown menu.)

NOTE: Since the Receive Message action retrieves, at most, a single message at a time, you will need
to construct a Repeat/While loop in order to receive all messages from a queue or topic. The Repeat While
action should be designed in such a way that looping terminates when the JMSMessageID header field is
empty.
50 JMS Connect User’s Guide

To create a Receive Message action

1 Create or open a JMS Component (as described in the previous chapter).

2 Highlight a line in the Action Model where you want to place the Receive Message action. The new
action will be inserted below the line you highlight.

3 From the Action menu, select New Action, then Receive Message. The Receive Message dialog
appears, with the Receive Options panel showing.

4 Check the Error on No Message checkbox (which is checked by default) if you want an exception
to be thrown whenever no message is received within the timeout period. Note that the default
timeout period (unless one is user-specified; see step 6) is NO_WAIT, or zero.

NOTE: If this box is left checked, you should wrap your Receive action in a Try/On Error action and
execute appropriate recovery steps in the On Error branch. But whether you check the checkbox or
not, you should anticipate (and make sure your application can gracefully handle) the possibility that
the queue is empty when your Receive action executes.

5 Check the Specify Receive Timeout checkbox (unchecked by default) if you wish to specify a
timeout value other than the default of NO_WAIT (zero). If the checkbox is not checked, the action
will simply check the queue or topic and retrieve a message if one is available, then return
immediately without waiting. To force the action to block for a specified time, you must check this
checkbox and specify a wait time.

Select the User Specified radio button if you want to enter your own timeout value. Enter the
timeout value (in milliseconds) in the accompanying text field, or create an ECMAScript
expression that evaluates to a suitable number.

Select the Infinite radio button if you want the Receive action to block indefinitely (until a
message is received).

6 Check the Override Connection Queue checkbox (unchecked by default) if you want to specify a
queue or topic other than the one given in the component’s connection resource.

Select the Use Named radio button (the default) if you want to explicitly specify a given queue
or topic. Type the queue or topic name in the accompanying text field, in quotation marks, or
enter an ECMAScript expression that evaluates to a queue or topic name.

Select the Use Prior Message ReplyTo Field radio button if you want to use the queue or topic
named in the JMSReplyTo field of the last sent message that contains a non-empty JMSReplyTo
header field.
Creating JMS Actions 51

NOTE: If your action is waiting for a reply to a previously sent message, you should have specified
an appropriate timeout value in Step 6 above. Some testing may be required in order to determine
the timeout value that provides the best ratio of safety to performance.

7 Click the Message Body tab. A new panel appears.

8 From the Message Type pulldown menu, select the message type that corresponds to the kind of
message your component is designed to receive. This will preconfigure the Message Body to
receive and store incoming data in a format that’s acceptable to your application’s requirements.

NOTE: It’s important that your application take steps to ensure that only messages of the
appropriate body type are received. Ordinarily, this will not be a problem since message-producing
applications typically send their messages only to consuming applications that have been designed
to receive them. Should your application happen to receive messages with a body type incompatible
with the type you select in the Receive Message dialog, an exception will be thrown. If your
application will be receiving messages from a queue that contains many different kinds of message
body types, it is advisable that you design a Message Filter (selector statement) that can distinguish
just the messages that are appropriate for your application.

9 Under Body Document Name, enter the name you wish to associate with the body of the incoming
message, for purposes of DOM context (or accept the default, which begins with “Receive”).

NOTE: This portion of the dialog will change in appearance according to the Message Type that
you’ve chosen.) In the screen shot shown above, the Message Type is XML; hence, you are
prompted to enter information for Body Document Name (i.e., the name you want to apply to the
Message Body DOM), Template Category (the XML Template resource name), and Template
Name (name of the XML stub document you want to apply to the Message Body, if appropriate). See
“Using Other Actions in the JMS Component Editor” on page 57 for additional information.
52 JMS Connect User’s Guide

10 Click the Message Header tab. The Message Header pane appears.

11 Enter a Mapping Name (or accept the default name, which begins with “Receive_HDR”). This
name will be shown in the Native Environment Pane as the name of the header tree, for mapping
purposes.

12 Click the plus (+) icon to add a Property. Type the name of the custom property under Property
Name and click in the Property Type column to bring up a menu of available data types. Choose
the data type appropriate to your property.

NOTE: The purpose of this procedure is to build a property list that corresponds to the anticipated
property list of the incoming message. If the incoming message has property fields that aren’t
accounted for here, the extra fields will be ignored and any associated data will be lost.

13 Click the plus (+) icon as many times as needed to add extra properties. Fill out the Name and Type
information for each one.

14 Click the Message Filter tab. A new panel appears.
Creating JMS Actions 53

15 If you want to apply a JMS Message Filter to your Browse operation, enter it (and/or build it using
the picklist items) in the text area in the lower half of the dialog. (See “Working with Message
Filters (Selectors)” on page 71 for more information.)

16 Click OK. The JMS Component editor main window appears, and a new Receive action is
displayed in the action list (see illustration).

When you create a new Receive action, the line “Receive Message . . .” appears in the action list,
followed by a line “Receive Message Maps.” Under “Receive Message Maps,” you can insert any Map
actions or other processing needed to make use of information contained in the received message.

Unlike a Browse Messages operation, a Receive Message action is limited to retrieving one message at
a time. Therefore, the JMS Connect does not include a WHILE loop as part of every Receive Message
action.

NOTE: To iterate through all available messages, you should enclose your Receive Message action (and
any associated processing) within a Repeat While action that terminates when the JMSMessageID field is
empty.

Note that as with the Browse Messages action (described above), the Native Environment Pane for the
Receive Message action contains Message Body, Message Header, and Message Filter tabs. Working
with these tabs is covered in the next chapter.

The Message Transaction Action
The Message Transaction action allows you to group two or more message-related actions into one
logical unit of work that is executed (or not executed) atomically. When a transaction commits, all of its
inputs (in terms of messages) are acknowledged and all outputs are sent. When a transacted message
session rolls back, any produced messages are destroyed and any messages consumed during the session
are recovered.

In order to utilize the Message Transaction calls within a JMS Component, it’s essential that the session
occur in Transacted mode. The way one configures this is by setting the “Transacted” checkbox in the
JMS Connection resource for the component. (The procedure for doing this is explained below. Also see
“Creating a JMS Connection Resource” in Chapter 2.) When the JMS session associated by the JMS
Component is in Transacted mode, you can safely use Commit and Rollback statements (via the Message
Transaction action) in your Action Model.
54 JMS Connect User’s Guide

What Happens When I Issue a Commit?

When you issue a Commit, every message action (starting either from the beginning of the Action Model
or the last Commit or Rollback statement, as appropriate) is executed, which means every message
produced up to that point is sent and every message consumed up to that point is acknowledged. (On a
receive operation, message acknowledgement signals the queue manager that it is okay to destructively
remove the message from the queue.)

What Happens When I Issue a Rollback?

When you issue a Rollback, every message action (starting either from the beginning of the Action Model
or the last Commit or Rollback statement) is nullified, which means every message produced up to that
point is destroyed (not sent) and every message consumed up to that point is recovered (i.e., allowed to
remain on the queue, as if nothing had happened).

What Happens if I Leave the Session Unresolved?

An ambiguous state can arise if a transacted session uses no Commit or Rollback statements at all; or if
an Action Model that contains several properly committed (and/or rolled back) actions ends with a
message action that is neither committed nor rolled back. Interestingly, MOM vendors differ significantly
in their handling of this situation. Some automatically commit unresolved actions; others roll back
anything that is not committed.

The exteNd JMS Connect enforces an automatic-rollback protocol in situations where transactions are
left uncommitted. (This is similar to the behavior of the JDBC Connect, where checking “Allow SQL
Transactions” in the connection resource setup dialog causes automatic rollback to occur if the final SQL
statement in a transacted JDBC Component uses neither a commit nor a rollback. See Chapter 2 of the
JDBC Connect guide.) That is to say, any message actions that have occurred since the last Commit or
Rollback statement will be rolled back when the session closes. Due to the way JMS “wrappers” MOM
services, this behavior takes precedence over the MOM’s normal behavior. No matter whether your
MOM defaults to automatic commit or automatic rollback, the JMS Connect guarantees one consistent
behavior: automatic rollback of uncommitted messages.

What Actions Are Included in a Message Transaction?

Because the JMS Component allows the use of non-message-related Transaction actions
(New Action > Advanced > Transaction) as well as Message Transaction actions, it’s important to
understand the difference between the two.

The Message Transaction action calls commit() and rollback() methods that are scoped to the JMS
session. Therefore, these methods cover message-related processes only. For example, while a Message
Transaction command could roll back the sending of a message, it could never roll back a database
operation conducted by an external call to a JDBC Component from within the Action Model of a JMS
Component. If your Action Model contains a Receive Message action, followed by a Component action
(involving a call to a JDBC Component), followed by a Send Message action, and you want to roll back
everything (including the database operation) in the event of an error condition, you would need to
demarcate the transaction using New Action > Advanced > Transaction (which is available in all
Components) rather than New Action > Message Transaction (which is specific to the JMS
Component). The latter would roll back message operations only.
Creating JMS Actions 55

What Can I Use Message Transactions For?

A typical use of JMS transaction demarcation is to force “all or none” behavior in a set of related message
actions. For example, suppose a set of messages (involving an order acknowledgement, a vendor
notification, and a back-end query) must all be sent at once, or else not sent at all. Complex business logic
may be involved in the determination of whether the sending of the messages should be authorized. Using
a transacted JMS Component, the session could be set up such that messages are “sent” by default, but
on any error condition or unsuccessful return from any point in the process, any Send Message (and/or
Receive Message) operations are simply rolled back.

Another possible use of a transacted session involves nondestructive reading of messages. Normally,
when an application reads a message off a queue, that message is permanently and irrecoverably removed
from the queue. But if a JMS application reads a message in a transacted session, it can inspect the
contents of the message before deciding whether or not to roll the session back. If the session is rolled
back, the message will remain on the queue as if nothing happened. Why is this more useful than simply
browsing? (Recall that browsing, unlike receiving, does not destructively consume messages.) Consider
the case of an application that needs to inspect the body of a message before deciding whether to take
action on that message. With browsing, the workflow would be:

1 Browse.

2 Inspect message contents.

3 If the message needs processing, read it from the queue (so as to ensure its removal from the
queue); and process the message contents. Otherwise, do nothing.

Notice that the application must first do a browse, then a read operation. This represents two trips to the
queue. With a transacted session, the workflow is:

1 Read the message off the queue.

2 Inspect message contents.

3 If the message requires processing, take action. Otherwise, roll back the session.

In this case, there is only one trip to the queue (to read the message). If the message is not suitable, rolling
back leaves the message on the queue as if nothing had happened. No matter whether the message is
usable or not, there has been only one trip to the queue.

To create a Message Transaction action

1 Check to be sure the JMS Connection resource is transaction-enabled. In the navigation pane of the
exteNd Composer main screen, click Connection, then Resource; then doubleclick the appropriate
JMS Connection resource in the detail pane. Select the Connection Info tab of the Properties
dialog. The following screen appears:
56 JMS Connect User’s Guide

Notice the Transacted checkbox in the lower part of the dialog. This box must be checked if you
are going to employ Message Transaction commands in your JMS Component. If the box is left
unchecked, Message Transaction calls in your component will cause exceptions to be thrown.

2 From the main menu, select Action, then New Action, then Message Transaction. A dialog box
appears:

3 Select Commit Transaction or Rollback Transaction as appropriate.

NOTE: There is no need to issue a Begin statement. The Begin is implicit, based on your having
checked the “Transacted” checkbox in the connection resource (see above). Checking this
checkbox places the entire JMS session within a transacted context.

4 Click OK. The appropriate statement is inserted in the action list.

Using Other Actions in the JMS Component Editor
In addition to the Send Message, Browse Message, Receive Message, and Message Transaction actions,
you have all the standard Basic and Advanced Composer actions at your disposal as well. The complete
listing of Basic Composer Actions can be found in Chapter 7 of the Composer User’s Guide. Chapter 8
contains a listing of the more Advanced Actions available to you.
Creating JMS Actions 57

58 JMS Connect User’s Guide

5 Working with Messages

The primary purpose of the JMS Connector is to allow you to leverage the power of Message Oriented
Middleware (MOM) in your exteNd services, making possible many types of interactions between front-
and back-end portions of a business application. To fully exploit this capability requires that you
understand, in some detail, the ways in which messages can convey various forms of content via JMS
Components. This chapter explains the process of putting messages to work.

In this chapter, you will learn:

How to map data into and out of JMS Message Headers

How to map data into and out of Custom Properties

How to map data from and to DOMs and message bodies

How to work with the special XML and Copybook message types

How to employ Message Filters (JMS Selectors) to receive or browse messages selectively, based
on application-defined criteria

How to use exteNd’s JMS-related ECMAScript extensions to manipulate message data

Before reading this chapter, you should have already read “Getting Started with the JMS Component
Editor” beginning on page 19, “Creating a JMS Component” on page 31, and “Creating JMS Actions” on
page 37; and you should already be familiar with exteNd Composer, as well as the concept of Map
actions.

Mapping Data into the Message Header
When you click on the Message Header tab in the Native Environment pane, a tree view of the JMS
header is displayed:
Working with Messages 59

This header (which contains property info as well as JMS-defined header fields) constitutes a unique
DOM for mapping purposes. In the example shown above, the header DOM has been named Send_HDR.
(This name was set in the message action setup dialog; see page 44.) The Send_HDR DOM can serve as
a target for mapping data into the message header. It can also serve as the data source for mapping to
elements of an output DOM.

Because JMS defines a number of preexisting fields, a message-header DOM tree is associated with all
messages (and appears automatically in the Native Environment pane whenever you select the Message
Header tab); hence, you can use the drag-and-drop technique to map data from any portion of any input
DOM straight into the message header (subject to the limitations outlined below), or in the opposite
direction. Simply click on an input node, in any visible DOM pane, and drag over to the desired spot in
the message header, then release the mouse button. The appropriate Map action is added to the Action
Model automatically.

Limitations on Header Mapping

Most JMS-defined header fields are read-only (or intended for use by the JMS provider) and therefore
unavailable for use as drop targets. Only JMSCorrelationID and JMSType are intended to be mapped
into by drag-and-drop. (If you attempt to drag an item into any other fields, you will see the “forbidden
drag operation” symbol shown at left, along with the warning “Write-restricted drop target” in the status
line of the component editor window.) JMSReplyTo is writable, but only through Send Options in the
Send dialog (see discussion below). For more information about JMS header fieldsand their meanings,
see Appendix C.

JMSCorrelationID

The JMSCorrelationID field is intended to serve as a tracking or control field for use by applications. A
typical use of JMSCorrelationID is to serve as an identification string for request/response purposes.
For instance, in the example shown further below (see “Actions Unique to the JMS Component
Editor”beginning on page 37), the sending app may want to identify the business transaction represented
by the current message with an unambiguous tracking number that may have significance for
nonrepudiation. Using a Function action, one could assign a unique value, at runtime, to the
JMSCorrelationID field consisting of the current ECMAScript date in milliseconds, plus the
BOOKBUYER/NAME value (from the Input1 DOM), separated by a hyphen:

(Number(new Date)).toString() + '-' + Input1.XPath("BOOKBUYER/NAME")

At runtime, this will cause a value similar to '976128839742-Ingram' to appear in the outgoing
message’s JMSCorrelationID header field. A receiving application could take note of this value and
place it in its outgoing messages. In this way, individual elements of a distributed application are able to
identify this customer order as a unique order and operate on it in coherent fashion.

NOTE: JMS specifies that application-assigned JMSCorrelationID values must not begin with ‘ID:’,
since that prefix is reserved for the use of JMS providers.

JMSType

The JMSType field can hold any string. A typical use of JMSType on outgoing messages is to hold
sentinel values that receiving apps (pointing at the same queue) can inspect for filtering purposes.
Depending on the nature of the application, you might choose to map this value from an input DOM, use
a Code Table, base the value on an ECMAScript expression, hard-code a particular value, etc.
60 JMS Connect User’s Guide

JMSReplyTo

The JMSReplyTo field is writable, but not through drag-and-drop or direct editring. To put a “return
address” value in this field, use the Send Options tab in the Send Message dialog (as explained in the
previous chapter). In the Send Options tab, there is a checkbox called Specify ReplyTo Queue/Topic.
When this checkbox is checked, you can enter a queue name (in quotes) in the associated text field, or
specify an ECMAScript expression that will evaluate to a queue name at runtime.

Mapping Data to Custom Properties
Any custom properties that you defined when creating the message action will appear automatically in
the Message Header DOM tree. You can map data to these properties in any of the usual ways: drag-and-
drop, ECMAScript, etc.

In the example further below, we have a custom property called SKU_PREFIX. Suppose we’d like to
map a portion of the Input DOM’s PRODUCT/SKU data into this item: in particular we want just the first
portion of the SKU, up to (but not including) the first hyphen. One way to accomplish this would be to
highlight the SKU_PREFIX node of the Message Header tree, then do a right-mouse-click and select
Map . . . in order to bring up the Map dialog window.

Under Source, we’ve clicked the Expression radio button and entered an ECMAScript expression of:

String(Input.XPath('PRODUCT/SKU')).split('-')[0]

Here, we use the String object’s split() method to split the SKU string at every hyphen. The split()
method returns an array, the zeroth member of which is the first substring, up to the first occurrence of
the delimiter (in this case, the hyphen). Hence, this expression, when applied to the string “ISBN-
0596000162”, returns “ISBN.”

A receiving application, perhaps tailored to handle just messages with a SKU_PREFIX value of “ISBN,”
could selectively pull messages of this type from a queue, ignoring all others. Filtering of this sort is done
with Message Selectors.
Working with Messages 61

Limitations on Property Mapping

All user-defined Properties are read/write-enabled, which means that they can serve as drop targets for
drag-and-drop mapping. The only restriction on this involves attempts to map incompatible data types.
For example, if you attempt to drag a String value to a Property that has been defined as an Integer value,
you will see the “invalid drag operation” icon as well as a status message (in the lower left corner of the
component editor window) of “Invalid drag value for drop target: INTEGER.” This is true for all header-
field drag-and-drop operations: exteNd Composer will perform automatic type-checking during drag
operations and prevent you from violating type constraints.

Working with XML Messages
A common use of messaging is to send an XML document (or documents) to a queue. For example, orders
taken in real time over the web might be handed off to a back-end fulfillment system via a message queue.
The back-end application could retrieve orders on a fixed schedule or by polling or listening for orders as
they arrive.

In the following example, a publishing company is receiving book orders via the web from wholesales
and distributors. The requirement is for a JMS component that can take information from two XML
sources (one representing customer-submitted information and the other representing product
information obtained via a database lookup) and transform the information into a new XML document,
which will ultimately be sent to a message queue.

First, a Send Message action is created using the XML message type (as described in the previous
chapter; see “Creating JMS Actions”).

With the Message Body tab of the Native Environment pane selected, the body of the message is initially
empty.

Notice that this particular component uses two input DOMs: Input (containing product information) and
Input1 (containing customer information). These DOMs could originate in many ways. The Input DOM
might represent data pulled from a database via a JDBC Component. Information in the Input1 DOM
could be customer information that arrived via the web (or via a message that was processed by another
JMS Component).

NOTE: In this example, an Output DOM is not shown, because the Message Body will contain this
component’s output. (Display of the default Output DOM has been suppressed using
View > Window Layout > XML Layout.)
62 JMS Connect User’s Guide

Mapping Data into the Message Body

On certain occasions, you may want to map an entire XML document into a message body; in other cases,
you might just want to map a portion of an XML document into a message body. We will discuss each
case in turn.

Mapping an Entire XML Document into a Message Body

With the Message Body tab selected in the Native Environment Pane, right-mouse-click inside the empty
Body area to bring up a context menu; then select Map from the menu.

The standard XML Map Action dialog will appear:

The default source DOM will be Input. (Use the pulldown menu to select another DOM, if you do not
want to use Input.) Inside the Source text field of the Map dialog, enter a period (.), signifying that you
want to map the entire source DOM to the target.

The default target will be Send (or whatever the name of the outgoing message is, as specified when the
Send action was created). In the text field under Send, enter a period. Dismiss the dialog. You should now
see a Map action in your action model that looks like:

You can also map all of a message from Receive to Output as part of a Receive action using the same
procedure. The result of this would be:
Working with Messages 63

Mapping a Portion of an XML Document into a Message Body

To map a portion of an XML document into the Message Body, start by doing a right-mouse-click inside
the empty area of the Native Environment pane (with the Message Body tab selected). This brings up a
contextual menu.

Select the Map . . . command. This will bring up the Map dialog.

In the Map dialog, Input is shown as the default Source DOM and Send is shown as the default Target.
(You can choose different Source and Target DOMs using the pulldown menus.) If you know the XPath
fragment that you want to use as the source, type it in the box provided; otherwise, click on the blue
Expression Editor icon at right. Clicking the Expression Editor icon brings up the Expression Editor
dialog for the Source XPath.

With the aid of the pick lists in the top portion of this dialog, you can build an XPath fragment and/or an
ECMAScript expression simply by pointing and clicking. In this case, we’ve expanded the tree view of
the Input DOM (in the upper left) to show the complete Input tree structure. Doubleclicking the SKU
item in the tree causes PRODUCT/SKU (i.e., the XPath fragment for that portion of the tree) to appear
automatically in the lower portion of the dialog. When we click OK, the XPath information appears in the
appropriate place in the Map dialog.
64 JMS Connect User’s Guide

To cause PRODUCT/SKU information to be mapped from Input to an XPath location of
ORDERINFO/SKU in the message body, we type ORDERINFO/SKU in the Target portion of the Map
dialog:

When we click OK, the map dialog disappears and we’re able to see the result of our mapping in the JMS
Component Editor main window:

This procedure can be repeated as many times as necessary to populate the message body with data.
Alternatively, you can use Function actions (in conjunction with ECMAScript DOM methods) to create
XML nodes in the message body programmatically.

Working with Copybook Messages
One of the most powerful features of the JMS Connect is its ability to send, receive, and browse messages
whose payloads consist of COBOL copybooks. Being able to use copybooks in messages allows the
application Composer to leverage a wide range of legacy system interactions in exteNd services. This is
especially true when the CICS RPC Connect is used in conjunction with the JMS Connect. For example,
a copybook received as a message in a JMS Component can be transformed in accordance with business
needs and used as the input to an RPC session, all within the same service.
Working with Messages 65

Copybook Message Setup

When you create a Send Message, Receive Message, or Browse Messages action and you specify
“Copybook (JMS Bytes)” in the pulldown menu for Message Type, the bottom portion of the setup dialog
(under Body Information Setup) will contain fields that allow you to associate a copybook with the
message action.

Under Copybook Handle, you can type an arbitrary text string that identifies the copybook for mapping
purposes in the JMS Component editor.

The copybook’s file name should show under Copybook File. If it does not, click the nearby Browse
button and find the copybook you wish to use; its name will then appear in the Copybook File area.

Under Copybook Data Parameters, you will find four pulldown menus that allow you to choose the
Code Page type, Floating Point format, Machine Type, and byte order (Endian), as appropriate to the
target environment.

Code Page

Supported character encodings vary somewhat according to the version of the Java 2 runtime
environment that is present. The Code Page pulldown menu will list all of the character encodings
supported by the Java runtime being used.

Floating Point Format

The two floating-point formats supported by the JMS Connect are IEEE-754 and IBM formats.

Machine Type

Machine Type refers to the target platform that will ultimately receive or process the copybook in
question. The available choices are MVS, OS/2, NT, or AIX.

Endian

The two choices, BIG or LITTLE, refer to the native byte-order representation of the target platform.
Intel architectures use a little-endian addressing scheme in which the least significant byte of a multi-byte
entity is represented at the lowest memory address. Most other machine architectures are big-endian.
66 JMS Connect User’s Guide

Copybooks and the Native Environment Pane

When you are in the JMS Component editor main window and you select (or highlight) a message action
involving a copybook, the Native Environment pane displays information contained in the copybook that
you selected in the message-action setup dialog.

In this case, a Receive Message action has been highlighted. The associated copybook is displayed in the
Native Environment Pane in the upper right. There are three display modes for coypbooks in the Native
Environment Pane:

Copybook

Copybook + Data (shown above)

Hex Data

To select a different view, perform a right-mouse-click inside the Native Environment Pane and choose a
View from the contextual menu:
Working with Messages 67

The Hex Data view creates a standard hexadecimal data view of the copybook contents.

This view is neither editable nor mappable; it is designed primarily as a troubleshooting and debugging
aid.

Copybook-Specific Context Menu Items

The contextual menu that appears when you perform a right-mouse-click within a copybook’s Native
Environment Pane contains a number of copybook-specific commands, as explained below.

Native Pane Menu Description

Decision Enabled when a REDEFINE statement in the copybook is highlighted. When
you click on Decision, a dialog box appears prompting you to enter a
Decision expression that determines when to use the Redefined data
descriptors.

Repeat Enabled when an OCCURS statement in the copybook is highlighted. When
you click on Repeat, a dialog box appears prompting you to enter information
specifying the Target for the Repeat action.

Map Active in the input or output pane. When you highlight a statement and click
on Map, a dialog box appears prompting you to enter information.

View - Copybook Active in the native environment pane. When you highlight a statement and
click on View/Copybook, the pane will reflect the copybook format

View - Copybook and
Data

Active in the native environment pane. When you highlight a statement and
click on View/Copybook and Data, the pane will reflect the copybook and any
data mapped into the copybook or placed there as output from executing the
program.

View Hex Data Active in the native environment pane. When you highlight a statement and
click on View/Hex Data, the pane will reflect the copybook and any data
mapped into the copybook or placed there as an output from executing the
program in Hexidecimal format.

Select Occurrences Enabled when an OCCURS statement in the Copybook is highlighted. Since
each occurrence of the OCCURS clause is not displayed, when you click on
Select Occurrences, a dialog box appears prompting you to select which
occurrence you wish to see the data for. Enter a number.

NOTE: The array and/or data structure is numbered from 0-5.
68 JMS Connect User’s Guide

Mapping Data Between Copybook and DOMs

When a copybook is visible in the Native Environment Pane, in any view except the Hex Data view, you
can use the drag-and-drop technique to map XML DOM elements to copybook fields or vice versa.
Mapping into the copybook will ordinarily be done from Input DOMs as part of Send Message actions.
Mapping out of the copybook will ordinarily be done with an Output DOM as a target, for Browse or
Receive actions.

NOTE: The JMS Connect performs certain behind-the-scenes checks as part of every drag-and-drop
operation. If a particular operation is forbidden, you will see the “forbidden drag operation” symbol, as well
as an error message in the Component Editor’s status line, and no “drop” will occur when you release the
mouse button.

Mappings between DOMs and copybook fields can also be created using the Map . . . command in the
Action > New Action menu (from the main menubar) or the Map . . . command of the contextual
menus. To access a contextual menu, right-mouse-click on any element in a DOM or copybook. The
advantage of using the contextual-menu technique is that the Map dialog will contain appropriate XPath
information for the DOM/copybook element you clicked on, already filled out.

Mappings can also be created programmatically, using ECMAScript, inside Function actions.

Auto Map Copybook

Using the mapping techniques described above, you may have to perform numerous keyboard and/or
mouse operations to create required mappings to or from DOM elements and copybook fields. When the
copybook is more than a few lines long, this quickly becomes a tedious affair. To make it easier to create
large numbers of mappings, the JMS Connect provides an Auto Map Copybook command under the
Component menu (on the main menubar):

Selecting this command brings up the following dialog:

Expand Tree Displays all Copybook nodes beneath the selected data descriptor.

Collapse Tree Hides Copybook nodes beneath the selected data descriptor.

Copy Enabled when in the View/Hex Data format. Allows you to highlight a block of
text and copy it then paste.

Print Copybook Allows you to print the copybook.

Find Allows you to perform a search within the copybook in all data views.

Find Next Allows you to search the next item in all data views.

Native Pane Menu Description
Working with Messages 69

This dialog allows you to create batch mapping actions between DOMs and copybooks (in either
direction) quickly and easily. Optionally, it allows you to create a new XML template document, based
on a copybook, which can be saved permanently in the event you want to reuse it.

NOTE: The Auto Map Copybook dialog will appear only if a copybook is showing in the Native
Environment Pane. (This, in turn, requires that a copybook-related message action be highlighted in the
Component Editor’s action list.)

To create a batch mapping of XML elements to copybook fields (or vice versa)

1 Select the appropriate radio button in the upper right portion of the Auto Map Copybook dialog
(XML to Copybook, or Copybook to XML).

2 Select the desired Source and Target documents from the two pulldown menus.

3 Click OK. The Component Editor Window appears and new Map actions are shown in your Action
Model.

NOTE: You may want to inspect the Map action list that is thus created and remove any actions that are
not relevant to your project.

To create a new XML Template document based on a copybook

1 Select the appropriate radio button in the upper right portion of the Auto Map Copybook dialog
(XML to Copybook, or Copybook to XML). Selecting XML to Copybook indicates that you
wish to create an Input document and Map Actions to move data into the Copybook. Selecting
Copybook to XML indicates that you wish to create an Output document and Map Actions to
move host program output data from the Copybook to the Ouput document.

2 Select the desired Source and Target documents from the two pulldown menus.

3 In the lower portion of the dialog, check the Create New XML Template for Mapping checkbox.
This indicates that in addition to the batch-mapping operation (described above), you wish to create
a new XML Template document. Checking the checkbox will activate the lowermost items in the
dialog: Template Category and Template Name.

4 Select a Template Category if it is different than the default category, or enter a New Template
Category Name over an existing entry.

5 Select a Template Name from the list of XML templates, or enter a New Template Name over an
existing entry.

6 Click OK. The Component Editor Window appears with the Input Template created. (Also, the new
template document appears on disk in the xmlcategories folder under your project’s main folder,
and the new template category appears under XML Templates in the navigation pane of
Composer’s main window.)
70 JMS Connect User’s Guide

Working with Message Filters (Selectors)
The JMS standard allows message filtering (that is, selective retrieval of messages) to occur based on
user-determined criteria. Filtering occurs via a JMS message selector, which is a String containing a
statement (with SQL-like syntax) that will evaluate to true or false. The selector statement will normally
refer to one or more JMS message header fields and/or custom properties. (Message selectors cannot
reference message body values.) Based on data exposed in the message header, the message will either
be selected for retrieval, or not selected.

Selector setup occurs in the JMS Connect by way of the Native Environment Pane. The Browse
Messages and Receive Message actions (for all message types) cause a Message Filter tab to be included
in the Native Environment Pane, along with tabs for Message Body and Message Header. The Message
Filter tab exposes a text-edit field where you can place a selector expression. The expression can be typed
manually or constructed, in whole or in part, by doubleclicking pick-list entries from the upper part of the
tab.

As an example, consider the following Message Filter:

In this example, the selector expression requires that JMSPriority be greater than 5 and that JMSType
exactly equal the string ‘International’. In the upper part of the tab, under Header Data, the JMS Fields
node of the picktree is expanded to reveal the available header fields. (Not all of the ten JMS-defined
header fields can be used for filtering; see “Limitations on Filtering” below.) JMSType is highlighted;
doubleclicking it places “JMSType” in the Filter field, at the cursor’s location. Operators and keywords
can likewise be “picked” using the pick lists in the upper right, to form an expression (or part of an
expression) without typing.

Using the filter expression example shown, any Browse Messages action will retrieve from the queue
only those messages with a JMSType of “International” and a priority greater than 5. All other messages
will be ignored.

In a Receive Message action, the filter would result in the first available message that meets the criteria
being removed from the queue.

Other selector expression examples can be found in Appendix B.

NOTE: You should escape any colon characters (“:”) in your selector expressions with a backslash, since
exteNd treats colons in SQL statements and JMS selectors as a marker, indicating the presence (after the
colon) of an evaluatable script expression.
Working with Messages 71

Limitations on Filtering

JMS imposes a restriction on which header fields can be used for filtering.Header field references inside
selector statements are restricted to the following fields:

JMSCorrelationID

JMSDeliveryMode (integer)

JMSMessageID

JMSPriority (integer)

JMSTimestamp (long)

JMSType

Data types can be important in selector statements, since if the comparison of non-like types is attempted,
the statement will always return false. In the above list, all fields are Strings, except for JMSPriority,
which is of type integer, and JMSTimestamp, which is of type long.

NOTE: Normally, JMSDeliveryMode is an integer, but in a selector context it will have the String value
‘PERSISTENT’ or ‘NON_PERSISTENT’.

Custom, application-defined property fields can be used as the basis of selector statements. But if a
selector references a property that does not exist, the value of the operation will be unknown. That’s
because SQL semantics treat NULL values as unknowns; and any operation involving an unknown value
produces an unknown value. For a selector that references a NULL value to be useful, it must return true
or false. The only way this can happen is if you use the IS NULL or IS NOT NULL operator to convert
an unknown value into a boolean result.

Filtering by Body Type

You should be aware that JMS makes no provision for filtering by message body type (BytesMessage,
StreamMessage, etc.) per se. If a client application requires access to this information, the relevant body-
type info should be exposed in a custom property or header field by the sending application. A JMS
receiver has no a priori way of knowing what the body type of a message is.

Notwithstanding this, in order for the JMS Connect to know what to do with the contents of an arriving
message, it is necessary for some value to be selected in the Message Type field of the Receive Message
(or Browse Messages) setup dialog’s Message Body tab (see illustration, page 52). The value given in the
Receive Message setup dialog will not be used for filtering, however, since there is no way for a JMS
application to filter messages by body type (as just explained).

NOTE: It’s important that your application take steps to ensure that only messages of the appropriate
body type are received. Ordinarily, this will not be a problem since message-producing applications
typically send their messages only to consuming applications that have been specifically designed to
receive them. Nevertheless, should your application happen to receive messages with a body type
incompatible with the type you select in the Receive Message dialog, exceptions will be thrown.

If your application will be receiving/browsing messages from a queue that contains many different kinds
of message body types, it is advisable that you expose body-type info in a message property or header
field and design a Message Filter (selector statement) that the receiving app can use to distinguish just the
messages that are appropriate from those that are not.
72 JMS Connect User’s Guide

Request-Response Messaging
Roundtrip request-response messaging is a common scenario in applications that use messaging. Some
typical use cases are:

Your application sends a message to a queue or topic with the expectation of receiving an
immediate reply (or replies). For example, a manufacturer may want to purchase a particular kind
of part; to do this, it may broadcast a request for a bid on the item by publishing a message to a
topic. Listeners on that topic may be set up to respond immediately with an acknowledgement (or
an actual bid).

Your application sends a message to a queue or topic without any expectation of getting a response;
but for purposes of error notification, your app specifies a ReplyTo destination in the outgoing
message. (The ReplyTo queue might be in an entirely different domain, and might be set up solely
to accumulate error reports.) Thus, your app sends messages out to one queue, but asks that error
reports be sent to another queue.

Your application is a JMS Service that listens on a queue or topic and is designed to process the
incoming message, then reply to it.

In each case, the sender needs to supply a queue or topic name in the JMSReplyTo header field of the sent
message. This can be done using the Send Options tab of the Send Message dialog; see the section called
“Return Address” under “The Send Message Action” in the previous chapter.

In the case where your application is responding to a query, you can set up your Send Message action so
that it automatically uses the queue or topic that was present in the JMSReplyTo field of the last received
message. In the Send Options tab of the Send Message dialog, there is a radio button called Use Prior
Message ReplyTo Field, provided for this purpose. (See “Destination Queue/Topic” under “The Send
Message Action” in the previous chapter.)

Temporary Queues

When your application is soliciting an immediate response, and you intend to block until a reply is
received (or until a specified timeout value is reached), it is often convenient to create a temporary queue
dedicated to receiving the reply. The advantages of using a temporary queue are:

Isolation from other processes (no client other than the one receiving your message knows about
the temporary queue). This can simplify application design by minimizing or even eliminating the
need for message filters.

From a resource and administration standpoint, temporary queues are cheap, since they are created
on the fly and destroyed immediately after they have served their purpose.

To specify that a temporary queue be used for replies to a message, check the Use Temporary radio button
in the Send Options tab of the Send Message dialog. (See “Return Address” under “The Send Message
Action” in the previous chapter.) A temporary queue will be created for you automatically and its name
will be placed in the JMSReplyTo field of your outgoing message. The queue will then exist for the
lifetime of your component.

Multiple Temporary Queues

In cases where multiple outgoing messages will be sent in the lifetime of a single component, multiple
temporary queues will be created. By default, the JMS Connectwill create a unique temporary queue
every time an outgoing message is created (if the Use Temporary radio button has been set). If you want
multiple outgoing messages to specify the same temporary queue in their ReplyTo fields, you can do it in
the following fashion:
Working with Messages 73

1 Create your first Send Message action in the usual way, checking the Use Temporary radio button
in the Send Options tab. (See “Return Address” under “The Send Message Action” in the previous
chapter.)

2 In your next Send Message action, do not check the Temporary radio button (since this will cause
a new, unique temporary queue to be used). Instead, check the Named radio button.

3 Click the Expression icon to the right of the text field. The Expression Builder dialog appears.

4 In the Variable picktree (upper left), open the send header node (default name Send_HDR) for the
first sent message. Expand the MSGHEADER node to reveal all of the JMS header field names.

5 Doubleclick the JMSReplyTo entry in the picklist. An ECMAScript expression appears in the edit
field below.

6 Click OK to go back to the Send Message dialog.

7 Set any other message parameters that you might need to specify for this message, then click OK to
close the Send Message dialog.

8 Repeat steps 2 through 7 for each subsequent Send Message action in your component that will use
the original temporary queue.
74 JMS Connect User’s Guide

ECMAScript and the JMS Connect
The JMS Connect exposes a number of JMS-related ECMAScript extensions that you can use in your
own Function and Map actions to extend the functionality of your JMS Components and services. For the
most part, the extensions comprise “get” and “set” methods for manipulating the body content of
messages.

Access to JMS-related ECMAScript extensions is available via pick lists in the Expression Builder
dialog. (The Expression Builder, in turn, is available from the Map action and Function action dialogs.
See example below.) You should note that the methods exposed via the Expression Builder’s pick lists are
exposed in context-sensitive fashion. For example, if you are working with a Copybook Message, the
methods exposed via the picktree will correspond to copybook-related operations, whereas if your
Message action involves a Bytes Message, the exposed ECMAScript methods will relate to working with
the JMS Bytes Message body type.

In the example below, we show how to attach content to a JMS Bytes Message using ECMAScript.
Unlike most other message types, the Bytes Message type has no user interface for mapping (no Body tab
in the Native Environment Pane). Hence, ECMAScript is the only way to attach content to the body of a
Bytes Message.

NOTE: The JMS Object Message also has no user interface for mapping. You must use ECMAScript to
attach content to an Object Message. (Typically, you will rely on ECMAScript’s Packages mechanism to
call Java code to retrieve Serializable objects associated with Object Messages. See Chapter 10 of the
exteNd Composer User’s Guide.)

To work with JMS-related ECMAScript extensions in the Expression Editor

1 Create a Send Message (or other JMS) action. Select a body type corresponding to the type of
content your message will have. For this example, a Bytes Message will be used, but the principles
demonstrated here will apply to all body types.

2 With the Message action highlighted, create a new Map action. In the example below, we have
selected Action from the main menu, then New Action, then Map, to create a new Map action.

3 Click the Expression radio button for Source as well as Target.

4 Type the Source expression representing the source of your message-body data, or (alternatively)
click the Expression Editor icon next to the text-edit area for Source. The Expression Editor
window appear will appear.

NOTE: In this example, we will map data from the PRODUCT/NAME XPath of our Input DOM, but
you can also map from other sources. For example, you could use the File constructor and
readAll() method to obtain data from a file on disk. (The “Extended ECMAScript” pick list
contains File I/O and other methods.)
Working with Messages 75

5 Type the Target expression, or build it using the Expression editor. Click the Expression Editor
icon next to the text-edit area for Target. The Expression Editor window appears.

6 In the upper middle part of the Expression Editor, click the JMS-MQSERIES item to expand the
picktree to reveal nodes labeled Message Handle, Message Methods, and Send JMSBytes Methods.

NOTE: If you do not see any JMS-related nodes in the picktree, it is because your Map or Function
action was not associated with a Message action. Be sure to highlight a Message action (or related
section of the action list, such as “Before Send Maps”) prior to creating the Map or Function action.

7 Expand the various nodes of the tree under JMS-MQSERIES. You will see terminal nodes with
names like JMSMESSAGE, getJMSMessage(), and setJMSBytesBody(). Doubleclick these
names (and/or other leaf nodes in other picklist windows) as necessary to build the desired
ECMAScript expression. The relevant labels appear in the text-edit portion of the window as you
doubleclick.

8 Dismiss all dialogs by clicking OK. Your Map action appears in the component’s Action list.

To attach content to a message using ECMAScript, use the target expression:

JMSMESSAGE.setJMSBytesBody();
76 JMS Connect User’s Guide

No arguments are necessary. This “setter” method will take data from the Source part of the Map action,
convert it to the appropriate format (a byte array, in the case of a Bytes Message), and attach it to the body
of the message. Corresponding “getter” methods operate in similar fashion, although some of these
methods require arguments. The calling conventions are set forth below.

ECMAScript Method Summary
Available JMS-related ECMAScript extensions and usage are as follows. Most methods will be called on
the JMSMESSAGE handle; the exceptions are Copybook methods (called on the Copybook handle) and
CopybookField methods (called on CopybookField objects).

Message getJMSMessage()

When called on the JMSMESSAGE handle, this method returns a JMS Message object. To work with a
specific type of JMS Message body, caste the returned message to the appropriate type. For example:

TextMessage lMsg = (TextMessage)getJMSMessage()

String getJMSMsgBody()

Call this method on JMSMESSAGE to obtain the body of a message as a String.

String getJMSMsgType()

Call this method on JMSMESSAGE to obtain the body type of a message as a String. The return value
will be one of JMSText, JMSBytes, JMSMap, JMSObject, or JMSStream. Notice that no special XML or
Copybook type is ever returned since these are not JMS-defined types.

CopybookField getField(String cobolDataDesc)

Example:

Suppose you have the following copybooks:

COMMAREA

05 INDATA

10PARTID

05 OUTDATA

10PARTID

Perhaps you’re interested in referencing the first PARTID (under INDATA), but you don’t want the
PARTID under OUTDATA. To resolve the duplicate name issue, reference the parent cobolDataDesc
as follows (assuming a Copybook Handle of MYCOPYBOOK):

MYCOPYBOOK.getField("PARTID IN INDATA")

The returned CopybookField object has two methods: toString() and setValue().

void setValue(Object aValue)

This method sets the value for a CopybookField object.

String toString()

Returns the value set for the CopybookField object.
Working with Messages 77

String getJMSBytesBody(int aiBufSize)

Gets the value for a JMS BytesMessage object's body as a String representation. The aibufSize parameter
is the size of the body in bytes. Returns a String.

setJMSBytesBody()

Sets the body for a JMS BytesMessage object.

String getJMSBytesBodyAsBytes(int aiSize)

Returns a Java byte[] Object of size specified by aiSize.

setJMSBytesBodyAsBytes()

Returns a Java byte[] Object.

String getJMSMapField(String asName, String asType)

Gets the value for a JMS MapMessage object body field. Returns a String.

setJMSMapField(String asName, String asType)

Sets the name and type of a JMS MapMessage object body field.

Serializable getJMSObjectBody()

Gets the value for a JMS ObjectMessage object body (after a Receive Message action). Returns a
Serializable object.

void setJMSMsgProperty(String asName, String asType, String asValue)

Sets a JMS header of a given name and type to a given value.

setJMSObjectBody(Serializable aObject)

Sets the body of a JMS ObjectMessage object.

String getJMSStreamField(String asName, String asType)

Gets the value for a JMS StreamMessage object body field. Returns a String.

setJMSStreamField(String asName, String asType)

This method sets the value of a JMS StreamMessage object body field.

String getJMSTextBody()

Gets the value for a JMS TextMessage object body. Returns a String.
78 JMS Connect User’s Guide

6 The JMS Service

JMS defines a mechanism, called the MessageListener object, whereby message consumers can be
asynchronously notified whenever a message has been published to a queue or topic. This gives a
receiving application the ability to treat incoming messages as events: Instead of the application having
to go out and pull messages off a topic, messages are—in effect—pushed toward the application by the
queue or topic manager.

To take advantage of this capability, the JMS Connect introduces a new type of exteNd Composer
xObject called the JMS Service (which appears as a category under Service in the main Composer
window).

About the JMS Service
Like other exteNd services, the JMS Service can call external Components, perform XML Interchange
actions, carry out Log actions, execute Function actions, etc. (See “Creating a Service” in the Composer
User’s Guide.) But the JMS Service differs from other services in a number of important ways:

The JMS Service is triggered by an incoming message (from a queue or topic).

To assure proper processing of the incoming message, the JMS Service must contain one (and only
one) Receive Message action.

NOTE: With exteNd version 2.7 and subsequent, you can put Send Message actions inside a JMS
Service, so that a listener can reply to incoming messages directly (instead of having to call another
component).

It’s important to note that JMS Components do not, in general, need to be packaged inside JMS Services.
The distinguishing characteristic of a JMS Service is not its content but its triggering mechanism. The
JMS Service is designed to be triggered by the arrival of a message at a queue or topic. Services that are
designed to be triggered from HTTP servlets should be created as Web Services, even if they use JMS
Components. See “Creating a Service” in the most recent edition of the Composer User’s Guide.
The JMS Service 79

Multiple Listeners
A useful capability offered by the JMS Connector is the ability to deploy a JMS Service with multiple
listeners. This makes it possible to have multiple instances of the same JMS Service running at the same
time.

Creating a multiple-listener service is merely a matter of designing a JMS Service and deploying it using
the same deployment facilities that you normally use. (See the deployment chapter of the main Composer
User’s Guide.) Once deployed, listeners can be administered from an HTML-based console window (see
discussion further below under “How Do I Manage Deployed JMS Services?”).

Creating a JMS Service
The JMS Service is created much like any other service. Before creating a JMS Service, however, you
should already have created a JMS Connection resource for the queue or topic from which your service
will be receiving messages. (See “Creating a JMS Connection Resource” for more information.) If you
omit this step, you will see an error message similar to the one below:

Click Yes in this dialog if you wish to create a new JMS Connection resource on the fly.

The following discussion assumes that you have already created a connection resource for use with your
JMS Service.

To create a new JMS Service

1 From Composer’s main menu, select File, then New>xObject, then open the Process/Service tab
and select JMS Service.
80 JMS Connect User’s Guide

2 In the first panel of the “Create a New JMS Service Component” wizard, type the Name you want
the service to have and (optionally) Description information.

3 Click Next to display the Templates panel.

4 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

5 Select an XML template for use as an Output Part using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output Part
without Using a Template” in the User’s Guide.
The JMS Service 81

6 Click Next. The XML Temp/Fault Template Info panel of the New HP3000 Terminal Component
Wizard appears.

7 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Specify the
templates as indicated in Step 6 above.

8 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

9 As above, to add additional temp or fault XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To remove an XML
template, select an entry and click Delete.

10 Click Next to bring up the final panel of the wizard.

11 Select a Connection from available queues and/or topics shown in the pulldown menu.

NOTE: Fields underneath the Connection menu will be greyed out (disabled). If you need to
change the information displayed in any of these fields, you can do so by opening the appropriate
Connection Resource from Composer’s main window (after first dismissing this dialog).
82 JMS Connect User’s Guide

12 Click Test to see if your connection is successful. The Test Options dialog appears.

13 The Test Options dialog asks if you want to send a live message as part of the test of the
connection’s integrity. Clicking the Yes button causes Composer to send a live message (of type
TextMessage, with a unique CorrelationID) to the queue or topic for which you’re establishing a
connection.

NOTE: Use care not to send this test message in a production environment (i.e., using a live
queue, with potentially many listeners) unless you are reasonably certain that any existing
applications in that environment won’t be adversely affected.

Click No if you wish to create the necessary connection objects but not send any test message.

14 Click Finish. The JMS Service component is created and the Service Editor window appears.

Deployment of the JMS Service
A project containing JMS Service objects is deployed the same way as any other project, using the same
deployment facilities built into Composer or Director. See the deployment chapter of the main Composer
User’s Guide for details.

How Do I Manage Deployed JMS Services?
Once a project containing JMS Services has been deployed, the MessageListener objects for the various
services will be actively listening for messages each time you (re)start your server. To start/stop these
services individually, or to remove them from the server altogether, you need to gain access to the exteNd
JMS Services Console. This browser-based console will allow you to see a list of JMS Services (along
with the descriptive info you supplied in the deployment wizard), the status of each service (active or
inactive), the running tally (Count) of messages received, and other administrative information. You will
also see buttons labeled Start/Stop and Remove (one per service).

To gain access to the exteNd JMS Services Console

1 Be sure your application server is running.

2 Launch your web browser and go to

http://[hostname]/extendComposer/jmsConsole

where [hostname] is the name (and :port) of your server; for example, “localhost:80.”

3 The console window appears, listing any JMS Services that have been deployed.
The JMS Service 83

4 To stop a JMS Service, hit the appropriate Stop button. (The button will then change to Start.)

NOTE: If messages are in the process of being handled by a service at the time of the Stop
command, there may be some delay before the service actually exits. Hit the Refresh button
periodically until the “Running” column of the console says No for the service(s) in question. The
exact amount of latency you can expect when stopping a service is impossible to predict, since it
depends on traffic conditions and vendor-specific JMS implementation details. You should consult
your provider’s documentation for information that may be helpful in suspending execution of a
pub/sub topic.

5 To remove a JMS Service permanently, hit the appropriate Remove button.

Note that if a message is waiting on a queue or topic, hitting Start on the console page (to reinitiate a
service) will cause the service’s onMessage() method to be called immediately, but the Count field of
the console (which normally displays a running total of messages received) will not update automatically.
To make the Count display correctly, hit the browser’s Refresh button after Starting a service.
84 JMS Connect User’s Guide

A JMS Glossary

Administered Object JMS defines two administered objects: Destinations and ConnectionFactories.
The former kind of object associates a topic name or queue with a physical resource; the latter
exposes the methods by which a client can connect to a JMS provider’s service daemon. Both kinds
of objects involve resources that are under administrative control. JMS clients are able to find
administered objects by looking them up in a namespace using JNDI.

Asynchronous Delivery In Publish/Subscribe messaging, asynchronous delivery occurs when the
message broker (or topic manager) calls the MessageListener’s onMessage() method. In the
synchronous case, by contrast, the receiving application obtains messages by requesting them.

BytesMessage One of the five JMS-defined message types. The body of this type of message consists
literally of a byte array; hence, it can represent any kind of payload.

CICS Customer Information Control System: An IBM protocol for conducting and monitoring
transactions with mainframes.

Commit In a transacted message session, calling the session’s commit() method causes any produced
messages to be (irreversibly) sent and any consumed messages to be acknowledged (and thus
removed from the queue). See also Transaction and Rollback.

Connection A connection represents the collection of server-side and client-side objects needed to
establish and manage sessions. Connections can be of the QueueConnection type or the
TopicConnection type. Creation of connections occurs via a ConnectionFactory object (accessible
via JNDI).

Copybook A record structure consisting of individually defined COBOL data descriptors.

Datagram Although not a JMS-defined term, the word datagram is frequently used in messaging. It
generally refers to a short message, often an administrative notification of some kind, sent in “fire
and forget” manner (i.e., with no expectation of any reply).

Destination JMS Queues and Topics extend javax.jms.Destination. Thus, a JMS
destination is equivalent to a queue or topic. Destinations are created administratively and bound to
a JNDI name at the time of creation.

DOM Document Object Model. An industry standard way of describing or representing the
containment hierarchy for an XML or HTML file.

Durable Subscriber A message receiver in a Publish/Subscribe setting (see “Publish/Subscribe,”
below) can register to receive messages even when offline. Such a subscriber is said to be durable,
since the receiver’s status persists beyond any given session.

Endian Term used to describe the order in which bytes are stored in computer memory. Big-endian is
an order in which the most significant value in the sequence is stored at the lowest memory address
(the opposite of little-endian). Intel has traditionally used a little-endian architecture, where most
other chip makers have favored a big-endian architecture.
JMS Glossary 85

JMS Java Messaging Service. A Sun-developed Java interface for message services, defining indsutry-
standard objects and behaviors for Message Oriented Middleware. A JMS-compliant MOM
implements the interfaces defined in JMS.

JMS Provider Any MOM system that implements the JMS interface.

JNDI Java Naming and Directory Interface: a standard extension to the Java platform, giving Java
applications a unified interface to multiple naming and directory services.

JTA Java Transaction API: a Java API for delimiting distributed transactions.

MapMessage One of five JMS-defined message types, consisting of name/value pairs. The keys are
Java Strings and the values are Java primitive types.

MessageListener A Java interface that applications can implement in a Publish/Subscribe system
that allows the application to receive automatic notification of incoming messages.

MOM Message Oriented Middleware. A software system (e.g., IBM’s MQSeries software) that
implements enterprise messaging.

Native Environment Pane A pane in the JMS Component Editor that displays various attributes
(such as header fields and body content) associated with a message.

NON_PERSISTENT One of the two JMS-defined delivery modes (the other being PERSISTENT; see
below), guaranteeing at-most-once delivery. Because the message is not written to nonvolatile
storage at any point, system outages can result in loss of the message when this mode is used;
however, overhead is lower with this mode than with PERSISTENT.

ObjectMessage One of the five JMS-defined message types, in which the body contains a serialized
Java object.

PERSISTENT One of the two JMS-defined delivery modes (the other being NON_PERSISTENT).
Use of the PERSISTENT mode guarantees that a message will be delivered once and only once. The
message is written to nonvolatile storage to avoid any possibility of loss in transit.

Point-to-Point (PTP) One of two main messaging paradigms in popular use (the other being
Publish/Subscribe messaging). In PTP systems, queues are not organized by topic but instead
typically “belong” to dedicated receivers (client apps), who treat queues much like mailboxes.
Clients send messages to and receive messages from other clients with a minimum of administrative
intervention. Receiving apps may optionally implement selectors (or filters) that allow for
preferential retrieval of messages based on special criteria.

Publish/Subscribe One of two main messaging paradigms in popular use (the other being Point-to-
Point messaging). In Publish/Subscribe, queues are often called topics. (See below.) They differ
from ordinary queues in that topics are designed to be shared by numerous “listeners,” whereas in
Point-to-Point messaging a queue is customarily associated with one receiving app (or at least a
small, well-defined number of users). Because topics are shared, a message is not removed from a
topic until every registered listener has received it. Also, filtering (which in Point-to-Point
messaging is done via message selectors) is under administrative control in Pub/Sub systems, rather
than being under the control of receiving apps. Clients that post messages to a topic are said to be
“publishers,” while clients that consume those messages are “subscribers.”
86 JMS Connect User’s Guide

Queue In JMS-based messaging systems, messages are sent not to clients but to queues—which is to
say, storage repositories set up to handle messages. Interposing queues between senders and
receivers assures that even when a client is unavailable, messages addressed to the client are still able
to be cached for later retrieval. Queues are typically created administratively and exposed to
message clients as static resources.

RPC Remote Procedure Call: A protocol in which a program or procedure is remotely invoked via a
synchronous session with a mainframe or server.

Rollback In a transacted message session, calling the session’s rollback() method causes any produced
messages to be discarded (not sent) and any consumed messages to be left on the queue as if nothing
happened. See also Commit and Transaction.

Selectors In Point-to-Point messaging, a client can use a selector to filter messages based on header
content. The selector is basically a conditional statement (i.e., a statement that evaluates to true or
false) involving a header or property value, written in a syntax similar to SQL92. (See Appendix C.)

Session A session is a lightweight JMS object for producing and consuming messages. A session
retains retrieved messages until they have been acknowledged. All send and receive actions are
scoped to sessions.

SQL92 An implementation of Structured Query Language (commonly used for database queries); the
basis for JMS message selector syntax.

StreamMessage One of the five JMS-defined message types, wherein the body of the message
consists of Java primitive values. The body of this type of message is intended to be read sequentially
using methods like readLong(), readString(), etc.

TextMessage One of five JMS-defined message types. The body of a TextMessage is a String.

Time-to-Live The effective lifespan of a message. Message expiration is calculated on the basis of the
time when the message was sent plus the Time-to-Live value.

Topic In Publish/Subscribe messaging (see “Publish/Subscribe” above), messages queues are often
called topics. In essence, a topic is a queue; it differs from a queue mostly in the way it is
administered. Topics are typically shared by many users and may form nodes in a content hierarchy
(although this is not a requirement of JMS). Many users may “publish” to one or more topics.
Conversely, a given topic may have many “subscribers.”

Transaction JMS message sessions can group one or more receive, send, or browse actions into a
transaction, which means all operations are conducted as a unit. If a transaction succeeds, all of its
constituent operations succeed. If a transaction fails, all operations are “rolled back” to restore the
original state that existed before the session began. Note that JMS commit and rollback methods are
scoped to the JMS session and therefore do not affect other program operations.
JMS Glossary 87

88 JMS Connect User’s Guide

B Message Selector Syntax

A message selector is a String containing an expression that, if it evaluates to TRUE, will result in
messages being selected, or if FALSE results in messages being neglected. The syntax of the JMS
selector expression is based on a subset of SQL92. The order of evaluation of a message selector is from
left to right within precedence level; but parentheses can be used to alter the evaluation order. For
consistency, predefined selector literals and operator names are shown in upper case below (but are
nevertheless case-insensitive).

A selector can contain tokens, operators, and expressions conforming to the rules outlined hereunder.

Literals
A string literal is enclosed in single quotes. If a string literal is to contain an included single quote, it can
be represented by a doubled single quote: for example, 'its' and 'it''s'. As with Java String literals, the
Unicode character encoding is presumed.

An exact numeric literal is a numeric value without a decimal point, such as 59, -257, +82, etc. Numbers
in the range of Java long are supported. Exact numeric literals use the Java integer literal syntax.

An approximate numeric literal is a numeric value in scientific notation, such as 7E4, -27.9E2 or a
numeric value with a decimal such as 7., -95.7, +16.2; numbers in the range of Java double are supported.
Approximate literals use the Java floating point literal syntax.

A boolean literal can have a value of TRUE or FALSE.

Identifiers
Identifiers can be either header field references or property references. An identifier is a character
sequence that begins with a Java-identifier start character and is followed by characters that are Java-
identifier part characters. An identifier start character is any character for which the method
Character.isJavaIdentifierStart() returns true. This includes underscore and $. An identifier part
character is any character for which the method Character.isJavaIdentifierPart() returns true.

Identifiers cannot be NULL, TRUE,nor FALSE.

Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, nor IS.

Identifiers are case-sensitive.

Message header field references are restricted to JMSDeliveryMode, JMSPriority, JMSMessageID,
JMSTimestamp, JMSCorrelationID, and JMSType.

JMSMessageID, JMSCorrelationID, and JMSType values may be null and if so are treated as a NULL
value.

Any name beginning with 'JMSX' is a JMS-defined property name.

Any name beginning with 'JMS_' is a provider-specific property name.
Message Selector Syntax 89

Any name that does not begin with 'JMS' is an application-specific property name. If a non-existent
property is referenced, its value is NULL. If it does exist, its value is the corresponding property value.

Whitespace is the same as that defined for Java: space, horizontal tab, form feed and/or line terminator.

Expressions
A selector is a conditional expression. Any selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

Arithmetic expressions are composed of arithmetic operators, identifiers with numeric values, numeric
literals and/or other arithmetic expressions.

Conditional expressions are composed of comparison operators, logical operators, identifiers with
boolean values, boolean literals, and/or other conditional expressions.

Standard bracketing () for ordering expression evaluation is supported.

Logical operators in precedence order: NOT, AND, OR

Comparison operators: =, >, >=, <, <=, <> (not equal)

Only like type values can be compared. One exception is that it is valid to compare exact numeric values
and approximate numeric values. (The necessary type conversion is conducted according to the rules of
Java numeric promotion.) If the comparison of non-like type values is attempted, the selector is always
false.

String and Boolean comparisons are restricted to = (equal) and <> (not equal). Two strings are equal if
and only if they contain the same sequence of characters.

Arithmetic operators in precedence order:

+, - unary

*, / multiplication and division

+, - addition and subtraction

NOTE: Arithmetic operations must use Java numeric promotion.

Comparisons
arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3

Example:

age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19

age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19

identifier [NOT] IN (string-literal1, string-literal2,...), where identifieris a String or NULL value.

Example:

Country IN (' UK', 'US', 'France')

is true for 'UK' and false for 'Peru'. It is equivalent to the expression:

(Country = ' UK') OR (Country = ' US') OR (Country = ' France')

Example:
Country NOT IN (' UK', 'US', 'France')

is false for 'UK' and true for 'Peru'. It is equivalent to the expression:

NOT ((Country = ' UK') OR (Country = ' US') OR (Country = ' France'))

NOTE: If identifier in an IN or NOT IN operation is NULL, the value of the operation is unknown.
90 JMS Connect User’s Guide

identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

where:

identifier has a String value

pattern-value is a string literal where '_' (underscore) stands for any single character

'%' stands for any sequence of characters (including the empty sequence)

all other characters stand for themselves.

The optional escape-character is a single-character string literal whose character is used to escape
the special meaning of the '_' and '%' in pattern-value.

Examples:

phone LIKE '12%3' is true for '123' or '12993' and false for '1234'

phone NOT LIKE '12%3' is false for '123' and '12993' and true for '1234'

word LIKE 'l_se' is true for 'lose' and false for 'loose'

underscored LIKE '_%' ESCAPE '\' is true for '_foo' and false for 'bar'

NOTE: If identifier in a LIKE or NOT LIKE operation is NULL, the value of the operation is
unknown.

identifier IS NULL tests for a null header field value, or a missing property value.

identifier IS NOT NULL tests for the existence of a non null header field value or property value.

The following message selector selects messages with a message type of car and color of red and weight
greater than 3500 lbs:

"JMSType = 'car' AND color = 'red' AND weight > 3500"

Null Values
As noted above, header fields and property values may be NULL. The evaluation of selector expressions
containing NULL values is defined by SQL 92 NULL semantics. I.e., SQL treats a NULL value as
unknown. Comparison or arithmetic with an unknown value always yields an unknown value. The IS
NULL and IS NOT NULL operators convert an unknown header or property value intoTRUE or FALSE
values.

Special Considerations
When used in a message selector, JMSDeliveryMode will have the value 'PERSISTENT' or
'NON_PERSISTENT'.

Date and time values should use the standard Java long millis value. When including a date or time literal
in a message selector, it should be an integer literal for a millis value. The standard way to produce millis
values is to use java.util.Calendar. Although SQL supports fixed decimal comparison and arithmetic,
JMS message selectors do not. (This is the reason for restricting exact numeric literals to non-decimals.)

SQL comments are not supported.
Message Selector Syntax 91

92 JMS Connect User’s Guide

C Message Headers and Properties

Header Fields Defined by JMS
In JMS, all messages support the same set of predefined header fields, which are described below. Note
that most header fields will have their values set automatically at runtime either by exteNd Composer or
the MOM vendor.

JMSCorrelationID

A JMS client can use the JMSCorrelationID header to associated one message with another (for
request/response situations). This field can hold an arbitrary string value, obtained by mapping a node
value from an Input DOM, or perhaps created dynamically with the aid of ECMAScript, etc. Use of this
field is not mandatory.

JMSDeliveryMode

This header field contains the delivery mode (PERSISTENT or NON_PERSISTENT) specified when the
message was sent. At the start of a send session, this header field is ignored; after the send has been
accomplished, it holds the delivery mode specified by the sending method.

This field will be filled out for you, using the persistency value you chose in the Send Message setup
wizard. (See next chapter.)

JMSDestination

The JMSDestination header field is ignored at the time a message is sent; after the send, it contains the
destination object specified by the sending message.

You do not need to enter anything manually in this field, since the necessary connection information (i.e.,
choice of destination queue) was automatically set when you first created the JMS Component.

JMSExpiration

You will not need to enter anything manually into this field. The Send Message setup wizard will prompt
you for (among other things) a Time-to-Live for the outgoing message. During the “send” session, when
the message is actually ready to be sent, exteNd will calculate the message’s expiration time as the sum
of the Time-to-Live value and the current UTC time (both values in milliseconds). After the send is
completed, the message’s JMSExpiration header field will contain this sum. If the Time-to-Live value
was zero when the Send Message action was created, the message will have no expiration value (which
means it will not expire).

NOTE: In most JMS-based MOMs, clients never receive expired messages.
Message Headers and Properties 93

JMSMessageID

The JMSMessageID value uniquely identifies a message in the MOM environment. It is set automatically
by the JMS provider and is read-only (and only after a message has been sent).

JMSPriority

The JMSPriority field holds a string value containing one of ten values (‘0’ through ‘9’) reflecting the
message’s priority. This field value is filled out automatically with the value you supplied in the Send
Message setup wizard. A value of ‘0’ to ‘4’ indicates a range of normal priorities (with ‘4’ being the
default); ‘5’ to ‘9’ are gradations of expedited priority.

NOTE: The manner by which priority settings determine message ordering in a queue is not defined by
JMS. Consult your MOM vendor’s documentation for information about how this feature might affect
message ordering.

JMSRedelivered

If a client application receives a message that has the JMSRedelivered marker set, it is possible that the
queue manager tried to deliver the message earlier, but the message was not acknowledged by the client
(perhaps due to a system failure). This field is under the control of the queue manager or message broker.
It is not under application control.

JMSReplyTo

The JMSReplyTo field is designed to contain a Destination supplied by a client when a message is sent.
It represents the destination where a reply to the message (if any) should be sent.

NOTE: This header field is not currently exposed as a write-enabled item in exteNd Composer’s JMS
Component Editor.

JMSTimestamp

This field contains the time that a message was handed off to a provider to be sent. It may or may not be
the actual transmission time, depending on whether (for instance) the message’s “send” session is under
transactional control.

JMSType

This user-settable field contains an arbitrary string supplied by a client when a message is created. The
sender can assign any value to JMSType that a receiver might find useful. For example, application-
defined JMSType values could facilitate message filtering by making it possible for various receivers to
handle various specific message types.

NOTE: Some JMS providers store message type definitions in a repository and may expect runtime
values in JMSType that correspond to these type definitions. If this is the case with your MOM
environment, use symbolic values for JMSType that correspond to legal values defined in the applicable
repository. (Consult your MOM documentation for details.)
94 JMS Connect User’s Guide

Message Properties
Message properties serve, in effect, as extra header fields. JMS allows for three broad categories of
properties: JMS-defined properties, provider-specific properties, and user-defined properties. JMS
Connect supports all three categories, although JMS does not require applications to support properties
(other than JMSXGroupID and JMSXGroupSeq; see below).

Property values (if not null) must be of type boolean, byte, short, int, long, float, double, or String. The
allowable values for specific predefined properties are described further below.

Property values, if present, are set by the sender prior to sending a message. When a message is received
by a client, all properties are read-only. Any attempt by the client to set a property value on a retrieved
message will result in a MessageNotWriteableException being thrown.

JMS-Defined Properties

JMS defines (and the JMS Connect exposes) a number of JMS-specific property fields that can optionally
be populated by message clients and/or providers. These JMS-defined properties, which are prefixed
with ‘JMSX’, include:

JMSXUserID (String) — Arbitrary string identifying the user who is sending the message. (This is
intended to be set by the provider during a send operation.)

JMSXAppID (String) — Identity of the sending application. (This is intended to be set by the
provider during a send operation.)

JMSXDeliveryCount (int) — The number of message delivery attempts. (Set by provider.)

JMSXGroupID (String) — The (client-settable) identity of the message group that this message is a
member of. Intended for use by clients who are sending messages in batches.

JMSXGroupSeq (int) — The (client-settable) sequence number of this message within a group.

JMSXProducerTXID (String) — Identifier of the transaction within which this message was
produced (set by the provider).

JMSXConsumerTXID (String) — Identifier of the transaction within which this message was
consumed (set by the provider).

JMSXRcvTimestamp (long) — The time when a message was delivered to its ultimate consumer
(set by provider).

JMSXState (int) — One of 1 (waiting), 2 (ready), 3 (expired), 4 (retained). Not relevant to the
client app; for internal use of the provider.

Provider-Specific Properties

JMS allows providers to define their own public property names, with a prefix of “JMS_<vendor name>”
(e.g., JMS_IBM is the prefix for IBM-defined properties). Although the JMS Connect exposes these
fields in JMS message header tree views, they are really intended for the JMS provider’s use.

When IBM’s MQSeries is the provider, exteNd’s JMS Connect exposes three vendor-specific properties:
JMS_IBM_MsgType, JMS_IBM_PutApplType, and JMS_IBM_Format. After a message has been
received by a JMS Component, these fields will typically be populated with MQSeries-specific control
information. On outgoing messages, you can either supply appropriate values in these fields yourself, or
leave them blank. See the MQSeries Application Programming Reference for information on the
semantics of these fields.
Message Headers and Properties 95

User-Defined Properties

JMS allows users to define their own custom properties, and the JMS Connect exposes this functionality
in the JMS Component Editor as described further below. There is no restriction on the number or kinds
of user-defined property fields that can be attached to a message, except that the names of user-defined
properties must (like all headers and properties) obey the syntax rules for message selector identifiers.
96 JMS Connect User’s Guide

Index
A
acknowledgement 55
Action Model 37
Action Model pane 34
actions 37
administered objects 20, 85
After Send Maps 45
ambiguous transaction state 55
assured once-only delivery 13
asynchronous delivery 85
asynchronous processing 11
asynchronous retrieval 16
asynchronous triggering 79
at-most-once 15
authentication 18, 22, 27
automatic-rollback protocol 55

B
batch mapping XML elements 70
Before Send Maps 45
blocking/polling 17
body type

filtering for 52
body types 16
Break command 50
broadcaster/listener 17
Browse Messages action 46

queues and 31
browser console 83
browsing 46
browsing vs. reading 56
Bytes Message 75
BytesMessage 16

C
CICS 11
CICS RPC Enterprise Enabler 65
COBOL 65, 85
COBOL copybook See copybook
colon 71
commit 13, 22, 25, 26, 28, 55

automatic 55
comparison operators 90
component editor 34

connection resource
creating 19

ConnectionFactories 20
connections 20

MQSeries Topic 27
provider-specific 23
queue 20
topic 25

context-sensitive picklists 75
Continue command 50
copybook 16, 36, 85
custom header property 61
custom properties 39
custom property 49

D
data types 62
database operation 55
datagram 17, 85
delivery guarantees 15
deployment issues 83
destination 85
destinations 20
destinations, changing 40
destructive removal 50
distributed transactions 13
drag-and-drop 60
drop targets 60
DTDs 29
durable subscriber 15, 85

E
ECMAScript 59, 60, 64

getters & setters 76
method summary 77

ECMAScript extensions 75
error notifications 18
Error on No Message checkbox 51
exceptions 22, 25, 26, 28, 52, 72

TransactionInProgressException 13
Expand Tree 69
Expression Editor 64
expression, selector 90
Expression-Driven Connections 19
97

F
failover 18
FIFO (first-in/first-out) 12
filter 17, 61
filtering

body type 72
limitations on 72

fire and forget 17
forbidden drag operation 60

G
getField() 77
getJMSBytesBody() 78
getJMSMapField() 78
getJMSObjectBody() 78
getJMSStreamField() 78
getter methods 77

H
hasMessages() 50
Header Document Name 44
header, message

before send 45
mapping data into 59, 60

Host Name 24
HTTP servlets 79
hub and spoke architecture 9

I
IBM 10, 20
IBM message properties 95
identifier, selector 89
Initial Context Factory, JNDI 22, 27
IS NULL 91
iterating through all messages 50
Iterating through Messages 50

J
java.util.Enumeration 46
JDBC 55
JMS Component

creating a new 32
JMS Connection resource 80
JMS Service 79
JMS Services

removing 83
starting and stopping 83

JMS Services Console 83
JMS standard 11

what’s not covered by 18
JMS_IBM_Format 95
JMS_IBM_MsgType 95
JMS_IBM_PutApplType 95

JMSCorrelationID 15, 46, 60, 72, 93
JMSDeliveryMode 15, 45, 72, 93
JMSDestination 15, 45, 93
JMSExpiration 15, 45, 93
JMSMESSAGE 50
JMSMessageID 15, 45, 50, 72, 94

loop termination based on 54
JMS-MQSERIES 76
JMSPriority 15, 45, 71, 72, 94
JMSRedelivered 16, 45, 94
JMSReplyTo 16, 94
JMSTimestamp 16, 45, 72, 94
JMSType 16, 60, 71, 72, 94
JMSXAppID 95
JMSXConsumerTXID 95
JMSXDeliveryCount 95
JMSXGroupID 95
JMSXGroupSeq 95
JMSXProducerTXID 95
JMSXRcvTimestamp 95
JMSXState 95
JMSXUserID 95
JNDI 20
JTA (Java Transactions API) 13

L
latency 12, 15, 17
limitations

on property mapping 62
literals, selector 89
little-endian 66
load balancing 18
loop control 50
looping on Receive 50

M
mailbox 13
Map command 64
MapMessage 16
Mapping Name 49
mapping, headers and 60
message

iteration 50
structure 15

message acknowledgement 55
Message Body DOM 48
message broker 14
Message Filter 46, 50, 52, 71
Message Filter tab 17
message properties 95
message queues 12
message selector See selector
Message Transaction action 54, 56
Message Transaction dialog 57
Message Type pulldown menu 48
MessageListener 16, 79, 83
98

messages
asynchronous retrieval of 16
copybook 16
filtering 17
iteration 50
lifespan of 12
maximum number on a queue 12
read-only nature of 16
selectors 17
type definitions 18
XML 16

millisecond values 43
model queue 24
MQSeries 9, 10, 11, 20, 24, 95
MQSeries Host Machine 24
MQSeries queue 23
multiple listeners 80
multitasking 12

N
Native Environment pane 34, 36, 46
NON_PERSISTENT 72
NON_PERSISTENT mode 15
nondestructive read 56
Non-JMS Client 25
nonrepudiation 60

O
Object Message 75
ObjectMessage 16
once-and-only-once 15
onMessage() 17
OS/2 66
Override Connection Queue 47

P
password 24
performance issues 12
PERSISTENT 72
PERSISTENT mode 15
pick lists 75
Point-to-Point

browsing and 46
Point-to-Point (PTP) 13, 86
priority 15
privacy 18
Progress Software 10
properties 15, 95
properties, custom 45
Property Name 49
Property Type 49
Provider URL 22, 27
providers 20
provider-specific properties 95
PTP See Point-to-Point

Publish/Subscribe 86
Publish/Subscribe (pub/sub) 14

browsing not defined 46
pulling vs. pushing data 17

Q
quality-of-service 13
Queue Manager 24
queues

browsing 46
changing 46
clustered 12
empty 51
in pub/sub 14
temporary model 24
using two or more 31

R
receive

blocking during 17
Receive Message action 50
Receive Message Maps 54
reliability 13, 15
Remote Procedure Call 11
Repeat While action 50
replying to messages 73
repository 18
request-response 17, 60
request-response messaging 73
resource overruns 12, 15
rollback 13, 22, 25, 26, 28, 50, 55
RPC 13, 87

S
sample documents 29
scalability 18
scope of transaction control 55
Security Principal 22, 27
Select Occurrences 68
selector 17, 46, 50, 52

grammar 89
Send Message action 39
serializable Java object 16
setJMSBytesBody() 78
setJMSMapField() 78
setJMSMsgProperty() 78
setJMSObjectBody() 78
setJMSStreamField() 78
setter methods 77
setValue() 77
shopping-cart app 12
SonicMQ 10, 11
SQL92 17, 91
stopping JMS Service listeners 84
store/forward 17
99

StreamMessage 16
stub documents 29
stylesheets 29

T
Temp XML Document 33, 82
temporary model queue 24
Test Options dialog 25
TextMessage 16
timeout value 17
topic connections 25

browsing not allowed 31
TopicPublishers 14
topics 14
TopicSubscribers 14
Transacted checkbox 21, 24, 26, 28, 31, 57
transaction control 13, 54

scope of 55
TransactionInProgressException 13
Try/On Error action 51

U
unresolved transactions 55
Use Prior Message ReplyTo Field 73
Use Sent Message ReplyTo Field 47
username 24

W
WHILE loop 50

X
XAResource interface 13
xconfig.xml 20
XML Map Component 34
XML stub document 44, 48
XML templates 29, 48
XPath 60, 64
XPath() method 61
XSL 29
100

	About This Book
	1 Welcome to exteNd Composer and JMS
	About exteNd Connects
	What Is the JMS Connect?
	What Needs Does JMS Address?
	What Is Enterprise Messaging?
	What Are Message Queues?
	Will My Message-Based Application Be Slow?
	Is Messaging Reliable?
	Can Messages Be Part of Transactions?
	What Is Point-to-Point Messaging?
	What Is Publish/Subscribe Messaging?
	What About Delivery Guarantees?
	How Are Messages Structured?
	Header Information
	Body Types

	How Are Messages Retrieved?
	Message Filtering
	Request-Response versus Store/Forward
	What Does JMS Not Cover?
	About exteNd’s JMS Component

	2 Getting Started with the JMS Component Editor
	Creating a JMS Connection Resource
	About Expression-Driven Connections
	About Queue Connections
	About Topic Connections

	Creating XML Templates for Your Component

	3 Creating a JMS Component
	Before Creating a JMS Component
	About the JMS Component Editor Window
	About the Native Environment Pane

	4 Creating JMS Actions
	About Actions
	Actions Unique to the JMS Component Editor
	Options Tab
	Message Body Tab
	Message Header Tab

	The Send Message Action
	Priority, Mode, and Time to Live
	Destination Queue/Topic
	Return Address

	The Browse Messages Action
	The Receive Message Action
	The Message Transaction Action
	What Happens When I Issue a Commit?
	What Happens When I Issue a Rollback?
	What Happens if I Leave the Session Unresolved?
	What Actions Are Included in a Message Transaction?
	What Can I Use Message Transactions For?

	Using Other Actions in the JMS Component Editor

	5 Working with Messages
	Mapping Data into the Message Header
	Limitations on Header Mapping

	Mapping Data to Custom Properties
	Limitations on Property Mapping

	Working with XML Messages
	Working with Copybook Messages
	Copybook Message Setup
	Copybooks and the Native Environment Pane
	Copybook-Specific Context Menu Items
	Mapping Data Between Copybook and DOMs

	Working with Message Filters (Selectors)
	Limitations on Filtering
	Filtering by Body Type

	Request-Response Messaging
	Temporary Queues

	ECMAScript and the JMS Connect
	ECMAScript Method Summary

	6 The JMS Service
	About the JMS Service
	Multiple Listeners
	Creating a JMS Service
	Deployment of the JMS Service
	How Do I Manage Deployed JMS Services?

	A JMS Glossary
	B Message Selector Syntax
	Literals
	Identifiers
	Expressions
	Comparisons
	Null Values
	Special Considerations

	C Message Headers and Properties
	Header Fields Defined by JMS
	JMSCorrelationID
	JMSDeliveryMode
	JMSDestination
	JMSExpiration
	JMSMessageID
	JMSPriority
	JMSRedelivered
	JMSReplyTo
	JMSTimestamp
	JMSType

	Message Properties
	JMS-Defined Properties
	Provider-Specific Properties
	User-Defined Properties

	Index

