
Novell

m
w w w . n o v e l l . c o

exteNd
Composer

5 . 2
S A P C ON NE CT U SE R ’ S G U I DE

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd Composer SAP Connect User’s Guide

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer
Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 7
Conventions Used in the Guide . 8

1 Welcome to exteNd Composer and SAP Connect . 9
Before You Begin. 9
About exteNd Composer Connectors . 9
What is SAP Connect? . 10
About exteNd’s SAP Component. 12
What Applications Can You Build Using the SAP Component Editor? . 13

2 Getting Started with the SAP Component Editor . 15
Installing SAP Java Connector Libraries (JCo) . 15

Error Messages. 15
License Status . 16
exteNd Composer SAP Connect (Design Time) . 16
exteNd Composer SAP Connect Server on Windows. 16
exteNd Composer SAP Connect Server on Solaris . 16
exteNd Composer SAP Connect Server on AIX . 17
exteNd Composer SAP Connect Server on HP-UX . 17

Creating an SAP Connection Resource . 17
About Constant and Expression Driven Connection Parameters . 17

SAP Connections. 18
SAP Service Connection. 20

About SAP and Connection Pools . 22
Session Connection Management . 22
Connection Pool Management . 23

Managing Pools . 24
Using the exteNd Composer Console . 24

Creating XML Templates for Your Component . 27

3 Creating an SAP Component . 29
Before Creating an SAP Component. 29
About the SAP Component Editor Window . 32
About the Native Environment Pane . 32

4 Performing SAP Actions . 35
About Actions. 35
The SAP Function Action. 35

SAP Function Tab . 35
SAP Function Action Structure . 39
Editing an SAP Function Action . 39

SAP Action Model . 40
Before Execute Actions. 40
Adding More Map Actions . 42
Execute SAP Function Action . 43
After Execute Actions: Adding a Map Action from the Response Tab . 44
Adding More Map Actions . 45

Component with Connection Action. 46
SAP-Specific Expression Builder Properties . 48
Processing Table Rows . 51
5

Using Other Actions in the SAP Component Editor . 52
Handling Errors and Messages. 52

5 SAP Service. 53
About Services . 53

When to Use an SAP Service . 54
SAP Service Action Model . 54

Creating an SAP Service . 54
Using the SAP Service Switch Action . 56
Deploying the SAP Service Component . 58
Testing an SAP Service . 59

A Document Management. 61
About Document Management . 61

B SAP Glossary . 63
6 SAP Connect User’s Guide

About This Book

Purpose

The guide describes how to use exteNd Composer SAP Connect, referred to as the SAP Component
Editor. The SAP Component Editor is a separately-installed component editor in exteNd Composer.

Audience

The audience for the guide is developers and system integrators using exteNd Composer to create
services and components which integrate SAP applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s development
environment and deployment options. You must also have a good understanding of SAP concepts and the
SAP environment.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell Documentation Web
Site (http://www.novell.com/documentation-index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to exteNd Composer and SAP, gives a definition and overview of the SAP
Component Editor.

Chapter 2, Getting Started with the SAP Component Editor, describes the necessary preparations for
creating a SAP component.

Chapter 3, Creating an SAP Component, describes how to create an SAP Component using the SAP
Component Editor.

Chapter 4, Performing SAP Actions, describes how to use the SAP Function Action.

Chapter 5, SAP Service, describes how to create and use a SAP service.

Appendix A, Document Management, describes document management within the SAP Component
Editor.

Appendix B, is a glossary.
7

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections

Form selections

Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers

File names

Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply

Technical terms used for the first time

Title of other Novell publications

Monospaced typeface indicates:

Method names

Code examples

System input

Operating system objects
8 SAP Connect User’s Guide

1 Welcome to exteNd Composer and SAP
Connect

Before You Begin
Welcome to the Novell exteNd Composer SAP Connect Guide. This Guide is a companion to the exteNd
Composer User’s Guide, which details how to use all the features of Composer, except the Connect
Component Editors. So, if you haven’t looked at the User’s Guide yet, please familiarize yourself with it
before using this Guide.

exteNd Composer provides separate Component Editors for each Connector, such as SAP Connect. The
special features of each component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core component editor, the XML Map
Component Editor, then this Guide should get you started with the SAP Component Editor.

Before you can begin working with SAP Connect, you must have installed it into your existing exteNd
Composer. Likewise, before you can run any Services built with this Connector in the exteNd Composer
Enterprise Server environment, you must have already installed the Server side software for this
Connector into exteNd Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the SAP environment and
the applications that you want to XML-enable.

About exteNd Composer Connectors
exteNd Composer is built upon a simple hub and spoke architecture. The hub is a robust XML
transformation engine that accepts requests via XML documents, performs transformation processes on
those documents and interfaces with XML-enabled applications, and returns an XML response
document. The spokes, or Connectors, are plug-in modules that "XML-enable" sources of data that are
not XML aware, bringing their data into the hub for processing as XML. These data sources can be
anything from legacy COBOL/VSAM managed information to Message Queues to HTML pages.
exteNd Composer Connectors can be categorized by the integration strategy each one employs to XML-
enable an information source. The integration strategies are a reflection of the major divisions used in
modern systems designs for Internet- based computing architectures. Depending on your eBusiness
needs and the architecture of your legacy applications, exteNd Composer can integrate your business
systems at the User Interface, Program Logic, or Data levels.
Welcome to exteNd Composer and SAP Connect 9

Figure 1-1

What is SAP Connect?
SAP provides enterprise resource software for core business processes via a series of integrated modules
. Examples of these core business processes include inventory, order entry, accounts receivable, accounts
payable, production scheduling and payroll.

The Remote Function Call (RFC) protocol is the center for all communication between SAP and external
components.

ABAP (Advanced Business Application Programming) is the SAP programming language. ABAP
Function Modules can only be called from an external client if they are RFC-enabled. SAP R/3 contains
thousands of RFC-enabled Function Modules (RFMs).

Included in these RFMs are BAPIs (Business Application Programming Interface). A BAPI is an RFM
that follows additional rules (see the SAP BAPI Programming Guide) and is defined in the BOR
(Business Object Repository) as a method of an object type.

A Business Object Type is an object-oriented structure upon which the SAP system is based. A single
business object (e.g. Sales Order) represents a single business detail and encompassses the functions and
data of this detail. A business object is one instance of a business object type.

All SAP business object types are defined and described within the SAP R/3 BOR. The BOR is the
central access point for external applications (e.g. Composer integration applications) to access SAP
Business object types.

BAPIs allow SAP business objects to be called from external applications. The SAP Java Connector
(JCo) is a Java API which provides access to BAPIs.

The following model illustrates this architecture:
10 SAP Connect User’s Guide

SAP Connect allows both inbound and outbound calls to SAP BAPIs and other RFC-enabled Function
Modules (RFMs). exteNd Composer SAP Connect was designed specifically to integrate with the SAP
environment through the SAP JCo (Java Connector). The SAP Connect component communicates with
SAP programs using the SAP JCo libraries to call SAP RFMs. Composer SAP Connect XML-enables
SAP R/3 applications using the Program Logic integration strategy.

Using SAP Connect, you can make SAP applications and their business logic available to internet,
extranet, or intranet processes. The SAP Function action allows you to search for and select an SAP
Function which you want to execute. Once you find and select the desired function, you can select the
SAP Request fields to which you want to map data and you can select the SAP Response fields from
which you want to map data. These SAP Request and Response fields are then displayed in the Native
Environment Pane (NEP) on the SAP Request and SAP Response tabs, respectively.

With the selected SAP function’s request data fields displayed in the NEP’s SAP Request tab, you may
map data from XML request documents to the SAP Request fields. This data is mapped prior to executing
the SAP function.

Similarly, with the SAP function’s response data fields displayed in the NEP’s SAP Response tab, you
may map data from SAP Response fields to the XML request document. This data is mapped after
executing the SAP function.
Welcome to exteNd Composer and SAP Connect 11

About exteNd’s SAP Component
SAP Connect creates SAP Components which can be incorporated into exteNd Composer Services.
Much like the XML Map component, the SAP component is designed to map, transform, and transfer
data between two different XML templates (i.e., request and response XML documents). It is specialized
to allow both inbound and outbound calls to SAP BAPIs or other RFC-enabled function modules
(RFMs).

Like any data-exchange operation, the SAP Component relies on a Connection Resource. The
Connection Resource specifies important information regarding Host or IP Address, SAP System
Number, SAP Client Number, SAP Language, as well as the User ID, Password and Pooling Options of
the Connection. Once you’ve set up an SAP Connection Resource, you can use it to set up an SAP
Component that calls an SAP function which processes request data and returns response data.

An SAP Component can perform simple data manipulations, such as mapping and transferring data from
an XML document into an SAP application, and putting the data into an XML document. It can also
perform sophisticated operations, such as mapping. The SAP Component has all the functionality of the
XML Map component and can process XSL, send mail, and post and receive XML documents using the
HTTP protocol.

SAP Request and Response Tabs in the Native Environment Pane
12 SAP Connect User’s Guide

The following illustration shows how an SAP component uses a connection to interact with data on the
mainframe.

Figure 1-2

What Applications Can You Build Using the SAP Component
Editor?

The SAP Component Editor allows you to extend any XML integration you are building to include your
SAP applications (See exteNd Composer User’s Guide for more information.) For example, you may
have an application that retrieve a product’s description, picture, price, and inventory from regularly
updated databases and displays it on a Web browser. By using the SAP Component Editor, you can now
get the current product information from the operational systems and the static information (e.g., the
picture) from the database and merge the information from these separate information sources before
displaying it to a user. This provides the same current information to both your internal and external
users.
Welcome to exteNd Composer and SAP Connect 13

14 SAP Connect User’s Guide

2 Getting Started with the SAP Component Editor

Installing SAP Java Connector Libraries (JCo)
Novell exteNd Composer SAP Connect is designed specifically to integrate with the SAP environment
through the SAP JCo (Java Connector) libraries. Please see the exteNd Composer SAP Connect Release
Notes for specific software version support info. You should obtain the appropriate (currently supported)
version of the

Registered SAP users may download SAP JCo libraries from the following SAP site:
http://service.sap.com. A valid SAP Service Marketplace user ID and password is required to access
this SAP site.

Error Messages

NOTE: To install exteNd Composer SAP Connect, you must have SAP’s JCo libraries installed. See
discussion below.

If you do not have SAP Java Connector installed (as described below) prior to installing Composer SAP
Connect, the following dialog will be displayed.

Also, the log will have at least some of the following messages:

java.lang.NoClassDefFoundError: com/sap/mw/jco/JCO$PoolChangedListener

java.lang.NoClassDefFoundError: com/sap/mw/jco/JCO$ServerStateChangedListener

Enabler: SAP; Error: Cannot get build for:
com.sssw.b2b.ee.sap.rt.GNVSAPXObjectFactory

Enabler: SAPService; Error: Cannot get build for:
com.sssw.b2b.ee.sap.rt.GNVSAPServiceXObjectFactory
Getting Started with the SAP Component Editor 15

License Status

SAP Connect will not load if the ENABLER_LICENSE element in xconfig.xml is not set to “true.” On
the design-time machine, look for xconfig.xml under the \Composer\Designer\bin directory. On the
server-side, look in App Server\Composer\lib.

Open xconfig.xml in a teswt editor. Look for the <COMPONENT_FACTORY> entries for SAP and
SAPService. Set the ENABLER_LICENSE element within each of these to “true”:

<ENABLER_LICENSE enabled="true">

Then Save the modified file and restart Composer or the server, as applicable.

NOTE: Do not edit xconfig.xml while Composer is running. Composer overwrites its config file at
shutdown. If you have made edits while Composer is running, they will be lost as soon as you exit
Composer. Always stop Composer, then edit xconfig.xml, then restart Composer.

exteNd Composer SAP Connect (Design Time)

For exteNd Composer SAP Connect design-time installation, follow SAP's instructions for installing
JCO libraries on Windows 2000/XP as appropriate. Here is what you need to do to get started:

1 From the SAP website, download jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-
path}.

2 Unzip the file jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-path}.

3 Add the DLLs to the extend5\Composer\Designer\bin directory.

4 Add sapjco.jar to the exteNd5\Composer\Designer\lib directory.

5 Add a <JAR> entry for sapjco.jar to the SAP section of xconfig.xml (which is in the
\Composer\Designer\bin directory). For example:
<JAR>..\lib\jCO.jar</JAR>

exteNd Composer SAP Connect Server on Windows

For exteNd Composer SAP Connect on Composer Enterprise Server, follow SAP's instructions for
installing JCO on Windows 2000:

1 From the SAP site, download jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-path}.

2 Unzip the file jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-path}.

3 Add the DLLs to a location within the application server directory tree that is in the path so that
they can be found at runtime. For example, the application server bin directory.

4 Add jCO.jar to the Server's exteNd5\Composer\Designer\lib directory.

5 Add [PATH]\exteNd5\Composer\Designer\lib\jCO.jar to the application server's CLASSPATH

exteNd Composer SAP Connect Server on Solaris

For exteNd Composer SAP Connect Server, follow SAP's instructions for installing JCO on Solaris.

1 From the SAP site, download jco-sun-1.1.04.tgz or jco-sun-1.1.04.tar.z (or appropriate version; see
SAP Connect Release Notes) into an arbitrary directory {jco-install-path}.

2 Expand the jco-sun-1.1.04.tgz or jco-sun-1.1.04.tar.z into an arbitrary directory {jco-install-path}.

3 Add the SOs to a location with the application server directory tree that is in the
LD_LIBRARY_PATH sot that they can be found at runtime.

4 Add jCO.jar to the Server's exteNd5\Composer\Designer\lib directory.

5 Add [PATH]\exteNd5\Composer\Designer\lib\jCO.jar to your CLASSPATH environment variable.
16 SAP Connect User’s Guide

exteNd Composer SAP Connect Server on AIX

For exteNd Composer SAP Connect Server, follow SAP's instructions for installing JCO on AIX.

1 From the SAP site, download jco-rs6000-1.1.04.tgz or jco-rs6000-1.1.04.tar.z into an arbitrary
directory {jco-install-path}.

2 Expand the jco-rs6000-1.1.04.tgz or jco-rs6000-1.1.04.tar.z into an arbitrary directory {jco-install-
path}.

3 Add The SOs to a location with the application server directory tree that is in the LIBPATH sot that
they can be found at runtime.

4 Add jCO.jar to the Server's exteNdComposer\lib directory.

5 Add [PATH]\exteNd5\Composer\lib\jCO.jar to your CLASSPATH environment variable.

exteNd Composer SAP Connect Server on HP-UX

For exteNd Composer SAP Connect Server, follow SAP's instructions for installing JCO on HP-UX.

1 From the SAP site, download jco-hp_32-1.1.04.tgz or jco-hp_32-1.1.04.tar.z into an arbitrary
directory {jco-install-path}.

2 Expand the jco-hp_32-1.1.04.tgz or jco-hp_32-1.1.04.tar.z into an arbitrary directory {jco-install-
path}.

3 Add The SLs to a location with the application server directory tree that is in the SHLIB_PATH sot
that they can be found at runtime.

4 Add jCO.jar to the Server's exteNdComposer\lib directory.

5 Add [PATH]\exteNd5\Composer\lib\jCO.jar to your CLASSPATH environment variable.

Creating an SAP Connection Resource
Before you create an SAP Component, you will find it necessary to create a Connection Resource to
access the SAP system.

Each Connector, including SAP Connect, uses its own Connection Resource type. The Connection
Resources (for JDBC, 3270, 5250, CICS RPC, JMS, HTML, Telnet, EDI, etc.) require various types of
parameters, appropriate to the external data source being connected. The appearance of the setup wizard
changes dynamically to reflect the type of Connection Resource that is selected.

Once you create a Connection Resource, you can reuse it for multiple SAP components that you create,
rather than creating a new connection each time. Also, a Connection Resource, once created, can to some
degree be self-configuring in that its data fields can be linked to ECMAScript expressions that control the
parameter values associated with the connection (see below).

There are two types of SAP Connectors: the standard SAP Connection and the SAP Service Connection.
Steps for creating both types will be described below.

About Constant and Expression Driven Connection Parameters

You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant based parameter uses the value you type in the Connection dialog every time the Connection is
used. An expression based parameter allows you to set the value using a programmatic expression, which
can result in a different value each time the connection is used at runtime. This allows the Connection’s
behavior to be flexible and vary based on runtime conditions each time it is used.
Getting Started with the SAP Component Editor 17

For instance, one very simple use of an expression driven parameter in a SAP Connection would be to
define the User ID and Password as PROJECT Variables (e.g.
PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you deploy the project, you can
update the PROJECT Variables in the Deployment Wizard to values appropriate for the final deployment
environment. At the other extreme, you could have a custom script that queries a Java business object in
the Application Server to determine what User ID and Password to use.

To switch a parameter from Constant driven to Expression driven:

1 Click the right mouse button in the parameter field you are interested in changing.

2 Select Expression from the context menu and the editor button will appear or become enabled.

3 Click on the button and then create an expression that evaluates to a valid parameter value at
runtime.

SAP Connections

To create a standard SAP Connection resource:

1 Select File>New>xObject, then open the Resource tab and select Connection. The “Create a New
Connection Resource” Wizard appears.

2 Type a Name for the connection object.
18 SAP Connect User’s Guide

3 Optionally, type Description text.

4 Click Next.

5 Select SAP Connection from the Connection Type pull down menu.

6 Enter the Host name or IP address.

7 Enter the SAP System Number.

8 Enter the SAP Client Number.

9 Enter the SAP Language, for example EN are the letters for English.

10 Enter a valid Connection User ID to sign on to the selected database.

11 Enter a valid Connection Password for the selected database.

12 Select a Connection Pooling option. In the the dropdown list, choose from Non-Pooled, Session or
Pooled from the dropdown box.

Selecting Non-Pooled means a connection will be created on request.

Selecting Session means the connection is provided by the Session Connection Manager.

Selecting Pooled means the connection is provided by the Pool Manager

Selecting either the Pooled or Session option for Connection Pooling will enable the Advanced...
button.

If you request a Pooled connection from a connection component by clicking on Test, the
connection is retrieved and released from the Connection Pool Manager, and then the pool is
deleted. If you request a Pooled connection from an SAP component by clicking on Test or the
component requests the connection, the connection is retrieved and released from the Connection
Pool Manager, however the pool will not be deleted.

If you request a Session connection from a connection component by clicking on Test, the
connection is retrieved and released to the Session Connection Manager, and then the session
connection is deleted. If you request a Session connection from an SAP component by clicking on
Test or the component requests the connection the connection is retrieved and released from the
Session Pool Manager, however the Session Connection Manager will not be deleted.

13 Check the Default checkbox if you would like to use the current connection as the default
connection for any new SAP Components you create in your project.

14 Click Test to see if your connection is successful. A “success” or “failure” message appears for
your connection. You can continue creating the resource, even if your connection fails.
Getting Started with the SAP Component Editor 19

15 Click Finish. The newly-created resource connection object appears in the Composer Connection
Resource detail pane.

SAP Service Connection

An SAP Service is an event listener that registers with an SAP gateway server. When an RFC is executed
on the SAP server the results are forwarded to the listener. The listener can then call other RFCs on the
SAP Gateway Server using the connection established to register the listener and execute any other valid
actions within its action model.

To create an SAP Service Connection resource:

1 Select File>New>xObject, then open the Resource tab and select Connection. The “Create a New
Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

Newly Created Resources
20 SAP Connect User’s Guide

4 Click Next.

5 Select SAP Service Connection from the Connection Type pull down menu.

6 Enter an appropriate Gateway Service.

7 Enter the Gateway Host Name or IP address.

8 Enter the Program ID.

9 Enter the Host Name or IP address.

10 Enter the SAP System Number.

11 Enter the SAP Client Number.

12 Enter the SAP Language, for example EN are the letters for English.

13 Enter a valid Connection User ID to sign on to the selected database.

Scroll down to view the additional fields.

14 Enter a valid Connection Password for the selected database.

15 Check off Unicode Mode if desired.

16 Select a Connection Pooling option. In the the dropdown list, choose from Non-Pooled, Session or
Pooled from the dropdown box.

Selecting Non-Pooled means a connection will be created on request.

Selecting Session means the connection is provided by the Session Connection Manager.

Selecting Pooled means the connection is provided by the Pool Manager
Getting Started with the SAP Component Editor 21

Selecting either the Pooled or Session option for Connection Pooling will enable the Advanced...
button.

If you request a Pooled connection from a connection component by clicking on Test, the
connection is retrieved and released from the Connection Pool Manager, and then the pool is
deleted. If you request a Pooled connection from an SAP component by clicking on Test or the
component requests the connection, the connection is retrieved and released from the Connection
Pool Manager, however the pool will not be deleted.

If you request a Session connection from a connection component by clicking on Test, the
connection is retrieved and released to the Session Connection Manager, and then the session
connection is deleted. If you request a Session connection from an SAP component by clicking on
Test or the component requests the connection the connection is retrieved and released from the
Session Pool Manager, however the Session Connection Manager will not be deleted.

17 Check the Default checkbox if you would like to use the current connection as the default
connection for any new SAP Components you create in your project.

18 Click Test to see if your connection is successful. A “success” or “failure” message appears for
your connection. You can continue creating the resource, even if your connection fails.

19 Click Finish. The newly-created resource connection object appears in the Composer Connection
Resource detail pane.

About SAP and Connection Pools
Composer SAP Connect provides support for both Connection Pool Management and Session
Connection Management.

Connection Pool Management provides access to a pool of connections via the JCo library using the JCo
Pool Manager.

Session Connection Management provides a connection that persists the duration of an HTTP session to
which it is linked.

Both Session Connection Management and Connection Pool Management are active in both Composer
SAP Connect Designer and Composer SAP Connect Server.

Session Connection Management

Session Connection Management helps performance when you want to make multiple server requests
with a server specified time frame (server request timeout). The connection is maintained based on the
server http request. The connection is available from the sesssion connection manager as long as the
session remains alive. When the session times out, the session connection manager is removed.

For an SAP Connection with Session Connection Pooling, a session connection manager and a session
connection will be created the first time a component using the connection executes.

When Session Connection Pooling is selected for an SAP Connection Resource, the Advanced button
will display the Session Info dialog. The Session Info dialog allows you to set Keep Alive and Inactivity
Lifetime options for a managed session connection.
22 SAP Connect User’s Guide

Keep Alive: (default 5) - is the delay period between checks to see if the connection is still alive. After
this period Composer will ping the SAP system to keep the connection open - or alive.

Inactivity Lifetime: (default 60) - is the timeout period in minutes that overrides the HTTP session
timeout. This is the time limit for an idle connection.

Connection Pool Management

In the SAP Connection dialog, when you specify Pooled as the Server Connection Source for the SAP
Connection, a pool using the JCo Pool Manager will be created via the connection pool manager the first
time a component using the connection executes or when a user pre-initializes the pool from the SAP
Console.

When Pooling is selected as the Connection Pooling option for an SAP Connection Resource, the
Advanced button will display the Pool Info dialog. The Pool Info dialog allows you to set the maximum
initial pool size of the connection pool.

Interaction every 5 minutes
Active Connection for 60 minutes
Getting Started with the SAP Component Editor 23

Managing Pools

Using the exteNd Composer Console

SAP Connection Pools can by managed through the SAP Console Screen.

How to Access the Console

1 If you are using the Novell exteNd Application Server, log on to your Server via your web browser
using http://localhost/SilverMaster50 (or whatever is appropriate for the version in use). In this
example, Novell exteNd App Server 5.0 is used.

NOTE: If you are not using the exteNd app server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link. You should see the main console page:
24 SAP Connect User’s Guide

3 Click on the SAP link in the left (nav) frame and the SAP Console General Properties Screen will
come into view.

4 Click the Console button. A browser popup window (the T27 Connection Pool Management
Screen) should appear:

The SAP Console provides the following information and interaction for managing connection pools.

Pool Name - the full SAP connection pool name

In Use - is the number of connections in the pool that are currently allocated to applications

Max Used - is the peak number of connections that have been used

Available - is the number of connections in the pool that are currently free

Pool Size - is the maximum size of the pool. This field can be edited when resetting the Pool. To do
so, enter the new pool size and press apply.

NOTE: Pool connections In Use will always be one more than required by the application because one
pool connection is required for connection to the repository.
Getting Started with the SAP Component Editor 25

You may refresh the displayed pool information by pressing the Refresh Console button.

If you attempt to resize the pool and the connections are in use, the following SAP Console page will be
displayed. You may press the Retry button to attempt to resize the pool again. You may also press the Kill
button to forcibly resize the pool. This will close any open connections, delete the pool, and recreate it
with the specified size. You may navigate back to the main SAP Console by pressing the Return button.

You may refresh the displayed pool information by pressing the Refresh button.

By default, the following SAP Console will be displayed when Pooling is not used.

If a component requests a connection and the pool is exhausted the request will timeout after 30 seconds
and then an exception will be thrown.

In designer you can delete a pool by editing the connection that defines the pool and testing the
connection. You can also delete a connection pool by editing a connection and pressing Finish. In either
case, the pool will be forcefully deleted pool.
26 SAP Connect User’s Guide

Pools created via component execution will have a Pool Size using the pool size set in the Pool Info
dialog.

Creating XML Templates for Your Component
In addition to a connection resource, an SAP component also requires that you have already created XML
templates so that you have sample documents for designing your component. (See Chapter 5, Creating
XML Templates, in the Composer User’s Guide for more information.)

Also, if your component design calls for any other xObject resources such as custom scripts or code table
maps, it is best to create these before creating the SAP Component. For more information, see Creating
Custom Scripts in the Composer User’s Guide.
Getting Started with the SAP Component Editor 27

28 SAP Connect User’s Guide

3 Creating an SAP Component

Before Creating an SAP Component
As with all Composer components, the first step in creating an SAP component is to specify the XML
templates needed. (For more information, see Creating a New XML Template in the Composer User’s
Guide.) Once you’ve specified the XML templates you can create a component using the template’s
sample documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating an SAP component, you must select an SAP connection or you can
create a new one. If you created a connection beforehand, then it is available to all new SAP components
as a selection.

To create a new SAP component:

1 Select File>New>xObject, then open the Component tab and select SAP.

NOTE: Alternatively, under Component in the Composer window category pane you can highlight
SAP, click the right mouse button, then select New.

2 The “Create a New SAP Component” Wizard appears.

3 Enter a Name for the new SAP Component.

4 Optionally, type Description text.
Creating an SAP Component 29

5 Click Next. The XML Input/Output Property Info panel of the New SAP Component Wizard
appears.

6 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.

Select a Template Category if it is different than the default category.

Select a Template Name from the list of XML templates in the selected Template Category.

To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
DOM without Using a Template” in the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Select a Template
Category if it is different than the default category. Then select a Template Name from the list of
XML templates in the selected Template Category.
30 SAP Connect User’s Guide

10 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

11 As above, to add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

12 Click Next. The Connection Info panel of the “Create a New SAP Component” Wizard appears.

13 Select a Connection type from the pull down list. For more information on the SAP Connection,
see creating an SAP Connection Resource.

14 Click Finish. The component is created and the SAP Component Editor appears.
Creating an SAP Component 31

About the SAP Component Editor Window
The SAP Component Editor includes all the functionality of the XML Map Component Editor. It
contains mapping panes for Input and Output XML documents as well as an Action Model pane.

About the Native Environment Pane
The SAP Component Editor’s Native Environment pane (which is initially grey) will display two tabs,
SAP Request and SAP Response, whenever an SAP Function Action is highlighted in the Action Model
pane. The SAP Request and SAP Response tabs appear only if the Use Mapping Model checkbox is
selected (default) on the SAP Function Action’s SAP Request and SAP Response tabs, respectively.
Therefore, the SAP Action may have only a Request Tab, or only a Response Tab, both a Request Tab
and a Response Tab, or not tabs at all.

NEP SAP Request Tab

When the Native Environment Pane first opens, it displays the SAP Request tab. The SAP Request Tab
allows you to map data from an Input XML document (or other available DOM) and use it as input for
an SAP function’s request before the SAP function is execution. For example, you could drag a customer
ID number from an input DOM into an SAP Request CUSTOMID field. Once executed, the SAP
function would return data associated with that customer ID.

Input
Document

Output
Document

Native Environment Pane

Action Model Pane
32 SAP Connect User’s Guide

NEP SAP Response Tab

The NEP’s SAP Response Tab allows you to map data from an SAP function’s response after the SAP
function is executed. The data is mapped from the SAP function’s Response field into an Output XML
document (or other available DOM, e.g., Temp, MyDom, etc.).
Creating an SAP Component 33

34 SAP Connect User’s Guide

4 Performing SAP Actions

About Actions
An action is similar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. (For general information on actions, please see the chapters in the Composer
User’s Guide devoted to Actions. This discussion assumes you are familiar, already, with Composer’s
basic actions.) Within the SAP Component Editor, as with other Composer component editors, a set of
instructions for processing XML documents or communicating with non-XML data sources can be
created at design time and stored (for later deployment) in an Action Model. The Action Model contains
the business logic needed to perform all data mapping, data transformation, data transfer between
databases and XML documents, and data transfer within components and services.

An Action Model is made up of a list of actions. All actions within an Action Model work together. As
an example, one Action Model might contain individual actions that read invoice data from a disk,
retrieve data from an inventory database, map the result to a temporary XML document, make a
conversion, and map the converted data to an output XML document.

The Action Model mentioned above would be composed of several discrete actions. These actions
would:

Open a document and perform an SAP Function action to retrieve data from an SAP database

Map the result to a temporary XML document

Convert a numeric code using a Code Table and map the result to an Output XML document.

Composer SAP Connect allows both inbound and outbound calls to SAP’s BAPIs or other RFC-enabled
Function Modules (RFMs) from Composer and the runtime environments. Composer SAP Connect uses
the Java Connector libraries to call SAP’s BAPI and RFMs.

The SAP Function Action
The SAP Component editor contains all the core functionality of exteNd Composer’s XML Map
Component editor. It has two additional actions relevant only to the SAP Component editor:

SAP Function (discussed in this section)

Component with Connection (discussed further below)

The SAP Function action’s dialog is composed of three tabs: SAP Function, SAP Request and SAP
Response.

SAP Function Tab

The SAP Function Tab validates the function name to ensure that this function exists in the SAP system
to which it is currenly connected. If the function name is valid, it is displayed in the Search for Function
text field and can be selected in the Functions list.
Performing SAP Actions 35

If the entered function name is invalid, the entry, “No function found”, is displayed in the Function list.
If another type of error occurs during validation, such as a communications error, the entry “Error
searching for function” displays in the Functions list. The SAP Request and SAP Response tabs are
enabled when you double click on a valid function name in the Function list.

To Add an SAP Function Action:

1 From the Action Menu, click on New Action>SAP Function or RMB click in the Map Action
pane, New Action>SAP Function.

2 The first tab to appear in the dialog, is the SAP Function tab. When the dialog displays, the SAP
Request and SAP Response tabs are disabled and the Functions list is empty.

3 Click on the Search button to obtain a complete listing of functions (as shown). To filter the search
results, you may specify the search criteria. To do so, enter an SAP function prefix followed by the
wild card character (*) (e.g. RFC*) to search for a type of SAP function. After entering the search
string, click the Search button. The list of functions that match the search criteria are listed. Use the
scroll bar to find the function, and doubleclick on that choice. The wild card character can be used
for any part of a literal string (e.g. *FC, *FC*, RFC*, etc.)

If no functions match the search criteria, then a single entry, “No function(s) found” displays in the
Functions list. If you enter an empty string, then the search uses the wild card character (*), by
default.

If a search is successful, the search string is saved. Saved search strings are used to filter the list of
functions when the user creates subsequent SAP Function actions.

After a successful search, the user may select an SAP function by double clicking on it. Selecting
an SAP function will set the Selected function label and will enable the SAP Request and SAP
Response tabs which can then be viewed and edited.
36 SAP Connect User’s Guide

4 Click on the SAP Request Tab.

By default, the Use NEP for mapping checkbox is selected. You should select the Use NEP for
mapping option if you want to map any data from an Input XML document to SAP Request fields
displayed within the Native Environement Pane. Selecting the Use NEP for mapping option will
enable all other controls on the SAP Request tab.

If you do not want to map data from an Input XML document to SAP Request fields, then deselect
the Use NEP for mapping option by clearing the checkbox. In this case, the Native Environment
Pane will not have an SAP Request tab and you will need to use the published methods available in
the Expression Editor (see Expression Editor section below). Even with the Use NEP for mapping
option selected you may still use the published methods in the Expression Editor.

You must click in the Include Field Attributes checkbox if you want field attributes to be
included. When both the Use NEP for mapping and the Include Field Attributes options are
selected, the SAP Request document displayed within the NEP’s SAP Request tab will include
metadata about each field, structure and table as attributes.

By default the SAP Request Tree in the SAP Function dialog displays mandatory nodes pre-
selected and disabled. However, you may select or deselect any non-mandatory node.

Within the SAP Request Tree a parent node will display as selected with a gray background if
some, but not all, non-mandatory child nodes are selected. A parent node will be displayed as
selected with a normal white background if all non-mandatory child nodes are selected.

You may display a description the any field by placing the mouse over the field name. The
description will display within a tooltip as illustrated.

Default
Selected

Default
Selected
Performing SAP Actions 37

5 Click on the SAP Response Tab.

By default, the Use NEP mapping checkbox is selected. You should select the Use NEP mapping
option if you want to map any data from SAP Response fields within the Native Environement
Pane to an Output XML document. Selecting the Use NEP mapping option will enable all other
controls on the SAP Response tab.

If you do not want map data from the SAP Response fields within the Native Environement Pane to
an Output XML document, then deselect the Use NEP mapping option by clearing the checkbox.
In this case, the Native Environment Pane will not have an SAP Response tab and you will need to
use the published methods available in the Expression Editor (see Expression Editor section
below). Even with the Use NEP mapping option selected you may still use the published methods
in the Expression Editor.

You must click in the Include Field Attributes checkbox if you want field attributes to be
included. When both the Use NEP mapping and the Include Field Attributes options are
selected, the SAP Response document displayed within the NEP’s SAP Response tab will include
metadata about each field, structure and table as attributes.

By default, the SAP Response Tree in the SAP Function dialog displays mandatory nodes
preselected and disabled. However, you may select or deselect any non-mandatory node.

Within the SAP Response Tree a parent node will display as selected with a gray background if
some, but not all, non-mandatory child nodes are selected. A parent node will be displayed as
selected with a normal white background if all non-mandatory child nodes are selected.

You may display a description the any field by placing the mouse over the field name.

Selected
Default

Default
Selected
38 SAP Connect User’s Guide

6 Click the OK button on the SAP Function action dialog to validate the entries and save the action.
If the Use Mapping Model option is selected for them, the SAP Request and SAP Response tabs
will appear in the Native Environment Pane and the new SAP Function action will automatically be
created in the Action Model Pane.

SAP Function Action Structure

The action, as shown in the in the Action model, consists of 4 lines:

1 SAP Function with the selected function name.

2 Before Execute Actions: allows you to map data into the SAP Request mapping model document
or set data directly into an SAP function.

3 Execute SAP Function: sets SAP Request mapping model data into the functions, executes the
function and gets SAP Response mapping model data from the funtion.

4 After Execute Actions: allows you to map data from the SAP Response mapping model document
or get data directly from the SAP function.

Editing an SAP Function Action

You may edit an existing SAP Function Action by performing the following:

To Edit an SAP Function Action:

1 Highlight the root node of the action, click on RMB and select Edit or double-click on the root
node of the action

2 Make your changes to the Request and Response Tabs

3 Click OK to save changes.

NEP SAP Request and Response Tabs

SAP Function
Action

Action Model Pane
Performing SAP Actions 39

SAP Action Model
The SAP Component differs from other components in that the SAP Function action structure within the
Action Model is built for you automatically. This structure is created when you add an SAP Function to
your Action Model. You can create an SAP Component per the instructions in “How to Create an SAP
Component” in Chapter 3 of this Guide. In creating the SAP Component shown in this example, the SAP
Request and SAP Response templates were selected for Input and Output respectively. Once created, the
new SAP Component appears in the SAP Component Editor window.

Before Execute Actions

Before Execute Actions allows you to map data into the SAP Request mapping model document or set
data directly into an SAP function. This can be done in several ways as explained in the following
sections.

Mapping a Portion of an XML Document into SAP Request Tab

To map a portion of an XML document into the SAP Request, start by doing a right-mouse-click inside
the empty area of the Native Environment pane (with the SAP Request tab selected). This brings up a
contextual menu.

Select the Map . . . command. This will bring up the Map dialog. As illustrated below, the the Map
dialog’s Source and Target fields are intialized.

SAP Request
Template

SAP Response
Template
40 SAP Connect User’s Guide

In the Map dialog, Input is shown as the default Source Part and SAPRequest is shown as the default
Target. (You can choose different Source and Target Parts using the pulldown menus.) If you know the
XPath fragment that you want to use as the source, type it in the box provided; otherwise, click on the
blue Expression Editor icon on the right. Clicking the Expression Editor icon brings up the Expression
Editor dialog for the Source.

With the aid of the pick lists in the top portion of this dialog, you can build an XPath fragment and/or an
ECMAScript expression simply by pointing and clicking. In this case, we’ve expanded the tree view of
the Input Part (in the upper left) to show the complete Input tree structure. Doubleclicking an item in the
tree causes that item (i.e., the XPath fragment for that portion of the tree) to appear automatically in the
lower portion of the dialog. Once you click OK, the XPath information appears in the appropriate place
in the Map dialog.

To cause information to be mapped from Input to an XPath location of MATNR_LOW in the message
body, type in the Target portion of the Map dialog:

Click here to
go to the
Expression
Editor.
Performing SAP Actions 41

Once you click OK, the map dialog disappears and you’re able to see the result of your mapping in the
SAP Component Editor main window:

Adding More Map Actions

This procedure can be repeated as many times as necessary to populate the message body with data.
Alternatively, you can use Function actions (in conjunction with ECMAScript DOM methods) to create
XML nodes in the message body programmatically.

You can use the drag-and-drop technique to map data from any portion of any Input Part straight into the
SAP Request Document (subject to the limitations outlined below), or in the opposite direction. Simply
click on an input node, in any visible Part pane, and drag over to the desired spot in the SAP Request
Document, then release the mouse button. The appropriate Map action is added to the Action Model
automatically.
42 SAP Connect User’s Guide

Limitations on Mapping

You can drop nodes onto any branch or field node in the SAP Request tab. However, you cannot drop
nodes onto attributes. If the source value does not validate against the target field node’s type, the
“forbidden drag operation” symbol shown at left, is displayed as the mouse pointer and the message,
“Invalid drop target”, is displayed in the status area. If the source value is too long for the target field
nodes length, the “forbidden drag operation” symbol is displayed and the message, “Invalid drag length
for this drop target” is displayed in the status area.

Execute SAP Function Action

When an SAP Function Action executes the SAP Request DOM, if it exists, it is cleared and the SAP
Response DOM, if it exists, is reloaded. Then the Before Execute Actions list is executed. The Execute
SAP Function action then executes by setting the SAP Request mapping model document mappings into
the function, executing the function, and then setting the SAP Response mapping model document with
the function results.

When the root of an SAP Function action is the current (or highlighted) action in the action model, the
Execute SAP Function button on the main toolbar is enabled. It is disabled at all other times. By clicking
the on SAP Execute Function button, it connects to the the SAP System, executes the actions within the
SAP Function action and then disconnects from the SAP system.

Execute Action Button
Performing SAP Actions 43

If execution is successful a message dialog appears:

After Execute Actions: Adding a Map Action from the Response Tab

After Execute Actions allows you to map data from the SAP Response mapping model document or get
data directly from the SAP function.

Mapping a Portion of an SAP Response into an XML Document

To map a portion of an SAP Response to an XML document, start by doing a right-mouse-click inside the
empty area of the Native Environment pane (with the SAP Response tab selected). This brings up a
contextual menu.

Select the Map... command. This will bring up the Map dialog.
44 SAP Connect User’s Guide

In the Map dialog, SAP Response is shown as the default Source and Output is shown as the default
Target Part. (You can choose different Source and Target Parts using the pulldown menus.) If you know
the XPath fragment that you want to use as the source, type it in the field provided; otherwise, click on
the blue Expression Editor icon on the right. Clicking the Expression Editor icon brings up the
Expression Editor dialog for the Source.

With the aid of the pick lists in the top portion of this dialog, you can build an XPath fragment and/or an
ECMAScript expression simply by pointing and clicking. In this case, we’ve expanded the tree view of
the SAP Response Document (in the upper left) to show the complete tree structure. Doubleclicking and
item in the tree causes that item (i.e. the XPath fragment for that portion of the tree) to appear
automatically in the lower portion of the dialog. When you click OK, the XPath information appears in
the appropriate place in the Map dialog.

Adding More Map Actions

This procedure can be repeated as many times as necessary to populate the Output Part with data.
Alternatively, you can use Function actions (in conjunction with ECMAScript DOM methods) to create
XML nodes in the Output Part programmatically.

You can use the drag-and-drop technique to map data from any portion of the SAP Response Document
straight into the Output Part. Simply click on any node in the SAP Response Document and, while
holding the mouse button, drag the node over to the desired spot in the Output Part, the release the mouse
button. The appropriate Map action is added to the Action Model.
Performing SAP Actions 45

Component with Connection Action
The Component with Connection Action is unique because it allows an SAP component to call another
component allowing that component to share the same connection. The action allows you to break up a
large component into a main SAP component and subcomponents so it is easier to maintain the Action
Model. The ability to have the main component share the connection with the subcomponent greatly
reduces the amount of connection overhead which enhances runtime performance. This is extremely
useful when you want to specify a session connection.

To use the Component with Connection Action

1 Create and record the basic structure of the main component to the point where you are ready to
call a subcomponent. For this example, the subcomponent will be entitled
“BAPI_MATERIAL_GET_ DETAIL.”

2 From the Main menu, or by clicking the RMB, select New Action>Component/w connection.
The following dialog appears.

3 From the Component Type pull down list, select the name of the component type. From the
Component Name pull down list, select the name of the Component.

4 Select the passed ID if you need to change it from the pull down list. Select the returned ID if you
need to change it from the pull down list. Click OK.
46 SAP Connect User’s Guide

5 The following action appears in the map pane.

6 Animate the Main component and step into the Component with Connection action. The
subcomponent will now open. Notice how the screen changed to the component entitled “BAPI
MATERIAL GET DETAIL.”

7 Build the subcomponent action model as you did the component.

NOTE: You will notice in this example a Repeat for Element action built to process multiple rows.

8 Now animate the subcomponent and step into it. The results will now appear for the subcomponent
in the Output DOM and the SAP Response tab.
Performing SAP Actions 47

9 Save the component and subcomponent action models.

SAP-Specific Expression Builder Properties

An SAP Action Model can be built by using the Expression Builder and setting data directly into an SAP
function. Often, it is useful to be able to reference these values in ECMAScript expressions. The
Expression Builder pick list (in the top portion of the Expression Editor window) contains methods
specific to SAP: (See dialog below.)

Simple Field Methods

Object getImportField(String asName) - gets a Simple Import field value by name.

setImportField(String asName, String asType) - sets a Simple Import field value by name
and type. Used as a Target expression in Map actions.

Object getExportField(String asName) - gets a Simple Export field value by name.
48 SAP Connect User’s Guide

Structure Methods

Object getImportStructField(String asStructName, String asName) - gets an Import
Structure field value by structure name and field name.

Node getImportStructAsXML(String asStructName) - gets an Import Structure by name as an
XML Node.

setImportStructField(String asStructName, String asName, String asType) - sets an
Import Structure field value by structure name, field name, and field type. Used as a Target expression
in Map actions.

setImportStructWithXML(String asStructName) - sets an Import Structure by name with an
XML Node.

Object getExportStructField(String asStructName, String asName) - gets an Export
Structure field value by structure name and field name.

Node getExportStructAsXML(String asStructName) - gets an Export Structure by name as an
XML Node.

Table Methods

Object getTableField(String asTableName, String asName) - gets a Table field value by
table name and field name.

Node getTableAsXML(String asTableName) - gets a Table by name as an XML Node.

int getTableRowCount(String asTableName) - gets the number of rows in a named Table as an
integer.

appendTableRow(String asTableName) - appends a row to the end of named Table.

nextTableRow(String asTableName) - moves the cursor to the next row in the named Table.

setTableRow(String asTableName, int aiRow) - moves the cursor to specified row in the named
Table.

setTableField(String asTableName, String asName, String asType) - sets a Table field
value by table name, field name, and field type. Used as a Target expression in Map actions.

setTableWithXML(String asTableName) - sets a Table by name with an XML Node

Function Methods

Node getFunctionAsXML() - returns a Node representing the SAP function. Can be used before or
after execution.

dumpFunctionToLog() - calls getFunctionAsXML(), adds a DATE attribute to the function name
element, and prints with format to the log via the Framework Factory log() method.

String getLastError() - returns the most recent execution error.

String getFunctionName() - returns the function name.

Object getRFCObject() - returns the RFC object. For JCo this is a JCO.Function Object.

setRequestSetAsString(boolean abFlag) - sets whether input to a function prior to execution should be set
as a String or converted to an Object appropriate for the field type and then set. By default this flag is true
in the ECMA wrapper. For example, if true and the field type is DATE then input via the model document
or published setter methods is expected to be in the form "YYYYMMDD". If false and the field type is
DATE and the input is via the model document the String will be used as input to a java Date() object. If
false and the field type is DATE and the input is via a published setter the user can directly pass in a java
Date() Object or the user can pass in a String which will be used as input to a java Date() object.
Performing SAP Actions 49

Field Type Conversions when flag is false

BCD - java BigDecimal

BYTES - byte[] array (currently) no way to pass an array in

CHAR - java String

DATE - java Date (conversion tries YYYYMMDD pattern and

java Date() default string patterns)

FLOAT - java Double

INT - java Integer

INT1 - java Integer

INT2 - java Integer

NUM - java String

XSTRING - byte[] array (currently) no way to pass an array in

TIME - java Date

setResponseGetAsString(boolean abFlag) - sets whether output from a function after execution should be
retrieved as a String or as an Object appropriate for the field type. By default this flag is true in the
ECMA wrapper. For example, if true and the field type is DATE then the field will be retrieved using the
JCO.Field.getString() method for the model document and for published getters. If false and the field
type is DATE and the field is being retrieved via the model document then the field will be retrieved using
the JCO.Field.getObject() method and then converted to a String using the Objects toString() method. If
false and the field type is DATE and the field is being retrieved via a published getter method then the
field will be retrieved using the JCO.Field.getObject() method.

Field Type Conversions when flag is false

BCD - java String

BYTES - byte[] array (if getting for response model document getString() is used)

CHAR - java String

DATE - java Date

FLOAT - java Double

INT - java Integer

INT1 - java Integer

INT2 - java Integer

NUM - java String

XSTRING - byte[] array (if getting for response model document getString() is used)

TIME - java Date
50 SAP Connect User’s Guide

Processing Table Rows

Getting and setting SAP tables requires different logic because Tables may have multiple rows.

Getting Table Rows via the SAP Response Model Document

Rows in the SAP Response document are identified by the <item> element. To process multiple rows all
a user needs to do is create a Repeat for Element action in the After Execute Actions list of the SAP
Function action. Figure 8 shows an example.

Getting Table Rows via Published Getter Methods

By using SAP.getTableRowCount(), SAP.getTableField(), and SAP.nextTableRow() together with a
Repeat While action a user can walk the items in a Table.

Setting Table Rows via the SAP Request Model Document

A SAP function may allow a user to enter multiple records via a table. To insert multiple rows via the
SAP Request model document the user may create a Repeat for Element action in the Before Execute
Actions list.
Performing SAP Actions 51

Setting Table Rows via Published Setter Methods

By using SAP.appendTableRow() and SAP.setTableField() together with a Repeat for Element action a
user can insert multiple rows into a table.

Using Other Actions in the SAP Component Editor
In addition to the Add SAP Function action, you have all the standard Basic and Advanced Composer
actions at your disposal as well. The complete listing of Basic Composer Actions can be found in
Chapter 7 of the Composer User’s Guide. Chapter 8 contains a listing of the more Advanced Actions
available to you.

Handling Errors and Messages
Error handling has been enhanced. If a connection error occurs at any time during design time Composer
releases the connection to allow you to fix the problem and recover without exiting the component.

The SAP Function dialog will now display one of three error messages in the Functions list:

No function(s) found - RFC_FUNCTION_SEARCH failed to find RFCs matching the criteria. Can
occur when pressing Search.

Error searching for functions - Communications error or other system error. Can occur when pressing
Search.

Error getting metadata for function - Communications error or other system error. Can occur when
selecting a function.
52 SAP Connect User’s Guide

5 SAP Service

The SAP Service is a type of Composer service that can be activated by an incoming RFC call to an SAP
server. In essence, the SAP Service becomes a BAPI destination, and the action logic in the service
becomes the BAPI logic of that destination. The Composer SAP Service may call other BAPIs (via SAP
Components) or it may not. The service might, in the course of executing, call JDBC or 3270
components, execute LDAP queries, participate in a CICS transaction, or use other kinds of connectivity
involving other Composer Connect products. Then again, it might simply take data in, transform it in
some way, and send XML out.

In this chapter, you’ll learn what the capabilities of the SAP Service are, how to create such a service, and
how to use it. Before proceeding, you should already have familiarized yourself with the sections of this
guide that deal with creating SAP connections (see Chapter 2, “Getting Started with the SAP Component
Editor”) and using SAP actions (see Chapter 4, “Performing SAP Actions”). You should also be familiar
with Composer action-model programming concepts (see the separate Composer User’s Guide).

About Services
In Composer’s navigation tree (or explorer tree), there is a category called Service. Under this category,
if you have Composer Enterprise Edition, you will see three types of service listed: JMS Service, Web
Service, and SAP Service. (The latter is visible only if you have the SAP Connect and all relevant JCO
libraries installed as described in Chapter 2, “Getting Started with the SAP Component Editor”.) You can
create service xObjects (instances of deployable services, created in Composer) falling under any one of
these service types.

The services you create in Composer usually execute components. Any of the types of services listed
above can make calls to any number of components of any type. For example, an SAP Service can
wrapper calls to XML Map, JDBC, and SAP Components. What distinguishes a service from a
component is that the service xObject is triggerable. When your project is deployed on the server (in EAR
form, usually), the components in it can be invoked only by Composer services, whereas the services
within a project can be invoked by various kinds of trigger objects (the most common being HTTP
servlets). Composer’s three main kinds of service differ in how they are invoked. The JMS Service is
triggered by arrival of messages on a JMS message queue or topic. The Web Service can be triggered by
any number of mechanisms: arrival of an HTTP request, arrival of e-mail at a mail server, direct
invocation by a Java object, etc.

The SAP Service is an event listener that registers with an SAP gateway server. When an RFC (remote
function call) is executed on an SAP gateway server, the results are forwarded to the listener (in this case,
a Composer SAP Service). The listener can then call other remote functions on the gateway server using
the same connection that was established to register the listener.
SAP Service 53

When to Use an SAP Service

The choice of whether to wrapper your SAP Components with an SAP Service as opposed to, say, a Web
Service should be based on the kind of message-exchange pattern in which your service will participate.
Will your service respond to RFCs? Or will it initiate function calls on its own? Consider the four
canonical Web Service message-exchange types:

One-way. The endpoint receives a message.

Request-response. The endpoint receives a message, and sends a correlated message.

Solicit-response. The endpoint sends a message, and receives a correlated message.

Notification. The endpoint sends a message.

If messages are being sent via RFC, the first two types of exchange patterns (one-way and request-
response) can be implemented with an SAP Service. The second two kinds of exchanges, in which the
endpoint (your application) initiates the sending of a message (by calling an RFC), can be handled with
an SAP Component packaged inside any kind of service.

The rule of thumb is: If your application will be consumed by other SAP applications or functions, using
RFCs transmitted via SAP gateway server, your app is going to be deployed as an SAP Service. If your
application will be invoked by non-SAP-gateway processes (i.e., you don’t need to register with an SAP
gateway server), then you’ll deploy your SAP-enabled application as a Web Service or JMS Service.

SAP Service Action Model

The SAP Service is like any other kind of executable xObject (XML Map Component, JDBC
Component, etc.) in that it has an action model that can utilize any of Composer’s core action types: Log,
Map, Decision, etc. In theory, you could perform all of your business logic inside the SAP Service’s
action model (assuming no other kinds of connectivity are needed, such as JDBC or LDAP). As a best-
practices issue, however, you should put all of your business logic in individual components, and use the
service to call the components. The kinds of logic you should employ at the service level are things like
fault-trapping and logging.

When you first create an SAP Service, you will notice that an action (called an SAP Service Switch) is
present in the action model. This action is present once and only once in any given SAP Service and never
occurs in an SAP Component. Therefore, it is not available on any menu commands. Composer always
creates the action for you when you create an SAP Service. The purpose of this action is to allow you to
associate RFC Function Names with action logic on a case basis. This action is discussed again in a later
section of this chapter.

Creating an SAP Service
The following steps tell how to create an SAP Service in Composer.

To create an SAP Service:

1 Create an SAP Service Connection Resource (if you have not already done so) to define the
connection between your service and the SAP host or gateway server.

NOTE: The SAP Service Connection Resource is different from an ordinary SAP Connection
Resource. Please refer to the discussion at “To create an SAP Service Connection resource:” in
“Getting Started with the SAP Component Editor” for more information.
54 SAP Connect User’s Guide

2 In Composer’s explorer tree, right-click on the SAP Service category and choose New.
Alternatively, use File > New > xObject and select SAP Service as shown in the illustration below.

3 In the dialog that appears, enter a Name for your service in the text field provided. See below.

4 Click Next. A new wizard panel opens.

5 In this dialog, specify the XML Template sample documents you wish to use in the design of your
service’s inputs and outputs.
SAP Service 55

6 Click Next. A new wizard panel appears.

7 In this dialog, specify any Temp documents you would like to use in your service. (You can add
these later, if need be. If you’re not sure what to do, click Next for now.)

8 Click Next. A new wizard panel appears.

9 In this dialog, verify (using the Connection pulldown menu control at the top of the list of controls)
that you have selected the desired SAP Service Connection that will be used by this SAP Service.
Optionally click the Test button to verify that a live connection exists.

10 Click Finish. The dialog goes away and a new action model appears, with one SAP Service Switch
action in it.

11 Save your work.

Using the SAP Service Switch Action
As mentioned earlier, whenever you create a new SAP Service component, Composer creates a new
action model containing a single action called SAP Service Switch. This action allows you to specify
Function names that you would like to designate as the RFC targets that your action model can handle. In
this respect, the SAP Service Switch is like an ordinary Switch action. A request comes in to your service,
and depending on which function-name the requestor is looking for, the SAP Service Switch action
executes at the appropriate “case” statement.
56 SAP Connect User’s Guide

The following example shows how this action works.

To configure and use the SAP Service Switch:

1 In an SAP Service’s action model, find and doubleclick the SAP Service Switch action line. When
you do this, a dialog appears:

2 To search for function names that are registered on the server, enter a search string (with optional
wildcards) in the Search for Function text area. Then use the Search button to initiate a search.
Results will be displayed in the Found Functions list.

In the above illustration, the search term was “BAPI*” (which means “bring back all names of all
functions that begin with BAPI”). Many function names were found that meet this description.
Probably only a few (perhaps just one) will be handled by your service. This step verifies that the
names you want to handle are in fact registered on the server.

3 Use the Found Functions picklist on the left to designate function names that will be handled by
your service. Transfer selected names under Found Functions to the list on the right by using the
plus-sign icon. Use the minus-sign icon to remove names from the list on the right. (Use up and
down arrows to reorder the chosen names.) Names on the right will become the basis of “case”
blocks in your SAP Service Switch action.

NOTE: You may optionally enter (by hand), in the right-hand list, the name(s) of functions you
know will be handled by your service. You can also use the flyout menu on the right edge of the
Mapping list to bring up buttons that will let you determine the mapped value programmatically, using
ECMAScript, or by LDAP lookup.
SAP Service 57

4 Highlight (select) one of the items in the list on the right, then click the Mapping button. A dialog
will appear.

5 This dialog has two tabs: SAP Service Request and SAP Service Response. Their usage is
identical to that of the SAP Request and SAP Response tabs in the dialog for the SAP Function
Action, as described in the Actions chapter, under the section beginning under “Click on the SAP
Request Tab.” Refer to that discussion for a detailed explanation.

6 Exit out of all dialogs. In the action model, you will see new lines that start with “FUNCTION:”
and the name(s) of the function(s) you specified in the previous pickers. You can now create
individual actions as need be under each function block, to handle calls to that function name.

Notice that when you single-click on any “FUNCTION:” line (any case in the switch), the native
environment pane (NEP) updates to show the structure of SAP Service Request and SAP Service
Response documents (each with its own tab). Again, the usage of these tabs is similar to that of the SAP
Request and SAP Response tabs in the NEP when working with SAP Actions. See the discussion at
“Mapping a Portion of an XML Document into SAP Request Tab” for details.

Deploying the SAP Service Component
To deploy an SAP Service in Novell exteNd Composer Enterprise Edition,using the Composer
deployment UI, simply create a Deployment xObject as described in the Deployment chapter of the
Composer User’s Guide, and drag any SAP service instance from the instance pane under the explorer
tree, to the SAP Service category node under the Deployment Object explorer tree.
58 SAP Connect User’s Guide

Use File > Deploy Project (Cntl-F5) to begin the deployment process.

Testing an SAP Service
Since the SAP Service merely listens for incoming RFC requests targeted at named destinations, the only
true way to test an SAP Service in “host mode” is to establish a live connection to an SAP gateway server
and then have a remote entity make an RFC request to your service. As it turns out, this can be done at
design time (and you can then step through your service in debug mode), if you can establish a live
connection and you have a process of some kind (perhaps an SAP component built for test purposes) that
can “call” your service with the appropriate function name. Although doing this is not hard, it does
require the availability of a live SAP system for testing, the use of SAP tools for creating and configuring
RFC destinations, and experience with BAPIs. These techniques are beyond the scope of this guide, but
you can obtain additional help and guidance by consulting the Novell exteNd web site and/or by
contacting your Novell representative directly.

NOTE: If you try to enter Animation mode in an SAP Service action model, all animation toolbar buttons
will become disabled except for the Stop button. Then nothing happens. Here’s what’s going on: Hitting the
Start Animation button actually does start the execution of your service. But because the service requires
an incoming RFC request to act on, it will appear to “hang” on the initial action (the SAP Service Switch
action) while it “listens” on the connection. If a request never comes in, the service “listens” forever (or until
you hit the Stop Animation button). If a request does come in, animation will continue and you can step into
or step over individual actions in debug mode using the toolbar buttons.
SAP Service 59

60 SAP Connect User’s Guide

A Document Management

About Document Management
Each SAP Function action has two document names and aliases associated with it: the SAP Request
Document and the SAP Response Document. Regardless of whether Use Mapping Model is selected,
these aliases are saved with the action. The SAP Component keeps a table of these names so that new
unique names can be generated and prevent you from accidentally using a name already in use.

If you delete an SAP Function action, the alias name associated with that action is not removed from the
table. To reuse these names, you must either close and reopen the component (thus purging the names
from the cache), or execute the Reload XML Documents command from the Component menu.

Documents are loaded on an as-needed basis. When you click on or in an SAP Function action, the Native
Environment Pane will load the needed documents by creating the XML documents with the alias names
based on the model definitions stored within the action as well as storing them in the document manager.

When a user executes the Reload XML Documents, the following tasks are performed:

Clear the Alias Table

Clear the Undo/Redo stack

Walk through the action tree and for each SAP Function action, add a Request and Response entry
in the Alias table

Issue a request to the document manager to remove documents from those names.

You can share Alias names among multiple SAP Function actions by copying and pasting the SAP
Function actions. This can create problems keeping the Native Environment Pane in synch with the
current SAP Function action. To handle this problem, each SAP Function action has a unique idenitfier
that is stored along with the alias names in the Alias table. When you click on an SAP Function action,
the Native Environment Pane checks for the entry for each alias to see if it is associated with the current
action. If it is, a request is made to the document manager. If it is not, a request is made to the document
manager with the reload flag set to true and then update the entry in the Alias table with the SAP Function
action’s identifier.
Document Management 61

62 SAP Connect User’s Guide

B SAP Glossary

ALE Application Link Enabling

Supports the creation and operation of distributed applications and application integration achieved
via synchronous and asynchronous communication. Provides business-controlled message
exchange with consistent data on loosely linked SAP applications.

BAPI Business Application Programming Interface

BOR Business Object Repository

Control Record Contains information about the content, structure, sender, receiver, and status of the
IDoc.

Data Record Consists of administrative part (control field) and a data part (segments).

IDoc Intermediate Document. IDocs are structured data containers in which data can be stored
hierarchically. This data format is generated by SAP’s R/3 and mySAP.com products.

Interface Repository The place where all the SAP interfaces relevant to inter-enterprise
communication are published.

JCo Java Connector

Native Environment Pane (NEP) A pane in the SAP Component Editor that displays the SAP
Request fields and SAP Response fields to which and from which XML document data may be
mapped.

RPC Remote Function Call

SAP Function Action A special action for the SAP Component Editor that enables you to search for
and select SAP functions and then select SAP Request and SAP Response fields that will be
displayed in the Native Environment Pane (NEP).

Scalar Data The data is represented directly as content of the parameter element. It is represented in
text form

Status Records Describes the previous processing steps of the IDoc.

Structured Data (BA or records) This data is represented by an XML element that is entered in
every field of the structure as a sub element of the parameter element.

Table Data (internal SAP tables or arrays) The data is represented by an XML element entered in
every row of the table s a sub element of the parameter element.

XML Business Documents XML documents which are instanced from the XML schemas defined in
the Repository
SAP Glossary 63

XML Schemas Defines how the XML document represents the call of the interface or the result of the
call, are stored for each interface in the Interface Repository.
64 SAP Connect User’s Guide

Index
Numerics
3270 17
5250 17

A
action 35
Action Model 35
Actions 35
actions 52
After Execute Actions - Add a Map Action from the Response Tab

44
AIX 17
ALE 63
Alias names 61

B
BAPI 10, 53, 63
Before Execute Actions 40
BOR 10
building applications 13
business object type 10

C
CICS RPC 17
code table map 27
component editor 32
Component with Connection Action 46
connection pool 22
Connection Pool Management 23
connection pool management 22
connection pooling 19, 21
Connection Resource 17
connection resource 12, 17
Constant and Expression Driven Connections 17
Constant Driven Connection 17
Create

SAP Connection Resource 17
Creating an SAP Component 29
Creating an SAP Connection Resource 17
custom script 27

D
data manipulation 12
default 19, 22
Document 61
Document Management 61

E
ECMAScript 17, 41
EDI 17
Editing a SAP Function Action 39
Execute SAP Action 43
Expression Driven Connection 17
Expression Editor 41
exteNd Composer Services 12
exteNd Connectors 9

F
fieldyype conversions 50
forbidden drag operation 43
Found Functions 57
function methods 49

G
gateway 53

H
Handling Errors and Messages 52
HP-UX 17
HTML 17
hub and spoke 9

I
import 48
In 52
inactivity lifetime 23
include field attributes 37
65

J
Java Connector 10, 11
JCo 10, 11, 15, 49
JDBC 17
JMS 17

K
keep alive 23

L
Limitations on Mapping 43

M
Map Actions 42
Map command 40
Mapping a Portion of an XML Document into SAP Request Tab 40

N
Native Environment Pane 32, 61
new xObject 29

P
pool info 23
pool name 25
processing table rows 51

Q
queries 18
Queues 9

R
Reload XML Documents 61
Repeat for Element 47
request 11
response 11
RFC 53
RFC-enabled Function Modules 11
RFM 11

S
SAP Action Model 40
SAP component 29

about 12
SAP component editor

building applications 13
SAP Connect 10
SAP Function Action 35

SAP Function Action Structure 39
SAP Function Tab 35
SAP gateway server 53
SAP R/3 11
SAP Request 35
SAP Request Tab 32
SAP Response 35
SAP Response Tab 33
SAP Service 53
SAP Service Request 58
SAP Service Response 58
SAP Service Switch Action 56
SAP-Specific Expression Builder Properties 48
Service Switch 56
session 19, 22
session connection management 22
setting table rows 51
simple field methods 48
Solaris 16
structure methods 49
switch action 56

T
table methods 49
table rows 51
Telnet 17
Temp XML Document 30
template 30
Templates 27
test 19, 22
timeout 26
To use the Component with Connect Action 46

U
use mapping model 37
user ID 12

W
Windows NT 16

X
XML template 27
XPath 41
66

	About This Book
	Conventions Used in the Guide

	1 Welcome to exteNd Composer and SAP Connect
	Before You Begin
	About exteNd Composer Connectors
	What is SAP Connect?
	About exteNd’s SAP Component
	What Applications Can You Build Using the SAP Component Editor?

	2 Getting Started with the SAP Component Editor
	Installing SAP Java Connector Libraries (JCo)
	Error Messages
	License Status
	exteNd Composer SAP Connect (Design Time)
	exteNd Composer SAP Connect Server on Windows
	exteNd Composer SAP Connect Server on Solaris
	exteNd Composer SAP Connect Server on AIX
	exteNd Composer SAP Connect Server on HP-UX

	Creating an SAP Connection Resource
	About Constant and Expression Driven Connection Parameters

	SAP Connections
	SAP Service Connection

	About SAP and Connection Pools
	Session Connection Management
	Connection Pool Management

	Managing Pools
	Using the exteNd Composer Console

	Creating XML Templates for Your Component

	3 Creating an SAP Component
	Before Creating an SAP Component
	About the SAP Component Editor Window
	About the Native Environment Pane

	4 Performing SAP Actions
	About Actions
	The SAP Function Action
	SAP Function Tab
	SAP Function Action Structure
	Editing an SAP Function Action

	SAP Action Model
	Before Execute Actions
	Adding More Map Actions
	Execute SAP Function Action
	After Execute Actions: Adding a Map Action from the Response Tab
	Adding More Map Actions

	Component with Connection Action
	SAP-Specific Expression Builder Properties
	Processing Table Rows

	Using Other Actions in the SAP Component Editor
	Handling Errors and Messages

	5 SAP Service
	About Services
	When to Use an SAP Service
	SAP Service Action Model

	Creating an SAP Service
	Using the SAP Service Switch Action
	Deploying the SAP Service Component
	Testing an SAP Service

	A Document Management
	About Document Management

	B SAP Glossary
	Index

