Novell
exteNd
Composer

5.2 ®
‘ UTS CONNECT USER’S GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd Composer UTS Connect User’s Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer
Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTak, Ultra, Ultracomputing, Ultraserver, Where The Network |s Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Verson1l.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

wW3C
W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Titleto copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 7
1 Welcome to exteNd Composer and UTS CONNECTottt et e e e e 9
Before YOU BegiN.o e 9
About exteNd ComPOSEr CONMECESt ittt e e e e e e e e e e 9
What is the UTS CONNEC?o e e e e e e e e e e e 11
About exteNd Composer's UTS COMPONENtttt e e e e e e e e e e e 11
What Applications Can You Build Using the UTS Connect?ot 11

2 Getting Started with the UTS Component Editor e e e e 13
Steps Commonly Used to Create a UTS ComMPONENtottt et e e e e e e e 13
Creating XML Templates for Your CoOmpPOneNnt.ttt e e e e e e e e 13
Creating a UTS CoNNECtioN RESOUICE ot i it et e e e e e e e e e e e e e e e 13
CONNECLION RESOUICES o it ittt e 14
Constant and Expression Driven CONNECLIONSottt e e e 15

3 Creating @aUTS COMPONENtttt ittt e e e e e e e 17
Creating @ UTS ComMPONENtottt e e e e e e e 17
About the UTS Component Editor WINAOW oo e e e e e 19
About the UTS Native Environment Pane e e e 20
UTS Keyboard SUPPOrt e 20
AbOUL the SCreen OB eCt o e e 21
VNt LIS . . . e 21

HOW L WOTKS .« .o 21
UTS-Specific TooIbar BULIONS oo e e e e e e e e e e 22
UTS-Specific Menu Bar 1emso e e e e 23
UTS-Specific ContexXt-Menu [temMS e e e e e 24
Native Environment Pane Context MENUottt e e e 24

ACtion Pane CoNtEXE MEBNUttt e e e e e e e e e 24

4 Performing Basic UTS ACHONS.ttt e e e e e 27
ADOUL ACHIONS. . . .ttt e 27
AboUt UTS-SPecific ACHIONS. oo e e e e e e 27

The Set SCreen TeXt ACHONottt e e e e e e e e e e 28

The Send Key ACtiON e e 29

The Check SCreen ACHION e e e e 29

Using Actions in Record MOde e 31
UTS-Specific Expression Builder EXIENSIONSt e e e 31
OGN . ot 32

Screen Methods o 32
Multi-row Screen Selections inthe UTS CONNECLot e e 36
Selecting ContinUOUS Datao e e e 36
Selecting Rectangular REQIONS.o 36

5 UTS Components in ACHIONt e e e e 39
The Sample TransSaCtion. e e 39
ReCOrding @ UT S SESSI0N. . . ottt e e e e e e e 39
Editing a Previously Recorded Action Model e 44

Editing or Adding to an EXiSting ACHON e 45
Deleting @an ACtioNo 48
Looping Over Multiple Rows in Search of Data e 48
Testing your UTS COMPONENEottt et e e e e e e e e e e e e e e e e e e 49
Using the ANimation TOO0IS e e e e e 51
Data Sets that SPan SCrEENSt e e e 52
MUIEIPIE SCIBENS. . . . e e e 52
Dealing with Redundant Data e e e e e 52
Tips for Building Reliable UTS COMPONENES. e e e e e 54
Using Other Actions in the UTS Component Editor e e e 54
Handling Errors and MeSSages. . . . o . v vttt ettt e et e e e e e e 54
FiInding @ Bad” ACHON e e e 55
Performance CONSIAEratiOnNsttt e e e e 56

6 Logon Components, Connections, and Connection POOIS e 57

About UTS Terminal Session Performance e 57
When Will I Need Logon CompPOneNntS? oottt e e e e e e e e e e 57
Connection POOI ArChItECIUIEo e e e e e e e 58
The Logon Connection’s ROIE iN POOINGot e e e e e e e e e e 60
How Many PooIs Do | Need? e 60
Pieces Required for POOIING. e 61
How Do | Implement POOING? e e 61
The UTS Logon ComMPONENt. . . o oot ettt ettt e e e e e e e e e e e e e e e e e e 61
Logon, Keep Alive, and Logoff ACtIONS e 62
LOGON ACHONS . v ettt e 62
Keep AlIVE ACHIONS o 63
LOgoff ACHIONS . . . 65
Logon Component Life CyCle.o 65
About the UTS Logon CONNECHIONttt e e e e e e e e e e e 66
Connection Pooling with @ Single Sign-On. e e 67
Creating @ Connection POl e e 67
OV IV B .« . o ettt e e 67
Creating @a BasiC UTS CONNECHIONot e e e e e e e e e e e e s 68
Creating @ Logon COMPONENT.ottt et e e e e e e e e e e e e e e e e e e e 68
Creating a Logon Connection using a Pool CoNNECtioNt it e e e e e 70
Creating a Logon Connection using a Session CONNECHIONttt e e e e 74
Creating a UTS Component That Uses Pooled CoNNeCHioNS.ttt e e e e 76
Managing PooIS 77
Using the exteNd Composer CoNSO0Ie e e 77
Connection Pool Management and Deployed ServiCes e 79
Connection Discard BENAVIOT. 80
Screen SYNChIONIZatioN e 80

A GlOSSaIY .« ottt 81

B UTS Display AttriDULES e e e 83

€ RESEIVEA WOIUS . . o oottt et et e e 85

6

UTS Connect User’s Guide

About This Book

Purpose

The guide describes how to use exteNd Composer UTS Connect, referred to as the UTS Component
Editor. The UTS Component Editor is a separately-installed component editor in exteNd Composer.

Audience

The audience for the guide is devel opers and system integrators using exteNd Composer to create Web
services and components which integrate UTS applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s devel opment
environment and deployment tools. You must also have an understanding of the UTS environment and
building or using applications utilizing UTS. Familiarity with other mainframe terminal emulators, such
asUTS, 3270, 5250 or V T-seriesterminals (e.g. VT100) would a so be helpful as you read through this
guide.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell Documentation Web
Site (http://lwww.novell.com/documentation-index/index.j sp).

Organization
The guideis organized asfollows:

Chapter 1, Welcome to exteNd Composer and UTS Connect, gives adefinition and overview of the UTS
Connect and Component Editor and the types of applications you may build using them.

Chapter 2, Getting Sarted with the UTS Component Editor, describes the necessary preparations for
creating a UTS component.

Chapter 3, Creating a UTS Component, describes the different parts of the component editor.

Chapter 4, Performing UTS Actions, describes how to use the basic UTS actions, aswell as the unique
features of the UTS Connect.

Chapter 5, UTS Components in Action, demonstrates using UTS components and actions using asample
application in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes how to enhance
performance through use of shared connections.

Appendix A, isaglossary.

Appendix B, UTSDisplay Attributes, and their display significance along with adiscussion of how to use
thegetattribute ().

Appendix C, Reserved Words, lists those words used only for UTS Connect.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8

Conventions Used in the Guide
The guide uses the following typographical conventions.
Bold typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Diaogbox items

Sans-serif bold typefaceis used for:
« Uniform Resource | dentifiers

+ Filenames
+ Directories and partial pathnames

Italic typeface indicates:

+ Variable information that you supply
+ Technical terms used for the first time
+ Title of other Novell publications

Monospaced typeface indicates:

+ Method names

+ Code examples

+ System input

+ Operating system objects

UTS Connect User’s Guide

Welcome to exteNd Composer and UTS
Connect

Before You Begin

Welcometo the UTS Connect Guide. This Guide is acompanion to the exteNd Composer User's Guide,
which details how to use all the features of exteNd Composer, except for the Connect Component
Editors. If you haven't looked at the Composer User's Guideyet, pleasefamiliarizeyourself withit before
using this Guide.

exteNd Composer provides separate Component Editors for each Connect. The special features of each
component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the XML Map Component Editor, then
this Guide should get you started with the UTS Component Editor.

Before you can begin working with the UTS Connect you must haveinstalled it into your existing exteNd
Composer. Likewise, before you can run any Services built with this Connect in the exteNd Composer
Enterprise Server environment, you must have aready installed the server-side software for this Connect
into Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the UTS environment and
the particular applications that you want to XML-enable.

About exteNd Composer Connects

exteNd Composer is built upon asimple hub and spoke architecture (Fig.1-1). The hub isarobust XML
transformation engine that accepts requests via XML documents, performs transformation processes on
those documents and interfaces with XML -enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modulesthat "XML-enable" sources of datathat are not
XML aware, bringing their datainto the hub for processing as XML. These data sources can be anything
from legacy COBOL /applicationsto Message Queuesto HTML pages.

Welcome to exteNd Composer and UTS Connect 9

Mainframes

/g

t

RPC

= |\

% | CICS RPC I
————— Compogg, |

XML

1 Databases ‘fT’//TJr
Enterprise www

Meseaging L

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each one employsto XML-
enable an information source. The integration strategies are areflection of the major divisions used in
modern systems designs for Internet-based computing architectures. Depending on your B2B needs and
the architecture of your legacy applications, exteNd Composer can integrate your business systems at the
User Interface, Program Logic, or Datalevels. (See below.)

User
Interface

10 UTS Connect User’s Guide

What is the UTS Connect?

The UTS Connect XML -enables Unisyshost system datausing the User Interface integration strategy by
hooking into the terminal data stream.

UTS, which standsfor Universal (or Unisys) Terminal System, isused to interact with the popular Unisys
mainframe model s, including the ClearPath X, 1100 and 2200. Before personal computers became
widely available in the mid-1980s, companiesrelied heavily on large mainframe systems like these to
store and access vital information.

Using the UTS Connect, you can make legacy applications and their business logic available to the
internet, extranet, or intranet as Web Services. The UTS Connect Component Editor allows you to build
Web Services by simply navigating through an application as if you were at aterminal session. You will
use XML documentsto driveinquiries and updates into the screens rather than keying, use the messages
returned from application screensto make the sasme decisions asif you were at aterminal, and move data
and responsesinto XML documentsthat can be returned to the requestor or continue to be processed. The
UTS screens appear in the Native Environment Pane of the UTS Component Editor.

About exteNd Composer's UTS Component

Much like the XML Map component, the UTS Component is designed to map, transform, and transfer
data between two different XML templates (i.e., request and response XML documents). However, it is
specialized to make a connection to aUnisys UTS host application, process the data using elementsfrom
ascreen, and then map the resultsto an output DOM. You can then act upon the output DOM in any way
that makes sense for your integration application. In essence, you're able to capture data from, or push
datato, a host system without ever having to alter the host system itself.

A UTS Component can perform simple data mani pulations, such as mapping and transferring data from
an XML document into a host program, or perform "screen scraping” of a UTS transaction, putting the
harvested datainto an XML document. A UTS Component has all the functionality of the XML Map
Component and can process X SL, send mail, and post and receive XML documentsusing the HTTP
protocol.

What Applications Can You Build Using the UTS Connect?

exteNd Composer, and consequently the UTS Connect, can be applied to the the following types of
applications:

1 Businessto Business Web Service interactions such as supply chain applications.
2 Consumer to Business interactions such as self-service applications from Web Browsers.

3 Enterprise Application Integrations where information from heterogeneous systemsis combined or
chained together.

Fundamentally, the UTS Component Editor allows you to extend any XML integration you are building
to include any of your business applications that support UTS-based terminal interactions (See the
exteNd Composer User's Guide for more information.)

For example, you may have an application that retrieves a product's description, picture, price, and
inventory from regularly updated databases and displaysit in a Web browser. By using the UTS
Component Editor, you can now get the current product information from the operational systemsand the
static information (e.g., a picture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current information to both
your internal and external users.

Welcome to exteNd Composer and UTS Connect 11

12 UTS Connect User’s Guide

Getting Started with the UTS Component Editor

Steps Commonly Used to Create a UTS Component

While there are many waysto go about creating UTS Components, the most commonly used stepsin
creating a simple component are as follows:

+ Create XML Template(s) for the program.

Create aUTS Connection Resource.

Create aUTS Component.

+ Enter Record mode and navigate through the program using terminal emulation available viathe
component editor’s Native Environment Pane.

+ Drag and drop input-document data into the screen as needed.
+ Drag and drop screen results into the output document.
+ Stop recording.

*
*

This chapter will cover thefirst two stepsin this process.

Creating XML Templates for Your Component

Although it is not strictly necessary to do so, your UTS Component may require you to create XML
templates so that you have sample documents for designing your component. (For more information, see
Chapter 5, “Creating XML Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documentswill be designed to contain datathat aterminal operator might type
into the program interactively. Likewise, the output documents are designed to receive data returned to
the screen as aresult of the operator'sinput. For example, in atypical business scenario, aterminal
operator may receive a phone request from a customer interested in the price or availability of an item.
The operator would typically query the host system via his or her UTS terminal session by entering
information (such asapart number) into aterminal when prompted. A short time later, the host responds
by returning data to the terminal screen, and the operator relays this information to the customer. This
session could be carried out by an exteNd Composer Web Service that uses a UTS Component. The
reguested part number might be represented as a data el ement in an XML input document. The looked-
up datareturned from the host would appear in the component’s output document. That datamight inturn
be output to aweb page, or sent to another business process as XML, etc.

NOTE: Your component design may call for other xObject resources, such as custom scripts or Code
Table maps. If so, it is also best to create these objects before creating the UTS Component. For more
information, see the exteNd Composer User's Guide.

Creating a UTS Connection Resource

Once you have the XML templates in place, your next step will be to create a Connection Resource to
access the host program. If you try to create a UTS Component in the absence of any available
Connection Resources, adialog will appear, asking if you wish to create a Connection Resource. By
answering Yesto this dialog, you will be taken to the appropriate wizard.

Getting Started with the UTS Component Editor 13

Connection Resources

14

When you create a Connection Resource for the UTS Component, you will have what appear to be three
choices: astraight Connection, alL.ogon Connection and a MultiBridge Connection. Generally speaking,
you will usethe straight UTS Connection to connect to your host environment. The Logon Connectionis
used for connection pooling, which will be explained in greater detail in Chapter 6 of this Guide. The
MultiBridge Connection is a gateway server version that minimizes the number of connections going
back to the host and also contains added security. A MultiBridge connection would need to be specially
enabled with the help of Novell and athird party business partner. If you think that your application needs
to use a MultiBridge connection, please contact exteNd Technical Support.

After setting up your UTS Connection Resource, it will be available for use by any number of UTS
Components that might require a host connection.

> To create a UTS Connection Resource:

1 From the Composer File menu, select New> xObject, then open the Resour ce tab and select
Connection.

NOTE: Alternatively, under Resource in the Composer window category pane you can highlight
Connection, click the right mouse button, then select New.

The Create a New Connection Resour ce Wizard appears.

Creadbe aNew Connection Resoarce 45 5[

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
you wish to cammunicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in chaice lists when you are prompted far objects in Composer.
The name may not contain the characters: Vi 7" == | Names are case insensitive.

hame:

UTSStandard]

Description:

Furpose:
Input:
Output:
Remarks

][Next][Cancel

2 TypeaName for the connection object.
3 Optionally, type Description text.
4 Click Next. The second panel of the wizard appears.

x

Header Infa Connection Info |

Connection Type IUTS Connection LI Test
Host or IP Address |www.utssys.com " Detaut
uTS Port |23

Host Connection 1D IOD1 101

Session Name IAppDne

Host App Name Iappone

CEUID |mycsuid

Screen wait (seconds) IGD

Screen Rows |24

Screen Columns ISD

User I [MYUSERID

Pazsword I""""""’*

Help oK Cancel

UTS Connect User’s Guide

5 Select the UTS Connection type from the pull-down menu. The dialog changes appearance to
show just the fields necessary for creating the UTS connection.

6 IntheHost or IP Addressfield, enter the physical (1P) address or hostname alias for the machine
to which you are connecting.

7 Inthe UTS Port field, enter the number of the UTS port. The default port number is 23.

8 IntheHost Connection ID field, enter an identifier string used to manage your terminal
connection to the host.

9 Inthe Session Namefield, enter a string to identify your UTS session.
10 IntheHost App Namefield, enter a string to identify the host application you wish to access.
11 Inthe CSU Id field, enter your CSU id.

12 Inthe Screen Wait (seconds) field, enter the amount of timein secondsthat aUTS Terminal
component will wait for the arrival of the next screen in the Check Screen Action pane (this setsthe
default value).

13 Inthe Screen Rows field, specify the default number of rows per screen.
14 Inthe Screen Columns field, specify the default number of columns per screen.

15 Enter aUser| D and Password. These are not actually submitted to the host during the
establishment of a connection. They are simply defined here (the password is encrypted.) Right-
mouse-click and choose Expression if you want to make these fields expression-driven.

NOTE: After you've entered UserID and Password info in this dialog, the ECMAScript global
variables USERID and PASSWORD will point to these values. You can then use these variables in
Set Screen Text expressions (or as described under “Native Environment Pane Context Menu” in
Chapter 3.

16 Click the Default check box if you'd like this particular UTS connection to become the default
connection for subsequent UTS Components.

17 Click Finish. The newly created resource connection object appears in the Composer Connection
Resource detail pane.

Constant and Expression Driven Connections

You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant-based parameter uses the static value you supply in the Connection dialog every time the
Connection is used. An expression-based parameter allows you to set the value in question using a
programmatic expression (that is, an ECMA Script expression), which can result in adifferent value each
time the connection is used at runtime. This allows the Connection's behavior to be flexible and vary
based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in aUTS Connection would be to
define the User ID and Password as PROJECT Variables (e.g.:

PROJECT. X Path("USERCONFIG/MyDeployUser"). This way, when you deploy the project, you can
update the PROJECT Variablesin the Deployment Wizard to values appropriate for the final deployment
environment. At the other extreme, you could have a custom script that queries a Java business object in
the Application Server to determine what User ID and Password to use.

Getting Started with the UTS Component Editor 15

> To switch a parameter from Constant-driven to Expression-driven:

1 Click theright mouse button in the parameter field you are interested in changing from a constant
to an expression.

2 Select Expression from the context menu and the editor button will appear or become enabled. See

below.
x|
Header Info Conhection Ihfo |
Connection Type IUTS Connection LI Test
Host or IP Address IWWW.utSSVS.CDm ™ Default
uTS Part |23

Host Connection 1D IOD1 1m

Seszion MName IAppDne

Host App Mame |app0ne @
- Cut
CSUID |mycswd
Copy
Screen wait (seconds) IED Paste
Screen Rows |24 Select Al
Screen Columns ISD Find...
Find ek

User ID [MYUSERID

Replace. ..
Pazsword I******** 1

Clear all

Constant

Help v Exprossion. 9K cancel

3 Click onthe Expression Editor button. The Expression Editor appears.

x
wariables: FunctionsMethods: perators:
-S> Input #-Custom Scripts =-Math
<> Qutput [-Document +-Relational
<> _systemFault - ECMASCript #-Logical

<> pPROJECT #-Extended ECMAScript - String
<> Repeat Aliases =-UTS
<> Node Miases

[(Hetp] (Validate][OK__J[Cancel]

4 Create an expression (optionally using the pick lists in the upper portion of the window) that
evaluates to avalid parameter value at runtime. Click OK.

16 UTS Connect User’s Guide

Creating a UTS Component

Creating a UTS Component

Asdiscussed in the previous chapter, before you proceed with creating aUTS component you must first
prepare any XML templates needed by the component. (For moreinformation, see “ Creating a New
XML Template” in the Composer User's Guide.) During the creation of your component, you will use
these template's sample documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating aUTS component, you must specify a UTS connection for use
with the component (or you can create a new one). See the previous chapter for information on creating
UTS Connection Resources.

> To create anew UTS Component:
1 Seect File>New>xODbject then open the Component tab and select UTS Terminal.

NOTE: Alternatively, under Component in the Composer window category pane you can highlight
UTS Terminal, click the right mouse button, then select New.

2 The"“Create aNew UTS Component” Wizard appears.
x|

AUTS Terminal Cormponent connects to a hostvia the UTS protocol, processes data using elements from a
DOM, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Wame
and Description for this UTS component. The name will appear in the Composer window and in choice lists
wihen you are prompted for objects of this tvpe as vouwork in Composer. The Mame 15 reguired and rmay not
contain the characters:\ 1.7 "= = | Names are case insensitive.

Matne:

UTSSample

Description:

FurmOge:
Input:
Output
Rernarks:

|_Hep @ | Mext Cancel

3 Enter aNamefor the new UTS Terminal Component.
4 Optionally, type Description text.

Creating a UTS Component 17

18

5 Click Next. The XML Input/Output Property Info pane of the New UTS Component Wizard

6

10

appears.
Create a New UTS Terminal Component

Specify one or more XML Templates to help design Input ta this Component or¥Web Service and only one to
design Cutput. The sample XML Documents in each Template are design time aids to help you build Action
Wodels for the component. The samples are not actually uged at runtime after deployment to your application
server. The Identifier is fived and represents the name used to refer to the XML Document duting component
execution. Selecting System {ARNY} allows you to use an emply template (i.e. accept any document as Input).

x|

Input Message
Part | Template Category | Template Name |
inout [{System; v [ty v
Dutput Messags
Part | Template Category I Template Name I
Output | (systern} [~ [[vy [~
(Back (e J(concel]

Specify the Input and Output templates as follows.

+ Typeinanamefor thetemplate under Part if you wish the nameto appear in the DOM as

something other than “Input”.
+ SdlectaTemplate Category if it is different than the default cat

egory.

+ Select aTemplate Name from the list of XML templates in the selected Template Category.
+ Toadd additional input XML templates, click Add and choose a Template Category and

Template Name for each.
+ Toremoveaninput XML template, select an entry and click Del

ete.

Select an XML template for use as an Output DOM using the same steps outlined above.

NOTE: You can specify an input or output XML template that contai

ns no structure by selecting

{System}{ANY?} as the Input or Output template. For more information, see “Creating an Output

DOM without Using a Template” in the User’s Guide.
Click Next. The Temp and Fault XML Template panel appears.

x
Specify one or more Temp and Fault XML Templates to help design ternporary parts and fault handling for
this Component or Web Service. Use Temp documents for creating intermediate results or holding values
far reference. Specify XML Templates to serve as Fault documents to be passed hack to clients under error
conditions.
Temp Message
Part | Template Category Template Mame |
Fault Message
Part | Template Category | Template Mame |
_SystemFautt ‘{Sys‘tem} \:||{Faurt} \:||
[Back J(_ Nemt) Cancel |

If desired, specify atemplate to be used as a scratchpad under the “ T
dialog window. This can be useful if you need a place to hold values

emp Message” pane of the
that will only be used

temporarily during the execution of your component or are for reference only. Select a Template
Category if it is different than the default category. Then select a Template Name from the list of

XML templatesin the selected Template Category.

Under the “Fault Message” pane, select an XML template to be used
an error condition occurs.

UTS Connect User’s Guide

to pass back to clients when

11 Asabove, to add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

12 Click Next. The Connection Info panel of the Create a New UTS Component Wizard appears.
x|

Specify the URL for the UTS host. The UTS Port (hormally 23) needs to be setto the host's requirements
Select ar enter a Terminal Type used during UTS negotiation. USERID and PASSWORD are available for
mapping in ECMASCript expressions. You may create more than one UTS Connection. Checking 'Default’
makes this Connection the initial selection when creating a UTS Component. Use the Test button to check:
your connectian

Connection Type [UTS Connection = Test
Host or IP Address IWWW myutsconn.cam = I Defautt
uTS Port |23

Host Connection 1D IOD1 1M

Session Mame IAppDnE

Host &pp Matme |app0ne

csu D fipesul

Screen wait (seconds) IEU

Screen Rows |24 LI

| Help Back | Finish | Cancel |

13 Select aConnection name from the pulldown list. For more information on the UTS Connection,
see “Creating aUTS Connection Resource” in Chapter 2.

14 Click Finish. The component is created and the UTS Component Editor appears.

About the UTS Component Editor Window

The UTS Component Editor includes all the functionality of exteNd Composer’s XML Map Component

Editor. For example, it contains mapping panes for Input and Output XML documents as well as an
Action pane.

Thereisone main difference, however. The UTS Component Editor also includes a Native Environment
PanefeaturingaUTS emulator. This screen appears blue until you either click the Connectioniconinthe
main toolbar or begin recording by clicking the Record button in the toolbar. Either action establishes a
UTS emulation session inside the Native Environment Pane with the host that you specified in the
connection resource used by this UTS component.

W exteNd Composer: Unisys [UTS Terminak SampleUTSCompanent] =l0l=
ik TAF Mien Crpement AcHor Anieete Tons Wnde kb ar a8 x
DedEl% T0X79 B % RS Novell
—

T2T Terrn ol ;I” !' JTSSamr.Iel
—andem | ngrn
andcm | et na fpd pats
— - UZERCJMNF &
Z PRGJEST CUMNTIG
oS DESIZYET SM.J EEAN WODE

Native Environment Pane

UTS Terminal

Navigator
Pane

- Elooods sns
P Cod: TsbI: Map
¥ Cunoeclicn

] EDI Dzcumerd Me: e .
PR - BIME——-- FEEBES@I
. c
| =
”"‘—I A 17| BB SE ECIEIN TET AT (2, 2 F 200 "vunuAifi™
i EBALWMODE | %y sENCREY
B CHEC< 5 . | cun el Texl
4 instance L Begntacof AcCtiON L.
Pane L fi CALL Scres Pane "
i Ty SERC KEY
... [CHEC SCREE for Espression Screen.getlext —
1z A [
Output Pane
'{f_\.llp.lﬂ_SER’.‘Dh FRaPRUZ0T_2CHFI S rl'enri'ml Bl Cormze e

Creating a UTS Component 19

About the UTS Native Environment Pane

The UTS Native Environment Pane provides UTS emulation of your host environment. From this pane,
you can executeaUTS session in real time, interacting with the Native Environment Pane exactly asyou
would with the screen on aterminal connected to a Unisys mainframe. You can also do the following:

+ Usedatafrom an Input XML document (or other available DOM) asinput for a UTS screen field.
For example, you could drag a SKU number from an input DOM into the “part number” field of a
UTS screen, which would then query the host and return data associated with that part number,
such as description and price.

+ Map the datafrom the returned UTS screen and put it into an Output XML document (or other
available DOM, e.g., Temp, MyDom, etc.).

+ Map header and detail information (such as aform with multiple line items) from the Native
Environment Pane to an XML document using an ECM A Script expression or function.

UTS Keyboard Support

20

The UTS Native Environment Pane supports the use of several special attention keysincluding: Clear
Home, Local, Previous Page, Specify, Forms Mode Toggle, Next Page, Receive and Transmit. The
function for each attention key may vary depending on the host application. These keys are mapped to
the PC Keyboard asfollows:

UTS Key PC Key UTS Key PC Key
MsgWait Ctrl + W F11 F11

SOE Ctrl+ S F12 F12
Transmit Enter F13 Shift + F1
UnickKbd Esc F14 Shift + F2
F1 F1 F15 Shift + F3
F2 F2 F16 Shift + F4
F3 F3 F17 Shift + F5
F4 F4 F18 Shift + F6
F5 F5 F19 Shift + F7
F6 F6 F29 Shift + F8
F7 F7 F21 Shift + F9
F8 F8 F22 Shift + F10
F9 F9 F23 Shift + F11
F10 F10 F24 Shift + F12

You can either use the keys directly from the keyboard as you create your UTS Component, or you can
use akeypad tool bar available from the view menu.

UTS Connect User’s Guide

About the Screen Object

What it is

How it works

> How to Use the Floating Keypad:
1 Seect View/Terminal Keypad from the Composer Menu. A floating Keypad appears.

Key Functions |
MagWait | 30E | Transmit | Unlckibd |
| rz | =N ra |
Fs | Fe | 7| Fs |
roa | Ffo | m1 | Fmz |
F13 | Fia | F15 | Fi6 |
17 | me | Fe | Fa |
F21 | rz | rez | Fza |

oK

2 Click on the key you wish to invoke. If you require help, hover the mouse over that key. Help will
display the UTS keyboard equivalent for that key. You will see the result of the key you clicked in
the Native Environment Pane.

3 Click OK to close the keypad. In order for the keypad to redisplay, you must repeat step 1.

The Screen Object isabyte-array representation of the emulator screen shown inthe Native Environment
Pane, with methods for manipulating the screen contents.

The UTS component communicates with the host environment via the block mode terminal data stream
,inaUTSsession. A block of data essentially represents a screen. The host sends a screen block that is

displayed in the component. The screen is edited by the user (and ultimately by the component you

create) and the modified screen block is sent back to the host for processing after you press an attention
key. The Screen Object represents the current screen’s block of data. For a24 x 80 terminal screen, this

is 1,920 bytes of data.

When character data arrives from the host, appropriate updates to the Native Environment Pane occur in
real time. Those updates might be anything from a simple cursor repositioning to a complete repaint of
the terminal screen. The screen content is, in this sense, highly dynamic.

When you have signaled exteNd Composer (viaa Set Screen Text action) that you wish to operate on the
current screen’s contents, the screen buffer is packaged into a Screen Object that is made accessible to
your component through ECM A Script.

Creating a UTS Component

21

Many times, it is not necessary for your component to “know” or understand the complete screen
contents prior to sending keystrokes back to the host or prior to mapping datainto a prompt. But when
mapping outbound from the screento aDOM, it can be useful to have programmatic accessto the Screen
Object. To make this possible, the Connect for UTS defines a number of ECMA Script extensions for
mani pulating screen contents. These extensions are described in further detail in the next chapter. For
now, asimple example will suffice. Suppose you are interested in obtaining a string value that occurs on
thescreeninrow 8 at column position 11. If the string is 10 characterslong, you could obtain itsval ue by
using an ECMA Script expression within a Check Screen action that refers to the getText method:

FEEE2 I <

-UTSSample reen

@ SET SCREEMN TEXT AT (24, 2) FROM “corefcifci™ getTeXt

..... T SEND KEY TRANSMIT method
@ CHECK SCREEM far Expression: Screen.getText(8,11,10) == "Thank you ™ 4—

- f{ Beginto capture messages...

T CALL Screen.setMessageCaptureOnd)

..... Ta SEND KEYF1

.3 CHECK SCREEN for Expression: Screen.getText(6,7,10) == "First Name™

.. ff cceee

=8 e WHILE Screen.hasMoreMessages() CREATE a REFRESENTING $Outputiaimsg 1M

LRI gt

In the exampl e shown above, the 10 characters beginning at row 8, column 11 on the screen are checked
to make sure they contain the characters “ Thank you”.

Screen methods such as these will be discussed in greater detail in the section on “UTS-Specific
Expression Builder Extensions’ in Chapter 4.

UTS-Specific Toolbar Buttons

If you are familiar with exteNd Composer, you will noticeimmediately that the UTS Connect includesa
number of Connect-specific tool icons on the component editor’s main toolbar. They appear as shown
below.

Record Button
Record icon (normal state)

®
-
¥

Record icon (recording in progress)

Record icon (disabled)

The Record button allows you to capture keyboard and screen manipulations as you interact with the
Native Environment Pane. Recorded operationsare placed in the Action Model as actions, which you can

then “play back” during testing.

22 UTS Connect User’s Guide

Connection Button

fﬁ Connection (disconnected state)
ﬁa Connection (connected state)
ﬁ‘ Connection (connected/disabled state)

The Connection button on Composer’s main tool bar toggles the connection state of the component (using
settings you provided during the creation of the Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically established, in which case
the button will be shown in the “connected/disabled” state. When you turn off recording, the connection the
button will return to the enabled state.

Set Screen Text Button

The Set Screen Text button on exteNd Composer’s main toolbar is used to indicate that you
E wish to send data to the screen object. Clicking this button will brings up the Set Screen Text
dialog, allowing you to create anew Set Screen Text Action.. (See the next chapter for a
detailed discussion of this action type.)

Send Key Button

The Send Key button on Composer’s main toolbar would be pressed when you wish to add a
Send Key Action to the Action Model. (See the next chapter for adetailed discussion of this

actiontype.) The various UTS attention keys are discussed in the section above entitled “UTS
Keyboard Support”.

Create Check Screen Button

The Create Check Screen button on Composer’s main toolbar is used to check that theterminal
@ screen isin the state you expect it to be. Clicking this button will brings up the Check Screen
dialog, allowing you to create a new Check Screen Action. (The next chapter contains a
detailed discussion of this action type.)

UTS-Specific Menu Bar ltems

Component Menu

Two additional items have been added to the Component drop down menu for the UTS Connect. These
are Start/Stop Recording and Connect/Disconnect (depending on your current status).

Sart/Stop Recor ding—This menu option managesthe automatic creation of actionsasyou interact with
ahost program. Start will enable the automatic creation of actions as you interact with the screen and
Sop will end action creation.

Connect/Disconnect—This menu option allows you to control the connection to the host. When you are
recording or animating, aconnection isautomatically established (and conseguently, the connectionicon
isshown in the“ connected/disabled” state). However, thismenu choiceisuseful if you are not recording
and you merely want to establish a connection for the purpose of navigating the UTS environment.

Creating a UTS Component 23

UTS-Specific Context-Menu ltems

The UTS Connect al so includes context-menu itemsthat are specific to this Connect. To view the context
menu, place your cursor in either the Native Environment pane or the Action pane and click the right
mouse button.

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will see acontextual menu. Themenu
itemswill be greyed out if you are not in record mode. In record mode, the context menu has the
following appearance:

Set Screen Text: LUSERID
Set Screen Text: PASSWORD

Set Screen Text...

Check Screen...

The four commands work as follows:

Set Screen Text: USERID—Automatically sends User ID information to the host, based on the value
you supplied (if any) for User ID in the UTS Connection Resource for this component. Also creates the
corresponding Set Screen Text action in the Action Model.

Set Screen Text: PASSWORD—Automically transmits Password information to the host, based on the
Password you supplied (if any) in the UTS Connection Resource for this component. Also creates the
corresponding Set Screen Text action in the Action Model.

Set Screen Text...—Creates anew Set Screen Text dialog, allowing you to create anew Set Screen Text
Action. (See the next chapter for adetailed discussion of the use of this command).

Check Screen...—Brings up the Check Screen dialog, allowing you to create anew Check Screen
Action. (Thiswill be discussed in greater detail in the next chapter.)

Action Pane Context Menu

If you click the right mouse button when the mouse is|ocated anywhere in the Action pane, a context
menu appears as shown.

Mew Action Set Screen Text
Edit Action Check Screen
Dizable Action Advanced b
Toggle Breakpoint Data Exchange *
Process »
Cut Repeat 4
Capy Comment. .. Ctri+E
Compenent... CtrisT
Delete Decision... Ctri+D
Find... Declare Alias. ..
Find Mext Function... Ctri+l
Replace. .. Log... Ctri+L
Map... CEri+M
send Mail...
Switch...

Tado...

24 UTS Connect User’s Guide

The UTS-specific functions of the context menu items are asfollows:

Set Screen Text—Allows you to create a Set Screen Text action to send data to the host. A dialog
appears, allowing you to specify what you want to send to the host as well as determining the screen
position where the information will be received. (See the next chapter for adetailed discussion of the use
of thiscommand.)

Check Screen— Allows you to create a new Check Screen action which is used to make sure the
appropriate screen is present before the component continues processing. A dialog appears, allowing you
to specify various go-ahead criteriaas well as a Timeout value. (The next chapter contains a detailed
discussion of the Check Screen action.)

Creating a UTS Component 25

26 UTS Connect User’s Guide

Performing Basic UTS Actions

About Actions

An action issimilar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. Please see the chapters in the Composer User's Guide devoted to Actions.

Within the UTS Component Editor, a set of instructions for processing XML documents or
communicating with non-XML data sourcesis created as part of an Action Model. The Action Model
performs all data mapping, data transformation, data transfer between hosts and XML documents, and
datatransfer within components and services.

AnAction Model ismade up of alist of actions that work together. As an example, you might design an
Action Model that would read some invoice data from afile and then transform the datain some way
before placing it in an output XML document.

The Action Model mentioned above would be composed of several actions. These actions would:

+ Usean XML document containing a sku number as input to perform a UTS transaction which
retrieves the invoice data for that sku from an inventory database that resides on your Unisys host

+ Map theresult to atemporary XML document

+ Convert anumeric code using a Code Table

+ Map theresult to an Output XML document

About UTS-Specific Actions

As mentioned in the previous chapter, the UTS Connect includes three actions that are specific to the
UTS environment: Set Screen Text, Send Key and Check Screen.

UTS Action Description

Set Screen Text Allows the user to specify what data is transmitted to the host and at what screen
position it will be received. The string is formed from Map actions, user
keystrokes or it may come from an ECMAScript Expression. The Set Screen Text
action can be created manually, but will more often be generated automatically
when the user types into the screen or maps data to the current prompt.

Send Key Sends a UTS-specific attention key to the host system. The Send Key action can
be created manually by clicking an icon, or automatically when the user presses
one of the mapped keys or selects it from the UTS keypad.

Check Screen Allows the component to stay in sync with the host application. This action signals
the component that execution must not proceed until the screen is in a particular
state (which can be specified in the Check Screen setup dialog), subject to a
user-specified timeout value.

The purpose of these actionsisto allow the UTS component (running in adeployed service) to replicate,
at runtime, the terminal/host interactions that occur in a UTS session. The usage and meanings of these
actions are described in further detail bel ow.

Performing Basic UTS Actions 27

The Set Screen Text Action

28

The Set Screen Text action encapsulates* keystroke data’ (whether actually obtained from keystrokes, or
through a drag-and-drop mapping, or viaan ECMA Script expression built with the Expression Builder)
that will be sent to the host in asingle transmission at component execution time. When the Set Screen

Text action executes, the datawill appear on the host system screen. The datawill not, however, be sent
to the host until an attention key of some sort is sent using the Send Key Action..

The Set Screen Text action can be created in several ways:

*

*

In Record mode, just begin typing on the Native Environment Pane. Keystrokes are automatically
captured to a new Set Screen Text action.

Right-mouse-click anywhere in the Action Model; a contextual menu appears. Select New Action
and Set Screen Text.

In the main menu bar, under Action, select New Action and Set Screen Text.

> To create a Set Screen Text action using menu commands:

1

6

Right-mouse-click anywherein the Action Model and select New Action, then Set Screen Text,
from the contextual menu (or use the Action menu as described above). The Set Screen Text dialog
will appear.

Set Screen Text ﬂ
Source
" XPath: 'nput LI {+ Expression:
l'cnreffcifci" 74

Screen posttion to receive source expression data

Riowae |24 k -

Col |2 k -

Help | | oK | Cancel |

To map aDOM element’s contents to the buffer, click the XPath radio button, then select aDOM
from the pulldown list and type the appropriate X Path node name in the text area (or click the
Expression icon at right and build the node name using the Expression Builder).

To specify the buffer’s contents using ECMA Script, click the Expression radio button, as shown
on the screen above, then use the Expression Builder dialog to create an ECM A Script expression
that evaluates to a string.

To specify the Row at which to receive data, type avalue in the field. By default, the number you
type will be a constant. The down arrow next to the k (constant) allows you to toggle back and forth
between entering a constant and an ECM A Script expression.

To specify the Column at which to receive data, type avaluein the field. By default, the number
you type will be a constant. The down arrow next to the k (constant) allows you to toggle back and
forth between entering a constant and an ECM A Script expression

Click OK.

NOTE: When a Set Screen Text action is created automatically for you while recording your session, all
of your subsequent keystrokes will be captured to the buffer until you press an attention key or select one
from the Send Key dialog.

UTS Connect User’s Guide

The Send Key Action

The Send Key action does simply that - it sends an attention key to the host. This action will generally
follow a Set Screen Text action so that the information you wish to transmit to the host gets there. When
the Send K ey action executes, the datayou specified in the Set Screen Text action are actually transmitted
to the host. Some Send Key actions, of course, stand alone and can be pressed at any time to receive
specific information, clear the screen or navigate to different areas.

The Send Key action can be created in several ways:
+ InRecord mode, press one of the PC keys designated as an attention key (see the previous chapter

for adiscussion of these keys) to have the attention key executed at the current cursor position.

+ Fromthe drop down menu, select View, Terminal Keypad, click on an attention key and click OK
to have the attention key executed at the current cursor position.

+ Click on the Send Key icon in the main toolbar to bring up the Send Key dialog box.

> To create a Send Key action using the main toolbar icon:

1 Withfocus on the action after which you would like your Send Key action to appear, click on the
Send Key icon in the main toolbar. The Send Key dialog will appear.

x|
ey Walue:
Transmit
[~ Owerrige Cursor Postioh
Ry
|24 4
Calurmr
|13 7 4
Help | oK | Cancel |

2 Fromthe Key Value drop down, select the attention key you would like to send to the host.
Remember that the function for each attention key may vary depending on the host application.

3 If you wish the key to execute at a position other than the current row/column location, check the
Override Cursor Position box. Thiswill enable the Row and Column position fields.

4 To specify the Row at which to transmit the key, type avalue in the field. By default, the number
you type will be a constant. Alternatively, you can click on the Expression builder to enter the row
in the form of an ECM A Script expression.

5 To specify the Column at which to transmit the key, type avalue in the field. By default, the number
you type will be a constant. Alternatively, you can click on the Expression builder to enter the
column in the form of an ECMA Script expression.

6 Click OK.

The Check Screen Action

Because of the latency involved in UTS sessions and the possibility that screen datamay arrive in an
arbitrary, host-application-defined order, it is essential that your component can depend on the terminal
screen being in agiven state before it operates on the current screen data. The Check Screen action makes
it possible for your component to stay “in sync” with the host. You will manually create Check Screen
actions at various pointsin your Action Model so that precisely the correct screens are acted on at
precisely the right time(s).

Performing Basic UTS Actions 29

To create anew Check Screen action, you can do one of the following:

+ Click on the “Create Check Screen Action” button on the main toolbar, or

+ Perform aright mouse click inside the action list, then select New Action and Check Screen from
the contextual menu, or

+ Inthe component editor’s main menu bar, select Action, then New Action, then Check Screen
+ Whileyou are in Record mode, with your cursor in the Native Environment Pane, right-click then
select Check Screen.

NOTE: You will most often use the toolbar button when you are in Record mode.

> To create a Check Screen action using a menu command:

1 Withyour cursor positioned in the Action Model on the action item after which you want your new
item to appear, perform aright mouse click. Then select New Action and Check Screen from the
contextual menu (or use the Action menu in the main menu bar as described above). The Check
Screen dialog appears.

Screen Wait (in seconds)

e

Screen Evaluation Expression

Screen.getText(8,11,10) == "Thank you " [74

(o] ok)(_cancar)

2 Specify a Screen Wait value in seconds. (See discussion below.)

3 Specify a Screen Evaluation Expression by typing one in directly or clicking on the Expression
Builder icon to create one. (See discussion below.)

4 Click OK.

Understanding the Check Screen Action

Screen Wait

Itisimportant that the execution of actionsin your Action Model not proceed until the host application
isready, and all screen datahave arrived (that is, the screen isin aknown state).

Your component must have someway of “knowing” when the current screen isready. The Check Screen
Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog istwofold:

+ Itdlowsyou to specify await time for program synchronization.

+ Itallowsyou to specify an expression which will be used as a criterion to judge whether the screen
isin a state of readiness at execution time.

The Screen Wait value (in seconds) represents the maximum amount of time that your component will
wait for screen datato arrive and meet the readiness criterion specified in the expression. If the available
screen data do not meet the readiness criteria before the specified number of seconds have elapsed, an
exception isthrown.

30 UTS Connect User’s Guide

Expression

NOTE: Obviously, since the latency involved in a UTS session can vary greatly from application to
application, from connection to connection, or even from screen to screen, a great deal of discretion
should be exercised in deciding on a Screen Wait value. Careful testing of the component at design time
as well as on the server will be required in order to determine “safe” Screen Wait values.

The default Screen Wait value is determined by what you entered when setting up your UTS Connection
Resource.

To determine your “go-ahead” criterion, you can click the Expression radio button in the Check Screen
Action dialog and enter an ECM A Script expression in the associ ated text field. The expression you create
will usually check on the existence of some specific data at alocation in the Screen Object buffer. At
runtime, if the expression evaluates as“true,” the screen will be considered ready; but not otherwise. An
example of such an expression would be: Screen.getText (1,11,4) == “MARC”

Expressions are discussed in detail below.

Using Actions in Record Mode

The easiest way to create an Action Model for your component is to use Record mode. When you build
anAction Model inthisway, anew Set Screen Text actionis created for you automatically as soon asyou
begin typing or drag an element from the Input DOM into the appropriate field onscreen. All you need
then dois send the appropriate attention key, wait for the next screen to arrive from the host, add a Check
Screen action to make sure you are on the right screen and begin the process again, repeatedly. In this
fashion, asequence of Set Screen Texts, Send Keys and Check Screens actions can be built very quickly
and naturally.

Working in record mode will be discussed further in Chapter 5, in the section entitled “ Recording aUTS
Session.”

UTS-Specific Expression Builder Extensions

The Connect for UTS exposes several UTS-specific ECM A Script variables and object extensions, which
arevisiblein Expression Builder picklists. The UTS-specific items are listed under the node labelled
“UTS.” There are two child nodes: Login and Screen Methods. Seeillustration below.

r Check Screen Expression 1[
“ariables: FunctionsMethods: perators:
+- 2 [nput F-Custom Scripts #-Math
+)-- > Output [#-Document [-Relational
<> _SystemFault [-ECMASCcript ---Logical
<> PROJECT [#-Extended ECMAScript [#-String
+-< > Repeat Aliases E-UTS
<> Hode Aliases [#-Login

Screen Methods

A

Screen.getText(d, 11,100 =="Thankyou"

picktree nodes

UTS-specific

Performing Basic UTS Actions 31

Login

UTS Connection Resources have two global variables that are accessible from Expression Builder
dialogs: USERID and PASSWORD. These properties (available under the Login node of the UTS
picktree) specify the User ID and Password values that may be requested by the host system when you
connect. You can map these variablesinto the terminal screen, which eliminates the need for typing user
and password information explicitly in amap action.

NOTE: You can also create a Set Screen Text action where the XPath source is defined as
$PASSWORD.

Screen Methods

When an Expression Builder window is accessed from aMap or Function action inthe UTS Component,
the picklistsat thetop of thewindow expose special UTS-specific ECM A Script extensions, consisting of
various methods of the Screen object.

Hover-help is available if you let the mouse loiter over agiven picktreeitem. (Seeillustration.)

W Check Screen Expression x|

Variables: Functionshiethods: Dperators:
- > Input El-Screen Methods =]
HE-<>output || getattribute(aRow, aColumn)
<> SystemFault || - getCursorCol)

H-<>PROJECT || o getCursorRow()
<> Repeat Aliases || getCols()
< > Mode Aliases || o getNextMessage()
..... getPrompt()
..... getRows()
----- getText{aRow, aColumn, aLength)
----- et TevtEromBect: tRnw aStart

Skring getTexk{Objeck aRow, Object aColumn, Object aLength)

exteNd Composer exkension method.,

R.eturns bext string Found at position aR.ow and aColumn for alength characters,
T TETT Ty

oI T T eI, O TE

----- setMessageCaptureOfii)

----- setMessageCaptureOn()

------ t\meKeusl‘asKevTexil _ILI
] »

Screen.getTextid, 11,100 =="Thankyou"

Validate | Ok | cancel |

Help |

In addition, you can obtain more complete online help by clicking Help in the lower | eft corner of the
dialog.

The Screen object offers methods with the following names, signatures, and usage conventions:

getAttribute(nRow, nColumn)

getCursorCol(void)

32

Returns datatype: int

This method returns the display attribute value of the character at the screen position given by aRow,
aColumn. The complete set of possibledisplay attribute valuesislisted in “UTS Display Attributes’. An
example of using thismethod is:

if (Screen.getAttribute(5, col 20 is
protected and bold

. // do something

20

) == 34) // if character at row 5,

Returns datatype: int

UTS Connect User’s Guide

This method returns the current column position of the cursor in the UTS emulator screen (Native
Environment Pane). Column positions are one-based rather than zero-based. In other words, in 24x80
mode, this method would return avalue from 1 to 80, inclusive.

getCursorRow(void)

getCols(void)

Returns datatype: int

This method returns the current row position of the cursor in the UTS emulator screen (Native
Environment Pane). Row positions are one-based rather than zero-based. In other words, in 24x80 mode,
this method would return avalue from 1 to 24, inclusive.

Returns datatype: int

This method returns the native horizontal dimension of the current screen. (Due to possible mode
changes in the course of host-program execution, this value can change from screen to screen. Do not
depend on thisvalue staying constant over thelife of the component.) When a program isin 24x80 mode,
this method will return 80. To loop over al columns of a screen, regardless of its native dimensions, you
could do:

for (var 1 = 1; i <= Screen.getCols(); i++)

{
var myCol = Screen.getTextAt(i, 1, Screen.getCols());
// do something with myCol

getNextMessage(void)

getPrompt(void)

Returns datatype: string

The result of this method, when placed in avariable, returns the string representing the next captured
message. ThesetMessageCaptureOn () method (seebelow) must be setin order for thismethod to
return anything. In addition to these, there are two other messaging methods: hasMoreMessages () and
setMessageCaptureOff (). Below isan example demonstrating how the four of them might all be
used together:

function msgChecker (theScreen)

{

theScreen.setMessageCaptureOn () ;
while (theScreen.hasMoreMessages())

{
}

theScreen.setMessageCaptureOff () ;

}

alert (theScreen.getNextMessage ()) ;

Returns datatype: string

The result of this method, when placed in avariable, returns the string representing all charactersin the
cursor’srow, starting at column 1 and continuing to, but not including, the value returned by
getCursorCol () —in other words, everything from the beginning of the line to the current cursor
position. As an example:

var prompt=Screen.getPrompt () ;
alert (prompt) ;

NOTE: The string returned may or may not actually be a host prompt.

Performing Basic UTS Actions 33

getRows(void)

Returns datatype: int

This method returns the native vertical dimension of the current screen. (Due to possible mode changes
in the course of host-program execution, this value can change from screen to screen. Do not depend on
this value staying constant over the life of the component.) When a program isin 24x80 mode, this
method will return 24. To loop over al rows of a screen, regardless of its native dimensions, you could
do:

for (var i = 1; i <= Screen.getRows(); i++)
var myRow = Screen.getText(i, 1, Screen.getRows());
// do something with myRow

}

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

getStatusLine(void)

Returns datatype: string

The result of this method, when placed in avariable, returns an ECMA Script String that represents the
black statusline at the bottom of the Native Environment Pane. Thisstatuslineisonly enabled following
a Check Screen action.

If you wished to create an aert stating the current status of the screen, for example, you could create a
function action like the following:

var screenStatus = Screen.getStatusLine();
alert (screenStatus) ;

getText(nRow, nColumn, nLength)

Returns datatype: String

This method returns an ECMA Script String that represents the sequence of characters (of length
nLength) in the current screen starting at the row and column position specified. Note that nRow and
nColumn are one-based, not zero-based. A zero valuefor either of these parameterswill cause an
exception.

To put the first half of the 20th row of a 24x80 screen into avariable, you would do:
var myRow = Screen.getText(20, 1, 40);

The getText () techniqueisused internally both for drag-and-drop Map actionsinvolving screen
selections (described in “ Selecting Continuous Data” further below) and in the Check Screen action.

NOTE: Ifthe amount of data selected by the function's arguments goes past the end of a screen line, no
newlines or other special characters are inserted into the string.

getTextFromRectangle(nStartRow, nStartColumn,nEndRow, nEndColumn)

The getTextFromRectangle () method returns asingle String consisting of substrings (one per row)
comprising all the characters within the bounding box defined by the top left and bottom right
row/column coordinates specified as parameters. So for example, in 24x80 mode, you could obtain the
upper left quarter of the screen by doing:

var topLeftQuadrant = Screen.getTextFromRectangle(1l,1,12,40);

The getTextFromRectangle () method isused internally in drag-and-drop Map actionsinvolving
rectangular screen selection regions created using the Shift-sel ection method (see” Sel ecting Rectangular
Regions’ below).

34 UTS Connect User’s Guide

Notethat the string returned by this method contains newline delimiters between substrings. That is, there
will be one newline at the end of each row’s worth of data. The overall length of the returned string will
thus be the number of rows times the number of columns, plus the number of rows. For example,
Screen.getTextFromRectangle (1,1,4,4) .1length will equal 20.

hasMoreMessages(void)

The hasMoreMessages () method returns true if more messages are available to obtain viathe
getNextMessage () method, described above. This method is demonstrated along with the other
messaging methods in the getNextMessage () method, described above.

putString(nRow, nColumn, textString)

Theputstring () method allows you to send datato a specific row/column location on the screen
programmatically, without explicitly creating a Set Screen Text action. Example:

var goHome = "HOME";
Screen.putString (2,14, goHome); // send string to screen

putStringlnField(nFieldNumber, textString)

TheputStringInField () method allowsyou to send datato a specific field on the screen
programmatically, without explicitly creating a Set Screen Text action. In the MARC system, for
example, there are typically two fields, the Action: field on the second line, and the Choice: field on the
214t line. The example below would have the same effect as the putString one above:

var goHome = "HOME";
Screen.putStringInField(1, goHome); // send string to screen

setMessageCaptureOff(void)
The setMessageCaptureOf £ () method turns off the message capture feature (see
setMessageCaptureOn () below):

setMessageCaptureOn(void)

The setMessageCaptureon () method turns on the message capture feature so that all host messages
are stored for retrieval by the caller. This method is demonstrated along with the other messaging
methodsin the getNextMessage () method, described above.

typeKeys(String keys)

ThetypeKeys (str) method allowsthekeystroke you represent by string to be emulated on the screen.
The specified string will be placed at the current cursor position on the screen. A function containing the
following text would have the same effect as a SendK ey action:

Screen.typekeys(" [Transmit]")

Performing Basic UTS Actions 35

Multi-row Screen Selections in the UTS Connect

In record mode, it is possible to select multiple rows of datain a continuous stream, for purposes of
dragging out to aDOM.

Selecting Continuous Data

When you drag across multiple rows of data without holding the Shift key down, all characters from the
initial screen offset (at the mouse-down event) to the final screen offset (at mouse-up) are selected, as
shown in the graphic below. (The selected text is “reversed out.” A partial row has been selected,
followed by two complete rows, followed by another partial row.

Lore Teckmologr

bware and standard Jawa enabled

£117 (U3 and Canadal .

alezQctc-cors.com

You will noticethat as you drag, the component editor window’s status line in the lower left-hand corner
reportsthe beginning and ending rows and columns of your selection. If, whilein Record mode, you were
to drag this selection out of the Native Environment Pane, into aDOM, aMap action would be generated
asfollows:

ﬁ MAF Screen.getText({10,9,339) TO $Output'SCREENINFO/Screen

Notice that the get Text () method is used. This means the captured screen characters form one string,
which is mapped to Output/SCREENINFO/Screenl. No newlines or other special charactersare
inserted into the string. (Any blank spaces highlighted in darker blue on the screen shown are simply
represented as space charactersin the string.)

Selecting Rectangular Regions

36

Sometimes you may not want the selection behavior described above. In certain cases, screen data may
be grouped into zones with their own natural boundaries. For example, in the screen shown previously,
you may want to capture (for drag-out purposes) just the five terms in the bottom left without their
definitions and alot of blank space. To do this, first hold the Control key down, then drag your mouse
across the portion of the screen that you want to select. The selected areais highlighted and the
appropriate row/column start and end points are displayed in the status line of the component editor’s
window, as below:

UTS Connect User’s Guide

Core Tecknol ogy
Please sign in cur gquest book.

Eir:-t- Harnz:

Last Hame :

Selected via Ctrl-Drag

Inthisinstance, when you drag the rectangular highlight region out of the Native Environment Pane, into
aDOM, theresulting Map action usesthe get Text FromRectangle () method described above. The
resulting action looks like this:

ﬁ MAP ScreengetTextFromRectangle(6,7,.20,16) TO $0utput/SCREENINFO/Screen2

This method operates in a different fashion from get Text (), because the string returned by
getTextFromRectangle () iswrapped at the rectangle’sright edge. Newlines areinserted at the wrap
points as discussed in the API description of get Text FromRectangle (), further above.

Performing Basic UTS Actions 37

38 UTS Connect User’s Guide

UTS Components in Action

The Sample Transaction

For demonstration purposes, this guide uses a simple demo interface offered for demonstrati on purposes
by athird party. The transactions shown here in the form of screen captures will be representative of the
type of transactions commonly used by operators on UTS terminals. Unlike the exercisesin the
Composer Tutorial, these steps are not meant to be followed by the user, but are merely given here for
illustrative purposes.

Recording a UTS Session

The UTS Component differs from other componentsin that amajor portion of the Action Model is built
for you automatically. This happens as you interact with the host in the Native Environment pane as part
of alive UTS session. Composer recordsyour interactions as aset of auto-generated actionsin the Action
Model. Typicaly, in other exteNd Composer components (such as a JDBC Component), you must
manually create actionsin the Action Model, which then perform the mapping, logging, transformation,
communication, and other tasks required by the component or service. By contrast, when you create a
UTS Component, you record requests and responses to and from the host, which end up as actionsin the
Action Model. In addition, you can add standard actions (Map, Log, Function, etc.) to the Action Model
just the same as in other components.

NOTE: In order to successfully build a UTS Component, you should be familiar with the specifics of the
host application you intend to use in your XML integration project.

The following example demonstrates several common tasks that you will encounter in building UTS
Components, such as:

+ Automatic creation of Set Screen Text actions

+ Automatic creation of Send Key actions

Automatic creation of Check Screen actions

Drag-and-drop mapping of Input DOM elementsto UTS-screen prompts

+ Drag-and-drop mapping from the Native Environment Screen to the Output DOM
+ Theuse of ECMAScript expressions to manipul ate Screen object elements

*
*

Thefollowing example starts with an XML document that contains several parameters used asinput to a
guest book page. The goal of this particular component issimply to sign aguest book on the demo system
and receive some information back from the terminal. Several screen messages will be placed in the
Output DOM.

UTS Components in Action 39

> To record a UTS session:

1 Create aUTS Component per the procedure shown in Chapter 3, “ Creating a UTS Component”.

2 Once created, the UTS Component Editor window appears, with the words“UTS Termina” in the
center of the Native Environment Pane, indicating that no connection has yet been established with

ahost.
¥ exteNd Composer: Unisys [UTS Terminak SampleUTSCompanent] 1ol
Fils Edit View Component Action Anmats Teok Window Hebp Ho -8 x
(2E@8 »0O0XsS"0 BhLWE S Novell
[19) SampleUTSC omponent
‘fﬁ» Input. Data O x
= <> SCREEMINFUT |
< Login coreteitei
<= LihName Mon o
“=Fiame Maaribn
<> A MGM Stuitins
<>Ciy Halrwmnd
<> gtate oA _
<=z a0z10 UTS Terminal
< amsil i iean @halnail tam
<>phone 1235561234
13 oums JData o @EBESISN
= <> SCREENINFO = =
<>ME61
<> MS02
€3 Products
T7) s >
feacty [Fesminai: tiot Connected

3 Click the Record button. You are automatically connected to the host that you selected in the

Connection Resource for the component. An input screen appears in the Native Environment pane
as shown below.

¥ _extend Composer: Unisys [UTS Terminak SampleUTSComponent]

INI=TES |
Fils Edit View Component Action Animste Tock Window kel b0 -8 x
2@S yO00X+0 BH%ER G Novell
[19) sampauTsc ompenant |

& wpur Data O
= <> SCREENINPUT |
<>Login corenciici
<3 LName Monroe
< Fhiame Warim
<> agdrl MG Studios
<>City Hullpwrood
<>State CA
<Zzp 30210
< il normajean @hatmail.c om
<>phong 123-556-1234
1 output Joata Dx @ BEOIN
= <> SCREENINFO Sl 2ol TS Component =]
<S> MSGT
< WS62
€3 Praducks
g B
feeacty

[Ferminat: Cornected

UTS Connect User’s Guide

4 Begin by checking the screen to make sure you have arrived at the expected place. This should
always be the first action when you arrive at a new screen in a UTS Component (or any terminal
component for that matter). To do this, use the left button on your mouse to highlight some text on
the native environment panel and then right click and select Check Screen. The Check Screen
dialog window appears, with an expression already entered as shown below:

Check Screen =

Screen Wait (in seconds)

B

Screen Evaluation Exprassion

|Screen.getText(23,2,18)::"Enteryouruser—id" @

5 Click OK and the Check Screen action is added to the action model.

6 Reposition your cursor to the space just after the arrow prompt in the Native Environment pane. In
this UTS application, exact placement in the entry fieldsisimportant. Drag the
SCREENPUT/L ogin node from the Input DOM to the second column of the 24th row of the Native
Environment Pane. You will notice when you drag the item that the text appears after the arrow
prompt and a new Set Screen Text action appears automatically in the Action Model.

QQEEE2O I

SampleUTSComponent
CHECK SCREEN for Expression: Screen.getText(23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT {24, 2) FROM $input/SCREENINPUT Login

7 Position your cursor after the text that was entered and pressthe Enter Key. You will seethat a Send
Key Transmit Action is added to your Action Model and the screen changesin response.

Thark yoa o8 wring Lare Teckealogy' s Java TTT dems

TTCBridge UTI for the Jova platfoms i0 4 UTT temeinal el ater

develeped dn the Tuova lungeage. UPMBridge commmiciter 8o ypour
Updrys LIBR ovwr the Incemmat § inczanet wia Core Teckralagy's
BhalniBridge (B -0 gatesay roltaire ard stardard Tava endbled
browsera.

Flears contact Corn Technelegy ob B06:308=1013 {1 and Canadal,
SLT-RET-151L iTmeamnacdonall. or d-wsi] ud a5 SaldpBNTE-G0Td . C0s
mith ary gueitions or owmenss.

Fresi Tl &5 Dekes

T S

od B I KL N
SamplelTSCompornent
BB, CHECK SCREEN for Evpression: ScreengetText (23,2, 18) == “Enter your user.id"
B} SET SCREEN TEXT AT (24, 2) FROM $Input SCREENINPUT Login

ASSEND KEY TRAHSMIT

UTS Components in Action 41

8 Asdiscussed in “The Check Screen Action” on page -29, it isawise idea to make sure you are on
the correct screen before proceeding. To do this, drag the cursor over the words “ Thank you” in the
upper left-hand corner. Notice that the status line of the component editor window in the lower left
corner will indicate the row and column location where the words start and end. Using the right
mouse button in the Native Environment pane, click Check Screen. A Check Screen action
including a Screen.getText method automatically appears, verifying that the words “ Thank you” do
appear where expected on the screen.

Check Screen x|
Screen Wait (in seconds)
EEI
Screen Evaluation Expression
|Screen.getText(8,11,9) =="Thank you" @
ok _J(cancer]

Decide whether the default Screen Wait time (in this case 60 seconds) is going to be adequate for
this Check Screen action. Careful testing of the component should be done in order to verify that
this timeout valueis safe. Click on OK to enter the Check Screen action into the Action Model.

9 The"“Thank you” screenisnot terribly interesting from ademonstration standpoint, so let's move to
the“Signin” screeninstead. Asindicated ontheterminal screen, thisisacheived by pressing the F1
key. Make sure your focusis on the native environment pane before you pressthe F1 key. Pressing
F1 with focus at any other place in Composer will bring up the online help system. Another Send
Key action is added to the model and the screen changes to the Guest Book.

M4 Orin

SEBEE2I0
SampleUTSComporsent
n CHECK SCREEN far Expression: ScresnupeiText (23,2, 18) == “Enter your usor.id™
B} SET SCREEN TEXT AT (24, 2) FROM $input SCREENINPUT Lagin
’.:i SEND KEY TRANSMIT
B CHECK SCREEN for Exprezzion; ScreenugedText(8,11,0) == “Thank you™

Rcoreri]

10 Asadways, verify that you are on the correct screen. Highlight the word “ Guest Book” and right
click to select Check Screen. Click OK to add this action to the Action Model.

@ CHECHK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book™

11 Now, instead of having to type the information into the guest book, you can use the data that
aready existsin your Input DOM and map it to appropriate fieldsin the Native Environment Pane.
From the input DOM, drag the SCREENINPUT/L Name node into the “Last Name:” field on the
terminal screen. Again, asyou click and drag, the onscreen row/column coordinates of the selected
area are displayed in the status line and a new Set Screen Text action appears in the model

SET SCREEN TEXT AT (8, 200 FROM $Input/SCREENINPUT LName

UTS Connect User’s Guide

12 Proceed by dragging all the remaining nodes from the Input DOM into the appropriate fields on
Guest Book screen. The Sign-in screen will begin to look filled out, and several new Set Screen
Text actions will appear in your action model.

SET SCREEN TEXT AT (15, 20) FROM $input/SCREENINPUT City
SET SCREEN TEXT AT (15, 48) FROM $Input/'SCREENINPUT State
SET SCREEN TEXT AT (15, 63) FROM $input/SCREENINPUT Zip
SET SCREEN TEXT AT (20, 48) FROM $Input/SCREENINPUT /email

13 After signing the guest book, proceed with the rest of the Demo by pressing F1 again, which
changes the screen and adds another Send Key Transmit action to the model.

14 Asaways, it isagood ideato make sure you are on the expected screen, so highlight the screen
text “Background/Foreground” and right click to create another Check Screen Action. The Screen

and Action model now look like this:

(M) sampleUTSComponent

Core Technalegy

NN P, tend

This ssremn chows how CTGBridgr #irplays different coloxs,
Users of the [TCBridge graphical irmerfice dems will now Be able
%o wiew various color options. Press L te sree the next screen.

7 (03 ard Carada)
Lesfete=xore . com

Press Fl or Drtar

SEEEFON

T SEND KEY TRANSMIT

B3 CHECK SCREEN for Expression: Screen.getText(8,11,9) == “Thank you"
T SEND KEYF1

[CHECK SCREEN for Expression: Screen.getText(2,36,10) == “Guest Book"
[SET SCREEN TEXT AT (8, 20) FROM $Input'SCREENINPUT/LName

[SET SCREEN TEXT AT (6, 20) FROM $Input’SCREENINPUT/FName

[} SET SCREEN TEXT AT (15, 20) FROM $Input’'SCREENINPUTICity

[SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT State

[BE: SET SCREEN TEXT AT (20, 48) FROM $Input’SCREENINPUT/email

Ta SEND KEYF1

D ain ~

JRow 8, Col 10 Recording. ..

15 Next, drag someinformation from the screen into the Output DOM. Highlight and drag the first
paragraph on the terminal screen into the MSG1 node. Drag the second paragraph into the MSG2
node. The following actions are added and the Output DOM now looks like this:

® Output Jpata 8 x
[} <> SCREEMINFO
<> MSG1 This screen shows how CTCBridge displays different colars.

Flease contact Core Technology at 800-338-2117 {JS and Canada),

&5 MAP Screen.getText(s,12,219) TO $Output’'SCREENINFOMSG1
&5 MAP Screen.getText(9,11,209) TO $Output'SCREENINFOMSG2

UTS Components in Action 43

16 Now, usethe Ctrl-Drag method to map the produts shown on the screen into the Product node of the
Output DOM. Placing the cursor on the |eft-most character of the top product in thelist, hold down
Ctrl and the left mouse key and drag to the bottom, right-most character of the product list. The
following action is added to the model:

ﬁ MAP Screen.getTextFromRectangle(14,45,21,53) TO $Output/SCREENINFO/Products

The SCREENINFO/Products Node of the output DOM will now contain the list of products from
the terminal screen.

17 Click the Record button to turn recording off.

18 Save your component.

If you were sucessfully able to follow all the steps outlined above, your complete Action Model would
now look likethis:

=} SampleUTSComponent
@ CHECK SCREERN for Expression: Screen.getText{23,2,18) == “Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
?g SEMD KEY TRANSMIT
@ CHECK SCREERN for Expression: Screen.getText(8,11,9) == “Thank you"
T SEND KEYF1
@ CHECK SCREEN for Expression: Screen.getText(2,36,10) == "Guest Book™
SET SCREEN TEXT AT (8, 20) FROM $Input/SCREENINPUT LName
SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUT FName
SET SCREEN TEXT AT {15, 20) FROM $Input/SCREENINPUT City
SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT /State
SET SCREEN TEXT AT (20, 48) FROM $Input/SCREENINPUT /email
T SEND KEYF1
@ CHECK SCREEN for Expression: Screen.getText{13,6,21) == “"Background/Foreground"
ﬁ MAF Screen.getText(5,12,219) TO $Output/SCREENINFOMSG1
ﬁ MAP Screen.getText(9,11,209) TO $Output/SCREENINFOMSG2
ﬁ AP Screen.getTextFromRectangle{14,45,21,53) TO $Output/SCREENINFO/Products

Obvioudly, thisisafairly simple component.that does not accomplish much real work. In using
Composer to build UTS components, your initial recorded component may only be a starting point. For
thisreason, it isimportant to study how to edit existing action models.

Editing a Previously Recorded Action Model

44

You will encounter times when you need to edit a previously recorded action model. Unlike the situation
with other components, editing a UTS Component requires extra attention. When a UTS Component
executes, it plays back a sequence of actionsthat expect certain screensand datato appear at certain times
in order to work properly. So when editing acomponent you must be careful not to make the action model
sequence inconsistent with the host program execution sequence you recorded earlier (i.e., don’t break
it!).

In general, to ensure successful edits, the following recommendations apply:

+ Exercise extreme care when using Cut, Copy, and/or Paste to delete, move, or replicate actionsin
your Action Model. Actions that were created automatically during a“Record” session will often
create data dependencies that are easily overlooked in the editing process.

+ When you need to use drag-and-drop to add new Map actionsto your Action Model, click the Start
Animation button in the Action Pane toolbar and step to the line of interest in your Action Model;
then Pause animation and turn on Record mode. At this point, you can safely drag to and from the
screen. Following this procedure will prevent your Action Model from getting out of sync with the
host or conflicting with previously mapped DOM data.

UTS Connect User’s Guide

Editing or Adding to an Existing Action

Thefollowing procedure will explain how to change an existing action or add new actionsto apreviously
recorded session.

> To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The component appearsin
the UTS Component Editor window.

¥ exteNd Composer: Unisys [UTS Terminak SampleliTSCompanent] 7 : 9 [=] |
File Edit View Component Action Animate Took Window Help BHO - & x
UDEEdE $00X70 BB S Novell
[&) sampieutscomponent]
@ Input Data B x
= <> SCREENINPUT
<> Login coreffcifci
<2 LName Monroe
<> FName harityn
<> Addr MGM Studios . Blease contaee
o Hobwans e
<>Zip G010
<> email nommnajeang@hotmail com
<= phone 123-555-1234
4
... | 3 S
v
® output Data G x _.@ﬁﬁ‘“
© <> SCREENINFO | T
<> MSG1 [This screen shows how CTCEridge displs =
| Please contact Core Technalogy at B00-3] [CHECK SCREEN for Expression: Screen.getText(23,2,18) ==
\ELAClrsongpEENBcnxrBLACKBoxaGF [SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Log
T SEND KEY TRANSMIT
[CHECK SCREEN for Expression: Screen.getText(8,11,9) == "1
T SEMD KEYF1
‘ CHECK SCREEN for Expression” Screen.getText{2,36,10) == L
[y SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUTLNa
B SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT FNa
[SET SCREEN TEXT AT (15, 20) FROM SInput SCREENINPUT/CH
-
Qe oN
[tart of action list [Terminal: Connected

2 Navigateto the action in the Action Model where you’ d like to make your edit or after which you'd
like to add additional actions and highlight that action.

DEEEROI

=} SampleUTSComponent
CHECK SCREER for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEM TEAT AT (24, 20 FROM $input’SCREENINPUTLogin
?g SEMD KEY TRANSMIT
CHECK SCREEN for Expression: ScreengetText(8,11,9) == "Thank yvou"
T SENDKEYF1
CHECK SCREEN for Expression: ScreengetText{2,36,10) == "Guest Book™
¢ SET SCREEN TEXT AT (8, 20) FROM $Input/SCREENINPUT/LName
SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT/FName
SET SCREEN TEXT AT {15, 200 FROM $Input/SCREENINPUT /City
[SET SCREEN TEXT AT (15, 48) FROM $Input'SCREENINPUT/State
SET SCREEN TEXT AT (20, 48) FROM $input/SCREENINPUT jemail
T SEMNDKEYF1
CHECK SCREEM far Expression: Screen.getText{13,6,21) == "BackgroundForeground"
ﬁ MAP Screen.getText(5,12,219) TO $Output/SCREENINFOMSG1
& MAP Screen.getText(9,11,209) TO $Output/ SCREENINFOMSG2
ﬁ MAP Screen.getTextFromRectangle(14,45,21,53) TO $0utput’SCREENINFO/Products

UTS Components in Action 45

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomesred (Animation
will be discussed in further detail below).

Start Animation

Toggle Breakpoint

SEEFE2O I

= SampleUTSComponent
@ CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEM TEXT AT (24, 2) FROM $Input'SCREENINPUTLagin
T SEND KEY TRANSMIT
@ CHECK SCREEM for Expression: Screen.getText{8,11,9) == "Thank you"
T SEMND KEYF1
@ CHECK SCREEM for Expression: Screen.getText{2,36,10) == "Guest Book"
SET SCREEM TEXT AT (8, 200 FROM $input/'SCREENINPUTLName
SET SCREEN TEXT AT {6, 20) FROM $Input/'SCREENINPUT FName
SET SCREEN TEXT AT {18, 20) FROM $Input/SCREENINPUT /City
[SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT /State
SET SCREEN TEXT AT (20, 48) FROM $Input/SCREENINPUT /lemiail
T SEMD KEY F1

4 Click the Sart Animation button. The animation tools (in the Actions pan€’s toolbar) become
enabled.

5 Click the Step to Breakpoint/End button. The Action Model executes all of the actions from the
beginning of the Action Model to the breakpoint you set in step 3 above.

Step to Breakpoint/End

QDQEBE-R2OI

= SampleUTSComponent

@ CHECK SCREEM for Expression: Screen.getText(23,2,18) == "Enter your user-id"
SET SCREEMN TEXT AT (24, 2) FROM $Iinput’'SCREENINPUT Login

?g SEMD KEY TRAMNSMIT

@ CHECK SCREEN for Expression: Screen.getText(8,11,9) == "Thank you"

Ty SEND KEY F1

@ CHECK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book"

SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUT/LName

SET SCREEMN TEXT AT (6, 20) FROM $input/SCREENINPUT FName

SET SCREEM TEXT AT (15, 200 FROM $input/SCREENINPUTCity
[SET SCREEN TEXT AT {15, 48) FROM $Input’SCREENINPUT/State
SET SCREEM TEXT AT (20, 48) FROM $Input/SCREENINPUT 'email

46 UTS Connect User’s Guide

6 Pressthe Pause Button:

Pause

v

DHBE-2ON

(=} SampleUTSComponent
@ CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
Ty SEMD KEY TRANSMIT
@ CHECK SCREEM for Expression: Screen.getText(8,11,9) == "Thank you™
T SEND KEY F1

SET SCREEM TEXT AT (8, 200 FROM $input/SCREENINPUTLName
SET SCREEM TEXT AT (6, 20) FROM $input/SCREENINPUT FName
SET SCREEM TEXT AT (15, 200 FROM $Input/SCREENINPUT City
SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT State
SET SCREEM TEXT AT (20, 48) FROM $Input/SCREENINPUT /email

7 Inthe Component Editor tool bar, click the Record button.

Record button

W exteMd Composer: TestT27 [T27 Tesminal 7Component]
[Eile Edit Yiew Compoment Atsien Anime® Tools Window Help

UedEx»0JaAX~0B%0 <

user-id™

@ CHECK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book"

KB Inout Dt
<> MARCINF
€ LOGIN[FALEST
<> 3088 [C
£ > JOBIN(SALESTIMARLT WL
<> HELP [TEACH
<> RETACHOME
= > QUITA{EVE
£ Output Data
=L MARCOLT|
> syaiifUnieys HA200 49017 CORTMCE
- K BCREEN fr Eiession SCreompeText{,11,4p-="MARC™
et Tench{23.2.20) TO $0ulput MARCOUTPUTSYSINFO
£ TEXT AT (1, 15) FROM “JD"
HD KEY TRANSMIT
B, CHECK SCREEN for Fapression: Scraan.get Taxt(1,11,2p=="10"
BB SETECREEM TEXT AT 24, 48) FROM Hrpul BARCINPUTAMOBS
T SEND KEY TRANSMIT
o1 Sereenge Text{1,1 18-~ 0uTPuT-
O $Oupu MARCOUTPUTCOMPLETEJORS
/iy yous ane HOT in e JE menss, do the Tolwing
3 WhHILE SeraengatTe(1,11.2) = J0
< Loop Action =
| | 5 e e T | L'J
Fiany IReconsing

8 Edit the action to make any changes you wish to the current line by right-clicking on the action and
selecting Edit Action. Or, if you wish to add new actions, use Composer's drag and drop featuresto
add new Map actionsthat interact with the screen. The new actionswill be added directly under the

highlighted line.
9 Turn off recording. (Toggle the Record button.)
10 Test your component.

UTS Components in Action

47

Deleting an Action

The following procedure explains how to delete an action in a previously recorded session

> To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the right mouse button. Select Delete from
the menu. You may also highlight the line and press the Delete button on your keyboard.

P—

omMBER I
1|'§ SENCTEET TRANSMIT
@ CHECK SCREEMN for Expression: Screen.getText{8,11,9) == "Thank you"

T SEND KEY F1 New Action ’
@ CHECK SCREEM for Expression: Screen.getText(2,36,100=="0 . » +ion

SET SCREENM TEXT AT (8, 20) FROM $Input/SCREENINPUTANAN Disaple Action

SET SCREEM TEXT AT (6, 20) FROM $Input/SCREENINPUTIFNAN Toggle Breakpoint |
SET SCREEN TEXT AT (15, 20) FROM $Input/SCREENINPUTICIty Clear all Breakpoints
SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT/Sta| cut |

[SET SCREEN TEXT AT (20, 20) FROM $Input/SCREENINPUT phol Copy

SET SCREEM TEXT AT (20, 48) FROM $Input/SCREENINPUT/em Paste

Ty SEND KEYF1 M
[CHECK SCREEN for Expression: Screen.getText(13,6,21)=="f nd-.

Find Mext

£ MAP Screen.uetTexti5.12.219) TO $Outout/'SCREENINFOMSG1
Input /SCREEMINPUT /phone Replace. ..

Looping Over Multiple Rows in Search of Data

In the example above, the goal wasto sign a guest book and place some information from the terminal
into the Output DOM.

One of the items mapped was the product list. In real life, in order to map something like a product list,

you would want to have each product map into itsown node in an Output DOM. Thisrequiresaniterative
loop, for example a Repeat/While loop, which isexplained in detail in Chapter 8 of the Composer User

Guidein the section titled “ The Repeat While Action.” Often, in UTS components you will find that you
need to perform some form of looping in order to read the values from the terminal window. Make sure
you are very familiar with this chapter of the User Guide.

Below isan example of acompleted Action Model containing a Repeat/Whileloop that fillsin an Output
DOM with several values obtained from the terminal window. In the example above, you used drag and
drop to place all the values from the Product List into asingle pre-existing node in the Output DOM.
Here, each product has been placed init’s own node al ong with some sub-nodeswhich could also be used
as attributes.

48 UTS Connect User’s Guide

QEEREEQI
E CHECK SCREEM for Expression: Screen.getText({23,2,18) == "Enter your user-id"™
SET SCREEM TEXT AT (24, 2) FROM $input/SCREENINPUT Login
f-g SEMD KEY TRANSMIT
[E3 cHECK SCREEN for Expression: Screen.getText(s,11,9) == “Thank you™
T SEND KEYF1
E CHECK SCREEM for Expression: Screen.getText{2,36,10) == "Guest Book"
SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUT LName
SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT FName
SET SCREEN TEXT AT (15, 200 FROM $input/SCREENINPUT /City
SET SCREEN TEXT AT (15, 48) FROM $input/SCREENINPUT /State
SET SCREEN TEXT AT (20, 48) FROM $input/SCREENINPUT /email
T SEND KEYF1
[E3 CHECK SCREEN for Expression: Screen.getText(13,6,21) == "BackgroundForeground™
ﬁ MAP Screen.getText(5,12,219) TO $Output’SCREENINFOMSG1
&5 MAP Screen.getText(9,11,200) TO $Output/SCREENINFOIMSG2
g MAP Screen.getTextFromRectangle(14,45,21,53) TO $Output’SCREENINFOProducts
= G WHILE rownum<8 CREATE SCREENINFO REFRESENTIMG $Output/SCREENINFO/PRODINFO INDEXED BY rownum
[=}-Loop Action
f() CALL war prodname = Screen.getText{rownum+14,45,9);
ﬁ MAF prodname TO $SCREENINFO/ProdName
{3 CALL var gty = Screen.getText{rownum-+14,55,3);
&5 MAP gty TO $SCREENINFO/Quantity
{3 CALL var cust = Screen.getText{rownum+14,59,16);
g MAF cust TO $SCREENINFO/Customer

Testing your UTS Component

As mentioned previously, Composer includes animation tools that allow you to easily test your
component. Thereis also an Execution button on the UTS Component Editor tool bar, which allowsyou
to execute the entire Action Model and verify that your component works as you intend. While testing,
pay close attention to your Screen Wait Time valuesin all Check Screen actions to make sure they are
appropriate and that Set Screen Text and other actions work as intended.

UTS Components in Action 49

> To execute a UTS Component:
1 OpenaUTS Component. The UTS Component Editor window appears.

Execute button

r exteNd Composer: Unisys [UTS Terminal: SampleUTSComponent] . = ll
File Edit Wiew Component Action Animate Took Window Help BEE -8 x
DRE | yY00X70 BhR € Novell

@ SampleUTSComponenl}
B Input Data 0 x
=) <> SCREEMINPUT
<> Login coreffeifci
<> [Name Wanroe
<> FName harilyn
<> addr! WGM Studios
<> City Hollywood
<> State CA
<>7ip 90210
<> email normajeangghotmail.com
<> phone 123-555-1234
B Output Data O x
[} <> SCREENINFO l\
<> MEG1 This screen shows how CTi))}
<> MEG2 Pleage contact Core Techn - - .
<> Products BLACKBOXSGREENBOXTB F
(=} €3> PRODIMFO ' . Eiﬁqﬂ G I'
<>prodname |[BLACKBOXS ERSampleUTSComponent -~
<> Quantity 14 h CHECK SCREEN for Expression: Screen.getText(23,2,18)
- <><>C“5‘U’"E’ AMERICAM DIL CO. [B SET SCREEN TEXT AT (24, 2) FROM $Inpul/SCREENINPUT)
= PRODINFO
< >prodname |GREEMBOXT Ty SEND KEY TRANSMIT
<> Quantity 2 CHECK SCREEN for Exprassion: Screen.getText(8,11,9) =
<> Customer | AMERICAN QIL CO. 1‘:‘3 SEND KEY F1
=2 <><PEOD'NF0 CHECK SCREEN for Expression: Screen.getText(2,36,10) -
g gf:r;‘;‘t;”e E'QU\C KBOX4 SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUTI
<> customsr |ARGENTINE CORP SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUT
(=} €3> PRODIMNFO L | ET SCREEN TEXT AT {15, 20) FROM $Input’SCREENINPU1
<>prodname | GREENBOX4 SET SCREEN TEXT AT (15, 48) FROM $Input'SCREENINPUT |
DA S v | 3 S B

Janimation stopped

[Terminal: Connected

2 Select the Execute button. All the actionsin the Action Model executein order. Thisisan excellent
way to determine whether the Screen Wait times you indicated in your Check Screen Actions are
accurate or if you require additional Check Screensin your Model. If the component executes
successfully, a message appears as follows.

£

Execution completed

3 Click OK.

After executing the component, you may want to doubl e check the contents of your DOMsto be sure all
of the appropriate datamappings occurred as expected. To make all dataelementsvisible, select Expand
XML Documents from the View menu. This expands all of the parents, children, data elements, etc. of
the DOM trees, so that you can easily seetheresults of execution of the component. If your execution had
aproblem, you can use the Animation tools to pinpoint where the difficulty occurred. This processis
described in the next section.

50 UTS Connect User’s Guide

Using the Animation Tools

In the Action Model, you'll find animation tools that allow you to test a particular section of the Action
Model by setting one or more breakpoints. The Toggle/Breakpoint tool was introduced briefly inthe
section above, “ Editing or Adding to an Existing Action” on page -45, but al the animation toolswill be
exploredin more detail bel ow. Using these tools, you can run through the actionsthat work properly, stop
at the actions that are giving you trouble, and then troubleshoot the problem actions one at atime.

Thefollowing procedureis a brief example of the functionality of the animation tools. For a complete
description of all the animation tools and their functionality, please refer to the exteNd Composer User's
Guide.

> Torun aUTS Component using Animation Tools:

1

Open a UTS Component. The component appears in the UTS Component Editor window.

NOTE: Animation and Recording are mutually exclusive modes in the component. In order to
record during animation, you must either pause, or stop animation and then turn on record mode.

Click the Sart Animation button in the Action Model tool bar, or press F5 on the keyboard. All of
the tools on the tool bar become active, and a connection is established with the host. The Native
Environment Pane makes the terminal connection..

Click the Sep Into button. The first Check Screen action becomes highlighted.
QEFREE 0

@ HECHK SCREEN for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Iinput/SCREENINPUT Login

?g SEMD KEY TRANSMIT

@ CHECK SCREEM for Expression: Screen.getText(8,11,9) == "Thank yvou"

T SEND KEY F1

@ CHECK SCREEM for Expression: Screen.getText{2,36,10) == "Guest Book™

SET SCREEM TEXT AT (8, 200 FROM $input/SCREENINPUT LName

SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUT FName

[SET SCREEN TEXT AT £15. 200 FROM $Innut/'SCREENINPUT City

Click the Sep Into icon again. The Check Screen action (above) executes and the next action
becomes highlighted.

Click the Sep Into button repeatedly to execute actions one-by-one.

Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) as desired to control the execution
of the component. Note that you can set a breakpoint at any time during execution by clicking the
mouse on an action line and hitting F2 or using the Set Breakpoint button.

Once animation is complete, the following message appears.

Animation completed.

UTS Components in Action 51

Data Sets that Span Screens

UT S-based computing differs from other types of computing (including other terminal-based
interactions) in the following ways:

+ Retrieval of data sets may require repeated roundtrip communications with the Unisys host. One
query may bring many screens’ worth of data, which must be captured through multiple “ page
forward” commands, etc.

+ Information that spans screens may be (and often is) partially duplicated on the final screen.

Thesefactors can make automating aUT Sinteraction (viaan Action Model) challenging. Suggestionson
how to deal with these issues are given below.

Multiple Screens

A common requirement in UTS computing is to capture a data set that spans multiple screens. It is not
always obvious how many screens’ worth of datathere may be. In caseswhere the screen containsaline
that says something like “Page 1 of 4,” it's a straightforward matter to inspect the screen at the point
where this line occurs (using one of the ECM A Script Screen-object methods described earlier, in the
section titled “ UTS-Specific Expression Builder Extensions” on page -31) and construct aloop that
iterates through all available screens. But sometimes it’s not obvious how many screens’ worth of data
there may be. In some cases, the only clue that you have may be the presence of a“More” command (for
example) at the top or bottom of the screen, which changesto “Back” (or “End,” or some other message)
when you reach the final screen. In other cases, you may be told how many total records exist, and you
may be able to determine (by visual inspection) how many records are displayed per screen; hence, you
can calculate the total number of screens of information awaiting you. There may bethe presence of athe
+ signin the Action field which changes to “ Return” when you reach the final screen.

The point isthat if your query resultsin (potentially) more than one screen’s worth of information, you
must be prepared to iterate through all available screens using a Repeat/While action, and stop when no
additional screensareavailable. Youwill haveto supply your own custom logic for deciding whento stop
iterating. Your logic might depend on one or more of the following strategies:

+ Determine the total number of screensto visit by “scraping” that information, if available, off the
first screen.

+ Divide“total records’ (if thisinformation is available) by the number of records per screen (if this
is known in advance), and add one.

+ Visit screens one-by-one and break when a blank record is detected.
+ Visit screens one-by-one until a specia string (such as“End” or “Go Back”) is detected.
+ Visit screens one-by-one until two consecutive identical screens have been encountered.

Obviously, the strategy you use will depend on the implementation specifics of the host applicationin
question.

Dealing with Redundant Data

52

InUTS host applications, it'scommon for the final screen of amultiscreen result set to be* padded” with
datafrom the previous screen. In this way, the appearance of afull screen is maintained.

Consider the following two screen shots. The top one shows thefirst screen’sworth of information after
transmitting a command that returns two screens of information. Notice the + sign in the Action field of
the first screen indicating that there is more data to follow.

UTS Connect User’s Guide

Core Technology SO 4, te02

Pressing the Transmit Key (or Enter), brings up the second screen. There are several thingsto notice
about this second (and, in this case, final) screen:

+ The+signinthe Action: field has been replaced by the word “ REturn”. Sending the Transmit Key
here would return you to the Job and Task Display Menu.

+ The second screen shows exactly the same records as the first one, except for job number
2111/2111, which drops off to make room for four of the 1621 jobs because the second screen is
limited to listing 17 lines of jobs. (The first screen had only 14 lines of data, because there were
three lines worth of header information). The majority of this screen is showing us redundant data.

+ Another + sign appears on the screen, this time in marking the fourth-to-last job on the screen. The
system provides us with a convenient way to see where the list splits and where the data ceases to
be redundant.

Core Technology

In most cases, you will not want to capture this sort of redundant data. Fortunately, the demo system used
here has made it fairly simple to detect and reject redundant records by placing the + sign at the first
column to the left in the list where the data begins to be new. This can be used along with ECM A Script
as an easy and convenient way of maintaining unduplicated lists. The basic stepsto do thiswould be:

+ Enter aRepeat/While loop checking the name of the screen.

+ Create a Switch Statement depending on whether the screen is continued or not.

+ Within each case of the Switch Statement, enter a Repeat While loop and fetch each record to place
it into a variable as shown in the example above.

+ After theloop is complete, send a Transmit Key to go on to the next screen.

UTS Components in Action 53

Tips for Building Reliable UTS Components

The following tips may be helpful to you in building reliable UTS Components.

+ Alwaysfollow a Set Screen Text Action with a Send Key Action.
+ Alwaysfollow your Send Key Actions with a Check Screen Action.

+ Remember that the default Screen Wait values used in Check Screen actions are set when you
initially created your Connection resource. To change the default Screen Wait time, you must
change the property of the Connection Resource.

+ Remember also that Screen Wait timeout val ues may need to be increased, for load-sensitive
applications. Careful testing will reveal these sorts of problems.

+ Becareful when editing a previously recorded Action Model. Deleting or modifying a single Set
Screen Text Action can (and will!) throw your entire Action Model off course.

Using Other Actions in the UTS Component Editor

In addition to the Set Screen Text, Send Key and Check Screen actions, you have al the standard Basic
and Advanced Composer actions at your disposal as well. The complete listing of Basic Composer
Actionscan befound in Chapter 7 of the Composer User’s Guide. Chapter 8 containsalisting of the more
Advanced Actions available to you.

Handling Errors and Messages

Intesting a UTS Component, you may encounter errors relating to Set Screen Text, Send Key and/or
Check Screen actions. Theresult isadialog similar to the following:

Error executing component: Unisys Component Exception {0}

4002001

OK

This section discusses possible error conditions and how to deal with errorslike these.

Check Screen Errors

54

Most of the errors you are likely to encounter at execution time will be related to Check Screen actions.
Generally speaking, your Check Screen errors will be timeout errors which means that the go-ahead
criteriayou specified in the Check Screen setup dialog were not met within the Screen Wait imeout
period. Clicking on Detailsintheerror dialogwill verify this. Therefore, you should first try to determine
whether slow host response might be the real problem (in which case, the solution isto increase the
Screen Wait time for the Check Screen action in question). If the error still occurs after the Screen Wait
time has been increased, then you can be sure the error is due to an incorrect or inappropriate go-ahead
condition in your Check Screen action.

UTS Connect User’s Guide

“Screen Check Expression {0} was evaluated as false”

Thiserror happens when the ECM A Script expression you used for your Check Screen go-ahead happens
to evaluate as false at execution time. Once again, it'simportant to realize that this sort of error can be
triggered simply on the basis of slow host response (timeout). When the host is slow to respond, it means
that your ECMA Script expression will be evaluated on the basis of whatever isin the screen buffer as of
the moment of timeout. If no data (or insufficient data) have arrived, the expression is bound to evaluate
asfase

To fix this sort of problem, either increase the Screen Wait time for this Check Screen action (if you
suspect that the problem is host latency) or try modifying the logic in your ECMA Script expression.

Set Screen Text Errors

Errors generated by Composer from Set Screen Text action will, in general, be rare. Thisisbecause you
aregiven agreat deal of leeway inyour ability to send whatever you like to the screen. Where you will
more often runinto troubleis on the application side. Unisyshostsare very particular about theinput they
will accept. If thetext you send in your Set Screen Text action is not what the host expects, you will
receive host-side errors and the rest of your Composer Action model will not proceed as expected.The
way to avoid problems hereisto make surethat for every Set Screen Text/Send Key action combination,
there is always a corresponding Check Screen action.

Finding a “Bad” Action

When you have alarge Action Model (containing dozens or hundreds of Set Screen Text, Send Key and
Check Screen actions), smply locating the action that’s responsible for an error can be achallenge. One
way to find the problematic action is to:

1 Select and Copy some of thetext in the error dialog. (Click the Details button if need be, to expose
the full error description. Highlight the relevant text, such as cursor coordinates. Then use Control-
C to Copy.)

2 Click inside the Action Model.

3 UseControl-F to initiate a search.

4 Pastethe error text into the search dialog.
5 Execute the search.

Of coursg, if you have multiple Check Screen actionsthat are based on identical go-ahead criteria, the
foregoing technique won't necessarily be helpful. If that’s the case, set a breakpoint at the midpoint of
your Action Model, and run the component. If the error doesn’t occur, move the breakpoint to a spot
halfway between the original breakpoint and the end of the action list. (Otherwise, if the error does
happen, set the breakpoint at a spot one quarter of the way down from the top of the action list.) Run the
component again. Keep relocating the breakpoint, each time halving the distance between the last
breakpoint or the top or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy, you should be able to
debug an Action Model containing 128 actionsin just 7 tries.)

UTS Components in Action 55

Performance Considerations

56

You can perform second-based timing of your Action Model’sactions by wrapping individual actions (or
block of actions) intiming calls.

> To time an Action:

1 Click into the Action Model and place a new Function Action immediately before the action you
wish to time. (Right-mouse-click, then New Action > Function.)

2 Inthe Function Action, enter an ECMA Script expression of the form:
startTime = Number (new Date)

3 Insert anew Function Action immediately after the action you wish to time.

4 Inthe Function Action, enter an ECM A Script expression of the form:
endTime = Number (new Date)

5 CreateaMap Action that maps endTime - startTime to atemporary DOM element. (Right-
mouse-click, New Action > Map.)

6 Runthe Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the overwhelming
majority of execution timeis spent in Check Screen actions. Two implications of thisworth considering
are

+ ECMAScript expressions (in Map and/or Function actions) will seldom, if ever, be a performance
consideration for the component as awhole.

+ Overal component performance rests on careful tuning of Screen Wait timeout values in Check
Screen actions.

Finally, remember that testing is not truly complete until the depl oyed service has been tested (and proven
reliable) on the app server.

For additional performance optimization through the use of shared connections, be sure to read the next
chapter on Logon Components.

UTS Connect User’s Guide

Logon Components, Connections, and
Connection Pools

This section discusses certain features available in the UTS Connect designed to maximize performance
of deployed services.

About UTS Terminal Session Performance

The overall performance of any service that uses back-end connectivity isusually dependent on thetime
it takes to establish a connection and begin interacting with the host. Obtaining the connectioniis
“expensive’ interms of wait time. One strategy for dealing with thisis connection pooling, a scheme
whereby an intermediary process (whether the app server itself, or some memory-resident background
process not associated with the server) maintains a set number of preestablished, pre-authenticated
connections, and oversees the “ sharing out” of these connections among client apps or end users.

Connection pooling overcomesthelatency involved in opening aconnection and authenticating to ahost.
But in terminal-based applications, a considerable amount of time can be spent “drilling down” through
menu sel ections and navigating setup screensin order to get to the first bonafide application screen of the
session. So even when connections are reused through pooling, session-prolog overhead can be a serious
obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a special kind of
component (called alogon component) that can maintain an open connection at aparticular “drill-down”
point in aterminal session, so that clients can begin transactions immediately at the proper point in the
session.

When Will | Need Logon Components?
Logon Components are useful in several types of situations:

+ When you have aneed for multiple tiers of pooling based on multiple security challenges within
your system. (For example, users may need one set of logon credentials to get into the network,
another to get into the mainframe, and another to get into database.) Serial log-in requirements may
dictate the use of multiple logon components.

+ When your service needs stateful “session-based” connections.

+ When you need the performance advantages available through connection pooling.

If performance under load is not a high-priority issue and your connectivity needs are relatively
uncomplicated, you may not need to use Logon Components at all. But there is no way to know if
performance is adequate merely by testing services at design time, on adesktop machine.

Logon Components, Connections, and Connection Pools 57

Components and services built with the UTS Component Editor may appear to execute quickly at design
time (in Animation Mode, for example). But in real-world conditions—which is to say under load, with
dozens or even hundreds of requests per second arriving at the server—session overhead can be a
significant factor in overall transaction time. The only way to know whether you need to use the special
performance enhancement features described in this chapter isto do load testing on a server, under test
conditions that mimic real-world “ worst case” conditions.

Connection Pool Architecture

58

When you install the Connect for UTS, three types of Connection Resources are added to the Connection
creation wizard:

+ UTS Connection

+ aUTS MultiBridge Connection

+ UTSLogon Connection (henceforth referred to as a Logon Connection)

The UTS MultiBridge Connection is a server version that minimizes the number of connections going
back to the host and a so contains added security. The UTS Connection isatrue terminal connection and

(when used by aUTS component) can establish a session with ahost system. Thisisthe connection-type
that has been throughout this Guide.

UTsS uTs it ams

Terminal o Connection |—-» e
Component Resource | | WM

Component Connection Host

The UTS connection resource is designed to make an individual connection to the host on an as-needed
basis. The connection is made just-in-time and discarded as soon asthe client isdone. It isnot reused in

any way.

The Logon Connection, on the other hand, isdifferent. It definesapool of User IDs and passwords, each
of which can make its own connection. The Logon Connection also servesasan indirection layer to allow
clientsto connect to the host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon Component. (A Logon
Connection always uses a L ogon Component to get to the actual connection.) The architecture is shown
in the graphic below.

UTS Connect User’s Guide

UTsS
Component

Logon
Connection

Logon
‘ Component

Connection
Resource

A Connection Resource is always required in order to get to the host. (Thisistrue for any Composer
service that uses UTS components.) For simplicity, this diagram shows the Connection Resource going
directly to the host; in the real world, there may be intervening del egation layers for security purposes.

The Logon Component contains Actions (an action model) designed to find a particul ar screen of interest
in the host program. This drill-down location is the effective entry point of the transaction for any
upstream process that uses this Logon Component. You can think of the Logon Component as a go-
between between the physical connection (represented by the Connection Resource) and the logic layer
(represented by the UTS Component itself.

In order for aUTS Component (at the top of the diagram) to use a Logon Component, it needs to enlist
the aid of a Logon Connection resource. The Logon Connection is the bridge betweenthe UTS
Component and the L ogon Component.

The kinds and responsibilities of the various objects discussed above are summarized in the following
table.

Object Role

UTS Connection Allows a connection to be established with a host system.

Resource

Logon Component Specialized type of component in which the action model contains Logon,

Keep Alive, and Logoff action blocks. This component can maintain a
connection at a particular launch screen in a host program.

Logon Connection Specialized type of Connection Resource that associates a pool of
UserlDs and passwords with a given Logon Component type. At runtime,
connections are established for client processes on demand (and reused),
with one Logon Component instance per connection. Every connection in
the pool provides ready access to a given point (a particular launch
screen) in the host program, thanks to the associated Logon Component
(see above).

UTS Terminal Contains the action model that comprises the business logic for a
Component particular UTS interaction (or transaction).

Logon Components, Connections, and Connection Pools 59

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection resource in that it manages
pooling (the sharing of connection instances and L ogon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open) connections at runtime, it
also increases the effective bandwidth of a deployed service. Consider the simple case where you' ve
designed a UTS component that uses aregular connection resource. In creating the connection resource,
you will have specified a Userl D and password for the resource to use so that at runtime, the component
can loginto the host. When an actual running instance of your component is using that connection, no
other instance of the component can log in to the host using that same set of credentials. The bandwidth
of your service islimited to one connected instance at atime.

With a Logon Connection, on the other hand, numerous host connections can be maintained in a“live”
state so that multiple instances of your component can access the host (each on its own connection)
without waiting. Throughput is dramatically increased.

The diagram below shows one possible runtime case where three component instances (two instance of
UTS Terminal Component A and one instance of UTS Terminal Component B) are executing on the
server. Instance 1 of Component A isusing UserID ‘E’ to obtain a connection. This component hasits
own dedicated instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and is relinquishing its connection (established
through credentials defined by UID ‘F’). Note that because connection pooling isin effect, Component
B’s downstream resources (its Logon Component instance, M2, and its Connection instance, S2) are not
simply discarded; they remain live. As aresult, Terminal Component A2 is ableto obtain (reuse) the

M 2/S2 resource instances that were previously held by Terminal Component B.

TS Terminal

Logon T

Component &, [g, g Connection D c""uig_“i'z“ >

Connection Paool
TS Terminal
ComponentB | oype

Connection 5,
U0 G Inactive Host: 7

UTSTerminal |Reuse UID H Inactive
Component &; ['UIDF \\Q

In this diagram, Logon Connection D is associated with four connections based on four UIDs (user IDs
or credentials: A-thru-F). Oneisinuse; another (UID ‘F') isalive but not being used; and two areinactive
but available (i.e., valid UIDs have been assigned, so these two connections can be made live at any
time).

How Many Pools Do | Need?

60

It's possible for several different UTS components to draw from the same connection pool. It's also
possiblefor different componentsto draw from different pools. Thismeans different L ogon Connections.

Animportant factor in deciding how many Logon Connection resources (in effect, how many pools) your
service needsis the number of different start screens (or entry point screens) needed by the various

componentsin your project. Suppose Terminal Component A needs to begin itswork at a particular

starting screenin ahost application, but you' ve also designed another component—Terminal Component
B—that needsto start on adifferent screen. Components A and B will need separate L ogon Connections,
and the separate L ogon Connections will point to separate Logon Components. (In any given connection
pool, Composer objectsare shared in such away that every user of the pool must start at the same screen.)

UTS Connect User’s Guide

Pieces Required for Pooling

The combination of aL ogon Connection, a Logon Component, and its Connection Resource form the
basis of a connection pool. Starting from the host layer and working up the chain:

+ The Connection Resource defines the most basic parameters necessary for establishing a
connection with the Unisys host. When connection pooling is in effect, runtime instances of this
object are kept alive and reused.

+ TheLogon Component defines the set of steps (actions) necessary to get to a particular entry point
in the host program. (At runtime, an instance of this component will actually carry out those steps
in order to arrive at, and maintain ready-to-use, a particular screen location in the host program.)
When connection pooling isin effect, instances of this object are kept alive and reused.

+ TheLogon Connection is a specia type of resource that contains all the information needed to
define a connection pool. This resource is designed to encapsul ate pool-management info and does
not establish host connections directly; instead, it delegates those responsibilities to the Logon
Connection (which delegates them, in turn, to the appropriate Connection Resource).

How Do | Implement Pooling?

To create the various pieces required for pooling, you'll go through the following basic steps (each of
which will be discussed in greater detail in the sectionsto follow):

1 First, you'll create abasic UTS connection resource, as demonstrated in Chapter 2 of this Guide.

2 Next, you'll create aLogon Component that uses the connection resource defined in Step 1. As part
of this process, you'll create an action model designed to navigate to a certain point in the host
program.

3 Youwill create aLogon Connection resource, which is a specialized type of connection resource
that relies on aLogon Component (from Step 2) to make the basic connection (through the resource
defined in Step 1).

4 Finadly, you'll create aUTS Terminal Component and associate it with the Logon Connection
resource of Step 3.

These steps are described in detail starting with the discussion in “ Creating a Connection Pool” further
below. Before going to that section, however, you should become familiar with the design principles
behind the Logon Component (and also the Logon Connection). We' |l start with the Logon Component,
sinceit'simpossible to create a L ogon Connection without using a Logon Component.

The UTS Logon Component

The Logon Component is a special type of component: It has an Action Model, yet can beused asa
connection resource as well. The Action Model of thistype of component is designed to manage a
connection that will be used by multiple UTS Terminal Components. In most respects, the Logon
Component isthe same asa UTS Terminal component. The differences are:

+ InalLogon Component, the Action Model is organized around connection-management tasks.
Those tasks are implemented via special actions: the Logon Action, KeepAlive Action, and L ogoff
Action.

+ A Logon Component is not invoked directly by another component or service. Itsinvocation is
under the control of aLogon Connection.

NOTE: A Logon Component must and can only be used in conjunction with a Logon Connection.

Logon Components, Connections, and Connection Pools 61

Instead of calling the Logon Component directly, using (for example) a Component Action, you will
associate the Logon Component with a special connection resource called a Logon Connection. When
your UTS Terminal Component executes, it executes viathe Logon Connection, which in turn executes
the Logon Component.

Logon, Keep Alive, and Logoff Actions

The Logon Component provides several screen-management capabilities that are important factorsin
overall performance. These capabilities are implemented in terms of Logon, Keep Alive, and L ogoff
actions:

+ Logon Actions—These actions navigate through the host environment and park at a desired
launch screen in the host system. The connection is activated using Userl Ds from the pool. The
UTS Terminal components that subsequently reuse the connection have the performance benefit of
aready being at the launch screen and won't incur the overhead of navigating to the launch screen
asif they had comein under their own new session.

+ Keep Alive Actions—These actions do two important tasks. First, they prevent the host from
dropping a connection if it is not used within a standard timeout period defined by the host.
Second, these actions must insure that the connection is always positioned at the “launch screen in
the host, even after performing the Keep Alive actions needed to prevent the connection from
dropping (the first important task).

+ Logoff Actions—These actions exit the host environment in a manner you prescribe for all the
connections made by User | Ds from the pool, when a connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For now, it’'s enough to know
that these three action groupings are created for you automatically when you first create aLogon
Component. Note the (empty) Logon, Keep Alive, and Logoff action blocksin the action model shown
below:

[=}-UTSLogon
[} @ LOGON
= [Ed) KEEP ALIVE
Keep Alive Actions
=) @mE LOGOFF

Log Off Actions

LOGON Actions

62

Actions you placein the LOGON group are primarily concerned with signing into the host security
screen and then navigating through the host menu system to alaunch screen where each UTS
component's Action Model will start. It isimportant that any UTS component using aL.ogon component
be able to start execution at the same common screen. Otherwise, the performance gains of avoiding
navigation overhead won't be realized and more importantly, the odd UTS component won't work.

You can create actions under the Logon Actions block the same way as you would in an ordinary UTS
Terminal Component—namely by using the Record feature to create (in real time) whatever actions are
necessary in order to enter sign-on info such as User ID and Password (as well as your initial menu
choicesto arrive at the launch screen).

UTS Connect User’s Guide

NOTE: Remember to use the User IDs and Passwords from the Logon Connection Pool. (See the
discussion in “Creating a Logon Connection using a Pool Connection” below.) To do this, you need to map
the two special system variables called USERID and PASSWORD to the appropriate fields on the screen.
By specifying these two variables, you make it possible for exteNd Composer to automatically locate and
use values from the next active and free Pool slot.

Thelaunch screen isacommon point of execution for all the UTS Terminal Componentsthat usethe User
ID pool provided by aL ogon Connection. The Logon actionsin aL.ogon Component (which are executed
only once when anew connection is established) let the calling component—your UTS Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and end with a Check Screen
Action as shown in the screen below.

DEBE2O I
(=} UTSLogon
[=)-amEy LOGON
(=} Log On Actions
@ CHECK SCREER for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEM TEXT AT (24, 2) FROM "corefcifci™
?g SEMD KEY TRAMSMIT
@ HECK SCREEN for Expression: Screen.getText{8,11,9) == "Thank you"

Thefinal Check Screen action in the Logon block guarantees that control is not turned over to the UTS
Component before the screen of interest has arrived in the connection. Without this, the UTS Component
could start at an invalid screen, throw an exception, and possibly corrupt a transaction.

NOTE: You may notice when animating a Logon Component that the ending Check Screen is skipped.
This is normal design-time behavior. In a production environment , the actions in a Logon Component
always execute in an interleaved manner with a UTS Terminal Component. Animating a Logon
Component from start to finish actually creates an abnormal sequence of events that would result in two
Check Screens being processed in succession, which is not allowed.

The performance benefit comesinto play asaresult not only of connection reuse but launch-screen reuse.
For example, if aUser ID pool of three entriesisfully used and (ultimately) reused by the execution of a
component fifteen times, the overhead of navigating to a menu item that executes the transaction of
interest will occuro nly three times. Likewise, there will only be three logons to the host because the
Logon actions at the top of aL.ogon Component are executed only once—when a new connection is
activated (not when it isreused). Thisis key to obtaining maximum performance in a high-transaction-
volume production settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors that may be
recoverable. Otherwise, the UserlD trying to establish the failed logon will be discarded from the pool,
decreasing the potential pool size. The pool size will remain smaller until you manually reset the discarded
connections using the exteNd Composer Enterprise Server Console for UTS. Refer to “Managing Pools”
in this Chapter for more details.

Keep Alive Actions

The KEEP ALIVE block iswhere you will place actions that “ping the host” in whatever way necessary
to keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending an Attention key, such as <Transmit>, to the host at some
specified interval. However, if after sending the Attention key the screen changes to some screenthat is
different than the launch screen, you must be sureto return the L ogon Component to the launch screenin
the Keep Alive section. Failure to do so will leave the next component at an incorrect screen, causing it
tofall.

Logon Components, Connections, and Connection Pools 63

The Pool Info dialog of the Logon Connection setup dialog (see discussion in “ Creating a L ogon
Connection using a Pool Connection” below) iswhere you control how often the Keep Alive actionswill
execute. If you specify in your Logon Connection pool that you would like to keep a free connection
active for three minutes, but the host will normally drop aconnection after two minutes of inactivity, you
can specify keyboard actions to take place at 30-second intervals to | et the host know the connection is
still active.

Pool size specifies the fotal number of connections that can be established. Keep
Alive, Inactivity and Entry wait parameters set the imings associated with aach
connection. Selecting “Override UID/PWID" allows you to specify different logons. The
userid and password from the base connection will be used if no override i3
specified. Specify Reuse Connection tn varif that the nrnnar Serean state is present

hefore a connection can be reused. Keap Alve (mnutes) t

i

% i

Kesp Alive iminutes) |2

Inactivity Lifstime (minutes) |ECI

Entry wait (seconds) [30

User ID [

Passward [
Owerride UID/PWD [#]) | Set userids. ..
Poal Hest Conmection IDs [
Use Sequential Cannections [

Rewre cormection only D
if expression is true

[O,] [Cancel]

Keep Alive actionswill be executed multiple times, at intervals defined by the Keep Alive parameter
defined on the Pool Info dialog of the Logon Connection.

The Inactivity Lifetime parameter (just below Keep Alive on the Pool Info dialog) tells Composer how
long it should wait, in the event the connection is not actually used by a UTS Terminal Component,
before relinquishing the connection.

NOTE: The execution of the Keep Alive actions of a Logon Component will not cause the Inactivity
Lifetime clock to reset in the Logon Connection. Only a UTS Terminal component’s execution will reset the
Inactivity Lifetime. In other words, if a live connection is never actually used (but is merely kept alive by
“Keep Alive” actions), then it will time out according to the Inactivity Lifetime value in the Pool Info dialog.
But if the connection is used (by a UTS component) before it times out, the timer is reset at that point.

Thelast action inside a Keep Alive block should be an empty but “enabled” navigation action. If a user
disables thislast action, animation will not work properly due to two consecutive empty navigation
actions occurring. For example, if an actionin Logon and the first action in Keep Alive are disabled, an
€rror occurs.

Maximizing Performance with Keep Alive Actions

64

Check Screen actions must occur at the beginning and end of the Keep Alive section.

Not only must the Keep Alive section prevent the connection from closing, but it must make sure that the
proper launch screen is present when the execution is completed. Therefore, the first Check Screen
checks to make sure that during the time the connection was available but not in use, an unexpected
screen didn’t arrive from the host. The ending Check Screen prevents the premature release of the
connection to the next UTS Component. See below for atypical Keep Alive block.

UTS Connect User’s Guide

Logoff Actions

= KEEP ALIVE
=} -Keep Alive Actions

f'_/ In case an unexpected screen arrived during the Keep Alive Sleep time,
_,{/ check for the logo before executing the keep alive action.
@ CHECHK SCREEN for Expression: Screen.getText(2,5,15) == "Core Technology™
% SEMD KEY TRAMNSMIT
J## Do another check screen to make sure we are still in the right place
f/ This is skipped during run-time to prevent two check screens in a row
@ CHECHK SCREEN for Expression: Screen.getText(2,5,15) == "Core Technology™

L ogoff actions essentially navigate the User ID properly out of the host system after atimeout.

L ogoff actions execute once for a given connection, and only when a connection times out (i.e. the
Inactivity Lifetime expires) or the connection is closed viathe UTS Server console.

Ina“best practices” sense, it’svitally important to make Logoff Actions bulletproof. If an exception
occurs during execution of the L ogoff actions, exteNd Composer will break its connection with the host,
freeing the UserI D in the pool. But the UserID may still be active on the host. Until the host kills the
UserID (from inactivity), a subsequent attempt by the pool to log on with that UserID may fail, unless
you’ ve coded your logon to handle the situation. Logon failures cause the UserI D to be discarded from
the pool, reducing the potential pool size and performance overall. Aswith Logon and Keep Alive
actions, the way to guarantee you are on the proper screen at the end of the logoff isto end with a Check
Screen.

Logon Component Life Cycle

Each time aUser ID is activated from the Logon Connection Pool, an instance of the corresponding

L ogon Component is created and associated with that User ID. Then the L ogon actions are executed until
the desired launch screen isreached. At thispoint the UTS Terminal component execution begins. When
it isfinished another UTS Terminal component using the same L ogon Connection may begin executing,
starting at the same launch screen.

If no other component requests the connection, then the connection-instance in question enters an active
but free state (an “idle state”) defined by the Inactivity Lifetime and KeepAlive settings on the Pool Info
dialog of the Logon Connection. If the Keep Alive period (e.g., 2 minutes) is shorter than the Inactivity
Lifetime (e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep Alive actionswill be
executed, preventing a host timeout and dropped connection; and the Keep Alive Period begins anew.

A Logon Component’s execution lifetimeis dependent on the activity of the L ogon Connection that uses
it. Aslong as one entry in the Logon Connection poal is active, then one instance of the Logon
Component will bein memory in alive state. A Logon Component instance will go out of scope (cease
executing) when the last remaining pool entry expires due to inactivity. The only other way to stop
execution of aLogon Component isthrough the UTS Console on the Server.

Logon Components, Connections, and Connection Pools 65

About the UTS Logon Connection

The Logon Connection is not atrue connection object like aUTS Connection Resource, but a pointer to
aL.ogon Component (whichinturn connectsto ahost either through a conventional Connection Resource
or yet moreintervening Logon Connection/L ogon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes User IDs and
passwords, plus pool settings involving the time interval between retries on discarded connections, etc.
Another function of the Logon Connection isthat it ensures the use of different instances of the same
Logon Component for all the User IDs for which connections are made.

Thedialogsyou’'ll usein setting up apool of User IDsfor aL ogon Connection are showninthefollowing
set of illustrations. Arrows denote the buttons that |ead to continuation dialogs.

i

Select 3 UTS Logon Component for 3ch pool antry's connection. Each UTS Companent using This Logon
CONncEon will Uuse a prviously §5LbISREd CONNECEON Of CrEabe 3 NEW CONNECBON based on pool
information specilied in Poolinf dislog. Checking Defsull makes this Connection the infial selechon when
requesting a UTS Logon Component

Connection Type [

Connect Via [UTELEgN

Pk Connectionss. @ | Po Iréa]

B b 00! Tnfo x|
Fool size specifies e total number of fions that can be established. Keep
Alive, Inactivity and Bniry wait parameters set the limings assaciated with each
connection. Seleci@ “Override UIDVPYWE® allows you to specify different logons. The
userid and pas: from the hase connection will be used if no ovemide is

specified. Specify Reuse Connaction to verify that the proper Screen state is present
before a connection can be reused.

Poal size |U

Keep Alive (minutes) |2

Inactivity Lifetime {minutes) |30

Entry wait (secands) [30

User 10 [

Password [

Override UID/PWD ([

TR RS NP E Y st Pool Userid i and Passwords x|
Use Sequential Connections (] o G ﬁ
Rewse: oy O [User D | Password |
if expression is true || pon 00 0 0
i =
5 Gocegn e
4 Ringa
ok) Gamcet)

Every Logon Connection is associated with a given Logon Component. |n addition, the Logon
Connection provides the following User 1D pool functionality:

+ It alowsthe specification of multiple User IDsin advance ensuring that clients are able to secure a
connection when one is needed

+ Itdlowsthereuse of aUser ID/connection onceit is established to eliminate repeated user
authentications and disconnects

+ Itdlowsasingle User ID to use multiple connectionsif thisis supported by the host system
« It keeps a connection active to prevent host timeouts during inactive periods

+ Itletsyou specify when to remove a connection from the active pool

+ It setsatimeout period to use for afully active pool to provide afree connection

+ Itletsyou specify error handling dependent on the state of the Logon Component used by the
Logon Connection

66 UTS Connect User’s Guide

Many-to-One Mapping of Components to Logons

In order for multiple instances of aUTS Terminal component or different UTS Terminal components to
use athe same Logon Connection, the following conditions must be met:

1 Allthe UTS Terminal components must use the same Connection Resource (thereby sharing the
Unisys Host, Port and data encoding parameters)

2 All the UTS Terminal components must have a common launch screen in the host system from
which they can begin execution (see “ Creating a Logon Component” below for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multipleloginsfrom asingle user ID, you may have circumstances
where you wish to pool the single User ID. This can be accomplished by performing the following steps:

+ Specify aUser ID/Password in the Connection Resource used by the Logon Component.

+ Onthe Pool Info dialog of the Logon Connection, specify a Pool Size greater than 1.

+ Do NOT check the Override the UID/PWD setting in the Pool Info dialog of the logon
Connection.

These stepswill cause each pool slot to usethe User ID and Password contained in the Connection object
and not use the user IDs from the pool.

Creating a Connection Pool

Overview

When creatingaUTS Terminal component, you normally first create the Connection object it needsfirst.
Similarly, when creating the objects comprising a Connection Pool, you must create certain objectsfirst,
starting (in essence) at the host and working your way backwards to the UTS Terminal Component that
will access the host.

A typical sequence of stepsfor creating a Connection Pool is:

Step One:
Create a basic host
Connection Resource

Step Two:
Create Logon Component
that uses basic Connection

Step Three:
Create Logon Connection
that uses Logon Component

Step Four:
Create standard Components
using Logon Connection

Logon Components, Connections, and Connection Pools 67

Creating a Basic UTS Connection

This step issimple. Create a new Connection Resource as described in “ Creating aBasic UTS
Connection” on page -68. Even though you will be using User IDs and Passwords defined in the Logon
Connection later, you should still define one in the Connection aswell. Thiswill be needed when you
define the Logon Component in the next step. Alternatively, you can simply use an existing Connection
Resource.

Creating a Logon Component

68

> To create a UTS Logon Component:

1 From the Composer File menu, select New>xObject, then open the Component tab and select
UTS L ogon.

The Header Info panel of the New xObject Wizard appears.

X
A UTS Logon Component connects to a hostvia the UTS protocal, processes data using elements from a
DM, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Mame
and Description for this UTS component. The name will appear in the Composer window and in choice lists
when you are prompted for objects ofthis tvpe as you work in Composer. The Mame is required and may not
cantain the characters: . 2 " = = | | Mames are case insensitive.
Mame:
|UTSLOg0n|
Description:
Furpose:
Input:
Cutput:
Remarks:
J(Next][Cancel]

2 TypeaName for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

Create a New UTS Logon Component x|

Specifywhich Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource abject ar create a new Cannection
Resource ofthe same type with different parameters.

Connection ()

)

Host or IP Address I

Host Connection 1D I

Session Mame I

[
UTS Port |
Host App Mame I

csuip |

Screen wait (seconds) I

Screen Rows I

[Back][Finish][Cancel

5 Select aConnection from the drop down list.

UTS Connect User’s Guide

6 Click Finish and the Logon Component Editor appears.

0| UTS Logon: UTSLogon
® PROJECT

[<> USERCONFIG
& <> PROJECT_CO

Data

UTS Terminal

SEBE2RO I

[=}-UTSLogon
(o} em® LOGON
= [E3) KEEP ALIVE
Keep Alive Actions
[} @y LOGOFF
Log Off Actions

NOTE: Recording actions follows a series of steps. The cursor must be positioned over LOGON;
turn Record on, and when you are done, turn Record off. Position the cursor to KEEP ALIVE, turn
Record on, and when you are done, turn Record off. Position the cursor to LOGOFF, turn Record on,
then when you are done, turn Record off.

7 Record Logon Actionsfor logging into the host and navigating to the launch screen using the same
Recording techniques described in Chapter 5 of this Guide.

8 Edit the Logon Map actions that enter a User ID and Password to instead use the special USERID
and PASSWORD variables described in the section titled “UTS-Specific Expression Builder
Extensions’ on page -31 of this Guide.

9 Create the needed Check Screen and Send Key actions in the KEEPALIVE section of the Action
Model (aquick way to do thisisto copy an existing action, highlight the appropriate action, paste,
and then modify if necessary).

10 Record LOGOFF actions for properly exiting the host

11 Save and close the logon Component.

Logon Components, Connections, and Connection Pools 69

Creating a Logon Connection using a Pool Connection

> To create a UTS Logon Connection:

1 Fromthe Composer File menu, select New>xObject, then open the Resour ce tab and select
Connection, or you can click on the icon. The Header Info panel of the New xObject Wizard
appesars.

Create a New Connection Resource ll

A Connection resource is used o establish communications with an Connector data source or with a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appearin the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: 1/: 7" < = || Names are cage ingensitive.

Hame:

UTSLoganCry

Description:

Furpose:
Input:
Cutput:
Remarks:

][Next][Cancel

2 TypeaName for the connection object.
Optionally, type Description text.
4 Click Next and the Connection I nfo panel appears.
x|

Select a UTS Logon Component for each pool entry's connection. Each UTS Component using this Logon
Connection will use a previously estahlished connection ar create a new connection based an poal
infarmation specified in Pool Info dialog. Checking 'Default makes this Connection the initial selection when
requesting a UTS Logon Component.

w

Connection Type () hnection ~ |

Connect Via |UTSLDgDn [Default

Pool Connections () Pool Info...

Session Connections () | |

[Back ” Finish][Cancel]

5 For the Connection Type select "UTS Logon Connection” from the drop down list.
6 IntheLogon Via control, select the Logon Component you just created.

70 UTS Connect User’s Guide

7

10

11

12
13

Click on the Poal Info button and the Pool Info dialog appears.
x|

Faoal size specifies the tatal number of cannections that can be established. Keep
Alive, Inactivity and Entry wait parameters setthe timings associated with each
connection. Selecting "Owerride UIDIPWD" allows you to specify different logons. The
userid and password from the base connection will be used if no override is
specified. Specify Reuse Connection to verify that the proper Screen state is present
before a connection can be reused.

Pool size |1

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) ISD

Entry wait {seconds) ISD

User ID I

Password I

Override UID/PWD [|

Pool Host Connection IDs] |

Use Sequential Connections [

Reuse connection anly
if expression is true

Iacreen.getText(z,SJ5)=="Core Technolog: [B7

Enter a Pool Size number. This represents the total number of connections you wish to make
availablein this pool. For each connection, you will be expected to supply a Userl D/Password
combination later.

Enter aK eepAlivetime period. This number represents (in minutes) how often you wish to execute
the Keep Alive actions in the associated L ogon Component whenever the connection is active but

free (i.e. not being used by a UTS component). The number you enter here should be less than the
Screen Wait Timeout period defined on the host for an inactive connection.

Enter an I nactivity Lifetime. This number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to itsinactive state
in the pool, it will incur the overhead of logging in and navigating host screenswhen it isre-
activated.

Enter an Entry Wait timein seconds. This time represents how long a UTS component will wait
for a free connection when all the pool entries are active and in use. If thistime period is reached,
an Exception will be thrown to the Application Server.

Enter a Userid and Password if desired.

Checking Override Ul D/PWD means you wish to specify User ID/Password combinations for use
in the connection pool. When checked, this activates the Set Userids button. Click on the button to
display the Set USERIDs and PASSWORDS dialog.

Set Pool Userids and Passwords

Add— pdp o= B
User ID Password

1 JDh/n/ EEEEEREES
Del e‘te 2 Paul Fa——

3 Gearge FEEET

rd Ringo i
Paste

Help OK Cancel

Logon Components, Connections, and Connection Pools 71

72

On the Toolbar there are three icons: Add which adds an empty row, Delete, which deletes a highlighted
row and Paste which allows you to copy/paste information from a spreadsheet into the table. For more on
this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread sheet and paste it into the
table. Make sure your selection contains two columns. The first column must contain UserlID; the second
Password. Open the spreadsheet, copy the two columns and as many rows as needed. Open the table
and immediately press the Paste icon located on the toolbar. You can also copy data from tables in a
Microsoft Word® document using the same technique.

14 Enter as many USERID/PASSWORD combinations until you reach the size of the pool you
specified and click OK. Pool size will be adjusted depending upon how many rows you entered.
15 Click OK to dismissthe “Set User IDs and Passwords’ dialog and return to the Pool Info dialog.

16 Optionally click the Pool Host Connection | Ds checkbox in the Pool Info dialog if you intend to
manage terminals by identifier strings. When checked, this activates the Set Host Connection IDs
button. Click on the button to display the dialog.

Set Host Connection IDs x|
an o= B
Host Connection ID |
1 CONMO1
2 CONMOZ
3 CMMO3

On the Toolbar there are three icons: Add which adds an empty row, Delete, which deletes a
highlighted row and Paste which allows you to copy/paste information from a spreadsheet into the
table.

17 Enter as many Terminal |1Ds as needed in the dialog and click OK when complete.

18 Optionaly click the Use Sequential Connections checkbox if you want Composer to establish
connections in the same order that User IDs were listed in the “ Set User IDs and Passwords’
dialog. Connections will be made in numerical sequence.

19 Optionally check the Reuse connection only if expression istrue control. This control alowsyou
to enter an ECMA Script expression that evaluates to true or false based on some test of the launch
screen. The purpose of the expression is to check to make sure the launch screen is the proper one
each time anew UTS Component is about to reuse an active free connection. Under circumstances
unrelated to your Composer service, it's possible that the launch screen will be replaced by the host
with a different screen. For instance, if thereis a system ABEND on the host, the launch screenin
the Logon Component may be replaced by a System Message screen.

NOTE: For instructions on how to create this expression, see the discussion on “Handling Errors and
Messages” on page -54 of this Guide. Also refer to “Maximizing Performance of UTS Logon Connection”
on page -73 below.

Thefollowing ais a sample Custom Script used to seeif aparticular screen is present. If itisnot, the
script writes a message to the console stating that the screen is bad and the logon connection is being
released. Thisfunction is called from the “ Reuse connect only if expression istrue” control on the Pool
Info dialog.

UTS Connect User’s Guide

function checkValidLaunchScreen(ScreenDoc)

{
var screenText = ScreenDoc. XPath("SCREEN").item(0).text
if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") !=-1) &&
(screenText.indexOf("COMMAND UNRECOGNIZED") ==-1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") = -1))
{

return true;

}

else

{
java.lang.System.out.printin("Warning - Releasing logon connection at bad screen”);
java.lang.System.err.printin("Warning - Releasing logon connection at bad screen");
return false;

}
}

20 Click OK to return to the Connection Info panel.
21 Click on Finish and the Logon Connection is saved.

Maximizing Performance of UTS Logon Connection

To prevent UTS Components from beginning execution on a connection that may have been left on an
invalid screen by a previous UTS component, the Logon Connection Resource allows the connection
itself to check for the presence of the launch screen. Thisis accomplished by using the option titled
“Reuse connection only if expression istrue” on the Pool Info dialog of the Logon Connection. The
screen test you specify hereis executed each time a UTS Component compl etes execution. If the test
fails, exteNd Composer will immediately disconnect from the host, possibly leaving adangling Userl D
on the host. As noted before, the host will eventually kill the user, but the UserID may be discarded from
the pool if it is accessed again before being killed, thereby reducing the pool size and consequently
overall performance.

Another reason to use the “ Reuse connection only if true” option isthat you can perform very detailed
tests against the screen to make sure it is your launch screen. While Map Screen actions do perform a
screen check, they only look at the number of fieldsin the terminal data stream. In most cases, thisis
sufficient. However, it is possible two different screens can have the same number of fieldsin which case
the expression based test that examines the content of the screen will produce more rigorous results. A
best practices approach mandates that you use this feature all the time.

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have aneed to place various control, auditing, and/or meta-datain
an XML document. Thisdocument may or may not bein addition to the actual elements/documentsbeing
processed (i.e. created from an information source). If this document structure and datais dynamically
created by multiple Map actions (i.e. over 100) performance of the component and therefore the entire
service may suffer. To boost performance, create the portion of the document structure without the
dynamic content ahead of time, then load it into the Service at runtime viaan XML Interchange action
and retain the Map actions for dynamic content. This can boost performance as much as 30% in some
Cases.

Logon Components, Connections, and Connection Pools 73

Creating a Logon Connection using a Session Connection

74

Sometimes, you may want the extralevel of control over session parameters that a Logon Connection
affords, without necessarily wanting to use pooling. In this case, you can follow the procedure outlined
below.

> To create a UTS Logon Connection:

1 Fromthe Composer File menu, select New>xObject, then open the Resour ce tab and select
Connection, or you can click on the icon. The Header Info panel of the New xObject Wizard

appears.
Create a New Connection Resource ﬂ

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
yau wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not cantain the characters:\/: ?" == | Names are case insensitive.

Mame:

UTSLDgonCn)d

Description:

Furpose:
Input
Cutput:
Remarks:

][Mext][Cancel

2 TypeaName for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection I nfo panel appears.
x

Select a UTS Logon Component for each pool entry's connection. Each UTS Companent using this Logon
Connection will use a previously established connection or create a new connection hased on poal
information specified in Pool Info dialog. Checking 'Default' makes this Connection the initial selection when
reguesting a UTS Logon Component

Connection Type |LITS Logon Connection |L|
Connect \ia |UTSLDgDn [] [Default

Pool Connections () |

Session Connections (®) Session Info...

[Back][Finish][Cancel]

5 For the Connection Type select “UTS Logon Connection” from the drop down list.
6 Inthe Connect Via control, select the Logon Component you just created.

UTS Connect User’s Guide

7

10

Click the Session Connections radio button and then on Session Info button.
SessionInfo x|

Keep Alive sets the interval after which Keep Alive action will he executed an
cannection, while it's sitting idle. Inactivity lifetime =ets the time limit for connection to
be idle. Specify Reuse Connection to verify thatthe proper ScreenDoc state is
present befare a connection can be reused.

Keep Alive {minutes) |2

Inactivity Lifetime (minutes) IBD

Reuse connection only
if expression is true

|Screen.getTe><t(2,5,15)::"Core Technology @

The Keep Alive (minutes) number represents (in minutes) how often you wish to execute the Keep
Alive actionsin the associated L ogon Component whenever the connection is active but free (i.e.
not being used by aUTS Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

The Inactivity Lifetime (minutes) number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to itsinactive state
in the pool, it will incur the overhead of logging in and navigating host screenswhen it isre-
activated.

Click in the checkmark box if you want to Reuse connection only if expression istrue. If you
choose to do so, the expression field automatically displays and you can click on the expression
icon to display theif the expression is true dialog.

Logon Components, Connections, and Connection Pools 75

Creating a UTS Component That Uses Pooled Connections

At this point, you are ready to create a UTS Component that can use the Connection Pool. For the most
part, you will build the component as you would anormal UTS component, the only difference being the
Connection you specify on the connection panel of the New Component Wizard. (You'll specify aLogon
Connection instead of aregular UTS Connection.)

> To create a UTS Component:

1 From the Composer File menu, select New>xObject, then open the Component tab and select
UTS. The Header Info panel of the New xObject Wizard appears.

Create a New UTS Terminal Component 1'

AUTS Terminal Component connects to a hostvia the UTS protocol, processes data using elements fram a
DoM, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Mame
and Description far this UTS companent. The name will appear in the Composerwindow and in choice lists
when you are prampted for ohjects of this type as you wark in Composer. The Name is required and may not
cantain the characters:y /27 "= =, | Mames are case insensitive.

Marme:

LUTSSample

Description:

Purpose:
Input:
Cutput
Remarks:

Help @ | Next Cancel

Type a Name for the component.

Optionally, type Description text.

Click Next and the XML Property Info panel appears.

Select the necessary | nput and Output Templates for your component.

Click Next and the Connection Info panel appears.

Select the Logon Connection you created and click on Next. The Component editor appears.
Build the component as described in “To create anew UTS Component:” on page -17.

0o N b~ WN

Maximizing Performance of UTS Terminal Components

76

Once the launch screen is obtained by the logon Component’slogon actions, it is handed to the UTS
Terminal Component that uses the connection. Then the UTS Terminal component (when finished
executing) leaves the screen handler back at the launch screen. If the UTS Component finishes without
being on the launch screen, (i.€. it rel eases the connection back to the pool with aninvalid screen) then it
ispossiblethat all subsequent UTS Componentsthat use the connection may throw exceptionsrendering
the connection useless. It also will degrade overall performance and possibly cause data integrity
problems within the component processing.

Once again, to ensure that the launch screen is present, the last action to execute in a UTS Component
must be a Check Screen that checksfor the launch screen. This can betricky if your component has many
decision paths that may independently end component execution. You must be sure that each path ends
with a Check Screen action.

UTS Connect User’s Guide

Managing Pools

Using the exteNd Composer Console

UTS Connection Pools can by managed through the UTS Console Screen.

> How to Access the Console

1 If youareusing the Novell exteNd Application Server, log on to your Server viayour web browser
using http://localhost/Silver M aster 50 (or whatever is appropriate for the version in use). In this
example, Novell exteNd App Server 5.0 is used.

/43 Directory of SilverMaster50 - Mici i] 4

File Edit Yiew Favorites Tools Help |ﬁ
GBack » = - (D af | Qhsearch [Favorites >
Address I@j http:,i,l’localtj G0 |Links | ifSnaglt

[~

SilverMasters(

exteldComposer
robots.txt
SilverMasterso
Silverdtresam

El
:@i hittp:/flocalhostjexte ’_ ’_ ’_ E Local intranet v

NOTE: If you are not using the exteNd app server, enter a URL of this form:
http://<hostname>:<port>/exteNdComposer/Console

Logon Components, Connections, and Connection Pools 77

2 Click onthe exteNd Composer link. You should see the main consol e page:

=} exteNd Composer Server Console - Microsoft Internet Explorer = |EI|1|
File Edit %iew Favorites Tools Help |
G=Back ~ = - £} ﬁ-| @ search (G Favorites GPMedia ®| B S - &
Address I@ http:f flocalhost fexteNdComposer/Console j @aEn | Links **| E15naglt
exteNd Composer >
_ [l
EDl Al - A
General Properties and Settings
HP 3000
Wi Free Memony: 10 Mk
LI Log Level: |5
JDBC Apply Log Level
JMS
Cache Status
RESIEES Expressions Cached: 2
T27 *Path Modes Cached: 0
- Functions/Code Tables Cached: 0
Component Types Cached: 1
TELNET Total Components Cached: 2
Tandem Clear Cache
uTs
Cache Tuning
UTSlogon —
Expression / XPath Caching: * 0n Off
sssw_ldap Component Cache Expiry: 720
z Total Component Cache Size: 250 j
|@ ’_l_l_ E Local inkranet v

3 Click onthe UTSIink in the left (nav) frame and the UTS Console General Properties Screen will
come into view.

exteNd Composer - #boutinfo

(][]

EE =N

EDI ;l] T
Novell exteNd Composer
LIESO00; | vYersion 5
HTML
™

IDBC Novell® exteNd™ Composer

Enterprize Server
JMS

UTSlogon Connect
PROCESS

Wersion 4.2 (-1)
27

@ 1996-2003 SilverStream Software LLC
TELNET

Licensze key: E4F1173C3400000001
Tandem
uts
UTSlogon

78 UTS Connect User’s Guide

4 Click the Consoleicon. A browser popup window (the UTS Connection Pool Management Screen)
should appear.

exteNd Composer

(=] Novell

UTS Connection Pool Manager

Pool Description Max In Awvail Discarded Pool Actions
Hame Use

uts UTSLogon Reset Discarded| Reset|
e gt 2 1 1 o] eset Discarde eset| Refil

Refresh Console

Pool Initialization

To initialize a Logon Connection Pool, enter its deployment context, "connection”,
and connection name in the field below,
<deployment contexts/connection/<connection name>

Ie.g. comjtestconnection/myLogonUnicxml

Initialize Pool

5 Toinitialize aLogon Connection Pool, enter its deployment context, the word "connection”, and
the actual connection name in the text field near the bottom of the screen. (See illustration above.)
Then click the I nitialize Pool button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more information.
6 Optionaly click the Refresh Console button to update the view.

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the connection(s) with the UTS
Connect. The screen contains atablelisting the Pool Name, Description of the connection, the maximum
number of connectionsin the pool, the number of connectionsin use, the number of connections
available, the number of connections discarded. It also contains several buttons allowing you to perform
various actions related to connection pooling, which are outlined in the table bel ow.

Button Name Action

Reset Discarded Resets the Discarded connections which are then reflected in the table

Reset (Pool) Resets the Available and Discarded connections which are then reflected in
the table

Refill (Pool) Refills the pool with the maximum number of connections

Additional Buttons on UTS Connection Pool Manager Console

Refresh Console Shows the current status of the connection pool

Initialize Pool Initializes a Logon Connection Pool by entering a relative path to the
deployed lib directory. This will not work unless the deployed jar is
extracted. Click on the SUBMIT button when finished.

Logon Components, Connections, and Connection Pools 79

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more than one user to access
aresource, or set of resources, at once. The way a connection is established begins with the logon
component picking the User ID and Password from the table. If the connection fails, then it is discarded
for thisUser ID and Password and tries another until a connection is established. The failure of one
connection doesn’t necessarily prevent a successful connection from being established.

The Connect for UTS addresses the “ one bad apple” problem by discarding any connection that can’t be
established (for whatever reason: bad user 1D, timed-out password, etc.) and reusing the others. When a
connection is determined to be unusable, the Connect for UTSwill write amessage to the system log that
says: “Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

80

Screen synchronization has special ramifications for users of pools. If asituation arises in which a user
|eaves a connection without the screen returning to its original state, the next user will begin a session
with the screen in an unexpected state and an error will occur. To prevent this, thereisascreen expression
which the user can specify in the connection pool. It isimportant that thelast actionin aUTS Component
be a Send Key action that will result in the session ending with the correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the UTS Terminal component
waits until the launch screen arrives before giving up the connection. (This should happen automatically,
when you create the Send Key action, but nevertheless, the last action should be the Check Screen.)

If you want to check, at runtime, for the presence of abad screen at the end of a user session, include a
Function Action at the end of your component’s action model that executes a function similar to the one
shown below:

if ((Screen.getText (1,11,5)== "Login" || Screen.getText (2,5,10) == "Data Entry")
&&

(Screen.getTextFromRectangle(1,1,24,80) .indexOf ("COMMAND UNRECOGNIZED")
-1 || Screen.getTextFromRectangle (1,1,24,80) .indexOf ("UNSUPPORTED FUNCTION")
-1))

{
}

// Otherwise, write error messages to Sys.out
else

{

java.lang.System.out.println("OK to exit");

java.lang.System.out.println ("Warning - Releasing logon connection
at bad screen");

}

Inthis particular example, thisfunction checks the screen text for either the“Login” header or the “ Data
Entry” field and also makes sure it doesn’t see the words “COMMAND UNRECOGNIZED” or
“UNSUPPORTED FUNCTION.” If thisisthe case, it will write an error to the log.

UTS Connect User’s Guide

Glossary

ANSI American National Standards I nstitute.

Check Screen An action that action signals the component that execution must not proceed until the
screenisin aparticular state, subject to a user-specified timeout value.

Connection Pooling Anarrangement whereby anintermediary process (whether the app server itself,
or some memory-resident background process not associ ated with the server) maintainsaset number
of preestablished, pre-authenticated connections, and oversees the “sharing out” of these
connections among client apps or end users.

Dumb Terminal A computer terminal that has no onboard CPU, memory, or storage devices, beyond
the minimum necessary to communicate with amore powerful host machine.

ECMAScript Any JavaScript-like language that conforms to European Computer Manufacturers
Association standard No. 262.

Native Environment Pane A paneinthe UTS Component Editor that provides an emulation of an
actual UTSterminal session.

Screen Object Representsthe current UTS screen display
Send Key An action that represents pressing a UTS-specific attention or function key.

Set Screen Text An action that appearsin the Action Model whenever there is map to the screen or
keys entered on the screen.

UTS A terminal originally developed by the Burroughs Corporation, later purchased by Unisys. Used
to interact with mainframe computers including the ClearPath X, 1100 and 2200.

Terminal Emulation A program that allows a personal computer to act like a (particular brand of)
terminal, e.g. aUTS. The computer thus appears as aterminal to the mainframe (host) computer and
accepts the same escape sequences and other attention keys for functions such as cursor positioning
and clearing the screen.

Unisys Designers, manufacturers and marketers of computer-based information systems and related
products and services. The UTS mainframe terminal was originally developed by Burroughs
Corporation, which became part of Unisysin 1986. Mainframe computer models, including the A
Series, V Series, and ClearPath™ NX run UTS terminal emulation

Glossary 81

82 UTS Connect User’s Guide

UTS Display Attributes

The screen.getattribute () method will return one of the values shown bel ow, representing the
current attribute state of the onscreen character at the given location. The attributes listed below are just
the most common and any combination of what is stated below could, theoretically occur. Basically,
underlined, bold, blinking and reverse characters return a standard integer. Thisis then added to the
hexadecimal number indicating whether thefield is secure, protected, selected and/or vertical.

Number Attribute

0 standard (can type into - e.g., entry field)
16 (0X10) secure (can type into - e.g., passwords)
32 (0X20) protected (cannot type into)

33 (0X20)+1 protected and underlined

34 (0X20)+2 protected and bold

36 (0X20)+4 protected and blinking

40 (0X20)+8 protected and reverse

48 (0X10)+(0X20) secure and protected

64 (0X40) selected

80 (0X40) + (0X10) selected and secure

96 (0X20)+(0X40) selected and protected

98 (0X20)+(0X40)+2 selected, protected and bold

0X100 vertical

Viewing All Character Attributes at Once

Using the screen.getAttribute () method, you can easily write afunction that captures all
attributes (at all screen locations) at once. The following custom script, for example, can be used at
design time to display screen attributesin an alert dialog.

function showAttributes(myScreen)

{

var attribs = new String(); // create empty string
// Iterate over all rows and columns:
for (var i = 1; i <= myScreen.getRows(); i++, attribs += "\n")
for (var k = 1; k <= myScreen.getCols(); k++)
attribs += " " + myScreen.getAttribute (i, k) ;

}

In your Action Model, you would include a function action with the following ECM A Script expression
to call the script.:

alert (showAttributes(Screen));

UTS Display Attributes 83

Thefollowing illustration shows a UTS screen:

-15&1 (Intermati

e AT g

Fress F1 or Enter

Theillustration below shows the result of applying the showaAttributes () function to the screen (the
illustration had to be cropped as the right/left margin would have gone outside the boundaries of the
page):

J232323232323232323232 323232323232 32 32
323232323232323232323232323233333333333332323253232323232323232323232323232323232
32
3232032323252 32 32
3232 323232323523232323232323232323232323232323232532323232323232323232323232323232
32
32
32 32
3232 323232323523232323232323232323232323232323232532323232323232323232323232323232
32
32
3333333333533 3333333333 3333330333333 33
3232 32323232323232323232 323232323232 323233
32
32
d232 32
32 32 32 32 32 32 32 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 32 32 32 32 32 32 32 32 323232323232 32
32
32323232323232363636363636 36 36 36 36 3232323232 323232323232323232323232323232323232
d232 32
3232 323232323523232323232323232323232323232323232532323232323232323232323232323232
32
3232032323252 32 32
A0 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40

84 UTS Connect User’s Guide

Reserved Words

Thefollowing termsare reserved wordsin exteNd Composer for UTS Connect and should not be used as
labels for any user-created variables, methods, or objects.

+ USERID

+ PASSWORD
+ PROJCT

+ Screen

+ QetAttribute
+ gQetCols

+ getCursorCol
+ getCursorRow
+ QgetNextMessage

+ getPrompt

+ getRows

+ getStatuslLine
o QetText

+ getTextFromRectangle
+ hasMoreMessages

+ putString

* putStringlnField

+ setMessageCaptureOff
o setMessageCaptureOn

+ typeKeys

Reserved Words 85

86 UTS Connect User’s Guide

Index

A

Action

Check Screen 25
Action Model

examples 44

testing 49, 51
Action pane context menu 25
Actions

deleting 48

Send Key 23

Set Screen Text 23, 25
Animation

starting 51

stepinto 51

toggle breakpoint 46
Animation Tools 51
applications 11
Architecture 9

connection pool 58

C

Check Screen Action 24
errorsrelated to 54
performance 76
tips 54

Check Screen Actions 25

Component Editor Window 19

Components
executing 50
selecting a Connection 19
stepsin creating 13, 17
testing 49
tipsfor building 54

Connecting 23
and disconnecting 23

Connection Button 23

Connection Discard Behavior 80

Connection Pool
steps for creating 67

Connection Pool Architecture 58

Connection Pool Console, refreshing 79

Connection Pools
implementing 61
stepsin creating 67

Connection Resource 58, 68
creating 13
stepsin creating 13

ConnectionPools
status 79
Connections
logon 66
maximum 79
resetting discarded 79
constant-based 28
constant-based parameters 15
context menu items 24
Control key down, dragging with 36
Create Check Screen Button 23
Creating a Connection Pool 67
Creating aLogon Connection 70
Creating a Logon Connection using a Pool Connection 70
Creating a Logon Connection using a Session Connection 74
CsSu Id 15

D

deleting an action 48
Dragging and dropping to DOMs 41

E

ECMAScript 15, 56
Entry Wait, pools 71
errors 54
connection 79
Executing a component 50
expression-based parameters 15

F
Floating Keypad 21

G

getTextFromRectangle() 37

H

Host App Name 15
Host Connection ID 15, 72

87

|
Inactivity Lifetime

pools 71

session connection 75
Initialize Pool 79

K

Keep Alive 75

session connection 75
KEEPALIVE 63
KeepAlive

pools 71
KEEPALIVE Actions

recording 69
KeepAlive Actions 61
Keyboard 20
keypad 20

L

launch screen 62

Logoff action 62

LOGOFF Actions
recording 69

Logon action 62

LOGON Actions
recording 69

Logon Actions 62

L ogon Component
definition 61

Logon Components
creating 68

Logon Connections 14, 58
session connections 74

M

Managing Pools 77

Maximizing Performance with KEEP ALIVE Actions 64
Maximizing Performance with the Logon Component 63
MultiBridge Connection 14

N

Native Environment Pane 19
newlines, in rectangular screen selections 37

@)

Override the UID/PWD 67

88

P

parameters, constant vs expression-based 15
Password 15

Set Screen Text automatically 24
Performance 56, 57, 76

logon connection and pools 73
Pool Info dialog 71
Pool Size 71
pools 71

checking status 79

implementing 61

initializing 79

managing 77

maximum connections 79

refilling 79

resetting 79

R

Record Button 22
Recording 22, 39
adding to aprevious recording 45
and animating 51
editing after recording 44
start/stop 23
turning off 44
rectangular onscreen selections 36
Redundant Data, dealing with 52
Refill Pool 79
Refresh Consolel 79
Reset Discarded 79
Reset Pool 79
row/column placement 42

S

Screen Object, definition of 21
Screen Synchronization 80
Screen Wait time 15, 42, 54
screen, T27 termina 21
Send Key Action
tips 54
Send Key Button 23
Session Connections 74
Session Name 15
Set Screen Text 24
Set Screen Text Action 24, 25
errorsrelated to 55
tips 54
Set Screen Text Button 23
shift-drag selection technique 36
Single Sign-On and connection pools 67
Start Animation 51
Static versus Dynamically Created Documents/Elements 73
status line, in Native Environment Pane 34
status line, marking row/column placement 42
Step Into 51

T

T27 Connection types 58
T27 terminal screen 21
T27, definition of 11
Temp XML Document 18
Terminal Keypad 21
Toggle Breakpoint 46
toolbar
connection 23
Create Check Screen Button
Actions
Create Check Screen 23
record 22
Send Key button 23
Set Screen Text 23
toolbar buttons 22

U
Unisys mainframes 11
Userid
Set Screen Text automatically 24
USERID/PASSWORD 71
Userids 15

Vv

variables, Userid and Password 15

89

90

	About This Book
	1 Welcome to exteNd Composer and UTS Connect
	Before You Begin
	About exteNd Composer Connects
	What is the UTS Connect?
	About exteNd Composer's UTS Component
	What Applications Can You Build Using the UTS Connect?

	2 Getting Started with the UTS Component Editor
	Steps Commonly Used to Create a UTS Component
	Creating XML Templates for Your Component
	Creating a UTS Connection Resource
	Connection Resources
	Constant and Expression Driven Connections

	3 Creating a UTS Component
	Creating a UTS Component
	About the UTS Component Editor Window
	About the UTS Native Environment Pane
	UTS Keyboard Support
	About the Screen Object
	What it is
	How it works

	UTS-Specific Toolbar Buttons
	UTS-Specific Menu Bar Items
	UTS-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	4 Performing Basic UTS Actions
	About Actions
	About UTS-Specific Actions
	The Set Screen Text Action
	The Send Key Action
	The Check Screen Action
	Using Actions in Record Mode

	UTS-Specific Expression Builder Extensions
	Login
	Screen Methods

	Multi-row Screen Selections in the UTS Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	5 UTS Components in Action
	The Sample Transaction
	Recording a UTS Session
	Editing a Previously Recorded Action Model
	Editing or Adding to an Existing Action
	Deleting an Action
	Looping Over Multiple Rows in Search of Data

	Testing your UTS Component
	Using the Animation Tools
	Data Sets that Span Screens
	Multiple Screens

	Dealing with Redundant Data
	Tips for Building Reliable UTS Components
	Using Other Actions in the UTS Component Editor
	Handling Errors and Messages
	Finding a “Bad” Action
	Performance Considerations

	6 Logon Components, Connections, and Connection Pools
	About UTS Terminal Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The UTS Logon Component
	Logon, Keep Alive, and Logoff Actions
	LOGON Actions
	Keep Alive Actions
	Logoff Actions
	Logon Component Life Cycle

	About the UTS Logon Connection
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic UTS Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Creating a Logon Connection using a Session Connection
	Creating a UTS Component That Uses Pooled Connections
	Managing Pools
	Using the exteNd Composer Console

	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	A Glossary
	B UTS Display Attributes
	C Reserved Words
	Index

