
Novell

m
w w w . n o v e l l . c o

exteNd
Director

5 . 2
D E V E LO P I NG E X T E ND D I R E CT O R
A P P L IC AT I O NS

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd DirectorDeveloping exteNd Director Applications

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 13

PART I INTRODUCTION . 15

1 About Novell exteNd Director. 17
About Novell exteNd Director . 17

exteNd Director portal . 17
Deployment configurations . 18
Standards compliance. 18

exteNd Director subsystems . 19
exteNd Director tools . 21

exteNd Director development environment . 21
exteNd Director Web tiers . 22

exteNd Director API . 24
Building an application. 24

Using the Express Portal application out of the box . 24
Working in the Express Portal project . 24
Creating a new project . 25

PART II WORKING WITH PROJECTS . 27

2 Creating exteNd Director Projects . 29
About exteNd Director projects . 29

Choosing the project type . 29
Creating projects . 31

Creating a portlet application project. 31
Creating an exteNd Director project . 33

Subsystem architecture . 46

3 Reconfiguring exteNd Director Projects . 49
Changing the configuration . 49

Changing configuration settings using a wizard . 49
Changing configuration settings by editing the config.xml file directly. 50
Changing configuration settings using a predefined view . 50

Adding subsystems . 51
Removing or disabling subsystems . 51
Updating a project license . 52
Changing a project’s shared library configuration . 53

About nonshared library configurations. 54
About shared library configurations. 55
About 3rd party JAR configurations . 55
Procedures for changing the project configuration . 56

4 Updating exteNd Director Projects . 59
Procedure for updating your exteNd Director project . 59

5 Working with exteNd Composer Projects . 61
About exteNd Composer projects . 61
Creating new exteNd Composer projects . 61
Adding existing exteNd Composer projects. 62
5

PART III MANAGING APPLICATION RESOURCES . 65

6 Using the Resource Set in an exteNd Director Application . 67
Role of a resource set in your application. 67
What to put in a resource set . 68

Subdirectories for resources and Java classes . 69
Projects for a resource set . 70

Binding subsystems to a resource set . 71
Configuring the resource set. 71

Variables . 72
General settings . 73
Types and locations of resources: resourcePath and libPath . 73
Directory keys for indexing. 76

Dynamic loading of resources and classes. 77
Using events to report resource set changes . 79

Working with listeners . 79
Types of events . 80
What listeners do . 81

Validating a resource set . 81
Storing XML files that contain MBCS characters . 82

7 Editing the Configuration of a Resource Set . 83
About the Resource Set Editor . 83
Using boolean variables in check box fields . 84
Working with entries for resourcePath and libPath . 84
Using resource set utilities . 85

8 Using the Relationship Viewer. 87
About the Relationship Viewer . 87
Navigating relationships within a resource set . 87
Creating a custom relationship analyzer. 88

Creating a relationship analyzer class . 88

9 Searching a Resource Set . 91
About the Search tab . 91
Searching a resource set . 91
Saving a search as a view . 93
Working with the Search API . 94

Example 1: using the internal search template object . 95
Example 2: creating your own search template object . 95
Example 3: serializing a search request. 95

10 Working with Views . 97
About views. 97
Displaying a view . 97
Using predefined views. 101
Importing resources into a view . 105
Exporting resources from a view. 106
Defining custom views . 106

About the view definition file. 107
Searching for items within a resource set . 107
Defining folders in a view . 108
Including elements that are outside a view’s resource set . 108
Referencing other views within a view definition . 108

PART IV WORKING WITH CORE TECHNOLOGIES . 111

11 Coding Java for exteNd Director Applications. 113
About coding Java for exteNd Director applications . 113
6 Developing exteNd Director Applications

Using Java . 113
Java platform support . 113
About the core language . 114
About APIs . 114
Resources for learning Java . 114

Using the Java APIs . 115
Resources for learning J2EE . 115

Using the exteNd Director API. 115
exteNd Director API packages . 116
exteNd Director API terminology . 118
exteNd Director API reference documentation . 118

Accessing subsystem services . 118
Accessing a subsystem service by using a delegate . 118
Getting a direct reference to a subsystem manager . 119

Handling exceptions . 120
Errors thrown by the exteNd Director API . 121
Avoiding errors . 121
Catching errors . 121
Displaying messages . 123
Displaying errors in the user’s language . 123

12 Working with Scoped Paths and XPaths . 125
About scoped paths . 125

Advantages of scoped paths. 125
About XPaths. 126
Predefined scopes . 126

Application scope . 128
Artifact scope . 128
CM scope . 129
Document scope . 129
Flow scope . 130
Format scope . 131
Log scope . 131
Portal scope . 132
PortletPreference scope . 133
Request scope . 133
ResourceBundle scope . 134
ResourceSet scope. 134
Response scope . 135
Session scope. 135
String scope . 135
User scope . 136

Copying scoped paths . 136
Copy options . 136
When to copy on activites . 137
When to copy on links . 137

Using the scoped path substitution syntax . 138
Scoped path syntax in pageflow activites . 138
Dynamic resolution in scoped paths . 138

About the Scoped Path API . 139
Using the Scoped Path and XPath Navigators . 139

Creating XPath expressions . 140

13 Working with Events . 143
About the exteNd Director event model. 143

Event model object types . 144
Event handling . 145

About the Event API . 147
Event classes . 147
Producer interfaces . 148
Listener interfaces. 148
7

Creating and registering listeners . 148
Using notification listeners . 149
Using a vetoable listener . 149
Creating a custom state change listener . 150
Registering for events . 151

Creating custom events and producers . 151
Creating a custom event producer . 151
Creating a custom event . 152

14 Working with Data Caches. 153
About data caching . 153

About the Cache Manager . 153
About the cache holder . 154

Request object caching. 155
Request object attributes . 155
Temporary values . 155

Session-level caching . 155
Using the Cache Manager . 155
Using the whiteboard . 156
Portlet session scopes . 156

server-lifetime caching . 157
About the server-lifetime cache . 157
Built-in cache holders. 157

15 Logging Information . 159
About the exteNd Director logging facility . 159

Uses for logging . 159
What gets logged . 159
Configuring the logs . 161

Using logs in your application . 161
Logging and scoped paths . 161
Logging API . 161
Getting a log . 161
Setting the detail level . 162
Adding messages to the log . 162
Sample logging code for portlets . 163

16 Using the XML and IPDR Logging Providers . 167
About the XML and IPDR logging providers . 167
Working with XML templates . 168
Working with IPDR templates . 168
Built-in properties . 169
Sample code . 169

17 Working with JSP pages . 171
About JSP pages and the exteNd Director tag libraries . 171
Adding the JAR and TLD files to your project . 172
Using a custom tag in a JSP page . 173

18 Working with servlets. 175
About servlets and exteNd Director applications . 175
Using the exteNd Director API in a servlet . 175

19 Developing a Struts Application . 179
About Struts . 179

Understanding MVC. 179
How Struts implements MVC . 179
Example . 180

Extending Struts with exteNd Director services . 181
Business logic . 182
Business process . 182
Dynamic content . 182

How to implement Struts with exteNd Director services . 183
8 Developing exteNd Director Applications

PART V DEPLOYING APPLICATIONS. 185

20 Deploying exteNd Director Applications . 187
Deploying an exteNd Director project . 187

Predeployment tasks. 188
Deployment tasks . 195
Post-deployment tasks . 196

Testing the deployment . 199
What happens to exteNd Director subsystems at deployment . 199

How the subsystems register themselves with the Framework. 200
How the subsystems access persistent data . 200
How the subsystems access application resources . 201

Troubleshooting the deployment . 201
General troubleshooting . 202
Troubleshooting BEA WebLogic deployments . 202

Changing your deployment configuration . 203
About exteNd Director database tables . 204

PART VI ADMINISTERING DEPLOYED APPLICATIONS . 207

21 About the Director Administration Console . 209
About the DAC. 209
Accessing the DAC . 209
Using the DAC . 211

22 Using the General Configuration Section of the DAC . 213
General . 213
Logs . 214
Cache . 214

Cache Settings . 215
Cache Holders . 215
Cache Coordinator . 216
Cache Statistics . 216

23 Using the Debug Subsystem . 217
About the Debug subsystem . 217

How it works . 217
Security considerations . 218

Setting up the Debug subsystem. 218
Running the Debug subsystem . 218

Going to the Debug home page . 218
Reporting on exteNd Director resources . 219
Reporting on HTTP resources . 222
Reporting on JNDI resources . 222
Reporting on exteNd Director archive resources. 223

24 Using the Cache Coordinator . 225
About the Cache Coordinator . 225

How the Cache Coordinator works . 225
Triggering a cache invalidation event . 226

Reconfiguring the Cache Coordinator . 226
Running the Cache Coordinator . 228
Recovering from a Cache Coordinator failure . 228
Logging Cache Coordinator activity. 228

Updating the logging level for server instances and the Cache Coordinator. 229
Updating the logging level for the Cache Coordinator. 229
Providing server identifiers . 229
About the logging messages. 230
Remote Cache Coordinator administration . 231
9

PART VII THIRD-PARTY TOOLS . 233

25 Using Dreamweaver with exteNd Director . 235
About exteNd Director and Dreamweaver . 235
Installing Dreamweaver extensions . 236
Using the exteNd Director Integration extension . 236

Inserting component tags. 236
Displaying PID pages from Content Management . 238

PART VIII REFERENCE . 241

26 Project File Locations. 243
Related documentation . 243
Configuration files . 244

Content Management subsystem configuration files . 244
Directory subsystem configuration file . 245
Framework subsystem configuration file . 245
Novell-portlet configuration file . 245
Portal subsystem configuration file. 245
Portlet configuration file . 247
Rule subsystem configuration file. 247
Search subsystem configuration file. 247
Security subsystem configuration file . 248
User subsystem configuration file . 248
Portal configuration file. 248
Workflow subsystem configuration file . 249
Pageflow subsystem configuration file . 249
WSRP Consumer subsystem configuration file . 249
Composer subsystem configuration file . 250

Services files. 250
Content Management subsystem services file . 250
Directory subsystem services file . 250
Framework subsystem services file . 252
Portal subsystem services file . 252
Portlet services file . 252
Resource set configuration file . 253
Rule subsystem services file . 253
Search subsystem services file . 253
Security subsystem services file . 254
User subsystem services file . 254
Portal services file . 254
Workflow subsystem services file. 255
Pageflow subsystem services file. 255
WSRP Consumer subsystem services file . 255
Composer subsystem services file. 256

Resource set descriptors . 256
Framework database descriptor. 256
Views descriptor. 256
Pageflow process descriptor . 258
Portal category descriptor . 258
Portal component descriptor . 258
Portal data definition descriptor . 259
Portal device profile descriptor . 259
Portal Layout descriptor . 259
Portal option descriptor . 260
Portal page descriptor . 260
Portal portlet fragment deployment descriptor . 260
Portal style descriptor. 261
Portal theme descriptor . 261
Rule descriptor . 261
Rule action macro descriptor . 262
10 Developing exteNd Director Applications

Rule condition macro descriptor . 262
Rule group binding descriptor . 262
Rule pipeline descriptor. 263
Rule pipeline binding descriptor . 263
Rule user binding descriptor . 263
Security role descriptor . 264
Workflow activity policy descriptor . 264
Workflow process descriptor . 264

Portal application resources . 265
11

12 Developing exteNd Director Applications

About This Book

Purpose

This book explains how to design and program a Novell® exteNd Director™ application, giving particular
emphasis to using the services of the Framework and Portal subsystems.

Audience

This book is for programmers working on exteNd Director applications. It assumes familiarity with Java
programming, HTML, XML, and XSL and provides examples using all these technologies.
13

14 Developing exteNd Director Applications

I Introduction

An introduction to Novell exteNd Director that includes conceptual information about the exteNd
Director development environment and application architecture

• Chapter 1, “About Novell exteNd Director”
15

16 Developing exteNd Director Applications

1 About Novell exteNd Director

This chapter provides an overview of Novell exteNd Director. It contains the following sections:

About Novell exteNd Director

exteNd Director subsystems

exteNd Director tools

exteNd Director API

Building an application

About Novell exteNd Director
Novell exteNd Director is a set of software development tools and programming APIs for building state-
of-the-art enterprise applications. exteNd Director provides all of the technologies you need to build Web
applications that present a relevant view of business functions to any user on any device. exteNd Director
also provides the tools you need to consume Web Services, including those created with exteNd
Composer.

The exteNd Director application architecture supports many ways of building user views of business
functions. For example, by taking advantage of the user profiling and content management features
provided with exteNd Director, you can ensure that individual users see information that is most relevant
to their needs. In addition, you can use the workflow features of exteNd Director to model business
processes, and rules to model business decisions. exteNd Director applications can satisfy the hardware
requirements of a wide range of users, including conventional desktop users as well as those accessing
Web content from wireless devices.

exteNd Director portal

exteNd Director applications typically include a portal Web site. The portal is the presentation layer for
an exteNd Director application, providing the interface through which users get to the Web content they
want to see.

To give you a head start in building applications, exteNd Director provides a default project called
Express Portal, which is a complete portal application based on the standard exteNd Director project
template. You can use this application out of the box to:

Explore the features of an exteNd Director portal

Learn how to build a portal application

Build your own customized production-quality portal by adding and modifying portlets and pages
and customizing the presentation layer.
About Novell exteNd Director 17

Deployment configurations

The exteNd Director application architecture supports a wide range of deployment configurations, as
shown in the following diagram.

Standards compliance

exteNd Director supports several industry standards, including the following:

J2EE

Portlets

XForms

J2EE

exteNd Director is a J2EE-compatible platform for building and deploying enterprise-class applications.
The J2EE specification defines the required levels of support that compliant application servers must
provide, as well as a programming model for applications that will be deployed to the application server.
Applications are deployed into a J2EE-compliant application server as J2EE modules. A J2EE module is
a collection of components packaged in an archive. exteNd Director applications are deployed in the
following kinds of archives:

Web archive (WAR)

Enterprise archive (EAR)
18 Developing exteNd Director Applications

Portlets

exteNd Director is fully compliant with the Java Portlet 1.0 Specification which defines the portlet
standard.

A portlet is a specialized Java class that processes requests from Web clients and generates dynamic
content on a portal page. You can think of portlets as pluggable user interface elements that provide a
presentation layer for portal applications. Users can personalize the content and appearance of portlets,
based on preferences set by an administrator.

XForms

exteNd Director provides an environment for developing XForms 1.0-compliant Web forms. The
advantages of the XForms standard include:

Separate data, logic, and presentation modules

A powerful event model (so that you don’t have to use a lot of scripting for client-side validation or
calculations)

A way to process data in XML formats

exteNd Director subsystems
exteNd Director includes a set of core technologies called subsystems. Each exteNd Director subsystem
is a logical grouping of a set of software services. Each service is a Java class that implements a particular
interface defined for exteNd Director applications. The subsystems support a services-oriented
architecture, which means that you can extend or replace the individual services included with each
subsystem. The exteNd Director subsystems can be deployed separately, or can be combined together to
form an integrated solution. When you create an exteNd Director project, you select the subsystems your
application requires.

The exteNd Director subsystems include several prebuilt user interfaces, as well as comprehensive APIs
that let you build J2EE applications from the ground up.

exteNd Director includes the following subsystems:

Subsystem Description

Content Management Allows you to create, label, categorize, and display content. Your application
can retrieve, display, and update content and display it in various formats
based on style sheets. Content is stored in a database associated with your
application.

You can create simple (standalone) documents, hierarchical documents
(such as discussion threads), and compound documents (such as reports
with linked attachments). Each document is described by a set of
metadata—an underlying description or definition. The Content
Management subsystem allows you to define custom metadata that
organizes documents so that individual users can easily retrieve the content
that is most relevant to their needs.

For details on using the Content Management subsystem, see the
Content Management Guide.

Directory Provides services for managing user authentication. It works with your
application server’s security realms to check user IDs and passwords and to
add users to the realm.

For details on using the Directory subsystem, see the User
Management Guide.
About Novell exteNd Director 19

Framework Provides core exteNd Director services. The Framework provides support
for caching, system configuration, session management, and other services
used by the other subsystems.

The Framework is required by all other subsystems.

For details on using the Framework subsystem, see the remaining
chapters of this book, as well as the com.sssw.fw package hierarchy in the
API Reference.

Pageflow Allows you to graphically model the flow of control for a set of pages that
execute within a single portlet. Each page within a pageflow presents a set
of controls that allow for user interaction. For example, the pages in a flow
might provide a way for the user to display stock quotes or weather
forecasts, or access corporate data such as employee information.

For complete details on developing pageflows, see the Pageflow and
Form Guide.

Portal Provides Web presentation services. It includes the Portal Aggregator, the
Page Manager, the Portal Administrator, and the Portal Personalizer.

To take advantage of the services of the Portal subsystem, you typically
build your own Web applications. You can configure your Web applications
to include the Portal Web tier, which provides end-user portal functionality.

For complete details on developing exteNd Director portal
applications, see the Portal Guide.

Portlet Provides development and runtime support for portlets. This support
includes the Novell Portlet implementation, as well as the underlying APIs
defined by Java Portlet 1.0. When you include the Portlet subsystem, you
can create your own custom portlets.

Rule Allows you to fire business rules. A rule is a conditional formula for making a
choice in an exteNd Director application. Rule definitions are stored and
edited separately from the portlets that invoke them. Whenever an
application decision is in a rule, you can change the logic later, without
rewriting and recompiling portlets and pages.

Rules consist of conditions and actions. A condition is a test that determines
what action or actions will be taken when the condition is true or false.

For details on using the Rule subsystem, see the Rules Guide.

Search Provides the ability to search content using conceptual pattern matching, a
more sophisticated approach than full-text searching, which is traditionally
based on keywords. Conceptual searching returns content that is related by
meaning and ranked by relevance to the search criteria.

The Search subsystem is based on the Autonomy Application Builder toolkit
and Dynamic Reasoning Engine (DRE).

The Content Management subsystem is integrated with the Search
subsystem to provide both SQL-based and conceptual searching
capabilities.

For details on using the Search subsystem, see the Content Search
Guide.

Subsystem Description
20 Developing exteNd Director Applications

exteNd Director tools
exteNd Director provides a complete development environment, as well as several prepackaged Web
tiers (Web applications) that you can run within a browser.

exteNd Director development environment

At its lowest level, the exteNd Director development environment is a file-system based toolset that
includes these utility tools and facilities:

Designers and modelers for building pageflows, portlets, rules, and workflows

Graphical and text-based editors for working on Java files, JSP files, XML files, XSL files, CSS
files, WSDL files, HTML files, plain text files, and deployment descriptors

Wizards that help create new files when needed and guide you through complex technologies
(such as J2EE)

Web Service facilities for developing, publishing, finding, and running Web Services

Project views that show the structure of a project’s source files and the structure of a project’s
generated archives

Project tools for building projects, generating and validating J2EE archives, and deploying
archives to supported J2EE servers

Version control integration that provides access from the exteNd Director development
environment to your version control system

Security Provides role-based security services to restrict user access to portlets and
pages, and ACL-based security services to restrict access to subsystem
functionality. You can define security roles and access control lists (ACLs)
programmatically or interactively using the Director Administration Console
(DAC).

For details on using the Security subsystem, see the User
Management Guide.

User Allows you to save information about users in user profiles. When a user has
logged in to your exteNd Director application, you can save and update
information about the user and the user’s usage patterns. User profiles are
stored in a database deployed with your application.

Typically, user profiles contain two types of information:

Explicit Data that users provide, such as an e-mail address or a zip code

Implicit Data you collect about their actions, such as how many times
they purchase a particular item or view a particular page

For details on using the User subsystem, see the User Management
Guide.

Workflow Allows you to graphically model business processes that use simple or
rules-based routing (links) to move metadata and documents relating to an
item of work among workflow activities. Participants access their work at
activities through workitem queues. A runtime engine manages processes,
workitems, and participants.

For details on using the Workflow subsystem, see the Workflow Guide.

Subsystem Description
About Novell exteNd Director 21

exteNd Director Web tiers

exteNd Director includes some prebuilt Web tiers. Each Web tier is a Web application that you can use
immediately after deploying your exteNd Director project. Each of the Web tiers runs in a browser.

exteNd Director includes the following Web tiers:

Express Portal

Director Administration Console (DAC)

CMS Administration Console

These tools are intended for use by application developers, system administrators, and content
developers respectively.

Internally, these Web tiers use the services of a number of exteNd Director subsystems, including the
Framework, Portal, User, Directory, and Content Management subsystems.

Express Portal

When you install exteNd Director, you get an Express Portal application that you can run immediately.
You do not need to deploy the application from the exteNd Director development environment to use it.
You can simply start your browser and begin using the application right away.

For more information on using the Express Portal, see the chapter on the Express Portal in the
Portal Guide.
22 Developing exteNd Director Applications

new pgExpressPortalAbout.html

Director Administration Console

The Director Administration Console (DAC) provides support for administrative tasks such as
configuring parameters, managing security access to portal objects, inspecting portlets, pages, and styles,
and managing user profiles.

For more information on using the Director Administration Console, see Chapter 21, “About the
Director Administration Console”.

CMS Administration Console

The CMS Administration Console provides an interface for setting up and maintaining the infrastructure
for a content management system. The CMS Administration Console allows you to create, edit, secure,
and publish HTML and XML content for your portal applications.

For details on using the CMS Administration Console, see the Content Management Guide.
About Novell exteNd Director 23

exteNd Director API
To write Java code for exteNd Director applications, you use exteNd Director API classes in your Java
code and call their methods. The exteNd Director API provides public classes (and interfaces) organized
into several packages, which themselves are organized by subsystem.

The exteNd Director API is based on the Java 2 APIs (J2SE and J2EE). That means it includes classes
that inherit from Java 2 classes and implement Java 2 interfaces. If you’re familiar with the Java 2 APIs,
you’ll have a good foundation for understanding and using the exteNd Director API.

For more information on using the exteNd Director API, see Chapter 11, “Coding Java for exteNd
Director Applications”.

Building an application
An exteNd Director application is packaged in a single exteNd Director EAR or WAR file. You can
create a new project for the EAR or WAR by running the exteNd Director Project Wizard in the
development environment. Alternatively, you can simply open the project for the Express Portal in the
development environment and begin working in that project.

If you’re new to exteNd Director, you might want to begin by using the Express Portal application right
away.

Using the Express Portal application out of the box

You can run the Express Portal application as soon as you finish the installation process. The Express
Portal provides a set of Web-based tools you can use to customize the application. For example, you
might want to create user pages and shared pages, and then add some predefined portlets to these pages.

Working in the Express Portal project

If you install the exteNd suite using the Express or Custom install, the Express Portal project is added to
your suite install directory. You can then open the project in exteNd Director and customize it with your
own business logic—for example, by adding new portlets, portal pages, and other Web resources such as
JSPs and servlets.

Here are the general steps you need to follow to build your application within the Express Portal project:

1 Install exteNd Director.

For installation instructions, see Installing Novell exteNd.

2 Open the Express Portal project in exteNd Director.

To access the Express Portal project in exteNd Director, see the section on opening the
Express Portal project in the Portal Guide.

3 Add any objects you need for your application within this project. For example, you might want to
add pageflows, forms, and portlets to the application.

4 Deploy the application.

NOTE: If you installed the exteNd suite using the Express install option, the Express Portal is
deployed to the exteNd Application Server at installation time and ready to run. To get started, see
the section on starting the Express Portal application in the Portal Guide.

For instructions on deployment, see Chapter 20, “Deploying exteNd Director Applications”.
24 Developing exteNd Director Applications

pgExpressPortalAbout.html#OpeningtheExpressPortalproject
pgExpressPortalAbout.html#OpeningtheExpressPortalproject
pgExpressPortalAbout.html#StartingtheExpressPortalapplication

Dynamic loading and the resource set exteNd Director provides a special location called the
resource set that manages application resources you create. The resource set can hold definitions for
pageflows, portlets, rules, styles, and other objects required for your application to function properly. The
resource set can also hold Java classes that you implement. When you make changes to items in the
resource set, you do not need to redeploy the application, since these resources are loaded dynamically.

Creating a new project

If you decide to create a new project, you need to run the exteNd Director Project Wizard. This wizard
lets you select the subsystems you want to use and specify configuration properties for these subsystems.
After you’ve finished making your selections, the wizard creates a project that includes the J2EE
modules you need for your application.

Once you’ve run the wizard, you can add additional application-specific J2EE modules to the project.
You can also add or remove subsystems or make any other necessary changes to the structure and content
of the EAR or WAR, just as you would with any J2EE application.

When you’re ready to deploy the application, you can use the deployment tools provided in the exteNd
Director development environment to deploy the EAR or WAR to one or more servers.

Here are the general steps you need to follow to create and deploy an exteNd Director application in a
new project:

1 Install exteNd Director.

For installation instructions, see the Installing Novell exteNd.

2 If you will use the Search subsystem, configure the Autonomy DRE.

For instructions, see the Content Search Guide.

3 Create a new database for your exteNd Director application, and if your JDBC driver expects it,
define an ODBC data source name (DSN) for your newly created database. exteNd Director uses a
default name of exteNd Director for the data source, but you can use your own name.

This database holds exteNd Director tables that contain data required by several of the subsystems.

On a Novell exteNd Application Server, this can be different from the deployment database. A
typical scenario is to deploy the exteNd Director application to the SilverMaster database, and
provide a separate database for the exteNd Director data.

For instructions on creating the database, see your DBMS documentation.

4 Create a new exteNd Director EAR or WAR project using the exteNd Director Project Wizard with
an exteNd Director template.

For instructions, see “Creating an exteNd Director project” on page 33.

5 Set up dynamic loading so that you can test application resources without frequent redeployments.

For instructions, see “Dynamic loading of resources and classes” on page 77.

6 Do the required deployment setup for your server. Some setup is done in exteNd Director; for the
rest, you use your server’s tools.

7 Deploy the application.

For instructions, see Chapter 20, “Deploying exteNd Director Applications”.
About Novell exteNd Director 25

26 Developing exteNd Director Applications

II Working with Projects

Explains how to create and update exteNd Director projects

• Chapter 2, “Creating exteNd Director Projects”
• Chapter 3, “Reconfiguring exteNd Director Projects”
• Chapter 4, “Updating exteNd Director Projects”
• Chapter 5, “Working with exteNd Composer Projects”
27

28 Developing exteNd Director Applications

2 Creating exteNd Director Projects

This chapter explains how to create exteNd Director projects. It contains these sections:

About exteNd Director projects

Creating projects

About exteNd Director projects
Your work in exteNd Director is organized into projects. A project contains:

Your application objects

A J2EE archive (used to deploy the application)

A set of JARs (the JARs included depend on your project configuration choices; for more
information see “Subsystem architecture” on page 46)

A project file has an .SPF extension. A single SPF file can contain multiple components and resources of
many different types.

You can learn more about projects in general in the chapter on projects and archives in Utility Tools.

Default project When you install exteNd Director, a default project called Express.spf is installed on
your system and deployed to your server (for some installation types). This project is a complete,
working application that you can use as a basis for building your own production portal.

For more information, see the chapter on the using the Express Portal in the Portal Guide.

Choosing the project type

exteNd Director provides wizards that build different types of projects. Choosing the right project type
includes decisions and knowledge about the:

Type of application you want to build

Services your application requires

Configuration of the application server on which you are deploying
Creating exteNd Director Projects 29

pgExpressPortalAbout.html
utoolsProjects.html

exteNd Director supports the following project types:

Project type Description Deployment considerations

Portlet
application

Choose this option when you want:

An easy way to distribute your
portlets

Your portlets to run external to the
exteNd Director portal. (If you want
your portlets to run local to the
portal, choose the Project Wizard
described next.)

The Portlet Application Wizard
creates:

An exteNd Director WAR project.

A J2EE WAR that includes the
portlet runtime environment.

You can supply an existing WAR,
or use the wizard to create a new
WAR.

For more information about
running portlets externally or locally,
see the Portal Guide.

Can be deployed in shared, nonshared
library, and 3rd party JARs environments.

When you run your portlets external to the
portal, you can have one of these
configurations:

A standalone portlet application WAR. This
configuration requires a shared library
environment with an exteNd Director portal
already deployed on the application
server.

or

A portlet application WAR packaged in an
EAR. The EAR also contains the exteNd
Director portal WAR.

For more information on setting up a
shared library environment, see “Changing a
project’s shared library configuration” on
page 53.

For nonshared library and 3rd party JARs
environments:

Must be deployed as part of an exteNd
Director EAR project.

Project Choose this option when you want:

To create an EAR or WAR project
that includes:

The exteNd Director Portal.

The exteNd Director portlet
runtime container.

One or more exteNd Director
subsystems.

This wizard creates:

An exteNd Director EAR or WAR
project.

A customized solution based on
your choice of exteNd Director
subsystems

For information on using the
Project Wizard, see “Creating
projects” on page 31

Supports shared, nonshared library, and 3rd
party JARs environments.

For shared library environments:

One portal application can be deployed on
an application server; that means you can
have only one of these projects deployed
at a time.

If this project includes portlets, they will be
running local to the portal regardless of
whether it is an EAR or WAR project.

For nonshared library and 3rd party JAR
environments:

You can deploy as many of these projects
as you want.

Each application must use its own exteNd
Director database—databases cannot be
shared.

The resulting EAR or WAR encapsulates
all subsystems, application code, and
application metadata.

For more information on setting up a
shared library or 3rd party JAR environment,
see “Changing a project’s shared library
configuration” on page 53
30 Developing exteNd Director Applications

Creating projects
To create a portlet application project, see “Creating a portlet application project” on page 31

To create an exteNd Director project, see “Creating an exteNd Director project” on page 33

Using views to what you’re looking for You can use views to display personalized lists of items
within an exteNd Director project. Views can be used to look at resources in a resource set, or at system
configuration and service settings. exteNd Director ships with several predefined views and also allows
you to define custom views to display project items that are of particular interest to you.

For information on using views to find items in an exteNd Director project, see Chapter 10,
“Working with Views”.

Creating a portlet application project

To create portlet application project:

1 In exteNd Director, select File>New>Project.

The New Project dialog displays.

2 Select the Director tab, choose Portlet Application, then click OK.

The Project Wizard displays.

If you already have an EAR project open, the wizard asks if you want to add the new project to it.
Choosing yes means that the wizard creates the new project within the existing project. Any
portlets existing in or added to the portlet application project would run external to the portal.

3 Continue as described in “Selecting the Web App WAR” next.

Selecting the Web App WAR

1 To:

Choose an existing WAR, click the ellipsis button and navigate to the disk location. Choose the
WAR and click Open.

Create a new WAR, click Create WAR. Complete the New Project panel and click Finish.

For more information on the New Project panel, see the sections on creating projects and
archives in Utility Tools.

2 Click Next to go to the next wizard panel. See “Specifying the project and archive name” next.
Creating exteNd Director Projects 31

utoolsProjects.html
utoolsProjects.html

Specifying the project and archive name

To specify the project and archive name:

1 On the Project Information panel, specify the following options:

2 Click Finish.

When the wizard completes, the project is open for editing.

Option What to specify

Project Name You can:

Accept the default (the name of the existing Web App WAR from the
preceding step)—this will exteNd Director—enable the named portlet
WAR.

OR

Specify a new name—this will create a new portlet WAR that is exteNd
Director–enabled. (It includes a copy of the existing Web App WAR that
you specified in the preceding step.)

The .SPF extension is automatically appended. This name appears in the
source layout.

As you enter a project name, the archive name is filled in automatically. You
can keep the same name for your archive or enter another one.

Project Location Specify the directory where you want the project (and other source files) to be
located. The wizard creates a project file (with the .SPF extension) in the
project location.

As you enter a project location, the archive location setting is filled in
automatically. You can change these settings.

You can do one of the following:

Type the name of the project directory.

Click the ellipsis beside the Project Location text box to select a location.

If you specify a project location directory that does not exist, the wizard asks
if it should create it.

If you do not specify an absolute path, the wizard generates the project in the
exteNd tools\bin directory.

Archive Name Specify the name of the archive file that will be generated. You can keep the
default archive name (which matches the project name) or enter a new one.

The resulting name appears in the archive layout. The .WAR extension is
automatically appended to the name.

Archive Location Enter the location of the project archive or accept the default (the project root
directory).

The archive location appears in the archive layout of the Navigation Pane
after the project has been created.
32 Developing exteNd Director Applications

What the wizard generates

The wizard generates an exteNd Director–enabled Web application WAR.

At the top level of the WAR you’ll see the standard J2EE WEB-INF/lib folder. In the WEB-INF folder
you’ll see these important files:

In the conf folder in the WEB-INF folder, you’ll see three important exteNd Director files:

For information about developing portlet applications, see the chapter on developing portal
applications in the Portal Guide.

Creating an exteNd Director project

To start the Project Wizard:

1 Select File>New>Project.

2 Select the Director tab, then choose Project and click OK.

3 Continue as described in “Specifying project information” next.

Specifying project information

To specify project information:

1 Complete the Project Information panel as follows:

TIP: If you fill in the text boxes in order, subsequent text boxes are filled in automatically with useful
default values.

File Description

novell-portlet.xml An additional, optional portlet deployment descriptor that allows you to specify a
broader range of preferences and settings for portlets, such as title bars and
preview images

portlet.xml Required by Java Portlet 1.0

web.xml Required for all J2EE-compliant WARs

File Description

resourceset.xml Lets you manage the contents of the resource set. You can add JARs or file
extensions that you want to include in the resource set.

config.xml Sets the configuration properties for the WAR-level services (like the Director
Administration Console and CMS Administration Console).

services.xml Sets properties for the WAR-level services.

Project setting What to specify

Project Type Choose EAR or WAR.

Project Name Specify the name you want to use for the project file (the .SPF extension is
automatically appended).

As you enter a project name, the archive name is filled in automatically.
Creating exteNd Director Projects 33

pgPortletAppsAbout.html
pgPortletAppsAbout.html

2 Click Next.

If the directories you specified do not exist, the wizard offers to create each of them. Click Yes to
confirm any new directories.

The next wizard panel displays. See “Specifying the project setup” next.

Project Location Specify a root directory for the project. The wizard copies files and
subdirectories to this location.

You can type a path and/or use the Browse button to select a directory
location. The location doesn’t have to exist.

As you enter a project location, the archive location is filled in automatically.

If you do not specify an absolute path, the wizard uses exteNd’s tools\bin
directory.

Archive Name Specify the name of the archive file that will be generated. The .EAR or
.WAR extension is automatically added, depending on the project type
specified. The Navigation Pane’s archive layout displays the archive name.

You can keep the default archive name (which matches the project name) or
enter a new one.

Archive Location Specify a directory location for the project archive or accept the default
(which is the Project Location).

J2EE Version If your server supports J2EE 1.3, select J2EE 1.3; otherwise, select J2EE
1.2.

NOTE: If you want to change the J2EE version of a project at a later time,
see the chapter on how to handle J2EE versions in Utility Tools.

Project setting What to specify
34 Developing exteNd Director Applications

utoolsJ2EEVersions.html

Specifying the project setup

To specify the project type:

1 Complete the panel by choosing either Typical or Custom:

2 Click Next to go to the next wizard panel. See “Specifying application options” next.

Setup type What the wizard does

Typical Copies the resources for the default set of exteNd Director subsystems and
services to your project directory and uses default values for most configuration
options.

Content Management (only included with certain product licenses)

Directory

Framework

Pageflow

Portal

Portlet

Rule

Search

Security

User

Workflow (only included with certain product licenses)

exteNd Composer Service

Custom Lets you choose which subsystem(s) the wizard will copy to your project directory
and provides panels for setting their configuration options.

If you choose this option, the wizard displays the Subsystem Selection panel:

1 Select the subsystems you’ll need for your project, then click Next.

2 If you try to eliminate a subsystem that is required by another selected
subsystem, you are informed what subsystems depend on the one you’re trying
to omit. You have to uncheck those dependent subsystems before you can
remove any subsystem they require.

NOTE: For a WAR project, you must select Framework, Directory, Portal, User,
and Security.
Creating exteNd Director Projects 35

Specifying application options

To specify the application options:

1 On the Application Options panel, specify the following settings, then click Next:

2 Click Next to go to the next wizard panel:

If your project includes the Content Management subsystem, see “Specifying the Content
Management Search configuration” on page 36

Otherwise, see “Directory configuration” on page 38.

Specifying the Content Management Search configuration

The Content Management Search panel has three tabs: the Repository tab, the Synchronization tab, and
the Filters tab.

Custom WAR setting What to specify

Name The context name for the WAR. This is used in URLs for pages of your
application. This name is not editable.

For EAR projects, the wizard generates a WAR within the EAR. The
WAR’s context name is the same as the project name (specified on the
Project Information panel) with Portal appended to it.

For WAR projects, the context name for the WAR is the same as the
Project Name (specified on the Project Information panel).

Resources Select the component collections, tag libraries, and conditions and
actions for rules you want to include in your application WAR. The list of
available resources depends on the subsystem(s) you’ve selected.

IMPORTANT: exteNd Director provides a set of accessory portlets.
The exteNd Director Portal uses some of these portlets on its default
portal pages. If you want to use these default pages as shipped, be
sure to include accessory portlets in the portal application projects you
create in exteNd Director. If you do not want to include accessory
portlets in exteNd Director projects, your portal administrator should
modify default portal pages accordingly.

Template Resources
Location

A location for storing available resources that you can add to the project
later.

By default, this is the TemplateResources subdirectory. You can specify
a different location; exteNd Director will copy available resources.
36 Developing exteNd Director Applications

To specify the Content Management Search configuration:

1 On the Repository tab, you can specify these settings:

2 On the Synchronization tab, you can specify these settings:

3 On the Filters tab, you can make this setting:

4 Click Next to go to the next wizard panel:

If you selected Typical setup, see “Directory configuration” on page 38.

If you selected Custom setup, see “Content Management caching configuration” next.

Configuration setting What to specify

Enable link to the
search service?

Select Yes if you want to use the Autonomy search capabilities with the
Content Management subsystem.

IMPORTANT: If you enable search, make sure you configure the
Autonomy DRE to run with your server, as described in the Content
Search Guide.

Query Engine Host
Name

Specify the host name or IP address of the Autonomy DRE (Dynamic
Reasoning Engine). The default is localhost.

Query Port Specify the port number on which the DRE expects to receive queries.
The default is 52000.

Index Port Specify the port number the DRE uses for indexing. The default is 52001.

Repository Name Specify the name of the Content Management repository. The value is
always Default.

Configuration setting What to specify

Synchronization Mode Specify how changes to documents are made known to the DRE.
Values are:

immediate—Propagates changes when they occur;
recommended when there is a low volume of document additions
and updates.

batch—Propagates changes to the DRE as a scheduled
background task; recommended for environments with a high
frequency of changes.

Operations that cause
immediate
synchronization

When synchronization mode is immediate, select the operations that
cause changes to propagate to the DRE. Use the arrow buttons to
move operations to and from the Available and Selected lists.

For performance reasons, you may not want all operations to be
synchronized immediately.

Number of deleted
documents to batch up

When synchronization mode is batch, specify the number of
documents to be deleted as a batch.

Configuration setting What to specify

Binary document text
filter directory

Specify where to find the Autonomy filters for importing documents that
have a binary file format. The default location is the
\Autonomy\OmniSlaves of exteNd Director’s installation directory.
Creating exteNd Director Projects 37

Content Management caching configuration

1 On the Content Management Caching Configuration panel, make the settings you want as follows:

2 Click Next to go to the next wizard panel. See “Directory configuration” next.

Directory configuration

1 On the Directory Configuration panel, select a server-specific security realm.

The security realms are as follows:

Configuration setting What to specify

Cache Fields? Select the types of objects you want to cache. Usually you will want to
cache all object types.

The reason caching is efficient is that the application makes fewer SQL
queries of the database. If there are constraints on memory usage, you
may choose not to cache.

Content Management caching is not related to DAC cache settings.

Cache Doc Types?

Cache Folders?

Cache Categories?

Realm configuration Description

LDAP Base configuration for read and write access to eDirectory™ in
exteNd Director.

NOTE: This realm does not integrate with any supported
application server’s authentication mechanism.

PersistManager Read and write access to the user and group repository in the
exteNd Director database.

exteNd Server Read and write access to an exteNd Application Server security
provider. The default configuration is SilverUsers.

exteNd ServerLDAP Read and write access to an exteNd Application Server using the
Novell eDirectory LDAP implementation.

exteNd Server (compatible) Read and write access to a backward-compatible exteNd
Application Server.

This realm uses groups from the exteNd Director database and
users from Silver Security.

WebLogic Read and write access to WebLogic application server realm APIs,
Version 6.x (deprecated).

See WebLogicLDAP below.

WebLogic (readable only) Read-only access to WebLogic application server realm APIs,
Version 6.x., for server cluster environments (deprecated).

See WebLogicLDAP below.

WebLogicLDAP Read and write access to a WebLogic application server realm
using the Novell eDirectory LDAP implementation.

WebSphere Read and write access to a WebSphere custom registry using the
exteNd Director database as a user and group repository.

IMPORTANT: This realm requires a shared library configuration.

WebSphereLDAP Read and write access to a WebSphere application server realm
using the Novell eDirectory LDAP implementation.
38 Developing exteNd Director Applications

TIP: If you have a user list from an earlier version of exteNd Director on the target server, select
exteNd server (compatible).

2 Click Next to go to the next wizard panel:

If you chose an LDAP realm, you need to do more configuration; see “LDAP realm
configuration” next.

Otherwise, see “Framework configuration” on page 41.

LDAP realm configuration

If you chose an LDAP realm, you need to specify your LDAP configuration options on the
Directory Ldap Configuration panel.

LDAP configuration options are as follows:

LDAP property Description

Realm The selected LDAP realm configuration (read-only).

Realm Name Name used by the realm to access runtime APIs.

Anonymous User Anonymous principal name.

Administrator Name used by the realm to access the LDAP server.

Password Administrator password (see row above).

Administrator Connections Number of simultaneous administrator connections (or bindings)
allowed.

Administrator Conn Wait Time to wait (milliseconds) for an admin connection to the LDAP
server before timing out.

LDAP Host Host machine and port for the LDAP server.

Use SSL Check to connect the LDAP server with the Secure Socket Layer
(SSL) for data encryption.

NOTE: If you are using SSL, it is assumed that you have a valid
certificate set up on your application server. For details, see your
application server documentation.

New User Container LDAP tree entry for new user registration. This container allows
new users to add themselves to the realm without specifying a
distinguished name (DN).

User Container DN Distinguished name (DN) or fully qualified LDAP name of the user
container. This defines the search scope for users and groups in
the LDAP tree. (See next row.)

User Container Scope Scope of user entries in the LDAP tree, relative to the User
Container (row above). Options are:

object Entries in the user container base level only

onelevel Entries in the user container and one level beneath
it in the tree

subtree Entries in the user container and all levels beneath it

User Object Class User object class. The default value is inetorgperson.

Login Attribute Attribute representing the user login name.

IMPORTANT: Do not use spaces in this name.

User Membership Attribute Optional. Attribute representing the user’s group membership.

IMPORTANT: Do not use spaces in this name.
Creating exteNd Director Projects 39

Group Container DN Distinguished Name (DN) of the group container object.

Group Container Scope The scope of user entries in the LDAP directory, relative to the
group container (see row above). Options are:

object Entries in the group container base level only

onelevel Entries in the group container and one level beneath
it in the tree

subtree Entries in the group container and all levels beneath
it

Group Object Class Group object class. The default value is groupofnames.

Group Membership Attribute Optional. Attribute representing the user’s group membership.

IMPORTANT: Do not use spaces in this name.

Object Attribute Name of the attribute that specifies the object type in the LDAP
tree.

IMPORTANT: Do not use spaces in this name.

UUID Auxiliary Class Auxiliary class that adds the UUID attribute to the user container.
This is necessary for accessing the LDAP realm from the exteNd
Director APIs.

UUID Attribute Name of the UUID attribute (see row above).

IMPORTANT: Do not use spaces in this name.

Use Dynamic Groups Check to use dynamic groups.

Dynamic Group Object
Class

Dynamic group object class. Default value is dynamicGroup.

Dynamic Group Aux Object
Class

Auxiliary class that adds the necessary support for accessing
dynamic groups in eDirectory. The default value is
dynamicgroupaux.

Connection Timeout (millis) Time to wait (milliseconds) for a user connection to the LDAP
server before timing out.

Root Container
Distinguished Name

Distinguished name of the root (parent) container object—for
example, organization.

Container Object Types Lists the current (selected) container object types and attribute
names.

Add a new Container Object Adds support for a new container object. The container must exist
within the Root Container hierarchy specified above.

LDAP property Description
40 Developing exteNd Director Applications

Framework configuration

To complete the Framework configuration:

1 On the Framework Configuration panel, specify values for these framework settings:

Framework option What to specify

Director Framework
Datasource

Specify the JNDI name for your application’s database. The database
contains exteNd Director application data such as content and user
information. The value you specify depends on the target application server.

For exteNd Application Servers

To use a connection pool Replace %CONNECTION_POOL_NAME%
with the name of the connection pool you created for the exteNd Director
database. For example: if the connection pool is named MyDB, specify
JDBC/MyDB.

To use the deprecated Add Database The JNDI name follows the
pattern:

Databases/%DATA_SOURCE_NAME%/Datasource

where %DATASOURCE_NAME% is the name of the added database. For
example: if your database is named MyDB, replace the suggested value
with Databases/MyDB/DataSource.

NOTE: The application database should be different from the deployment
database, which typically is the SilverMaster database.

For application servers other than the exteNd Application Server

Replace the suggested value with the JNDI name for the database. For
example: for a data source named MyDB, specify MyDB.

For any application server

Typically you will not need to access the JNDI name directly in your
applications. But if you need to do so, you can use the Framework API to get
the property stored in the FrameworkService config.xml, as shown in this
coding technique:

// get an EbiConfig object
com.sssw.fw.api.EbiConfig myconfig =
com.sssw.fw.factory.EboFactory.getConfig();
// get value from the key in config.xml
String dsname =
myconfig.getProperty("com.sssw.fw.datasource.jndi-name");
// access the data source
try{
 javax.naming.InitialContext ctx = new
javax.naming.InitialContext();
 javax.sql.DataSource source =
(javax.sql.DataSource)ctx.lookup(dsname);
}
catch(javax.naming.NamingException ne){}

Locksmith To use ACL-based security, specify the user ID for administering security
using the DAC. The ID you specify must exist in the server’s authentication
realm when you deploy the exteNd Director EAR or WAR.

NOTE: If you do not want to use ACL-based security in your application, set
the Locksmith to anonymous to prevent ACLs from being set up for the
exteNd Director Admin elements.

For more information about the Locksmith user, see the section on
subsystem administrators in the User Management Guide.
Creating exteNd Director Projects 41

usSecurityACL.html#ACLsubsystemadministrators

Next you will specify server cluster options.

2 Specify values for these cluster options:

The Generated UID field displays an application identifier used for clustering. You cannot change
it.

3 Specify a writable directory for exteNd Director use:

4 Click Next to go to the next wizard panel. See “AES encryption key” next.

AES encryption key

exteNd Director encrypts portlet preferences in the database using a default key that is not unique. You
can force the default key to be unique using the FIPS-approved AES encryption. If you require FIPS-
compliant security for your application, it is recommended that you have your new projects generate a
unique key.

Enable User
Transaction
Support?

When checked, your application uses exteNd Director’s transaction support.

Uncheck this setting if you are deploying to an application server that does not
provide JTA capabilities natively or through third-party extensions.

Cluster option What to specify

Do you want to use
clustering?

Select Yes to enable exteNd Director support for clustering.

The server you deploy to must already be set up as part of a server
cluster.

Host Specify the URL of the server that will run the exteNd Director Cache
Coordinator.

For more information about using the Cache Coordinator, see
Chapter 24, “Using the Cache Coordinator”.

NOTE: You must use the exteNd Director installation program to install
the Cache Coordinator on the server.

Port Specify the RMI port number that the Cache Coordinator will listen on.
This must be the same value you specify when you install the Cache
Coordinator.

Option Value

Server Accessible
Temp Directory

Specify a directory to which the server has write access.

The default is the user’s TEMP or TMP environment variable.

exteNd Director uses the directory for several types of files:

Temporary files

The getmacaddr utility for generating unique identifiers (UIDs) for
exteNd Director objects (if getmacaddr doesn’t exist in the directory you
specify, exteNd Director copies the utility from the FrameworkService
JAR to this location)

Parent folder of PortalCache

The value you specify is stored in the Framework’s config.xml in the key
ContentCache.Disk.directory.

Framework option What to specify
42 Developing exteNd Director Applications

1 On the AES Encryption Key panel, specify the following options:

2 Click Next to go to the next wizard panel:

If you selected an EAR, see LDAP user options next.

If you selected a WAR and an LDAP realm, see “LDAP user options” on page 43.

LDAP user options

If you selected an LDAP realm, you need to specify your user options on the User Ldap Options
panel.

The LDAP user options are as follows:

IMPORTANT: Before you deploy a project that uses an LDAP realm, you need to perform these
configuration steps:

Import the UUID auxiliary class provided with the exteNd Director install.

Set up your LDAP server to use SSL (if applicable).

You can perform these steps after you complete the EAR Wizard.

For details, see the section on “LDAP predeployment tasks (eDirectory only)” on page 191.

Summary panel

1 On the Summary panel, clear the Build project after wizard is finished check box if you don’t
want to build the project archives right away.

TIP: A recently built project is necessary for editing J2EE descriptor files and for deploying exteNd
Director Web tier tools. You can let the wizard start the build process or you can select Build
commands on the Project menu later.

2 Click Finish to create the project.

The wizard takes some time to copy the files to the project directory. Then it builds the project if
you selected that option.

Option Value

Generate New AES
encryption key?

When checked, the wizard generates a unique encryption key for
the stored portlet preferences. Checking this generates a new
encryption key file.

LDAP option What to specify

Exclude User Attributes User attributes you want to be inaccessible to the exteNd Director
APIs.

Include User Attributes User attributes you want to be accessible from the exteNd Director
APIs.

Include Auxiliary Classes (Optional) Use to include any custom auxiliary class attributes.
These will be added to the user object class hierarchy.

Use “|” to separate classes and “,” to separate attributes. For
example:

auxclass1,attr1,attr2|auxclass2,attr1,attr2

Exclude Syntax Definitions Syntax definitions you want excluded from the exteNd Director
APIs.

LDAP syntaxes determine the data types that can be stored as an
attribute. They are defined in RFC 2252 and RFC 2256.
Creating exteNd Director Projects 43

What the wizard generates

The Project Wizard generates a J2EE-compliant WAR or EAR (depending on your selection). The
project contains the subsystem files needed for compile or runtime.

exteNd Director EAR project structure At the top level of an exteNd Director EAR project, you
will see:

The EAR project contents include:

exteNd Director WAR project structure At the top level of an exteNd Director WAR project, you
will see:

File Description

Portal WAR file Contains the JARs needed by the exteNd Director subsystems
included in the project.

ConfigService.jar Located in the \library folder.

Contains configuration and service properties files for the
project’s subsystems.

For more information, see “Configuration and service files”
on page 45.

JAR files Located in the \library folder.

The set of JARs needed by your application for either compile or
runtime services.

In a shared library configuration, these service JAR files appear
grayed out and in parentheses; they are available for compile-
time use but are not included in the deployment archive.
44 Developing exteNd Director Applications

The WAR project contents include:

Configuration and service files Each exteNd Director subsystem relies on a configuration file and
a services file. The files are stored in the ConfigService.jar.

EAR namespacing The J2EE specification does not require the EAR name to be part of the context
for a WAR file. This can be a problem when multiple EAR files with similar content are deployed to the
same server. For example: if you deploy the same WAR in several different EAR files to the same server,
the application server will not be able to distinguish the different versions of the WAR. To solve this
problem, exteNd Director introduces the notion of EAR namespacing. The namespace is part of the URL
for accessing the exteNd Director Web tiers. exteNd Director prefaces the context for each WAR with the
EAR name as the default namespace. The context for each WAR is specified in the application.xml file
for the EAR.

NOTE: On a Novell exteNd Application Server: if you deploy to a database other than SilverMaster, the
URL would also include the database name.

Classloading within an exteNd Director EAR A WAR file can access classes in a JAR file that is
contained within that WAR, as well as classes in a JAR file that is placed outside the WAR in some other
location within the EAR. exteNd Director applications take advantage of both of these configurations.

Classpath for WAR When a WAR file uses the services of a JAR file within the WAR, the classes in
the WAR have no difficulty locating the classes in the JAR—since these classes are automatically
included in the WAR’s classloading environment. However, when a WAR file uses the services of a JAR
file that is located outside the WAR, the JAR must be added to the classpath for the WAR. J2EE
applications do this by setting the classpath in the MANIFEST.MF file in the META-INF directory
within the WAR.

Classpath for Framework exteNd Director applications also maintain a simulated classpath for the
Framework, which allows the classes in the Framework to find classes in the other subsystem JAR files
that have been included with a particular exteNd Director EAR configuration.

File Description

ConfigService.jar Located in the WEB-INF\lib folder.

Contains configuration and service properties files for the
project’s subsystems.

For more information, see “Configuration and service files”
on page 45.

JAR files Located in the WEB-INF\lib folder.

The set of JARs needed by your application for either compile or
runtime services.

Files that are grayed out in the display are needed for compiile
time only and are not deployed to the server.

File Description Location

config.xml Sets the configuration
properties for a subsystem

Located in the subsystem-name-conf subdirectory of
the ConfigService.jar

For example, the Security subsystem has a config.xml
file and a services.xml file in the SecurityService-conf
subdirectory

services.xml Sets properties for each of
the services associated with
a subsystem
Creating exteNd Director Projects 45

Subsystem architecture
Each exteNd Director subsystem has one or more archive files associated with it. When you select a
subsystem in the Project Wizard, the wizard adds the archives you need for the project type you’re
creating (EAR or WAR). In addition, the wizard automatically enforces any dependencies that exist for
the subsystem. If for example you include a subsystem that depends on others, those other subsystems are
also included in your project.

Subsystem archive naming conventions The subsystem archive files conform to the following
naming convention:

Subsystem dependencies The Project Wizard and Setup Wizard enforce subsystem dependencies
for nonshared library environments. If you include a subsystem that depends on others, those other
subsystems are also included in your project. If you try to remove a subsystem that others depend on, the
Setup Wizard forces you to remove the dependent subsystems first before you can remove the subsystem
they depend on. In a shared library environment, the wizard cannot enforce any dependencies.

The following table outlines the interdependencies among the exteNd Director subsystems:

Subsystem archive file Description

subsystem-nameService.jar Contains the core business objects defining the subsystem, as well
as any resource bundles required for internationalization.

subsystem-nameTag.jar Contains a custom tag library that you can use in JSP pages in other
Web tiers. A tag library has an associated TLD file that defines the
available tags (methods) available to JSP pages.

subsystem-nameEjb.jar Provides EJB support for a subsystem. This JAR contains the server-
side implementation required for EJB support.

The Project Wizard does not add the EJB JAR files to your project
automatically. To use an EJB JAR in your application, you need to
use exteNd Director facilities to add the JAR to your project.

The EJB JAR files are installed in the Director\templates\Director
subdirectory of your exteNd Director installation directory.

NOTE: This file is provided for backwards compatibility. It is not
recommended for new development.

subsystem-nameClient.jar Contains the EJB client stubs and potentially the Web service stubs
needed to access the core business objects of a subsystem.

The Project Wizard does not add the EJB client JAR files to your
project automatically. To use an EJB client JAR in your application,
you need to add the JAR to your project.

The client JAR files are installed in the
Director\templates\Director\library subdirectory of your exteNd
Director installation directory.

NOTE: This file is provided for backwards compatibility. It is not
recommended for new development.

To use this subsystem You need these subsystems Additional notes

Content Management Directory

Framework

Search

Security

User

—

46 Developing exteNd Director Applications

Third-party archive files Several additional third-party archive files are required for the successful
execution of exteNd Director applications. In a nonshared library environment, these modules are
delivered in the /library directory of an exteNd Director EAR project (the WEB-INF\lib directory of a
WAR project). Most manifest files (META-INF\MANIFEST.MF) have these modules listed as
dependencies.

Directory Framework The DirectoryServiceRealm.jar file is also
required for the Directory subsystem. When
you create an exteNd Director EAR project,
this JAR file is automatically included in the
/library directory of the project. In a WAR
project, this JAR file is automatically added to
the WEB-INF\lib directory.

Framework — —

Pageflow Directory

Framework

Portal

Portlet

Security

User

—

Portal Directory

Framework

Portlet

Security

User

—

Portlet Directory

Framework

Portal

—

Rule Directory

Framework

PortalCA.jar provides conditions and actions
related to resources in the Portal subsystem.

Search Framework —

Security Directory

Framework

—

User Directory

Framework

Security

—

Workflow Directory

Framework

Pageflow

Portlet

Security

The Workflow subsystem is loosely coupled
with the Rule subsystem.

WorkflowAL.jar contains the classes for
activities and links provided with exteNd
Director.

exteNd Composer
Service

Directory

Framework

—

To use this subsystem You need these subsystems Additional notes
Creating exteNd Director Projects 47

48 Developing exteNd Director Applications

3 Reconfiguring exteNd Director Projects

You can change your exteNd Director EAR or WAR by:

Changing the configuration of various subsystems, including their resource sets

Adding subsystems from the same or another template

Updating a project license

Removing or disabling subsystems

Changing a project’s shared library configuration

Changing the configuration
This section describes ways you can change configuration settings. It includes three topics:

Changing configuration settings using a wizard

Changing configuration settings by editing the config.xml file directly

Changing configuration settings using a predefined view

Changing configuration settings using a wizard

To change configuration settings using a wizard:

1 Open your exteNd Director project.

2 Select Project>Director>Configuration.

3 In the Project Configuration dialog, click the tab for the subsystem whose settings you want to
change:

Subsystem What you can change For more information, see

Content
Management

Cache options and
Autonomy search
options

“Content Management caching configuration” on
page 38

Directory Security realm “Directory configuration” on page 38

Framework exteNd Director data
source, locksmith, and
clustering options

“Framework configuration” on page 41

License exteNd Director project
license information

“Updating a project license” on page 52

Pageflow Resource set binding “Binding subsystems to a resource set” on page 71

Rule

Security
Reconfiguring exteNd Director Projects 49

4 Click OK to save your changes.

Changing configuration settings by editing the config.xml file directly

To change configuration settings by editing the config.xml file directly:

1 Open your exteNd Director project.

2 Locate the config.xml file for the subsystem you want to change.

The config.xml files are located in the project’s ConfigService.jar.

For example, in a WAR the Directory subsystem has a config.xml file in the WEB-
INF\lib\ConfigService\ConfigService.spf\DirectoryService-conf subdirectory.

exteNd Director provides a standard key/value editor for config.xml files:

TIP: You can edit the XML source view if you prefer.

In some versions of exteNd Director, the XML source view does not include multiple-line
comments. You can open the XML file in a text editor to be sure that you see the complete source.

Changing configuration settings using a predefined view

To change configuration settings using a predefined view:

1 Open your exteNd Director project.

2 Go to the View tab within the Resources tab and select settings.ear.xml.

The settings.ear.xml view lets you find configuration settings in an EAR project (in a WAR project,
you need to use the settings.war.xml view).

The settings view includes a folder containing the configuration files for all subsystems.

User User service options “LDAP user options” on page 43

Workflow Resource set binding “Binding subsystems to a resource set” on page 71

Subsystem What you can change For more information, see
50 Developing exteNd Director Applications

Adding subsystems
You can use the Setup Wizard to add subsystems to an existing 5.0 EAR project.

NOTE: This menu option is only enabled when you are working with a Version 5.0 EAR project. It is
disabled for all other project types.

You can add subsystems from any template—you don’t have to use the same template you used to create
the project. The Setup Wizard copies subsystem files to the project directory, adds subprojects to the
project file, and makes configuration changes where necessary.

To add subsystems to your exteNd Director project:

1 Open your exteNd Director EAR project.

2 Select Project>Director>Setup.

3 On the Setup Option panel of the Setup Wizard, select Add.

4 On the Template Location panel, specify the directory for the template that contains the subsystems
you want to add, then click Next.

For information about selecting templates, see “Creating an exteNd Director project” on
page 33.

5 Click Yes to confirm your template choice.

6 On the Subsystem Selection panel, select the subsystems you want to add.

The wizard displays panels for configuration options.

7 Make configuration settings as appropriate.

“Creating an exteNd Director project” on page 33 has information about these panels (for example:
see “Content Management caching configuration” on page 38, “Content Management caching
configuration” on page 38, and “Summary panel” on page 43.)

8 On the last panel, check the summary information and optionally clear the Build project after
wizard is finished check box.

9 Click Finish.

Just as with the wizard for creating the exteNd Director project, this wizard takes some time to copy
subsystem files from the template to the project directory. Then it builds the project, if you selected that
option. When it finishes, you’re ready to continue work on your application.

Removing or disabling subsystems
NOTE: For 5.0 EAR projects only.

The Setup Wizard lets you remove or disable any installed subsystem.

Removing means the subsystem is removed from the project and references are removed from the project
definition. Its files are deleted from disk.

Disabling means the subsystem files remain part of the project, but the subsystem is omitted from the
archive when the project is built. The subsystem files are still in the project and you can reenable it when
you want to.

In both cases, references to the subsystem are removed from configuration files and classpaths in
manifest files.

To remove subsystems from your exteNd Director project:

1 Open your exteNd Director EAR project.

2 Select Project>Director>Setup.
Reconfiguring exteNd Director Projects 51

3 On the Setup Option panel of the Setup Wizard, select Modify.

4 On the Subsystem Setup panel, clear the Selected check box for a subsystem you want to remove.
Click Yes when the wizard asks if you are sure, warning that its files will be deleted.

TIP: If you select a subsystem that another subsystem depends on, the wizard won’t allow it to be
deleted. A message tells you what subsystems depend on it.

The wizard deletes the subsystem from the project and the subsystem files from disk.

5 Delete additional subsystems if you want, and click Finish when you are done.

To enable or disable subsystems:

1 Open your exteNd Director project.

2 Select Project>Director>Setup.

3 On the Setup Option panel of the Setup Wizard, select Modify.

The wizard displays the Subsystem Setup panel.

4 Disable a subsystem by clearing its Enabled check box. Then click Yes when the wizard asks if
you are sure you want to disable the subsystem.

The wizard deletes the subsystem from the project but leaves the files on disk so that you can
reenable the project later.

5 Enable a subsystem by selecting its Enabled check box.

The wizard restores the subsystem to the project.

6 Disable or enable additional subsystems if you want, and click Finish when you are done.

To find out what subsystems are enabled:

1 Open your exteNd Director project.

2 Select Project>Director>Information.

The Subsystem Information dialog displays the version and enabled status of the subsystems in
your project.

3 Click OK when you are done.

Updating a project license
exteNd Director evaluation and beta software includes a project license that expires after a certain
number of days. This means that you will not be able to create new exteNd Director projects or access
deployed exteNd Director applications (built using that license) after it expires. You’ll know when your
project license has expired when you get an error message such as:

To update an evaluation or beta license for new and existing projects, you’ll need to:

1 Obtain a new license.

2 Update the template license.

3 Update the license in each existing project that you want to continue to use.

Occurence Error message

Design time License string nnnn has expired

Run time Maximum license count 0 exceeded
52 Developing exteNd Director Applications

Obtaining a new project license You can obtain a new project license by:

Purchasing an unrestricted license and updating the template license as described in the procedure
“To update the template license:” on page 53. Contact your sales representative for information
about obtaining this type of license.

Purchasing and installing a commercial version of exteNd Director.

If you have existing exteNd Director projects that you want to continue to use (and they were
created using the beta or evaluation software) you’ll need to update those projects as described in
the procedure “To update the template license:” on page 53).

Updating the license The exteNd Director project license is stored in the default project template and
in each individual project.

If you have existing exteNd Director projects, you’ll need to update each project individually. Follow the
steps

To update the template license:

1 Open an existing or create a new exteNd Director project.

2 Choose Project>Director>Configuration.

3 Choose License.

4 Type or paste the new license in the License String field.

5 Click Update License template.

The currently open project is updated with the new license and any subsequent exteNd Director
projects that you create will include this new license.

6 Click OK.

To update a project with expired licenses:

1 Open an existing or create a new exteNd Director project.

2 Choose Project>Director>Configuration.

3 Choose License.

4 Type or paste the new license in the License String field.

5 Click OK.

6 Rebuild the project.

7 If the project was deployed, redeploy it.

Changing a project’s shared library configuration
exteNd Director relies on JARs to provide subsystem resources. For example, each subsystem has one or
more archives associated with it. In addition to the subsystem JARs, exteNd Director applications require
other third-party JARs for successful execution. Examples of these other JARs include: Xalan.jar and
xercesImpl.jar.

To update this project license See this procedure

Existing projects that I want to continue to use “To update a project with expired licenses:”

Template license for all new projects “To update the template license:”
Reconfiguring exteNd Director Projects 53

You can decide how exteNd Director should package the JARs used by your projects. The JAR
configuration options are described in the following table:

About nonshared library configurations

By default, exteNd Director applications (except for portlet applications) are created using the nonshared
library configuration.

In the nonshared library configuration:

Each exteNd Director application is a self-contained unit.

All of exteNd Director’s services are embedded within an exteNd Director EAR or WAR project.
The application server does not share any files among the exteNd Director applications that are
deployed.

The classes are loaded by individual J2EE WAR or EAR class loaders.

You can deploy multiple portals to the application server, but they must use different exteNd
Director databases.

You might not choose the nonshared library environment because:

The project size is large resulting in a longer deployment time.

Portlet application WARs must be included in an exteNd Director EAR for deployment. In the
nonshared library configuration, portlet application WARs cannot be deployed independently.

Changes to the application require a redeployment of the archive.

For more information on changing to a different configuration, see “Procedures for changing the
project configuration” on page 56.

If you want to Choose this configuration

Include all of the needed JARs within
your project

This is called a nonshared library configuration. By default,
the Project Wizard creates all exteNd Director projects in
this configuration.

For more information, see “About nonshared library
configurations” on page 54.

Include only the exteNd Director
subsystem JARs within the project .
Copy the third-party JARs to a well-
known location on the deployment
application server

This is called a 3rd party JARs (partial shared library)
configuration

For more information, see “About 3rd party JAR
configurations” on page 55.

Don’t include any framework or
subsystem JARs within the project.
Copy all of the framework, subsystem
and 3rd party JARs to a well-known
location on your deployment application
server

This is called a shared library configuration.

You must use this configuration:

When you want to run standalone portlet applications.

When you deploy to an IBM WebSphere application
server using the WebSphere custom realm.

For more information, see “About shared library
configurations” on page 55
54 Developing exteNd Director Applications

About shared library configurations

In a shared library configuration, the JAR files and classes that provide exteNd Director’s services are
installed on your application server in a well-known location. This means that the JARs can be shared
across all exteNd Director Web applications deployed on that application server. The classes in the shared
libraries are loaded by a single class loader, and the Web application class loaders extend from that class
loader.

The shared library’s benefits and restrictions are outlined below:

For more information on changing to a different configuration, see “Procedures for changing the
project configuration” on page 56.

About 3rd party JAR configurations

In the 3rd party JAR configuration:

The JAR files and classes that provide exteNd Director’s services are included in in the project.

The 3rd party JARs are installed on your application server and thus can be shared across all
exteNd Director Web applications deployed on that application server.

The benefits to the 3rd party JAR configuration include:

For more information on changing to a different configuration, see “Procedures for changing the
project configuration” on page 56.

Benefits Restrictions

Smaller project size The application server is limited to a single
deployed portal

Faster deployment Configuration changes and redeployments require
an application server restart

Applications can be independently redeployed You cannot use the rapid deployment feature.

Decouples exteNd Director server configuration
information from client application

—

You can deploy portlet application WARs
independently

—

Benefits Restrictions

Smaller project size —

Faster deployment Configuration changes and redeployments
require an application server restart

Applications can be independently redeployed You cannot deploy portlet application WARs
independently

You can deploy multiple portals to the application
server, but they must use different exteNd Director
databases.

—

Reconfiguring exteNd Director Projects 55

Procedures for changing the project configuration

By default, exteNd Director projects use a nonshared library configuration.

To determine the current project configuration:

1 Open the project.

2 Choose Project>Director>Shared Lib.

The Shared Lib dialog displays.

If the Shared Lib check box is not selected, the project is a nonshared library project.

To determine the application server’s configuration:

To determine your application server’s configuration, you’ll need to check the appropriate server
directory and see which JARs are there (or not).

If the location contains:

JARs (like jaxrpc-api.jar, jdom.jar, js.jar, and log4j.jar), but none of exteNd Director’s subsystem
JARs, then it is a 3rd party shared library configuration.

exteNd Director’s subsystem JARs (like FrameworkService.jar, RuleService.jar, or
DirectoryService.jar), then it is a full shared library configuration.

Neither 3rd party nor exteNd Director’s subsystem JARs, then it is a nonshared library
configuration.

To change a nonshared library server to a full or 3rd party shared library configuration:

1 Undeploy any exteNd Director projects that require a nonshared library environment.

2 Stop your server.

3 Open a project.

NOTE: This procedure also changes the structure of the project.

4 Choose Project>Director>Shared Lib.

The Shared Lib dialog displays.

5 Click Shared Lib check box.

To change from nonshared library to 3rd-party JARs only, click both Shared Lib and Only 3rd
party JARs).

You’ll see the list of JARs that will be removed from the project and added to the application
server. The list varies depending on your selection.

6 Click Copy JARs.

You are prompted for a directory location to copy the JARs to.

Server name Check this location

Novell exteNd Application Server File: AgJars.conf

Directory: extend5\sharedlib

Apache Tomcat Directory: shared\lib

BEA WebLogic The server’s classpath

IBM WebSphere Directory: server\lib
56 Developing exteNd Director Applications

6a Browse to the server’s directory listed in the following table:

6b Click OK.

7 Update the application server’s classpath so that the server can locate the JARs you just copied.

For Novell exteNd Application Servers, you can click Update AgJars.conf to automatically
update the application server’s classpath.

For other servers, see their documentation for information about updating the classpath.

8 Restart your server.

To change from a shared library server configuration to a nonshared library configuration:

1 Undeploy any exteNd Director projects that require a shared library environment.

2 Stop your server.

3 Open a project.

NOTE: This procedure also changes the structure of the project.

4 Choose Project>Director>Shared Lib.

The Shared Lib dialog displays.

5 Unselect the Shared Lib checkbox and (if checked) the Only 3rd party JARs.

6 Click OK.

7 Remove the exteNd Director subsystem JARs and the 3rd party JARs from the server’s directory.

8 Remove the exteNd Director subsystem JARs and the 3rd party JARs from the server’s classpath.

9 Restart your server.

Server name Check this location

Novell exteNd Application Server File: AgJars.conf

Directory: extend5\sharedlib

Apache tomcat Directory: shared\lib

BEA WebLogic The server’s classpath

IBM WebSphere Directory: server\lib

Server name Check this location

Novell exteNd Application Server File: AgJars.conf

Directory: extend5\sharedlib

Apache tomcat Directory: shared\lib

BEA WebLogic The server’s classpath

IBM WebSphere Directory: server\lib
Reconfiguring exteNd Director Projects 57

58 Developing exteNd Director Applications

4 Updating exteNd Director Projects

The exteNd Director Setup Wizard provides a way to update EAR project files. It compares the files in a
template (normally the template from which the project was created) to the files in your project directory,
then copies all files that are not present or have changed. This chapter contains one section:

Procedure for updating your exteNd Director project

NOTE: This update utility does not analyze how your project is configured. It copies files from
subsystems that your project does not include.

Procedure for updating your exteNd Director project
NOTE: This menu option is only enabled when you are working with a Version 5.0 EAR project. It is
disabled for all other project types.

To update your exteNd Director project:

1 Open your exteNd Director project.

2 Select Project>Director>Setup.

3 On the Setup Option panel of the Setup Wizard, select Update.

4 In the From location text box, enter the location of the source project, typically the standard EAR
template in your exteNd Director installation. For example:

C:\Program Files\Novell\exteNd5\Director

5 In the To location text box, enter the location of the root of your target EAR project. For example:
C:\Director_Projects\My_Project

6 Select the Mode:

7 If you chose Selective, specify lists of extensions in the Include Extensions and/or Exclude
Extensions fields. Separate extensions by semicolons.

8 Check Check date & length to replace files that have a different length in addition to those that
have a different date.

9 (Required for version updates) Check Copy new files to include new files in addition to updated
files.

Any file that exists in the From location but not in the To location is considered to be a new file.

10 Check Trial to see a list of the files to be replaced or copied without actually performing the
update.

11 Click Go.

Mode What it means

All Update all files (no filtering)

Classes Update class files only (intended for updating subsystem classes in the library
WAR)

Selective See Step 7 (next)
Updating exteNd Director Projects 59

60 Developing exteNd Director Applications

5 Working with exteNd Composer Projects

This chapter explains how to add new and existing exteNd Composer projects as subprojects of your
current project. It contains the following sections:

About exteNd Composer projects

Creating new exteNd Composer projects

Adding existing exteNd Composer projects

About exteNd Composer projects
Before you run the Composer Pageflow Wizard, you need to add an exteNd Composer subproject to your
exteNd Director project. You can do this in either of two ways:

By creating a new exteNd Composer project

By adding an existing exteNd Composer project

Once you’ve added the exteNd Composer subproject to your exteNd Director project, you need to deploy
your exteNd Director project at least once. Then you can begin to take advantage of the vulturing
capabilities provided by the resource set (since the exteNd Composer subproject is added to the resource
set). The resource set ensures that any change you make to an exteNd Composer project artifact is
automatically picked up by the server and can be tested right away. This is also true of the pageflow, since
pageflows are also stored in the resource set as well.

NOTE: The resource set being used by exteNd Composer must be the same one used by the pageflow.
If they are not the same, the pageflow will not be able to find all of the resources associated with the
service.

For complete details on working with exteNd Composer services, see the exteNd Composer help.
For details on creating exteNd Composer pageflows, see the chapter on using the Composer Pageflow
Wizard in the Pageflow and Form Guide.

Working in the Express Portal project The Express Portal project contains a exteNd Composer
subproject. Therefore, if you plan to work in the Express Portal project, you do not need to add an exteNd
Composer subproject.

Creating new exteNd Composer projects

To create a new exteNd Composer project within an exteNd Director project:

1 In the exteNd Director development environment, open the exteNd Director project that will
contain the exteNd Composer subproject.

2 Select File>New>Project.

The New Project dialog appears.
Working with exteNd Composer Projects 61

new ../../../Start_Composer_Help.html
xfComposerWizard.html
xfComposerWizard.html

3 Select the Composer tab and choose Composer Project:

4 (Required) Type a project name. exteNd Director adds the project name extension (.spf).

5 Specify the directory where you want your project to reside. Select ... to browse the directories on
your computer.

6 Enter a deployment context string in the bottom-most text field of the dialog. The string should
contain labels (no spaces) separated by periods, as in composer.myapp.

NOTE: The context string should not contain Java-language keywords, such as try, catch,
finally, int, for, and so forth.

7 To launch exteNd Composer after the project is created, leave the Launch Composer checkbox
selected:

8 Click Finish. The window appears with the name of the project you just created in the title bar.

Adding existing exteNd Composer projects

To add an existing exteNd Composer project to an exteNd Director project:

1 In the exteNd Director development environment, open the exteNd Director project that will
contain the exteNd Composer subproject.

2 Select File>New Project.

The New Project dialog appears.
62 Developing exteNd Director Applications

3 Select the Composer tab and choose Existing Composer Project:

4 Specify the directory where you want your project to reside. Select ... to browse the directories on
your computer.

5 To launch exteNd Composer after the project is created, leave the Launch Composer checkbox
selected.

6 Click Finish. The window appears with the name of the project you just created in the title bar.
Working with exteNd Composer Projects 63

64 Developing exteNd Director Applications

III Managing Application Resources

Explains how to use the resource set to manage application resources.

• Chapter 6, “Using the Resource Set in an exteNd Director Application”
• Chapter 7, “Editing the Configuration of a Resource Set”
• Chapter 8, “Using the Relationship Viewer”
• Chapter 9, “Searching a Resource Set”
• Chapter 10, “Working with Views”
65

66 Developing exteNd Director Applications

6 Using the Resource Set in an exteNd Director
Application

This chapter describes the purpose of the exteNd Director resource set, what it contains, and how its
configuration settings affect your exteNd Director application. It contains the following sections:

Role of a resource set in your application

What to put in a resource set

Binding subsystems to a resource set

Configuring the resource set

Dynamic loading of resources and classes

Using events to report resource set changes

Validating a resource set

Storing XML files that contain MBCS characters

Role of a resource set in your application
An exteNd Director resource set organizes descriptors and other files used by exteNd Director
subsystems and provides for dynamic loading during development, avoiding frequent redeployments and
speeding up your testing. Each Portal (or Portlet) application can include a resource set.

A resource set holds application-defined resources and classes. Some of these resources are templates or
definitions for using a subsystem’s features, such as a workflow or a portlet descriptor. Others specify
how subsystems work together, such as bindings between rules and users. Resources are usually XML
files; some are accompanied by Java classes.

Support for multiple resource sets The exteNd Director subsystems provide support for multiple
resource sets. Therefore, an exteNd Director EAR that contains multiple portlet application projects, each
with a separate resource set. Each portlet application resource set can have its own resources (such as
pageflows and workflows). These resources do not need to be copied into the resource set for the Portal
WAR.

Each portlet application WARs (whether in shared lib mode, or WARs contained within an EAR) is a self-
contained unit. A full portlet application can therefore be deployed without requiring a change to the
Director deployment.

Artifacts in a WAR can only access other artifacts in the same WAR. This restriction reinforces the notion
that each application WAR is a self-contained entity.

When you create a new resource in an EAR project that contains multiple resource sets, you need to
specify which resource set to use as the target.
Using the Resource Set in an exteNd Director Application 67

Finding resources A resource set organizes your application’s resources in a known directory
structure, described in “What to put in a resource set” on page 68.

In your application, access to resources is handled by the resource servlet. These are its primary
functions:

Document discovery and retrieval

Java class discovery

Java class loading

Dynamic loading A resource set can be configured to dynamically load resources from disk as well
as from the deployed WAR. Configuration settings specify where to look for updated versions of
resources. The resource servlet vulture keeps watch on the directory locations and determines when new
classes and resources are available to be loaded. To set up dynamic loading, see “Dynamic loading of
resources and classes” on page 77.

Resources tab When you are developing your application, you can use the Resources tab in the
Navigation Pane to find the resources you want to work on. For more information, see Chapter 9,
“Searching a Resource Set”.

Including a resource set in your exteNd Director application In an exteNd Director EAR
project, a resource set is part of an application WAR within the EAR. In an exteNd Director WAR project,
the resource set is added as a JAR file in the WEB-INF\lib directory. A resource set is required for a WAR
project—but is not required for an EAR project.

What to put in a resource set
When you create a Portal (or Portlet) application that includes a resource set, the WAR contains the
resource set servlet and a JAR file called appname_resource.jar that contains directories for the
resources required by your exteNd Director application. The resource JAR is located in the WEB-INF\lib
directory of the WAR.

The resource JAR contains Java classes for portlets, conditions, and actions you create, as well as XML
descriptor files that provide application metadata. The resource JAR can also contain custom resources
that you define. When you use exteNd Director to create new resources of various types, the exteNd
Director wizards save the resources in the appropriate directories of the resource JAR.

In addition to appname_resource.jar, you can add other JAR files to WEB-INF\lib. Any resources in
those additional JARs must be stored in the subdirectory that corresponds with the resource type. Each
JAR needs to be listed in the resourcePath and/or libPath in the resource set’s configuration file.
68 Developing exteNd Director Applications

Subdirectories for resources and Java classes

The following table lists the directories in a resource JAR and the types of resources they can contain.
When you look at the project in Source Layout, you will find these subdirectories under the data
directory:

Resource subdirectory Purpose of resources Tools for creating

form XTHML Web forms that are XForms-
compliant

Form Designer, Database
Pageflow Wizard, Composer
Pageflow Wizard, and Web
Service Pageflow Wizard

framework-database SQL files for loading data into the
framework database

Any text editor

html HTML pages HTML File Wizard

images Graphics files Any commercially available tool
for creating graphics files

my-views Search queries for changing the set of
files you are working with as you develop
your application

Resource Set tab

pageflow-process Pageflow process descriptor Pageflow Modeler, Database
Pageflow Wizard, Composer
Pageflow Wizard, and Web
Service Pageflow Wizard

portal-category Label for categorizing portlets and
pages. Used in the Portal Personalizer

Category Wizard

portal-component Component descriptors, which provide
configuration information for component
classes

—

portal-data-definition Wireless configuration information Transcoding Definition
(Wireless) Wizard

portal-device-profile Definitions of user environments. Used
in portal-data-definition and portal-style
resources. Several are provided.

Device Definition (Wireless)
Wizard

portal-layout Descriptors and definitions of the way a
portal page arranges portlets on a page

Layout and Layout Definition
Wizard

portal-option Descriptors for action items that you can
include in the title bars of portlets

Option Wizard

portal-page PID definitions, which are pages that
contain tags that display portlets and
components. PID pages are processed
by the portal servlet.

Page Descriptor Wizard

portal-portlet Portlet descriptor Portlet Wizard, Pageflow
Modeler, Database Pageflow
Wizard, Composer Pageflow
Wizard, and Web Service
Pageflow Wizard

portal-style Portal styles (XSL) and portal style
descriptors (XML)

Style Descriptor Wizard
Using the Resource Set in an exteNd Director Application 69

Using views to find what you’re looking for You can use views to display personalized lists of
items within an exteNd Director project. Views can be used to look at resources in a resource set. exteNd
Director ships with several predefined views. In addition, exteNd Director allows you to define custom
views to display project items that are of particular interest to you. For details on using views to find items
in an exteNd Director project, see Chapter 10, “Working with Views”.

Projects for a resource set

A Portal (or Portlet) application with a resource set consists of at least two projects, which you see in the
Source Layout:

A WAR project

A JAR project in the WEB-INF/lib directory of the WAR

The web.xml descriptor for the WAR projects configures the resource servlet. The JAR project has a data
directory and a source directory that are used to build the resource JAR. Additional resource JARs can be
included as built JARs or as projects whose JARs are built with the current project.

portal-theme Subdirectories that contain files that
define the visual characteristics to be
applied across a portal application

Theme Wizard

rule Rule definitions Rule Designer

rule-action-macro Action macro definitions Action Macro Wizard

rule-condition-macro Condition macro definitions Condition Macro

rule-group-binding Associations between rules and groups Group Bindings Wizard

rule-pipeline Pipeline definitions Pipeline Wizard

rule-pipeline-binding Associations between rules and
pipelines

Pipeline Bindings

rule-user-binding Associations between rules and users User Bindings Wizard

security-role Associations between roles and users XML Editor (see the chapter on
role-based authorization in the
User Management Guide)

workflow-activity-
policy

URL representing the client to open for a
workitem

XML Editor

workflow-process Definition of a workflow process Workflow Process Wizard

wsdl WSDL (Web Services Description
Language) files that describe Web
Services

WSDL Editor

xsl XSL files XSL Editor

custom-directory-
name

Additional directories that contain Java
classes or your own custom resources

—

Resource subdirectory Purpose of resources Tools for creating
70 Developing exteNd Director Applications

usSecurityRole.html
usSecurityRole.html

Binding subsystems to a resource set
How binding works Subsystems that use resource sets are bound to them by entries in the following
XML files:

resourceset.xml in the WEB-INF/conf directory of a WAR

config.xml for the subsystem service JAR

The resourceset.xml file specifies a name that other modules use to refer to the resource set. You can
change the name by editing the value of this setting:

<settings>
 <name>appname-ResourceSet</name>
 ...
</settings>

For information about resourceset.xml, see “Configuring the resource set” on page 71.

For a subsystem that uses resources, its config.xml file binds the subsystem to a particular resource set by
specifying the resource set name in a property key/value pair. The binding for the rule subsystem looks
like this:

<property>
<key>RuleService/resourceset</key>
<value>appname-ResourceSet</value>

</property>

Editing the binding There are two ways to edit the binding:

Use the Configuration tool (Project>Director Project>Configuration)

For information, see Chapter 3, “Reconfiguring exteNd Director Projects”.

OR

Edit a subsystem’s config.xml

TIP: Use the View tab on the Resources panel in the Navigation Pane to find configuration files. Try these
views:

settings.war.xml for a WAR project (or settings.ear.xml for an EAR project)

config.services.by.subsystem.war.xml for a WAR project (or config.services.by.subsystem.ear.xml
for an EAR project)

Binding and the Project Wizard When you use the Project Wizard to create a new Web application
that includes a resource set, the wizard sets the subsystem bindings to point to the new resource set. You
use the methods just described to reset them, if you want.

Configuring the resource set
A Web application with a resource set has two configuration files:

web.xml

resourceset.xml

About web.xml The web.xml descriptor contains the standard settings for a WAR. It identifies the
servlets that the resource set uses. It doesn’t hold any resource set configuration settings.

About resourceset.xml The resourceset.xml configuration file has settings that specify how to find
resources and what JARs are enabled, as well as variables that you can use when setting values.
Using the Resource Set in an exteNd Director Application 71

The rest of this section describes the settings you can make in resourceset.xml, showing the XML. In the
Resource Set Editor, you can use the graphical view so you don’t have to edit the XML directly.

For information on using the Resource Set Editor, see Chapter 7, “Editing the Configuration of a
Resource Set”.

Variables

The variables section of resourceset.xml defines local variables that you can use (instead of static values)
when defining configuration settings. Variables can be used to identify whether a subsystem is installed
and active. Variables can also be used for directory paths. In a newly created resource set, several
variables are defined for you. You can add additional variable definitions.

The variables section has this XML format:

<variables>
<variable key="EARLOCATION" value="C:\DirectorProjects\Test2\Ear" />
<variable key="WARLOCATION" value="C:\DirectorProjects\Test2\Ear\MyApp" />
<variable key="ACCESS_DISK" value="true" />
<variable key="LIBRARY" value="../library" />
<variable key="WEBINF" value="WEB-INF/lib" />
<variable key="NEVER" value="0" />
<variable key="FREQUENT" value="7500" />
<variable key="INFREQUENT" value="15000" />

</variables>

NOTE: The EARLOCATION variable is not included in WAR projects.

These variables are defined for you:

Variable Typical value Purpose

EARLOCATION

(EAR projects
only)

drive:\project-
directory\EAR

The path for the EAR in the project directory; useful for
specifying disk locations in the resourcePath and libPath

WARLOCATION drive:\project-
directory\EAR\appn
ame (EAR projects)

drive:\project-
directory\appname
(WAR projects)

The path for the WAR that contains the resource set

ACCESS_DISK true Whether resources and classes are being dynamically
loaded from disk; should be coordinated with the vultures
and dynamicClassLoading settings for more readable
entries in resourcePath and libPath

LIBRARY ../library The relative path to the library directory, which contains all
the subsystem JARs

WEBINF WEB-INF/lib The relative path to the directory in the resource set WAR
that contains resource JARs

NEVER 0 Variable for setting an entry’s vultureInterval attribute

FREQUENT 7500 Variable for setting an entry’s vultureInterval attribute

INFREQUENT 15000 Variable for setting an entry’s vultureInterval attribute
72 Developing exteNd Director Applications

General settings

General settings for the resource set include its name and flags that enable validation, logging, and
dynamic loading.

The settings section of resourceset.xml has this format:

<settings>
<name>appname-ResourceSet</name>
<dynamicClassLoading>true</dynamicClassLoading>
<validate>false</validate>
<verbose>false</verbose>
<vultures>true</vultures>

</settings>

These general settings are as follows:

Types and locations of resources: resourcePath and libPath

The path-entries section of resourceset.xml specifies two paths: resourcePath and libPath.

resourcePath The resourcePath tells the exteNd Director application where to find resources. For
resourcePath, you specify:

What types of resources to load. A set of ext elements identify the file extensions associated with
resource types.

Where to find resources. A set of entry elements identify JARs and disk locations that contain
resources. Resources may be dynamically loaded from disk locations and reloaded when they
change.

libPath The libPath tells the application where to find Java classes. The resource set class loader looks
for classes in particular locations and can dynamically load and replace classes that have been loaded
previously. For libPath, you specify:

Element Typical value Purpose

name appname-
ResourceSet

A name for the resource set; used in other configuration
files that need to refer to this resource set.

dynamicClassLoading true or false Whether Java classes are dynamically loaded when they
are changed. The vultures setting must also be enabled.

For information, see “Dynamic loading of resources
and classes” on page 77.

validate true or false Whether validation classes in the resource set should run
when the resource set is loaded. Typically set to true
during development and false in a deployed production
application.

For information, see “Validating a resource set” on
page 81.

verbose true or false Whether log messages are reported to the server
console.

vultures true or false Whether exteNd Director sets up processes to report
changed files in disk locations in the resource set’s paths.

For information, see “Dynamic loading of resources
and classes” on page 77.
Using the Resource Set in an exteNd Director Application 73

What classes are loaded via the normal class loader. A set of filter elements identify the packages
that contain these classes, typically the packages of the exteNd Director API.

What file extensions identify Java code—typically just .class.

Where to find Java code in JARs and disk locations. A set of entry elements identify JARs and disk
locations that contain Java classes. Classes may be dynamically loaded from disk locations and
reloaded when they change.

NOTE: Classes you want to load from disk locations must not be included in the EAR or WAR. When you
use dynamic classloading, you need to make the projects that include the classes inactive.

Example The path-entries section has this XML format:

<path-entries>
<resourcePath>

<exts>
<ext active="true">.xml</ext>
...

</exts>
<entries>

<entry active="true">$WEBINF$/RuleCA.jar</entry>
...
<entry active="!$vultures$">$WEBINF$/appname-resource.jar</entry>
<entry active="$vultures$" vultureInterval="$FREQUENT$"

recursive="true">$WARKLOCATION$/data</entry>
...

</entries>
</resourcePath>

<libPath>
<filters>

<filter active="true">com.sssw.fw</filter>
...

</filters>
<exts>

<ext active="true">.class</ext>
</exts>
<entries>

<entry active="true">$WEBINF$/CQA.jar</entry>
...
<entry active="!$vultures$">$WEBINF$/appname-resource.jar</entry>
<entry active="$vultures$" vultureInterval="$FREQUENT$"

recursive="true">$WARLOCATION$/build/resource-classes</entry>
<entry active="!$productionMode$" vultureInterval="$FREQUENT$"

recursive="true">$DISKLOCATION$/ResourceSet/WEB-INF/lib</entry>
</entries>

</libPath>
</path-entries>

The table describes the elements in the path-entries section:

Element Purpose

resourcePath Container for exts and entries elements that specify what resources to load and
where to find them.

libPath Container for filters, exts, and entries elements that specify what Java classes to
load and where to find them.
74 Developing exteNd Director Applications

Using variables in entry elements

Several useful variables are defined for you in the variables section, including the disk location of the
EAR and WAR. You can also use general settings as variables.

For a list of general settings, see “General settings” on page 73. For a list of variables, see
“Variables” on page 72. You can define additional variables as needed to make your resource.xml
dynamically configurable.

Editing tips When editing XML and paths, include a $ before and after the name of a variable or
general setting. In the Resource Set Editor, right-click check boxes to select from a list of variables.

filter Specifies a class or package containing classes that the normal class loader loads,
including classes of the exteNd Director API. Individual filter elements are contained
in a filters container element.

If the active attribute is false, the item is ignored.

Example:

<filter active=”true”>com.sssw.fw</filter>

ext Specifies a file extension that identifies what files to load from locations on the
resourcePath or libPath. Individual ext elements are contained in an exts container
element.

If the active attribute is false, the item is ignored.

Example:

<ext active=”true”>.xml</ext>

entry Specifies a JAR or disk location where resources or Java classes are found. It is
typical to use variables to identify locations within the exteNd Director project.
Individual entry elements are contained in an entries container element.

The element’s data value is a path:

For JARs, the path is the location of a Java archive in the resource set WAR.

For disk locations, the path should be the location of the files in the source
layout view of the project.

Order of entries The entry elements are scanned from last to first. If duplicate
resources or classes exist, the location listed last is the one that gets used.
However, if a class is in the EAR or WAR but also on disk, the class in the EAR or
WAR is always used.

Attributes If the active attribute is false, the item is ignored. Additional attributes
that apply when the entry is a disk location and dynamic loading is enabled are:

vultureInterval Milliseconds between scans for updated classes or resources

recursive Whether subdirectories are included

For more about dynamic loading, see “Dynamic loading of resources and
classes” on page 77.

Examples:

<entry active="true">$WEBINF$/CQA.jar</entry>
<entry active="true">$WEBINF$/resource.jar</entry>

<entry active="true" vultureInterval="$FREQUENT$"
recursive="true">$WARLOCATION$/data</entry>

<entry active="true" vultureInterval="$FREQUENT$"
recursive="true">$WARLOCATION$build/resource-classes</entry>

Element Purpose
Using the Resource Set in an exteNd Director Application 75

Examples This entry refers to the resource.jar in the resource set. $WEBINF$ specifies the WEB-
INF/lib directory of the resource set WAR:

<entry active="true">$WEBINF$/resource.jar</entry>

This entry refers to a disk location within the exteNd Director project directory where Java classes are
compiled. A vulture interval has been set—so as items are recompiled, they will be dynamically loaded:

<entry active="true" vultureInterval="$FREQUENT$"
recursive="true">$WARLOCATION$/build/resource-classes</entry>

This entry refers to the disk location where resources are stored in the WAR. The subdirectories will all
be searched recursively—and as resources change, they will be dynamically loaded:

<entry active="$vultures$" vultureInterval="$FREQUENT$"
recursive="true">$WARLOCATION$/data</entry>

Directory keys for indexing

exteNd Director uses indexes of the resource set content to figure out what to display in the Resource Set
tab of the Navigation Pane. Both the Relationship Viewer and the Resource Set Search provide useful
ways of looking at your project’s content, and the directories section of resourceset.xml defines ways for
looking at the content.

Files in the resource JARs and disk locations are always indexed by their file names. For each of the
standard resource set directories, resourceset.xml can define additional ways of categorizing the
resources or classes. You can define additional search indexes, and you can add indexes for custom
directories in the resource set.

Indexing and searching are features that enhance your work environment; they are not used in your
deployed exteNd Director application.

The directories section has this XML format:

<directories>
<directory name="rule-condition-macro" active="true">

<search key="name" valuebased="true" xpath="/conditionmacro[@name]" active="true" />
</directory>
...

</directories>

The table describes the elements contained in the directories section:

Directory
setting Typical value Purpose and attributes

directory <directory name="rule-condition-
macro" active="true">

The directory for which you want to add indexes. There
can be a directory entry for any directory that occurs in
any of the JARs or disk locations in the path-entries
section.

Attributes are:

name The name of the directory to be indexed.

active Whether this directory should be indexed. For
efficient performance, set to false when the appropriate
subsystem is not loaded.
76 Developing exteNd Director Applications

Dynamic loading of resources and classes
exteNd Director supports dynamic loading of resources and classes within a resource set. Dynamic
loading speeds development, because you can test changes in the resource set without having to deploy
the whole project. You can also allow controlled changes in a production application by enabling
dynamic loading for particular resource types, such as rules.

Dynamic loading is enabled by default when you create a new project or use the Express Portal project.
When dynamic loading is enabled, resource set vultures watch disk locations for changes. After a
specified interval, if a file has changed, the vulture fires an event with information about the changed
resource item. Listeners for that resource set can examine the resource item and determine what action to
take. Default listeners are programmed to flush the changed object from the resource set cache, so that
the new version will be loaded when it is first requested.

For more about events and listeners, see “Using events to report resource set changes” on page 79.

exteNd Director can dynamically load resources or classes or both. Settings in resourceset.xml determine
what gets loaded. Each disk location has its own vulture settings.

NOTE: By default, the resource set is configured for dynamic loading. The necessary settings are
described here so you will understand how dynamic loading works.

Configuring the resource set To use dynamic loading for a particular resource set, you need these
settings in its resourceset.xml configuration file:

1 In the settings section, set the vultures element to true. This enables the resource set to look at disk
locations and discover changes.

2 If you want Java classes to be dynamically loaded, set the dynamicClassLoading element to true.
Then use the Enable/Disable button to disable resource JAR projects whose classes you want to
load dynamically from disk.

3 Add one or more entry elements for disk locations to the resourcePath or libPath section. Each
entry specifies a disk location that contains resources or classes. For each entry element, set these
attributes:

Set the active attribute to true.

Set the vultureInterval attribute to a value greater than zero.

Set the recursive attribute to true if the vulture should examine subdirectories too; false if
subdirectories should be omitted.

search <search key="name" valuebased="true"
xpath="/conditionmacro[@name]"
active="true" />

A definition for a secondary index for the directory. There
can be one or more search indexes for a directory. The file
name of the resource or class is always the primary index.

Attributes are:

key A keyword naming the index. The user would be
able to choose this type of search in the Resources
Pane.

valuebased Whether the index should note the
presence or the value of an element or attribute.

xpath An expression, using XPath syntax, specifying
what to index.

active Whether this index should be created.

Directory
setting Typical value Purpose and attributes
Using the Resource Set in an exteNd Director Application 77

For an example of how this looks in XML, see “Example” below.

How vultures work In resourceset.xml, if the vultures element in the settings section is set to true, and
if an entry in the resourcePath or libPath section specifies a disk location whose vulture interval is greater
than zero, an exteNd Director vulture watches that disk directory. When the vulture interval is reached,
the vulture checks to see if any of the files within the directory have been modified. The vulture also
checks for new files. Deleted files are not processed.

When the vulture finds a changed file in the disk location, it flushes the previous instance of the file, and
the new version is loaded the next time the object is requested. Once an item has been loaded into the
cache, it is not removed until the next time the server is started, or the next time the WAR is deployed.

Dynamic loading and the class loader The Java classloader supersedes the dynamic loading of
resources and classes. So if the EAR or WAR contains a class, that class will never be dynamically loaded
from disk. To load classes from disk, make sure they are not included in the deployed archive. You can
use the Enable/Disable Subprojects option in the resource set configuration editor to omit one or more
resource JARs from the archive.

You can enable dynamic loading for helper classes used by exteNd Director classes such as portlets. If
you modify the helper classes, the classes are vultured and loaded into an instance of the class loader.
However, the portlet may have been loaded by a previous instance of the class loader. In this case, it will
continue to reference the classes found by its instance of the classloader. Therefore, if you recompile the
helper classes, make sure to recompile the portlet as well, and you will get the latest version of the portlet
and its helper classes.

Example Suppose you want to dynamically load pages, portlets, and styles from disk. The XML files
are stored in a directory called MyProjects\MyEAR\MyApp\data on your C drive. The Java classes for
your portlets are compiled to MyProjects\MyEAR\MyApp\build\resource-classes.

To dynamically load updated versions of resources (pages, portlet descriptors, styles), you would need to
add the data directory to the resourcePath section of the resourceset.xml file. For classes, you would need
to add the build directory to the libPath. You would also disable the resource JAR project so that it is
omitted from the archive (necessary only if you want to dynamically load classes).

For each path entry, you would set the vulture interval attribute to indicate how often you want the vulture
to check the disk locations for changes. The vulture interval is expressed in milliseconds.

These XML excerpts appear in resourceset.xml:

<resourceset>
<settings>
 <name>ResourceSet</name>
 <dynamicClassLoading>true</dynamicClassLoading>
 ...

<vultures>true</vultures>
</settings>
<path-entries>

<resourcePath>
...
<entries>

...
<entry active="true" vultureInterval="$FREQUENT$"

recursive="true">$WARLOCATION$/data</entry>
</entries>

 </resourcePath>
<libPath>

...
<entries>
 ...
<entry active="true" vultureInterval="$FREQUENT$"

recursive="true">$WARLOCATION$/build/resource-classes</entry>
</entries>
78 Developing exteNd Director Applications

 </libPath>
</path-entries>
...
</resourceset>

Using events to report resource set changes
As you’ve learned, a resource set holds its resources and classes in JARs and on disk. These locations are
listed in resourceset.xml in the resourcePath and libPath sections. The contents of a resource set can
change when you add or remove files from the disk locations. To recognize and act on changes, you can
configure exteNd Director vultures, described in “Dynamic loading of resources and classes” on page 77.

When a vulture notes a change, it fires an UPDATE event. exteNd Director subsystems can listen for
resource set events and react appropriately.

This section describes how to configure an event listener and what to do to handle the event.

NOTE: This information about resource set events is an advanced topic. The standard listeners are
already configured for you. They provide the only required functionality, which is resource set caching.

Working with listeners

Listeners configured for you

In a new exteNd Director project, the Rule, Workflow, and Security subsystems are each configured with
a resource set listener that is registered during the boot process. They receive events for their bound
resource set.

These subsystems each have a listener class called com.sssw.<subsystem>.core.EboResourceListener,
which extends com.sssw.fw.resource.EboResourceListener. These default listeners handle caching of
classes and resources, so in most cases you will want to continue to use these listeners. You can add as
many additional listener classes as you need.

Binding

Currently, a subsystem is bound to one resource set in a one-to-one relationship. A listener you register
for a subsystem gets events for the one bound resource set. Changes to that resource set cause any
registered listener’s stateChanged() method to be called.

Adding a listener

There are two ways to add a listener for a resource set:

Configure a listener service in a subsystem’s services.xml. The listener is registered during the boot
process.

OR

Call the addStateChangeListener() method of EboResource to register a listener.

The listener is a class that implements com.sssw.fw.util.EbiStateChangeListener.

Adding a listener during startup

To register a listener during startup, you include a service element in the services.xml file for the
subsystem. For example, this XML registers the default listener for the rule subsystem:
Using the Resource Set in an exteNd Director Application 79

<service>
 <interface>com.sssw.re.core.EboResourceListener</interface>
 <impl-class>com.sssw.re.core.EboResourceListener</impl-class>
 <description>RuleService ResourceSet Listener</description>
 <max-instances>1</max-instances>
 <startup>A</startup>
</service>

The impl-class element specifies the listener class that implements the methods of
EbiStateChangeListener. For a listener service, the interface is typically the same as the class.

The startup element has a value of A, for autostart—meaning it will be registered during the boot process.

Timing issues during startup During the boot process, the target object may not be instantiated
when a registration request occurs—so exteNd Director uses a delayed registration procedure that
records the registration request and registers the listener after the target resource set is instantiated. When
the registration occurs, a stateChanged event is fired with a status of EboState.REGISTER.

Adding or removing a listener in your code

To add a listener in your application code, you call the static method addStateChangeListener() of
com.sssw.fw.resource.EboResource. The arguments are:

Name of the resource set

Listener class that implements com.sssw.fw.util.EbiStateChangeListener

For example, this code adds the current class as a listener for the MyResources resource set:

EboResource.addStateChangeListener("MyResources", this);

To remove a listener, call the removeStateChangeListener() method. This code removes the current class
as a listener for the MyResources resource set:

EboResource.removeStateChangeListener("MyResources", this);

If the class you specify is not a registered listener, the remove request is ignored.

Types of events

Resource set events are stateChanged events, reporting changes in the status of the resource set. Status
codes for the various states are defined in com.sssw.fw.util.EboState. A resource set generates two types
of events:

EboState.REGISTERED Reported when the event listener is registered

EboState.UPDATE Reported when a change happens in one of the watched disk locations in the
resource set

An EboResourceEvent object is passed to the stateChanged event. It consists of the resource element that
changed and an EboState status code.

Firing an event You can also fire stateChanged events to all of a resource set’s listeners. The event can
use your own application-specific status codes or the EboState codes.

This sample code illustrates how you might prepare for and fire an event. The resource set is named
MyResources:

EboResource rs = EboResource.getLoaded(name);
EboResourceElement rsrcElem = rs.findResourceElement(file);
EboResourceEvent rsrcEvt = new EboResourceEvent(rsrcElem, MYSTATUSCODE);
EboResource.fireStateChanged("MyResources", rsrcEvt);
80 Developing exteNd Director Applications

What listeners do

Behavior of the standard listeners Each subsystem that uses resources has a standard listener that
responds to changes in resource sets. The services.xml file for the subsystem sets up the registration of
the listener.

If the resource set’s vultures are turned on and a vulture notes that a change has occurred in a disk
location, the vulture fires the listener’s stateChanged event and passes an EboResourceEvent object
containing a reference to the changed object. The listener code finds out if the changed object is relevant
to that subsystem—and if so, flushes the old version of the resource from the subsystem’s internal cache.

NOTE: To preserve the dynamic loading of resources, do not change the configuration of the standard
listeners.

Writing your own listener Your listener class must implement the class
com.sssw.fw.resource.EboResourceListener. Its only method is stateChanged() with an argument of type
EboResourceEvent. The following sample code checks for this, then gets the resource element from the
event object and takes some appropriate action.

The stateChanged method might look like this:

public void stateChanged(EboEvent eo)
{

if (eo instanceof EboResourceEvent)
{

EboResourceEvent evt = (EboResourceEvent) eo;
if (evt.getState() == EboState.REGISTERED)
{

... // Code to respond to getting registered, if any
}
if (evt.getState() == EboState.UPDATE)
{

EboResourceElement elem = evt.getResourceElement();
if (elem != null)
{

if (elem.getDirectoryName().startsWith("rule")
{

... // Do something for a rule resource element
}

}
}

}
}

Validating a resource set
When instantiating a resource set, exteNd Director can run validation classes to check the resource set.

NOTE: Validation of a resource set is an advanced topic. You can enable validation in resourceset.xml
and use the default validation with no further effort on your part.

The default validation checks the existence of:

All items on resourcePath and libPath

All portlet classes referred to in portlet descriptors

If the validate setting of the resource set is true, then during the boot process, when the resource set is
instantiated, exteNd Director runs all the validation classes it finds in the resource set. They are called in
no specific order.
Using the Resource Set in an exteNd Director Application 81

Writing your own validation class You can write your own validation classes to check whatever
needs checking in your application. These classes can be stored anywhere in the resource set JARs.

Your validation class must implement the com.sssw.fw.resource.api.EbiValidator interface. The interface
contains one method:

public void validate(com.sssw.fw.resource.EboResource resource) throws
Exception;

If a validation class throws an exception, exteNd Director will display a stack trace on the console, then
proceed with the next validation class. An exception does not stop the validation process or prevent the
exteNd Director application from running. All you need to do is be aware that the information on the
console could indicate problems in your application. It is up to you to take further action.

Running a validation test In exteNd Director, you can run the resource set validation before you
deploy:

1 In the WEB-INF/lib directory of the resource set, find and open resourceset.xml.

2 In the graphical view of the editor, select the General tab.

3 Click the Validate button.

Any output from the validation classes is displayed in the editor’s output window.

Storing XML files that contain MBCS characters
If you want to store XML files in a resource set that contains extended ASCII or multibyte character set
(MBCS) characters, you need to add an XML header to these files that specifies the correct encoding for
the locale. If the machine’s locale is France, for example, the encoding should be ISO8859-1. In this case
you would need to add the following header to each XML file stored in the resource set:

<?xml version="1.0" encoding="ISO8859_1" ?>

If this header is missing, the data will not be parsed correctly by the XML parser.
82 Developing exteNd Director Applications

7 Editing the Configuration of a Resource Set

This chapter describes how to edit a project resource set. It has these sections:

About the Resource Set Editor

Using boolean variables in check box fields

Working with entries for resourcePath and libPath

Using resource set utilities

About the Resource Set Editor
exteNd Director provides a custom editor for editing the configuration file for a resource set. That file is
always called resourceset.xml and is in the WEB-INF/conf directory of an application WAR that uses a
resource set. This section describes interesting features of the Resource Set Editor.

NOTE: The section “Configuring the resource set” on page 71 provides information about the settings
you make in resourceset.xml.

To open the Resource Set Editor:

1 On the Project tab of the Navigation Pane, find resourceset.xml in the WEB-INF/conf directory of
the WAR.

OR

On the View tab within the Resources tab of the Navigation Pane, find resourceset.xml in an
appropriate view.

2 Double-click the file name.

The editor opens and displays one of several tabbed panes. You can edit values in this graphical
view or you can select XML source view and edit the XML as text:
Editing the Configuration of a Resource Set 83

Using boolean variables in check box fields
Variables you define in resourceset.xml are available for use in any attribute or element value. In
graphical view, you can choose variables from a list. The Resource Set Editor will display either a
checked or an empty check box according to the current value of the variable.

To use a variable for a check box value:

1 Right-click on or beside the check box.

A popup menu displays each boolean variable in normal and negated versions.

2 Select the variable you want from the list.

The box is checked if the variable expression is true and empty if the variable expression is false.

NOTE: To see what values use variables, switch to XML Source View and look for variables in the form
$variablename$ and !$variablename$.

Working with entries for resourcePath and libPath
When working with the list of entries for resourcePath and libPath, there are several points to keep in
mind:

Point Details

For check box values, such
as Enabled, you can use a
variable.

You might configure the resource set so that an entry is enabled when
a variable is set to indicate the presence of a particular subsystem.

The order of entries is
significant.

Use the Up and Down arrows to move entries to the correct position in
the list. JARs and disk locations that you want searched first should
be at the end of the list.

To specify the location of a
JAR that is in the deployed
WAR, specify a relative path,
usually WEB-INF/lib.

You can use the variable $WEB-INF$, whose value is WEB-INF/lib.
84 Developing exteNd Director Applications

Using resource set utilities
The resource set is not just a feature of your deployed application. It is also running in the development
environment to enable tools like the Relationship Viewer and Search and to find resource files used by
editors and wizards. To control the resource set in the development environment, the Resource Set Editor
provides several utilities on the General tab.

These utilities affect the resource set in the development environment only, not the deployed application:

To specify a disk location,
specify an absolute path.

This is one of the few values that needs to be changed if you move
the project to another computer. However, if you use the variable
$WARLOCATION$ in the path, you will only need to redefine the
variable, not all the entries, if you move the project.

Button What it does

Stop, Start, Restart Starts or stops the resource set.

Use Restart after changing entries on resourcePath and libPath so that the
development environment can find the correct resource set contents.

Use Stop to conserve memory when you’re not editing a resource set’s files
or using it on the Resources tab of the Navigation Pane.

Validate Runs the validation classes in the resource set. The default validation
verifies that entries in libPath and resourcePath exist. If you’ve added your
own validation classes, they are executed too.

For information on adding custom validation classes, see “Validating
a resource set” on page 81.

If you set Validate to true in resourceset.xml (on the upper half of the
General tab), the same validation process is run during the exteNd Director
boot process on the server.

Clear Clears the messages reported by resource set utilities.

Enable/Disable
Resource Subprojects

Displays a list of resource JAR subprojects in the resource set. Clear the
check boxes of projects whose JARs you want to leave out of the archive.
The settings you specify will be used the next time you build the archive in
the development environment.

When dynamic class loading is enabled, you need to disable subprojects
whose classes will be loaded from a disk location. Typically this is the
myapp-resource subproject. To find out what is being loaded from disk, see
the last entries on the libPath tab.

To speed deployment, you might also disable subprojects that your
application isn’t using yet.

Point Details
Editing the Configuration of a Resource Set 85

86 Developing exteNd Director Applications

8 Using the Relationship Viewer

This chapter explains how to use the Relationship Viewer to navigate relationships within a resource set.
It contains the following sections:

About the Relationship Viewer

Navigating relationships within a resource set

Creating a custom relationship analyzer

About the Relationship Viewer
The Relationship Viewer shows the relationships that exist for the currently open object. When you open
an object in a resource set, the Relationship Viewer displays an easy navigation path from this object to
other items within the resource set that may be of interest to you. The possible navigation paths are
represented as a tree of folders and files, similar to the tree presentation used in Windows Explorer. You
can expand or collapse the branches of the tree to navigate the relationships within the resource set.

The Relationship Viewer is a visual rendering of output produced by a relationship analyzer. The
relationship analyzer determines which navigation paths are interesting to show to the user from any
object within the resource set. The relationship analyzer generates an XML tree as output, which is
processed by the Relationship Viewer. Typically, these navigation paths are based on relationships that
are fundamental to an exteNd Director application. If you open a PID page, for example, the Relationship
Viewer displays the PID descriptors for the page.

exteNd Director includes built-in relationship analyzers for the common items in a resource set. And you
can create custom relationship analyzers to suit your own application requirements.

Navigating relationships within a resource set
To use the Relationship Viewer you must first open a file, and you do that from either the Search tab or a
view.

To navigate the relationships for a resource:

1 In the exteNd Director Navigation Pane, click the Resources tab.

2 Click the Search tab or the View tab.

3 Find the item you want to open.

For more information on using the Search tab, see Chapter 9, “Searching a Resource Set”.
For more information on the View tab, see Chapter 10, “Working with Views”.

4 Double-click the item.

The source file editor displays the contents of the file, and the Relationship Viewer shows one or
more relationships that are specific to the type of file you opened.
Using the Relationship Viewer 87

Items that were read from disk are editable and appear in black. Items that were read from JAR files
are not editable. These items appear in blue and are marked with RO (read-only).

5 In the Relationship Viewer, expand or collapse the branches of the tree to see the possible
navigation paths.

6 When you see another file you want to open, double-click it.

The source file editor displays the contents of the file, and the Relationship Viewer displays one or
more relationships that are specific to this file.

Creating a custom relationship analyzer
You might create a custom relationship analyzer when you want to create a new type of element that an
exteNd Director resource set should know about.

For example, suppose you create custom elements in a directory called my-stuff within the resource set.
Within the my-stuff directory, you place XML files that list portlets of interest. In this case, for each XML
document in the my-stuff directory, you might want to process portlet information and add each portlet
listed to the XML tree.

Here’s the source for example.xml, a sample file in the my-stuff directory:

<portlets>
<portlet cid="FireRule.xml">
<portlet cid="MyPages.xml">

</portlets>

When the example.xml file is opened in the development environment, the custom relationship analyzer
is called; it reads the document and converts it into an XML structure that represents the tree that should
be displayed.

The Relationship Viewer renders the tree generated by a custom relationship analyzer just as it would
render any tree generated by one of the built-in relationship analyzers. Items that were read from disk are
editable and appear in black. Those items that were read from JAR files are not editable. These items
appear in blue and are marked with RO (read-only).

Creating a relationship analyzer class

To determine which relationship analyzers are available, the development environment asks the resource
set for a list of all classes that implement the EbiElementRelationshipAnalyzer interface. When it has
this list, it cycles through the classes on the list asking each if it wants to be the provider of the
relationship tree. It does this by calling the analyzeFile() method. If the method returns true, processing
is stopped and the same class is asked a second time to provide the XML structure that represents the tree
of relationships. It does this by calling the getTreeXML() method.

To create a custom relationship analyzer, you need to create a class that implements the
EbiElementRelationshipAnalyzer interface and put that class inside the resource set. For example, to
support custom elements in the my-stuff directory (as described above), you might create a source file
called MyStuffRelationshipAnalyzer.java and put it in the ResourceSet/src directory.

Here’s the code for the MyStuffRelationshipAnalyzer:

import java.io.*;
import java.util.*;
import com.sssw.fw.resource.*;
import com.sssw.extensions.xwb.util.*;
import com.sssw.extensions.xwb.fw.resource.api.*;
import com.sssw.extensions.xwb.fw.resource.ui.*;
88 Developing exteNd Director Applications

public class MyStuffRelationshipAnalyzer implements EbiElementRelationshipAnalyzer
{

public boolean analyzeFile(EboResourceElement element) {
// make sure we have an element
if (element != null) {
// if it is from the "my-stuff" directory & is XML, then I will
// provide the relationship analyzer for it
if (element.getDirectoryName().equals("my-stuff")) {

return element.isXML();
}

}
return false;

 }

public org.jdom.Document getTreeXml(EboResourceElement element) {
// create the xml tree
EboTreeXmlHelper th = new EboTreeXmlHelper();
try {

// add the opened object as a node
th.addElement(th.makeElement(element,

EbiElementRelationshipAnalyzer.XML_ICON));
// create a portlets folder
EboFolder portletsFolder = new EboFolder("Portlets");
th.addFolder(portletsFolder);
// find all the portlets nodes
org.w3c.dom.NodeList portlets =

element.getDocument().getElementsByTagName("portlet");
if (portlets != null) {

String cid = null;
org.w3c.dom.Element portletElem = null;
int len = portlets.getLength();
// process through the portlets nodeList
for (int i = 0; i < len; i++) {

if (portlets.item(i) instanceof org.w3c.dom.Element) {
portletElem = (org.w3c.dom.Element)(portlets.item(i));
// get the portlet id (cid)
cid = portletElem.getAttribute("cid");
if (cid != null) {
// try and find the portlet in the portal-portlet
// directory

EboResourceElement re =
EboResource.getCurrent().getResourceElement(

"portal-portlet", cid);
// add it to the portlets folder
th.addElement(portletsFolder, th.makeElement(re,

EbiElementRelationshipAnalyzer.XML_ICON));
}

}
}

}
}
catch(Exception e) {

System.out.println(e);
}
return th.getDocument();

}

}

Using the Relationship Viewer 89

90 Developing exteNd Director Applications

9 Searching a Resource Set

This chapter explains how to search the contents of a resource set. It contains the following sections:

About the Search tab

Searching a resource set

Saving a search as a view

Working with the Search API

About the Search tab
The Search tab provides a facility for searching for objects within a resource set. The Search tab lets you
specify search filters for locating objects. You can search by file name or directory name, or look for
particular string patterns within files in a resource set. When you’ve found the objects you’re looking for,
you can make any changes you want, or save the search as a view.

The Search tab provides complete support for regular expression searches.

For syntax and reference information on regular expressions, see the section on regular expressions
for text searches in Utility Tools.

Searching a resource set

To search a resource set:

1 In the exteNd Director Navigation Pane, click the Resources tab.

2 Click the Search tab.
Searching a Resource Set 91

utoolsTextEditor.html#1034567
utoolsTextEditor.html#1034567

3 Specify the following:

If you specify values for multiple fields, the field values are combined together in an AND
operation.

4 Click Search.

The Search tab displays the list of files that match the search filter, organized by folder. For
example, the following search locates all HTML source files that contain the string help:

Items that were read from disk are editable and appear in black. Items that were read from JAR files
are not editable. These items appear in blue and are marked with RO (read-only).

To clear the search criteria:

In the Search tab, click the Clear button.

To open an item displayed in the Search tab:

Double-click the item in the Search tab.

The source file editor displays the contents of the file, and the Relationship Viewer shows one or
more relationships that are specific to the type of file you opened.

For more information on using the Relationship Viewer, see Chapter 8, “Using the
Relationship Viewer”.

Field What to specify

Resource Set The target resource set for the search operation.

File Name A regular expression that specifies the list of file names to search for.

Directory A regular expression that specifies which directories should be included in the
search.

If you want to search only a single directory within the resource set, select from
the dropdown list.

Data A regular expression that specifies a string pattern to search for within files in
the target resource set.
92 Developing exteNd Director Applications

Saving a search as a view
If you execute the same search operation frequently, you may want to consider saving the search as a
view. That way you can execute the search as often as you like without having to specify the search
criteria.

When you save a search as a view, the Search tab creates a view definition file in the my-views folder
within the resource set. The view definition file is an XML file that specifies which items should be
included in the view.

Creating a view manually You can also create a view by manually editing a view definition file. For
more information on defining views manually, see “Defining custom views” on page 106.

To save a search as a view:

1 In the Search tab, click Save.

The Save dialog displays:

2 Specify a name for the view definition XML file.

3 Click Save.
Searching a Resource Set 93

Working with the Search API
The Search tab uses the underlying Search API provided with exteNd Director. For many applications,
this search facility is satisfactory. But sometimes you may also want to search the contents of a resource
set programmatically. To do this you need to use the following objects in the Search API:

All of the search implementation classes are located in the com.sssw.fw.resource.search package.

How it works The search object performs the search operation by iterating through the target objects
in the resource set, comparing each object with the search template. The search template defines the
pattern or characteristic that will be used to filter the search. For example, the search template can specify
a file name, directory name, disk path, or string of bytes to search for. When the search is performed, the
template is compared against each target object in the resource element. If the objects are equivalent, the
target object is added to the search results. The search object returns the results in a Vector of resource
element objects.

Ways to set the search template There are several ways to set the search template object for a
search:

Use the internal search template object

Create your own search template object and pass it to the search object

Pass a DOM object directly to the search object

The search comparator compares the template against the target object to see if there’s a match. The
Search API includes three search comparators:

Object Description Implementation class(es)

Search object Performs the search operation. Returns
a Vector of resource elements
(EboResourcElement objects) that
match the search criteria.

EboResourceSearch

Search template Defines the pattern or set of
characteristics that will be used to filter
the search.

EboResourceElementTemplate

Search
comparator

Compares the template to the target
object in the resource element.

EboResourceElementComparator

EboResourceClassElement
Comparator

EboResourceREGEXPElement
Comparator

Comparator Description

EboResourceElement
Comparator

Supports comparison using the indexOf() method on the String
class.

EboResourceClassElement
Comparator

Supports comparison using the indexOf() method on the String
class. This comparator filters out items that end in .class.

EboResourceREGEXPElement
Comparator

Supports comparison using regular expressions.
94 Developing exteNd Director Applications

Example 1: using the internal search template object

Suppose you want to search for all XML files in a resource set that contain the string FireRule. One way
to do this would be to use the internal template object built into the EboResourceSearch class. Here’s a
code snippet that shows how you might do this:

EboResourceSearch resourceSetSearch = new EboResourceSearch();
resourceSetSearch.setComparator(

new EboResourceREGEXPElementComparator());
resourceSetSearch.getTemplate().setFileName(".xml");
resourceSetSearch.getTemplate().setBytes("FireRule");
Vector v = resourceSetSearch.search(resourceSet);

This code example uses EboResourceREGEXPElementComparator as the search comparator. This is the
search comparator for regular expression comparisons.

Example 2: creating your own search template object

You can also define your own search template object and instruct the search object to use that instead of
the built-in search template object. In this case you instantiate the template object, fill in the template
values you want to use, and then pass the object to the search object. The following example shows how
you might do this:

EboResourceSearch resourceSetSearch = new EboResourceSearch();
resourceSetSearch.setComparator(

new EboResourceREGEXPElementComparator());
EboResourceElementTemplate template = new EboResourceElementTemplate();
template.setFileName(".xml");
template.setBytes("FireRule");
resourceSetSearch.setTemplate(template);
Vector v = resourceSetSearch.search(resourceSet);

Example 3: serializing a search request

If you want to be able to save a search as a view, you need to serialize the search request. To do this you
need to build XML that conforms to the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT search EMPTY>
<!ATTLIST search

bytes CDATA #IMPLIED
directoryName CDATA #IMPLIED
diskPath CDATA #IMPLIED
javaPackage CDATA #IMPLIED
fileName CDATA #IMPLIED >

Suppose you want to search for all XML files in a resource set that contain the string FireRule. The XML
string required for this search would be:

<search fileName=”.xml” bytes="FireRule" />

To build this XML string programmatically, you could use the following code:

EboResourceSearch resourceSetSearch = new EboResourceSearch();
resourceSetSearch.setComparator(

new EboResourceREGEXPElementComparator());
resourceSetSearch.setTemplate("<search fileName=\”.xml\” bytes=\"FireRule\" />"
);
Vector v = resourceSetSearch.search(resourceSet);
Searching a Resource Set 95

96 Developing exteNd Director Applications

10 Working with Views

This chapter explains how to use views to look at exteNd Director project items. It contains the following
sections:

About views

Displaying a view

Using predefined views

Importing resources into a view

Exporting resources from a view

Defining custom views

About views
You can use views to display personalized lists of items within an exteNd Director project. When you
display a view, you see the list of items in the view represented as a tree of folders and files, similar to the
tree presentation used in Windows Explorer. You can expand or collapse the branches of the tree to locate
the items you want to edit.

Views can be used to look at resources in a resource set, or at system configuration and service settings.
exteNd Director ships with several predefined views and also allows you to define custom views to
display project items that are of particular interest to you.

View definitions are stored as XML documents in the my-views folder within a resource set. The
predefined views that ship with exteNd Director are provided in the analyzers_views.jar, which is added
to the WEB-INF\lib directory within the WAR for your application.

Displaying a view

To display a view:

1 In the exteNd Director Navigation Pane, click the Resources tab.

2 Select the View tab, if it is not already selected.
Working with Views 97

The View tab displays the default view for the current resource set. In a WAR project, the default
view is config.services.by.subsystem.war.xml. In an EAR project, the default view is
config.services.by.subsystem.ear.xml. This view displays the config.xml and services.xml files
for each subsystem:

3 If you have more than one resource set:

3a Click the Select Resource Set button:

3b Select the target resource set and click OK:
98 Developing exteNd Director Applications

4 Select the view you want to see in the view dropdown box:

Items that were read from disk are editable and appear in black. Items that were read from JAR files
are not editable. These items appear in blue and are marked with RO (read-only).
Working with Views 99

To open a view in a separate tab:

Click the Open view in a new tab button in the view display window:

To open an item displayed in a view:

Double-click the item in the view display window.

The source file editor displays the contents of the file, and the Relationship Viewer refreshes to
show one or more relationships that are specific to the type of file you opened.

To see these relationships, click the Relationship Viewer tab.

For more information on using the Relationship Viewer, see Chapter 8, “Using the
Relationship Viewer”.

To see the definition of a view:

Click View Descriptor.xml under the root node in the view display window:
100 Developing exteNd Director Applications

Using predefined views
exteNd Director provides a set of predefined views that you may find useful for locating project files.
This section describes each predefined view in detail. You can use these views as provided or copy and
modify them to suit your requirements.

View What it shows

config.services.by.subsystem.ear.xml

config.services.by.subsystem.war.xml

Settings for all exteNd Director subsystems.

Searches for:

Configuration files:

config.xml
services.xml

content.management.subsystem.ear.xml

content.management.subsystem.war.xml

Artifacts related to the Content Management
subsystem.

Searches for:

Configuration files:

config.xml
services.xml
web.xml

Files whose names contain:

Content
CM

In these directories:

com
portal-component
portal-style
rule

portal.resources.xml

All directories containing portal resources

Searches for:

Directories whose names begin with:

portal-
Working with Views 101

rule.subsystem.ear.xml

rule.subsystem.war.xml

All artifacts related to the Rules subsystem

Searches for:

Configuration files:

config.xml
services.xml

Files whose names contain the strings:

rule
Rule

In these directories

portal-component
portal-styles
rule

Files whose names contain:

.class

.java

And whose contents contain the string:

portal.condition
portal.action
re.condition
re.action

rules.ca.xml

All rules and conditions and actions

Searches for:

Java source files whose content contains the regular
expression:

implements.*EbiCondition
extends.*Condition
implements.*EbiAction
extends.*Action

Directories whose names begin with:

rule

sample.element.xml

How to use a element in a view

Elements are used to reference objects outside the
scope of a resource set

Searches for:

Files whose names contain:

ResourceSet

In the disk path:

$WARLOCATION$/web-
inf/conf/resourceset.xml

View What it shows
102 Developing exteNd Director Applications

sample.folder.xml

How to use a folder in a view

Searches for:

Nothing

sample.search.xml

How to use a search in a view

Searches for:

Files whose names contain:

my

Files whose contents contain:

Weather

Files whose names contain:

Phone

And whose contents contain:

com/sssw/portal/component

Files whose names contain:

Stock
Weather

And whose contents contain:

com/sssw/portal/component

Directories whose names contain:

security

Files within the disk path:

c:\projects\director

sample.view-link.xml

How to use a view-link in a view

Searches for:

The folder:

samples

In the view definition:

element.xml

The folder:

samples

In the view definition:

folder.xml

View What it shows
Working with Views 103

settings.ear.xml

settings.war.xml

Common settings for a director EAR or WAR

Searches for:

Files whose names contain:

resourceset.xml
web.xml
config.xml
services.xml

In the disk path:

$WARLOCATION$/web-inf/...
$EARLOCATION$/PAC/web-inf/...
$EARLOCATION$/PMC/web-inf/...

workflow.subsystem.ear.xml

workflow.subsystem.war.xml

All artifacts related to the Workflow subsystem.

Searches for:

Configuration files:

config.xml
services.xml

Directories whose names begin with:

workflow

Files whose names contain:

Workflow

In directories whose names contain:

portal-component
portal-style
security-role

Files whose names contain:

Workflow

And whose contents contain:

com/sssw/portal/component

View What it shows
104 Developing exteNd Director Applications

Importing resources into a view
You can import the contents of a JAR into a view. When you do this, exteNd Director:

Copies the JAR to the WEB-INF\lib directory within the resource set WAR.

Adds an entry for the JAR to the resource path and lib path settings for the resource set.

Adds an entry for the JAR to the project settings in the development environment.

Restarts the resource set so that the imported resources are immediately available for use within the
development environment.

If the JAR selected for import contains a view definition XML file, creates a new view in the target
resource set. This view has the same definition as the view from which the resources were
originally exported.

Displays the new view if one was created.

To import resources into a view:

1 In the Navigation Pane, click the Resources tab.

2 Select the view you want to be the target for the import.

3 Click the Import view jar button in the view display window:

4 Select the JAR you want to import and click Open:
Working with Views 105

Exporting resources from a view
exteNd Director allows you to export the contents of a view to a JAR. When you export resources from
a view, exteNd Director creates a JAR that contains all of the elements in the view, including the directory
structure—plus the XML file that defines the view from which the resources were exported. This JAR
can then be imported into another resource set.

To export resources from a view:

1 In the Navigation Pane, click the Resources tab.

2 Select the view from which you want to export resources.

3 Click the Export view to jar button in the view display window:

4 Specify the target directory and click Save:

Defining custom views
You can create custom views in one of two ways:
106 Developing exteNd Director Applications

Manually editing a view definition file

Saving a search

This section describes how to manually edit a view definition file.

For details on saving a search as a view, see “Saving a search as a view” on page 93.

About the view definition file

The view definition file is an XML file that specifies which items should be included in the view. The
XML for a view definition must conform to the rules specified in the resourceset-view_4_0.dtd file,
which you can find in the DTD folder within the FrameworkService.jar.

Every view definition has a view element that provides a description for the view and indicates whether
this is the default view:

<view description="myview" default="false">
 ...
</view>

The view description is used as the display text for the view folder.

The view element can contain one or more other elements that specify which items should be included in
the view. Many of the elements support the use of regular expression searches.

For syntax and reference information on regular expressions, see the section on regular expressions
for text searches in Utility Tools.

Searching for items within a resource set

You can search for items within a resource set by including one or more search elements in your view
definition file. You can use the attributes of the search element to search for:

File names

Bytes within files

Directory names

Disk paths

Java packages

For example, to search for all files that have the string My in their names, you would include the
following search element within the view element:

<view description="mysearch" default="false">
 <search fileName="My" />
</view>

This view would show a folder called mysearch that contains all subfolders within the resource set that
have files that contain My in their names.

To restrict this search to include those files that are located in directories that begin with either the string
portal or the string rule, you could specify this search:

<search fileName="My" directoryName="^portal|^rule" />

If you specify multiple attributes in the search element, the attributes you specify are combined together
in an AND operation.
Working with Views 107

utoolsTextEditor.html#Regularexpressionsfortextsearches
utoolsTextEditor.html#Regularexpressionsfortextsearches

Defining folders in a view

You can define custom folders within a view by using the folder element. This gives you a way to
organize resources or other items of interest any way you like. For example, you might define folders in
a view to categorize the results of two separate searches:

<view description="mysearch" default="false">
<folder description="MyPortalItems">
<search fileName="My" directoryName="^portal" />

</folder>
<folder description="MyOtherItems">
<search fileName="My" directoryName="^rule" />

</folder>
</view>

Including elements that are outside a view’s resource set

A view can display items that are outside the scope of a resource set, by using the element tag. The
element lets you specify a disk path and a filter for retrieving files by name.

For example, you could use the element tag to display various system configuration files. Here’s a view
definition that displays the configuration and services files for each subsystem in an exteNd Director
EAR project:

<view description="Config/Services by Subsystem" default="false">
<folder description="ContentMgmt Service">
<element fileName="config"
diskPath="$EARLOCATION$/library/ContentMgmtService/
ContentMgmtService-conf/config.xml" />

<element fileName="services"
diskPath="$EARLOCATION$/library/ContentMgmtService/
ContentMgmtService-conf/services.xml" />

</folder>
<folder description="Directory Service">
<element fileName="config"
diskPath="$EARLOCATION$/library/DirectoryService/
DirectoryService-conf/config.xml" />

<element fileName="services"
diskPath="$EARLOCATION$/library/DirectoryService/
DirectoryService-conf/services.xml" />

</folder>
<folder description="Framework Service">
<element fileName="config"
diskPath="$EARLOCATION$/library/frameworkservice/
frameworkservice-conf/config.xml" />

<element fileName="services"
diskPath="$EARLOCATION$/library/frameworkservice/
frameworkservice-conf/services.xml" />

</folder>
...
</view>

Referencing other views within a view definition

A view definition can include output generated by another view. This simplifies the creation of complex
views by allowing you to reuse view definitions already created. To reference another view, you need to
use the view-link element.

The following view definition includes output from three other views:

<view description="view-link" default="false">
 <comment description="How to reference other views in a view" />
 <view-link folder="samples" view="comment.xml" />
108 Developing exteNd Director Applications

 <view-link folder="samples" view="element.xml" />
 <view-link folder="samples" view="folder.xml" />
</view>
Working with Views 109

110 Developing exteNd Director Applications

IV Working with Core Technologies

Guidelines for many of the fundamental technologies that can be used in building exteNd
Director applications.

• Chapter 11, “Coding Java for exteNd Director Applications”
• Chapter 12, “Working with Scoped Paths and XPaths”
• Chapter 13, “Working with Events”
• Chapter 14, “Working with Data Caches”
• Chapter 15, “Logging Information”
• Chapter 16, “Using the XML and IPDR Logging Providers”
• Chapter 17, “Working with JSP pages”
• Chapter 18, “Working with servlets”
• Chapter 19, “Developing a Struts Application”
111

112 Developing exteNd Director Applications

11 Coding Java for exteNd Director Applications

This chapter gives an overview of how to access exteNd Director services programmatically. It contains
the following sections:

About coding Java for exteNd Director applications

Using Java

Using the Java APIs

Using the exteNd Director API

Accessing subsystem services

Handling exceptions

About coding Java for exteNd Director applications
To write Java code for exteNd Director applications, you use exteNd Director API classes in your Java
code and call their methods. The exteNd Director API provides public classes (and interfaces) organized
into several packages, which themselves are organized by subsystem.

The exteNd Director API is based on the Java 2 APIs (J2SE and J2EE). That means it includes classes
that inherit from Java 2 classes and implement Java 2 interfaces. If you’re familiar with the Java 2 APIs,
you’ll have a good foundation for understanding and using the exteNd Director API.

Using Java
Java is a standard language for Web applications and you’ll use it in a standard way when developing
exteNd Director applications. For instance, you’ll:

Write classes that represent the objects in your application, including fields (variables) for each
object’s data and methods for the actions it can perform

Organize classes in packages, directory-like hierarchies that let you group related classes and make
them easy to locate

Bundle packages and classes in JARs (and other archive files), used for providing smaller, faster
downloads to clients and for facilitating certain deployment operations

Java platform support

exteNd Director supports the Java 2 platform, including:

Java 2 Platform, Standard Edition (J2SE)

Java 2 Platform, Enterprise Edition (J2EE)

These encompass the core Java language and a variety of Java APIs.
Coding Java for exteNd Director Applications 113

About the core language

The core Java language is the syntax you use to perform basic programming chores. It includes:

Comments

Variable declarations and primitive data types

Operators and expressions

Statements for:

Defining classes, interfaces, and methods

Creating object instances from classes and calling their methods

Looping and branching

Handling exceptions (errors)

Much of this syntax is modeled after C and C++. JavaScript programmers will find some similarities too
(although Java and JavaScript differ in other significant ways).

About APIs

API stands for application programming interface. In Java, an API is a collection of public classes (in
one or more packages) that:

Offers a reusable solution for implementing a particular area of application features or services

Defines public methods you can call (and possibly public fields you can access)

Provides a published specification (typically in javadoc format)

For business programming, where productivity is especially important, you’ll always access one or more
APIs. For example, the Java standard (J2SE) API provides many of the most fundamental capabilities
you’d want to build into any application (including support for graphical user interfaces, input/output,
data type manipulation, threading, networking, security, SQL, internationalization, and a lot more).
There’s no need to develop these capabilities yourself.

Other Java and vendor APIs (such as the exteNd Director API) take you beyond generic application
services to fulfill higher-level system and business needs.

Resources for learning Java

If you’re new to Java or just need to explore a specific Java topic, try the following recommended
learning resources.

Books There are many other Java books available, but some good ones are:

Core Java by Cay S. Horstmann and Gary Cornell, published by Prentice-Hall

Java in a Nutshell by David Flanagan, published by O'Reilly & Associates

Teach Yourself Java 2 in 21 Days by Laura Lemay, published by Sams

The Java Programming Language by Ken Arnold and James Gosling, published by Addison-
Wesley

Web sites There are many Java sites on the Web, but some good ones are:

java.sun.com

www.gamelan.com

www.sys-con.com/java

www.javaworld.com
114 Developing exteNd Director Applications

new http://java.sun.com
new http://www.prenhall.com
new http://www.oreilly.com
new http://www.samspublishing.com
new http://www.awl.com
new http://www.awl.com
new http://www.gamelan.com
new http://www.sys-con.com/java
new http://www.javaworld.com

Using the Java APIs
When building an application, you’ll use particular Java APIs depending on the features or services that
application requires. To help you choose which APIs you need, Sun has grouped them in different
editions of the Java 2 platform:

Resources for learning J2EE

Once you’re familiar with the basics of Java (including the core language and J2SE API), you can learn
about J2EE and its use from the following resources.

Both of these resources are available at java.sun.com.

Using the exteNd Director API
The exteNd Director API provides public classes and interfaces organized into several packages,
which themselves are organized by subsystem.

Edition Description

J2SE includes the standard API Serves as the foundation for virtually any Java application you
build

J2EE includes several APIs For adding specific enterprise-level features and services to a
Java application, including:

Enterprise JavaBeans (EJB)

Java Servlets

JavaServer Pages (JSP)

Java Portlets

JDBC Standard Extension

Java Transaction (JTA)

JavaMail

Java Message Service (JMS)

Java Naming and Directory Interface (JNDI)

RMI-IIOP

JavaBeans Activation Framework (JAF)

Resource Description

Java 2 SDK, Enterprise Edition
Documentation Bundle

An index to J2EE learning and reference materials from Sun,
with links to various documents and Web sites

API specification A reference guide to the J2EE APIs, in javadoc format
Coding Java for exteNd Director Applications 115

new http://java.sun.com

exteNd Director API packages

Use the following table to find the packages that provide the major exteNd Director features or services
you want in your application:

Functional area Packages

Content Management com.sssw.cm.api

com.sssw.cm.client

com.sssw.cm.event.api

com.sssw.cm.event.util

com.sssw.cm.factory

com.sssw.cm.task.api

com.sssw.cm.util

Directory com.sssw.fw.directory.api

com.sssw.fw.directory.client

Framework com.sssw.fw.api

com.sssw.fw.cachemgr.api

com.sssw.fw.event.api

com.sssw.fw.event.factory

com.sssw.fw.exception

com.sssw.fw.factory

com.sssw.fw.log

com.sssw.fw.resource

com.sssw.fw.resource.api

com.sssw.fw.resource.factory

com.sssw.fw.resource.search

com.sssw.fw.task.api

com.sssw.fw.task.event

com.sssw.fw.task.factory

com.sssw.fw.timer
116 Developing exteNd Director Applications

../javadoc/com/sssw/cm/api/package-summary.html
../javadoc/com/sssw/cm/client/package-summary.html
../javadoc/com/sssw/cm/factory/package-summary.html
../javadoc/com/sssw/cm/task/api/package-summary.html
../javadoc/com/sssw/cm/util/package-summary.html
../javadoc/com/sssw/fw/directory/api/package-summary.html
../javadoc/com/sssw/fw/directory/client/package-summary.html
../javadoc/com/sssw/fw/api/package-summary.html
../javadoc/com/sssw/fw/cachemgr/api/package-summary.html
../javadoc/com/sssw/fw/exception/package-summary.html
../javadoc/com/sssw/fw/factory/package-summary.html
../javadoc/com/sssw/fw/log/package-summary.html
../javadoc/com/sssw/fw/resource/package-summary.html
../javadoc/com/sssw/fw/resource/api/package-summary.html
../javadoc/com/sssw/fw/resource/api/package-summary.html
../javadoc/com/sssw/fw/resource/search/package-summary.html
../javadoc/com/sssw/fw/task/api/package-summary.html
../javadoc/com/sssw/fw/task/event/api/package-summary.html
../javadoc/com/sssw/fw/task/factory/package-summary.html
../javadoc/com/sssw/fw/timer/package-summary.html
../javadoc/com/sssw/cm/event/api/package-summary.html
../javadoc/com/sssw/cm/event/util/package-summary.html
../javadoc/com/sssw/fw/event/api/package-summary.html
../javadoc/com/sssw/fw/event/factory/package-summary.html

Portal com.novell.afw.portal.proxy

com.novell.afw.component.api

com.novell.afw.component.factory

com.novell.afw.portlet.api

com.novell.afw.portlet.consumer.factory

com.novell.afw.portlet.factory

com.sssw.portal.api

com.sssw.portal.factory

com.sssw.portal.util

Rules com.sssw.re.api

com.sssw.re.core

com.sssw.re.exception

com.sssw.re.factory

Search com.sssw.search.api

com.sssw.search.client

com.sssw.search.factory

Security com.sssw.fw.security.api

com.sssw.fw.security.client

User com.sssw.fw.usermgr.api

com.sssw.fw.usermgr.client

Utilities and Helper classes com.novell.afw.util

com.sssw.fw.util

com.sssw.fw.util.crypto

com.sssw.fw.util.http

com.sssw.fw.util.jndi

WebDAV com.sssw.webdav.client

com.sssw.webdav.common

com.sssw.webdav.event.api

Workflow com.sssw.wf.activity

com.sssw.wf.api

com.sssw.wf.client

com.sssw.wf.exception

com.sssw.wf.factory

com.sssw.wf.link

com.sssw.wf.ui.api

Functional area Packages
Coding Java for exteNd Director Applications 117

../javadoc/com/sssw/portal/api/package-summary.html
../javadoc/com/sssw/portal/factory/package-summary.html
../javadoc/com/sssw/portal/util/package-summary.html
../javadoc/com/sssw/re/api/package-summary.html
../javadoc/com/sssw/re/core/package-summary.html
../javadoc/com/sssw/re/exception/package-summary.html
../javadoc/com/sssw/re/factory/package-summary.html
../javadoc/com/sssw/search/api/package-summary.html
../javadoc/com/sssw/search/client/package-summary.html
../javadoc/com/sssw/search/factory/package-summary.html
../javadoc/com/sssw/fw/security/api/package-summary.html
../javadoc/com/sssw/fw/security/client/package-summary.html
../javadoc/com/sssw/fw/usermgr/api/package-summary.html
../javadoc/com/sssw/fw/usermgr/client/package-summary.html
../javadoc/com/sssw/webdav/client/package-summary.html
../javadoc/com/sssw/webdav/common/package-summary.html
../javadoc/com/sssw/wf/activity/package-summary.html
../javadoc/com/sssw/wf/api/package-summary.html
../javadoc/com/sssw/wf/client/package-summary.html
../javadoc/com/sssw/wf/factory/package-summary.html
../javadoc/com/sssw/wf/link/package-summary.html
../javadoc/com/sssw/wf/ui/api/package-summary.html
../javadoc/com/sssw/fw/util/jndi/package-summary.html
../javadoc/com/sssw/fw/util/http/package-summary.html
../javadoc/com/sssw/fw/util/crypto/package-summary.html
../javadoc/com/sssw/webdav/event/api/package-summary.html
../javadoc/com/sssw/wf/exception/package-summary.html
../javadoc/com/sssw/fw/util/package-summary.html
../javadoc/com/novell/afw/portal/proxy/package-summary.html
../javadoc/com/novell/afw/component/api/package-summary.html
../javadoc/com/novell/afw/component/factory/package-summary.html
../javadoc/com/novell/afw/portlet/api/package-summary.html
../javadoc/com/novell/afw/portlet/consumer/factory/package-summary.html
../javadoc/com/novell/afw/portlet/factory/package-summary.html
../javadoc/com/novell/afw/util/package-summary.html

exteNd Director API terminology

The name exteNd Director API refers to all of the public packages. You’ll also see the term API applied
to certain subsets of these packages. For instance, the name Content Management API is typically used
to refer to this group of packages:

com.sssw.cm.api

com.sssw.cm.client

com.sssw.cm.event.api

com.sssw.cm.event.util

com.sssw.cm.factory

com.sssw.cm.task.api

com.sssw.cm.util

Just remember that these other APIs are simply convenient labels for talking about specific portions of
the full API.

exteNd Director API reference documentation

exteNd Director provides a complete API specification in javadoc format. This specification details all of
the packages, classes, interfaces, and members in the public exteNd Director API and includes links into
the Java 2 API documentation. It’s an indispensable reference for all the exteNd Director programming
you do in Java.

For complete reference information on the exteNd Director API, see the API Reference book in
online help.

Accessing subsystem services
To access the services of an exteNd Director subsystem, you first need to use a factory to get a reference
to a manager object for the subsystem. You can do this in one of the following ways:

Get a delegate for a subsystem service

Get a direct reference to a manager object for the subsystem

When you use a delegate, you do not need to know or care whether the service is using a local manager
object or a remote object. Therefore, in most situations, you should use delegates to access subsystem
services.

Each subsystem provides one or more factory classes called EboFactory that are suitable for accessing
manager objects for the subsystem.

Once you have a reference to the manager object, you can call methods on that object just as you would
call methods on any Java class.

Accessing a subsystem service by using a delegate

Several exteNd Director subsystems let you use delegates to access subsystem services. A delegate is a
wrapper that hides the location of a service. The delegate model follows the J2EE Business Delegate
pattern.

When you use a delegate, you do not need to know or care whether the service is using a local manager
object or a remote object. The delegate initially attempts to instantiate a local manager. If this fails, it
attempts to use the remote object instead. This approach allows developers to use the same code on
clients and servers to instantiate services.
118 Developing exteNd Director Applications

exteNd Director provides one or more delegates per manager. For example: the Content Management
subsystem has a single delegate, but the User subsystem has four delegates (User, Group, UserMeta, and
UserPersonalization).

To use a delegate to access a subsystem service, you need to call a delegate accessor method on the
custom EboFactory class for the subsystem you want to use. The EboFactory class that has the method
you need is typically located in the subsystem package hierarchy in a subpackage called client.

The delegate model is supported by the following subsystems:

Content Management

Directory

Security

Search

User Management

Workflow

Examples For example, to use the Content Management delegate to access content management
services, you might execute this code:

import com.sssw.cm.api.*;
...
EbiContentMgmtDelegate contentMgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();
...

Once you have a reference to the delegate, you can simply invoke methods on the delegate. Here’s an
example that shows how you might do this:

EbiDocument tempdoc = contentMgr.getDocument(context,selectedDoc);

Similarly, to use the User delegate to access User subsystem services, you might execute this code:

import com.sssw.fw.usermgr.api.*;
...
EbiUserDelegate userMgr = com.sssw.fw.usermgr.client.EboFactory.getUserDelegate();
EbiUserInfo userinfo = userMgr.createUser(context);
...

Using a delegate to access a local manager The delegate initially attempts to instantiate a local
manager. If this fails, it attempts to use a remote object instead. This approach can mask errors on an
attempt to use a local manager only. To help you identify situations where the local instantiation fails, the
delegate constructors display an informational message in the log when an instantiation fails.

You can also force the delegate to use a local manager by using a parameterized delegate factory
constructor. To do this, you pass in a string indicating that you want a local delegate only. The
EbiDelegate interface provides a constant you can use to indicate that you want a local delegate. If the
constructor fails, it will not swallow the instantiation error on the local manager. Here's an example:

import com.sssw.fw.api.*;
...
EbiUserDelegate ud =

com.sssw.fw.usermgr.client.EboFactory.getUserDelegate(EbiDelegate.SERVICE_LOCAL
);

Getting a direct reference to a subsystem manager

Some of the exteNd Director subsystems provide a way to get a manager object directly. For example, the
EboFactory class for the Portal subsystem (com.sssw.portal.factory.EboFactory) has several methods
you can use to get manager objects, such as:
Coding Java for exteNd Director Applications 119

getOptionManager()

getPageManager()

getPortalManager()

getPresentationManager()

getStyleManager()

getThemeManager()

For example, to get a reference to a portal manager from a portlet you might use this code:

import javax.portlet.*;
...
PortletContext context = getPortletContext();
EbiPortalManager portalMgr =
 com.sssw.portal.factory.EboFactory.getPortalManager(context);
String userUUID =
 portalMgr.getUserPortalInfo(context).getUserUUID();
...

Some of the subsystems for which delegates are provided also support direct access to manager objects.
This support can be used in situations where the subsystem is running locally.

Accessing a rule manager The Rule subsystem requires that you use a different technique to get a
manager. The Rule subsystem allows you to work with multiple rule manager instances—unlike the other
subsystems, which only allow you to have a single manager instance. Therefore, to use a rule manager,
you need to instantiate the object, as shown here:

EbiRuleManager rm =
 com.sssw.re.factory.EboFactory.createRuleManager("sample");

Handling exceptions
Errors and exceptions can occur in an exteNd Director application and can come from many sources: for
example, bad input from a user, problems with the application server, database errors, and inappropriate
operations on exteNd Director objects.

In developing your application, you need to plan how to handle errors and exceptions and how to let the
user know the application’s state. Your team will want to establish guidelines for consistently displaying
error messages. Most applications will want to fulfill a set of error-handling goals such as these:

Goal Information

Handle system exceptions For example, when users try to access objects for which they don’t
have permission, you might inform them or redirect them to
appropriate areas of the application. When an error occurs on the
server or database, let the user know what to expect next.

Handle application exceptions For example, your application needs to handle attempts to process
an object in a way exteNd Director didn’t intend or bad argument
values that come from bad user input or saved data.

Provide feedback to users A user needs to know whether requested operations succeeded or
failed. If something fails because of the user’s bad input, you need to
supply a specific message telling the user what to do to make the
input right.

Leave objects and data in a
consistent state after an
exception occurs

Treat operations on your business data transactionally. Plan for
rolling back partially done operations so that the system correctly
reflects what the user thinks happened. For example, if the user
cancels an order or a system error occurs after you’ve saved most of
the order data, be prepared to correct the state of the whole order.
120 Developing exteNd Director Applications

Java provides the opportunity to handle errors in a reliable, consistent way. However, you must be aware
of how the application flow is affected by the way you catch exceptions. For practical advice, see
Practical Java Programming Language Guide by Peter Haggar, published by Addison-Wesley.

The error handling discussed here is an extension of standard Java error handling that you should do in
any Java application. For more information, see the Java documentation from Sun Microsystems.

Errors thrown by the exteNd Director API

The following table describes the base exception classes in the com.sssw.fw.exception package. An
exception can occur for various reasons during the runtime processing of an exteNd Director application.
They are all extensions of the JDK base class Exception.

Avoiding errors

The most common exception is the NullPointerException. To avoid it, be thorough about checking return
values for null. For many exteNd Director methods, a return value of null is a valid response and tells you
that the object you want does not exist.

In these situations, you should always make sure you have a valid object:

Catching errors

When you call methods in your application code that declare exceptions, you must enclose them in
try/catch/finally blocks, as you would in any Java application. For runtime exceptions, you can use
try/catch/finally blocks wherever the application’s state would become invalid if an error occurs.

Exception Class Description

EboException This is the base exception class for the exteNd Director framework.
Contains subclasses related to subsystem processing.

EboRuntimeException A wrapper around java.lang.RuntimeException. Used for unexpected
failures and instances when you cannot access the throws clause of
a method's signature at runtime.

EboApplicationException Indicates an error in the application. Typically, this signifies a
programmer error such as an incorrect usage of an API method,
illegal argument values, and so on.

Situation What to check

Getting values from the
whiteboard or session

Did a value actually exist for the specified key?

Getting input data from
forms

Did the parameter you tried to retrieve exist? If not, should you tell the
user about the missing data or supply a default value? Was the value the
user entered appropriate? If not, you need to tell the user what is correct.

Cached objects Has the object you want been purged? If so, you need to reconstruct it.

Restricted objects Does the current user have rights to the requested object? If not, you
need to tell the user why the operation can’t proceed.

User profile and
preference data

Does a value exist for a profile key? If not, do you need to write one for
the next access?
Coding Java for exteNd Director Applications 121

new ../javadoc/com/sssw/fw/exception/EboException.html
new ../javadoc/com/sssw/fw/exception/EboRuntimeException.html
new ../javadoc/com/sssw/fw/exception/EboApplicationException.html

When your code catches an exception, you should display information about the problem to users so they
know what is not working. For ideas, see “Displaying messages” on page 123. You should also do
something appropriate to return the application to an error-free state. Don’t code empty catch blocks or
simply log the exception.

Don’t do this These examples will not help the application or the user repair a problem:

try
{

// code that could throw an exception
}
catch (Exception e)
{ }

try
{

// code that could throw an exception
}
catch (Exception e)
{

System.err.println("Exception: " + e.toString());
e.printStackTrace(context.getLocale());

}

A better way Do write catch blocks that prepare a message for the user and clean up whatever failed.
The catch block can also re-throw the exception so that the calling method handles it.

These catch blocks catch two different exceptions and store an error message in the session. When the
application finds a message in the session for the error key, it displays the message to the user. Constants
identify the keys used for the session data.

catch (EboUnrecoverableSystemException e)
{

// send trace to server console
e.printStackTrace(context.getLocale());
// save error message for later display
String errMsg = e.getMessage(context.getLocale());
m_portalSession.setValue(

COMP_KEY, ERROR_MESSAGE_KEY, errMsg);
}
catch (Exception e)
{

// send trace to server console
e.printStackTrace(context.getLocale());

// get the appropriate error message for later display
ResourceBundle myResources =
ResourceBundle.getBundle("MyResources", context.getLocale());

String errMsg = myResources.getString("ERR_CAT_UNKWN");
m_portalSession.setValue(

COMP_KEY, ERROR_MESSAGE_KEY, errMsg);
}

For information about the resource bundle shown here, see “Displaying errors in the user’s
language” on page 123.

TIP: Instead of sending stack traces to the server console directly, you can use the exteNd Director
logging facility, which identifies the output in useful ways. For information, see Chapter 15, “Logging
Information”.
122 Developing exteNd Director Applications

Displaying messages

One useful way to think about messages is to distinguish between messages that help users complete a
task versus messages that tell them about error conditions out of their control.

Application code Your application logic might display these two types of messages in different ways.
For example, it might display helpful messages right on the form that the user is filling out. To display
error messages, you might replace the form as the content and explain why the form can’t be displayed.

Pages A page can display errors by redirecting the browser to an error page that explains the error.
JavaServer Pages provides a mechanism for displaying error pages. When an error occurs, the JSP page
redirects the browser to an error page that you’ve created. For information on how to design error pages
for JSP pages, see documentation from Sun Microsystems (java.sun.com).

Parent exceptions

If there has been a chain of exceptions that the application has re-thrown, the most recent exception may
not have the most relevant message. You can get messages for all the exceptions that have occurred by
checking the parent exceptions.

Example of examining parent exceptions In this example, the type of exception being caught
could be any of the framework exception classes. The code concatenates all the messages for any
exceptions that have been wrapped and re-thrown:

catch (EboException e)
{

StringBuffer msg == "";
java.lang.Throwable parent = e;
while (parent != null)
{

msg.append(parent.getMessage(context.getLocale() + "\n");
parent = EboException.getParentException(parent);

}
}

Displaying errors in the user’s language

To make your exteNd Director application useful internationally, you will want to display messages in
the language of the user. You can get the user’s locale from the EbiContext object with the getLocale()
method. You can use it to get appropriately translated error messages:

For exceptions, call getMessage() with a locale argument. exteNd Director provides localized
versions of exception messages.

e.getMessage(context.getLocale())

Use resource bundles for storing message strings and access them using the user’s locale. For each
locale you want to support, you can provide a set of translated messages in subclassed bundles. For
information, see java.util.ListResourceBundle and the example below.

You can get the user’s locale from the EbiContext object with the getLocale() method.

Example of using resource bundles

The MyErrorsResource class has one string in its array of messages. A second class provides the same
string in French. You can provide additional subclasses of ListResourceBundle in all the languages you
want to support. The name of each uses the name for your default bundle plus a language code. To find
out more about locales and language codes, see java.util.Locale.
Coding Java for exteNd Director Applications 123

class MyErrorsResource extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 // LOCALIZE THIS
 {"ERR_CAT_UNKWN",

"An unknown error has occurred while attempting to save the category
information."}, // unknown error for categories

// END OF MATERIAL TO LOCALIZE
 };
 }
 //====================
 class MyErrorsResource_fr extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
}
 static final Object[][] contents = {
 // LOCALIZE THIS
{"ERR_CAT_UNKWN",

"Une erreur inconnue a arrivé en tentant à épargne l'information de
catégorie."}, // unknown error for categories
// END OF MATERIAL TO LOCALIZE
 };
 }

To access the string for a particular error situation, you need to know the key you have associated with
the string. When you get the bundle, the JDK uses the locale to find the right version of the bundles you
have provided. If no bundle matches the locale, the default bundle is used:

ResourceBundle myResources = ResourceBundle.getBundle(
"MyErrorsResources",context.getLocale());

String msg = myResources.getString("ERR_CAT_UNKWN");
124 Developing exteNd Director Applications

12 Working with Scoped Paths and XPaths

This chapter describes scoped paths and how to use them in your exteNd Director applications. It has
these sections:

About scoped paths

About XPaths

Predefined scopes

Copying scoped paths

Using the scoped path substitution syntax

About the Scoped Path API

Using the Scoped Path and XPath Navigators

For information about accessing scoped paths in the Pageflow and Workflow Modelers, see the
chapter on the Pageflow Modeler in the Pageflow and Form Guide or the chapter on the
WorkflowModeler in the Workflow Guide.

About scoped paths
Scoped paths allow you to quickly access data in your exteNd Director applications. The term scope
refers to the state of the data, or data persistence. Data is nonpersistent if it is available for a single user
session. Data is persistent if it is available to one or more users over multiple sessions and, potentially, to
external applications.

An exteNd Director application has access to a number of different nonpersistent and persistent scopes.
An HTTP Session is an example of a nonpersistent scope, and the exteNd Director resource set is an
example of a persistent scope. The path part of a scoped path is simply the location of the data within a
particular scope.

exteNd Director includes a group of predefined scopes that are available from the Pageflow and
Workflow Modelers and through the Scoped Path API.

Advantages of scoped paths

 Scoped paths make it easy to access and manipulate data:

You don’t need to write data access code

You can write link expressions on scoped data to redirect pageflows and workflows

You can easily copy data from one scope to another
Working with Scoped Paths and XPaths 125

xfPageFlowDesigner.html
wfDesigner.html

About XPaths
Many scoped paths support XPath-based navigation of XML documents (see “Predefined scopes” on
page 126). XPath is a language defined by the World Wide Web Consortium (W3C) for addressing parts
of an XML document.

You can append an XPath expression to a scoped path that points to an XML document. The Scoped Path
dialogs in the Pageflow and Workflow Modelers provide a link to the Scoped Path Navigator tool for this
purpose.

For more information about the XPath Navigator, see “Using the Scoped Path and XPath
Navigators” on page 139.

For information about XPath, go to http://www.w3.org/TR/xpath20/

Predefined scopes
exteNd Director provides a set of predefined scopes with path syntax based on standard file access and
XPath. The table below is a summary of the features for each predefined scoped path. The table columns
mean the following:

Scope: the name of the predefined scoped path. Click the name for more information.

Path: the scoped path syntax, with available options.

XPath: if marked, this scoped path supports XPath. For more information, see “Using the Scoped
Path and XPath Navigators” on page 139.

Read: if marked, this scoped path is readable. This means that the scoped data is available on a
“copy from” function in the Pageflow and Workflow Modelers.

Write: if marked, this scoped path is writable. This means that the scoped data is available on a
“copy to” function in the Pageflow and Workflow Modelers.

For more information, see “Copying scoped paths” on page 136.

Scope Path XPath Read Write

Application scope a path

Artifact scope <dir>

cm://

war://

CM scope a path

Document scope an xml document
126 Developing exteNd Director Applications

new http://www.w3.org/TR/xpath20/

Flow scope document

property

exception

documentproperty

lock

unlock

persistent

Format scope Decimal

Date

Log scope LogID/Level

Portal scope Url/Login

Url/Logout

Url/NewUser

Url/Resource/ a uri

Url/Context/ a uri

Url/Portlet/ a portlet
name

an XML document

PortletPreference scope var name

Request scope prop

param

attr

api

cookie

ResourceBundle scope a string

ResourceSet scope directoryPath/eleme
ntKey

Response scope cookie

render

Scope Path XPath Read Write
Working with Scoped Paths and XPaths 127

Application scope

Description The Application scope is an application-wide scope for the HTTP session. Objects stored in this scope
are available to any other object that reside in the same portlet application and that handles a request in
the same session. For the Pageflow Modeler, this includes any other flow activities (including JSP and
Servlet activities) and any other portlet contained in the same session.

Path Application/aKey/path/xpath

Examples Write (Copy to) example:

Session/doc/mydoc --> Application/docout/doc1

Read (Copy from) example:

Application/prop/aString --> Flow/property/prop1

Artifact scope

Description The Artifact scope is an application-wide scope for persistent data stored in any of the following:

The exteNd Director Content Management subsystem

The file system of the host machine

The application WAR

This scope supports XPath navigation to XML documents. Artifact scopes are available on the “copy
from” side of a scope copy in the Pageflow and Workflow Modelers.

TIP: It is more efficient to use the ResourceSet scope and CM scope scopes rather then the Artifact
scope whenever possible.

Path Artifact/cm://path/xpath
Artifact/war://path/xpath
Artifact/dir/path/xpath

Examples Write (Copy to) example:

Flow/document/mydoc --> Artifact/c:/applications/docs/mydoc1.xml

Read (Copy from) example:

Artifact/c:/applications/docs/mydoc1.xml --> Flow/document/mydoc

Session scope a path

String scope a string

User scope fname

lname

email

id

attr/key

Scope Path XPath Read Write
128 Developing exteNd Director Applications

CM scope

Description The CM scope is an application-wide scope for persistent data stored in the Content Management
Subsystem. You must enter a known repository and path. On a “copy to” function (writable) the
document is written to the specified location in the PUBLISHED status. This scope supports XPath
expressions.

Path CM/myrepository/mypathtodoc/xpath

Examples Write (Copy to) example:

Flow/mydoc/doc --> CM/companydoc/reports/report1.xml

Read (Copy from) example:

CM/companydoc/reports/report1.xml --> Flow/mydoc/doc

Document scope

Description The Document scope allows you to create a temporary XML document. In a Pageflow or Workflow
application the Document scope is available for a single object in a flow application, and is valid only on
the “From” side of a copy.

NOTE: The document must be a valid (well-formed) XML document.

Path Document/<elem></elem>

Example This example shows a series of scoped path copy operations that copy elements from the Document
scope to the Session scope:

/Document/<books/> -> /Session/bookref
/Document/<book>Jungle book</book> ->/Session/bookref/books
/Document/<book>Catcher in the Rye</book> -> /Session/bookref/books
/Document/<book>Moby Dick</book> -> /Session/bookref/books

In the example shown above, you see how to create a document on the Session scope that contains
multiple nodes with the same name. In the following example, you see an alternative way to do this:

/Document/<books/> -> /Session/bookref
/Document/<book/> -> /Session/Temp
/Request/param/title1 -> /Session/Temp/book
/Session/Temp -> /Session/bookref/Books
/Document/<book/> -> /Session/Temp
/Request/param/title2 -> /Session/Temp/book
/Session/Temp -> /Session/bookref/Books
Working with Scoped Paths and XPaths 129

Flow scope

Description. The Flow scope is used within a pageflow or a workflow. In a pageflow the flow scope is available to all
flow objects (including contained pageflows) for the portlet application session. In a workflow the flow
scope is available to all flow objects (including contained pageflows) for the duration of the workflow
process.

The Flow scope provides exclusive access to these objects:

Path Flow/document/varName/xpath
Flow/property/varName
Flow/exception/type
documentproperty/varName

Examples Write (Copy to) example:

Session/doc/mydoc --> Flow/document/doc1

Read (Copy from) example:

Flow/doc/doc1 --> CM/companydoc/reports/report1.xml

Flow scope option Description

document XML document (this scope supports XPath expressions).

See “Using the Scoped Path and XPath Navigators” on page 139.

property A string variable

exception A message type or other data to associate with an Exception activity

For more information, see Exception Activity in the Pageflow and Form
Guide.

document property A property (metadata) associated with a document

The next three properties apply to a pageflow running within a workflow.

For more information, see the section on pageflows in a workflow in the Workflow Guide.

lock Attempts to lock a workitem for the current user:

Returns true if the workitem was successfully locked or if the workitem is
already locked for this user.

Returns false if the workitem is already locked for another user.

unlock Attempts to unlock a workitem for the current user:

Returns true if the workitem was successfully unlocked or if the workitem is
already unlocked.

Returns false if the workitem could not be unlocked because it is locked for
another user.

persistent Returns true if the workitem is in a persistent state (workflow context) and
false if not persistent (pageflow context).
130 Developing exteNd Director Applications

xfActivities.html#Exceptionactivity
wfDesign.html#Pageflowinaworkflow

Format scope

Description. The Format scope creates a unique identifier at runtime that can be appended to another scope or
referenced by other activites in a flow.

This scope supports two types of formatters. Both of these formatters use the patterns as defined in the
associated java.text.formatter class:

Path Format/Date|Decimal/pattern

Examples Format/Decimal/000.0#
Format/Date/yyyy.MM.dd
Format/Date/yyMMddHHmmsss
Format/Date/FULL

Copy example:

CM/myRepository/folder1/${/Format/Date/yyyy.MM.dd}.doc

Log scope

Description The Log scope allows you to access the exteNd Director logging facility—runtime logging facility that
writes information in one of several standard logs or in your own custom logs. You decide what level of
detail you want in the logs. The output of the logs displays on the server console. If you don’t specify the
logging level, the default value is used.

The Log scope is available on the “To” side of copy in the Pageflow or Workflow Modelers.

For more information, see Chapter 15, “Logging Information”.

Path Log/LogIdentifier/Level

Examples Log/EboFwLog
Log/EboCmLog/5

Copy example:

String/mystring --> Log/myLogIdentifier

Format scope option What it does

Decimal Generates a number in the specified format. Starts the get sequence at 0,
and increments by 1 each time the getValue is called on the scope. This
formatter does not allow for either initial value setting or a different
increment setting.

For available formats, see DecimalFormat in the API Reference.

Date Generates a timestamp in the specified format.

For available formats, see SimpleDateFormat in the API Reference.

To generate localized timestamps, use one of the patterns defined in
DateFormat (SHORT, MEDIUM, LONG, and FULL).
Working with Scoped Paths and XPaths 131

new http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalFormat.html
new http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html
new http://java.sun.com/j2se/1.3/docs/api/java/text/DateFormat.html

Portal scope

Description he Portal scope returns a fully qualified URL to a portal resource. This scope is valid only on the “From”
side of a copy.

Path Portal/Url/Login
Portal/Url/Logout
Portal/Url/NewUser
Portal/Url/Home
Portal/Url/Resource/ a uri
Portal/Url/Context/a uri
Portal/Url/Portlet/a portlet name

Examples Portal/Url/Resource/images/DirectorWelcomeHeader.jpg
Portal/url/Context/PAC
Portal/Portlet/StockQuote

Using the Keyword option

Use the Keyword option to display the installed Navigation portlet by using the scoped path syntax in a
pageflow activity. For example:

${Portal/Keyword/Navigation/SharedPages}

For more information, see “Scoped path syntax in pageflow activites” on page 138.

Keyword accesses the XSL pattern used by the installed Header portlet and the Navigation portlet. These
two portlets use the same portlet class to display the content of a preference named layout, in conjunction
with a specific XSL style sheet. The actual content is determined by the context user.

For more information see in the chapter about portal pages in the Portal Guide

Portal scope
option Path option Description

Url Login Returns PortalLogin portlet URL.

Logout Returns Logout URL (terminates the current user
session).

NewUser Returns NewUser portlet URL

Home Returns user-defined default page. If not defined or if
the user is anonymous, returns the portal default
page URL.

Resource Returns the ResourceSet URI.

Context Returns the Director application context URI.

Portlet Returns a fully qualified URL to a portlet.

Keyword

See Using the
Keyword
option below

Navigation/ContainerPages Displays navigation for container pages

Navigation/SharedPages Displays navigation for shared pages

Navigation/PersonalPages Displays navigation for personal pages

Navigation/QuickLinks Displays navigation for quick links
132 Developing exteNd Director Applications

pgPortalPages.html

PortletPreference scope

Description The PortletPreference points to the current portlet preference value with the specified variable name.
This scope is private to the portlet preferences settings for the current portlet session. Values in this scope
persist for the user and the portlet instance.

For more information, see the section on portlet preferences in thePortal Guide.

Path PortletPreference/varName

Examples Write (Copy to) example:

String/’300” --> PortletPreference/height

Read (Copy from) example:

PortletPreference/height --> Session/prop/height

See also “Scoped path syntax in portlet preferences” on page 138

Request scope

Description The Request scope represents the request object associated with a portlet or HTTP request. Request
scope values are available on portlet action and render requests, as described in the table below.

For information about how render and action requests are handled in pageflows, see the chapter on
Working with Pageflows in the Pageflow and Form Guide.

The Request scope provides access to these values:

Request scope
option Description Calls this method:

param Returns the String object associated with the
specified parameter. Available on render and action
requests.

getParameter() on
EbiRequest.

attr Sets or returns the String object associated with the
specified attribute. Available on render and action
requests.

get/setAttribute() on
EbiRequest

cookie Returns the cookie value associated with the
specified cookie name. Available on render and
action requests.

NOTE: This option returns an Object. If you are
using it in a Pageflow it will not be available for a
link expression or for rendering without further
processing (in a Java activity, for example).

getCookieValue() on
EboCookieUtil

api Returns the value associated with the specified
request method. Available on render requests only.

In the Pageflow Modeler, select the method from
the tree view.

See “Request API option and PersistMgr
realm” below.

See methods on
javax.portlet.RenderRequest
Working with Scoped Paths and XPaths 133

xfProcesses.html
new ../javadoc/com/sssw/fw/api/EbiRequest.html
new ../javadoc/com/sssw/fw/api/EbiRequest.html
new ../javadoc/com/sssw/fw/util/EboCookieUtil.html
pgPortletsAbout.html#Portletpreferences

Request API option and PersistMgr realm If you are using the PersistMgr realm configuration,
the get() methods on the api option related to authenticated users—getAuthType(), getRemoteUser(),
and getUserPrincipal()—will return null. This is because the request object does not get populated with
authentication data by the application server when authentication is done through the PersistMgr.

You can get authentication information by instantiating a context object (com.sssw.fw.api.EbiContext) in
your code. Use one of the createEbiContext() methods on EboFactory.

Request API option and iChain single sign-on To provide sign-on support for iChain, you may
want to pull the user ID and password out of the request header. The getUserID() and getPassword()
methods on the Request api option give you a way to do this.

Path Request/param/varName
Request/attr/varName
Request/cookie/varName
Request/api/method
Request/prop/varName

Examples Write (Copy to) example:

Session/mykey/locale --> Request/attr/locale

Read (Copy from) example:

Request/api/getLocale --> Session/mykey/locale

ResourceBundle scope

Description The ResourceBundle scope allows you scope to a defined Java resourceBundle.

Path ResourceBundle/family/aKey

Examples Copy example:

ResourceBundle/myResourcesFile/Key1 --> Session/localize/locale

ResourceSet scope

Description The ResourceSet scope is an application-wide scope for persistent data stored in your exteNd Director
project ResourceSet.

NOTE: This scope is similar to the Artifact WAR scope but restricts access to known locations in the
WAR’s ResourceSet.

This scope supports XPath navigation to XML documents.

Path /ResourceSet/path/xPath]

Example ResourceSet/pages/category/pagetype --> Flow/property/ptype

prop Returns the HTTP request header for the specified
property. Available on render and action requests.

In the Pageflow Modeler, select the property from
the tree view.

getHeader() on EbiRequest

Request scope
option Description Calls this method:
134 Developing exteNd Director Applications

new ../javadoc/com/sssw/fw/factory/EboFactory.html
new ../javadoc/com/sssw/fw/api/EbiRequest.html

Response scope

Description The Response scope represents the response object associated with a portlet response.

Response scope values are available on both portlet action and render responses, unless specified
otherwise in the table below. For information about how render and action responses are handled in
pageflows, see the chapter on working with Pageflows in the Pageflow and Form Guide.

The Response scope provides access to these values:

Path Response/cookie/varName
Response/render/varName

Example Copy example:

Session/param/myString --> Response/cookie/anAttribute

Session scope

Description The Session scope is private to the portlet and its included resources for the current portlet session.
Objects in this scope are namespaced to be unavailable to other Web components in the portlet
application.

IMPORTANT: If you want to access session variables from a Pageflow JSP page or Servlet activity, you
need to copy the data to the Application scope. For more information, see Application scope.

Path Session/aKey/path/xpath

Examples Write (Copy to) example:

CM/myrepository/mypathtodoc/pubdoc.xml --> Session/doc/mydoc

String scope

Description The String scope allows you to create a temporary string. In a Pageflow or Workflow application the
String scope is available for a single object in a flow application, and is valid only on the “From” side of
a copy.

Path String/aString

Example Copy example:

/String/I am here -> /Session/myparam

Response
scope option Description Calls this method:

cookie Creates a cookie with the specified value and sets it
in the browser. Available on render and action
responses.

addCookieToResponse() on
EboCookieUtil

render Sets the specified String parameter for the Portlet
render request. Available on render responses only.

setRenderParam() on
ActionResponse
Working with Scoped Paths and XPaths 135

new ../javadoc/com/sssw/fw/util/EboCookieUtil.html
xfProcesses.html

User scope

Description The User scope provides access to the logged in user and user attributes. The User scope provide access
to these values:

Path User/fname
User/lname
User/email
User/id
User/myattr

Examples Write (Copy to) example:

Session/attrubute --> User/attr/attribute1

Read (Copy from) example:

User/email --> Session/contact

Copying scoped paths
The Pageflow and Workflow Modelers provide different ways to copy data from one scope to another at
selected points in the flow application. For example, you can use scoped paths to write logical
expressions on links and to copy data to and from different scopes.

NOTE: The copy function in the Pageflow and Workflow Modelers copies one value/object per copy. If
you want to work with collections of objects, like scoping to a node in a DOM, you need to handle the
parsing in a Java Activity or XSL.

Copy options

You can copy a scoped path before or after the execution of a Pageflow or Workflow activity, or after a
link is followed. The copy option you use depends on the logic of your flow. Here is how scoped paths
are handled for each copy option:

User scope option Value

fname The first name attribute of the logged in user

lname The last name attribute

email The email attribute

id The userID attribute

attr The value of a specified custom attribute.

Copy option Flow processes this option Use this option when

Before this activity After source link is evaluated and
before this activity is executed

This activity has one source link or all
source links will share the scoped data

After this activity After this activity is executed and
before any destination link is
evaluated

The next activity has one source link or
all of its source links will share the
scoped data

Link After this link is followed and before
any destination activity is executed

The destination activity has more than
one source link and each link uses
different scoped data
136 Developing exteNd Director Applications

When to copy on activites

You can copy scoped paths on activites whenever there is no conflict between two or more scoped paths
going to the target activity. This is appropriate when:

A single link is associated with each activity (see example below)

Multiple links are associated with an activity, and the scoped data on each source activity is
identical.

Suppose you want to return different pages results based on Link 2 and Link 3. In this scenario, since
there is no potential conflict between two links going to a single activity, you could either copy the data
on Link 2 and Link 3 or copy the data before the execution of HTML 2 and HTML 3.

When to copy on links

You need to copy data on links when you have more that one link going to a single activity and you have
different scopes associated with each link. Consider this scenario:

Here you have two links targeting HTML 3. If you want different data associated with this activity—that
is, if you want the data to be dependant on the link source—you would need to copy the data on the links.

NOTE: Although you could have two “copy before” scopes on HTML 3, the flow engine has no way of
distinguishing them by source link.
Working with Scoped Paths and XPaths 137

Using the scoped path substitution syntax
Scoped paths include a substitution syntax that can be included in certain application elements and
resolved at runtime.

Scoped path syntax in pageflow activites

Scoped path support includes substitution syntax for accessing a path directly from HTML and XForm
activities in pageflow applications.

NOTE: The standard syntax applies only to objects running in exteNd Director Pageflows.

The syntax is:

scopedpath?my_scoped_path/scopedpath

For example, in an HTML page:

<P>scopedpath?Request/attr/myVarName/scopedpath </P>

Substitutes the string value of myVarName for the scoped path syntax.

Dynamic resolution in scoped paths

You can do dynamic resolution of scoped paths by appending the following syntax to an existing scoped
path:

${myPath}

For example, to generate a dynamic document in the Content Management subsystem with the current
timestamp as the file name, you could append the Format scope to the CM scope like this:

CM/myRepository/folder1/${/Format/Date/yyyy.MM.dd}.doc

Scoped path syntax in rules

You can use the dynamic substitution syntax ${path} in the Rules subsystem to access scoped paths. This
function is available in any condition or action that has template fields.

For more information, see Installed Conditions and Installed Actions in the Rules Guide.

You can also nest a dynamic resolution within a rule using this syntax:

{$CM/folder/${Format/Date/<pattern>}}.doc

Scoped path syntax in portlet preferences

The dynamic substitution syntax can also be used to represent a value in a portlet preference descriptor.
This example substitutes the value of the String scoped path for a portlet preference value:

...
<text-color> {$String/red} </text-color>
...
138 Developing exteNd Director Applications

reConditionsRef.html
reActionsRef.html

About the Scoped Path API
You can use the Scoped Path API to access scoped paths directly from your application code—for
example, from a Java, JSP, or Servlet activity. Here are the principal classes for accessing scoped paths:

Using the Scoped Path and XPath Navigators
NOTE: The Scoped Path and XPath Navigators are essentially the same tools with slightly different
features. This section covers the Scoped Path Navigator. For practical purposes, it applies to the XPath
Navigator as well.

The Scoped Path Navigator is available from the Pageflow and Workflow Modelers and allows you to
select a scoped path using a tree view. When you select one of the predefined scoped paths, the Scoped
Path Navigator appears in a separate window:

The tree view also provides facilities for building XPath expressions.

Package and class Provides

com.sssw.fw.api.EbiScopedPath Methods for accessing an instance of a scoped path

com.sssw.fw.factory.EboFactory createScopedPath method for getting a scoped path instance
Working with Scoped Paths and XPaths 139

new ../javadoc/com/sssw/fw/api/EbiScopedPath.html
new ../javadoc/com/sssw/fw/factory/EboFactory.html

To select a path in the Scoped Path Navigator:

1 Use the tree view to select the path.

The path you select is reflected in the text box at the top. You can type the path directly in the text
box instead of using the tree view.

2 Click OK at the bottom of the Navigator window.

This returns you to the Access dialog.

Creating XPath expressions

Some of the scoped paths support XPath expressions (see “Predefined scopes” on page 126). The Scoped
Path Navigator supports some of the XPath expressions as defined by W3C. For usage details, see
http://www.w3.org/TR/xpath20/.

IMPORTANT: The Scoped Path Navigator is capable of returning only one document element for each
scoped path expression. If you use an XPath function that specifies more than one element, only the first
element in the group will be returned.

To create an XPath expression:

1 Navigate to an element (typically an XML document) where you want to enter an XPath
expression.

2 Select Real-time to have your expression evaluated automatically as you enter it, or select
Evaluate to evaluate manually. The result of the evaluation displays at the bottom of the window.

NOTE: You can enter the expression in the editor field without using the XPath facilities described
below.

3 Navigate to an XML document using the tree view or the editor and enter a valid XPath delimiter: a
slash / character, an open bracket [, or an open parenthesis (. The Navigator displays a dropdown
list of elements and functions available at the point you enter the delimiter. For example:
140 Developing exteNd Director Applications

new http://www.w3.org/TR/xpath20/

4 To add an item, select it from the dropdown, and type in an appropriate value when applicable. For
example:

5 Repeat as needed until the expression is complete and valid.

6 Click OK at the bottom of the Navigator window.

This returns you to the access dialog.

TIP: You can right-click an element to access other XML editing facilities. For more information, see the
chapter on XML Editors in Utility Tools.
Working with Scoped Paths and XPaths 141

utoolsXMLEditor.html

142 Developing exteNd Director Applications

13 Working with Events

This chapter describes the exteNd Director event model and event-handling concepts. It has these
sections:

About the exteNd Director event model

About the Event API

Creating and registering listeners

Creating custom events and producers

About the exteNd Director event model
The exteNd Director event model is an extension of the event listener/producer model in Java. An event
is a lightweight notification object that contains information relevant to one or more event listeners. The
listener responds to the event in an appropriate way. The primary user of events in exteNd Director is the
Content Management (CM) subsystem, which defines event objects for various CM operations. For
example, you can register a listener for the “document added” operation that generates an event carrying
information about the document’s author, title, and other data. You can handle this event in any way you
choose, like making a log entry, writing to a print stream, or e-mailing interested parties. exteNd Director
provides an extensible event framework with a full set of predefined events for CM, WebDav, and CM
task management operations.

This chapter describes basic event concepts in exteNd Director. For information about event support for
specific subsystems, see the following:

Subsystem or function Information about events

CM subsystem Working with content management events

CM tasks Working with CM Task events

WebDAV Working with WebDAV events
Working with Events 143

cmgEvents.html
cmgTaskMgmt.html#Workingwithtaskevents
cmgWebDavEvents.html

Event model object types

The exteNd Director event model consists of these types of objects:

Event object type What it does

State change event Represents any change that may occur within the scope of an application.
Changes are generally related to object life cycles and operations.

The state change event contains:

A unique integer event ID

A state change ID

a description of what the event represents

Access to the context (EbiContext)

State change producer Monitors specific actions and generates corresponding state change
events.

State change listener Registers with one or more state change producers and listens to all or a
specified subset of the events as they are generated.

Vetoable event listener Registers with one or more state change producers and has the ability to
veto (nullify) an action that an event represents. Vetoable event listeners
are always notified by the state change producer before any state change
listeners, as well as before the action is committed.
144 Developing exteNd Director Applications

Event handling

Event handling is the processing of a specific event by a listener after the listener’s event handler method
is called by the event producer. In this context, the event listener functions as the event handler object.
Here is a flow diagram of the event handling process. The flow assumes an event associated with a
database transaction, like a CM repository update:

Event handling with regular listeners

In this scenario, several regular listeners have been registered with an event producer. An action in the
event domain of the producer has occurred—such as a user adding a document to the CM repository. Here
is the event-handling sequence:

1 After verifying that there are no vetoable listeners registered for this event, the event producer
performs the action requested.

2 If the action fails for some reason, the producer handles the exception.

3 If the action succeeds, the event producer instantiates an event object and populates it with relevant
information.
Working with Events 145

4 The event producer calls the stateChanged() event handler for each listener, passing in the event
object.

NOTE: The event producer notifies the listeners in the order in which they were registered.

5 As the method is called, each listener performs any specified notification, such as e-mailing an
interested party.

Event handling with vetoable listeners (with veto)

In this scenario, several vetoable and regular listeners are registered for the event, and the action is
vetoed. Here is the event-handling sequence:

1 The event producer instantiates an event object and populates it with relevant information.

2 The event producer calls the vetoableStateChanged() event handler for each vetoable listener.

3 Since the event is vetoed, no action is performed by the producer and no regular listeners are
notified.

Event handling with vetoable listeners (with no veto)

In the final scenario, several vetoable and regular listeners are registered for the event, and the action is
not vetoed. Here is the event-handling sequence:

1 The event producer instantiates the event object.

2 The event producer calls the vetoable stateChanged() event on each vetoable listener.

3 Since no listener vetoes the action, the event producer performs it.

4 Assuming the action does not fail, the producer iterates over the regular listeners by calling their
stateChanged() methods.
146 Developing exteNd Director Applications

About the Event API
This section is an overview of the exteNd Director Event API.

Event classes

This diagram shows the class hierarchy for the event objects:

Event constants

Also (not shown in the diagram), the Event API includes class constants related to event monitoring:

com.sssw.cm.event.api.EbiConstants

com.sssw.fw.task.event.api.EbiConstants

com.sssw.webdav.event.api.EbiConstants
Working with Events 147

Producer interfaces

This diagram shows the class hierarchy for the event producer interfaces:

Listener interfaces

This diagram shows the class hierarchy for the event listener interfaces:

Creating and registering listeners
To implement events in your application, you first need to determine what events you are interested in
and how you want to handle them:

Decide what types of operations you want to monitor. In the case of content management
elements, decide what element (directories, documents, document types etc.) in the repository you
are interested in.

Figure out the logic you need to handle the event. Typically you’ll want to notify an interested
party, record the event in a log, or respond in some other manner.
148 Developing exteNd Director Applications

Determine whether there are conditions under which you want to veto an operation
represented by an event. In these cases use a vetoable listener.

Implementing your event scheme involves these steps:

1 Instantiate a listener to handle the event.

TIP: For reusability you can create a separate listener class that implements one or more of the
event listeners.

2 Register the listener and events using one of the add listener methods on the event producer.

Using notification listeners

Event handling usually involves some kind of notification, like making a log entry or e-mailing an
interested party. exteNd Director provides the following support for event notification:

You can get a notification listener using the appropriate factory method. For example:

EbiMailStateChangeListener listener =
com.sssw.fw.event.factory.EboFactort.getMailStateChangeListener();

Creating a notification listener

This example shows how to create a class that implements an EbiMailStateChangeListener by delegating
to the default listener:

public class MyClass implements com.sssw.fw.event.api.EbiStateChangeListener {
 protected EbiMailStateChangeListener m_scl;

 public void stateChanged(EboStateChangeEvent event) {
 try
 {
 EbiMailStateChangeListener scl = getScl();
 scl.setMsgText(…);
 // provide other settings ...
 scl.stateChanged(event);
 }
catch (Exception ex) {
 // handle exceptions here
 }
}
protected EbiMailStateChangeListener getScl() throws EboFactoryException {
 if (m_scl == null)
 m_scl =
com.sssw.fw.event.factory.EboFactory.getMailStateChangeListener();
 return m_scl;
 }
}

Using a vetoable listener

To veto an operation, you define the veto condition in the vetoable listener’s vetoableStateChanged()
event and return false. The event producer responds by vetoing the operation and throwing
com.sssw.fw.exception.EboOperationVetoedException.

Notification listener What it does

EbiMailStateChangeListener Sends an e-mail to specified parties

EbiLogStateChangeListener Writes to a specified log

EbiPrintStateChangeListener Writes to a specified print stream.
Working with Events 149

new ../javadoc/com/sssw/fw/event/api/EbiMailStateChangeListener.html
new ../javadoc/com/sssw/fw/event/api/EbiLogStateChangeListener.html
new ../javadoc/com/sssw/fw/event/api/EbiPrintStateChangeListener.html

Because EboOperationVetoedException is a runtime exception, it is not included in the throws clause of
the operation methods. However, you must handle the exception somewhere in your code. 1For example:
if you added a vetoable listener that included the content management add document event, you would
need to handle the exception for the addDocument() method, as shown here:

try
{
 EbiContentMgmtDelegate cmgr = ...
 EbiAddDocumentParams params = ...
 EbiDocument doc = cmgr.addDocument(context, params);

}
catch (EboUnrecoverableSystemException ue)
{
 // handle unrecoverable system exception
}
catch (EboSecurityException se)
{
 // handle security exception
}
catch (EboItemExistenceException iee)
{
 // handle item existence exception
}
catch (EboOperationVetoedException ove)
{
 // handle operation vetoed exception
}
catch (Exception e)
{
 // handle any other exception
}

Creating a custom state change listener

To create a listener you need to implement one or more of the listener interface(s) in your application
code.To create a regular (non-vetoable) listener, provide an implementation for the stateChanged()
method, as shown here:

public class MyClass implements
 com.sssw.fw.event.api.EbiStateChangeListener {

public void stateChanged(EboStateChangeEvent event) {
 // perform action, inspect event, and notify...
 }
}

IMPORTANT: You must provide implementations for the four methods on the super class
EbiEventListener (extended by EbiStateChangeListener). This applies to creating a vetoable listener as
well.

Creating a vetoable listener To create a vetoable listener, provide an implementation for the
vetoableStateChanged() method, as shown here:

public MyClass implements EbiVetoableStateChangeListener
{

 public boolean vetoableStateChanged(EboStateChangeEvent event)
 {

 // Inspect event:
 // If vetoed, return false
 // If not vetoed return true and perform action
 }
}

150 Developing exteNd Director Applications

new ../javadoc/com/sssw/fw/event/api/EbiEventListener.html
new ../javadoc/com/sssw/fw/event/api/EbiEventListener.html

IMPORTANT: If an action or operation is vetoed, the event producer throws a runtime exception called
EboOperationVetoedException. See “Using a vetoable listener” on page 149.

Registering for events

You register for events using one of the add listener methods on EbiStateChangeProducer or one of its
subclasses.

When you add an event listener you can specify a range of events for which you want to register in a Java
BitSet, using the addStateChangeListener() or addVetoableStateChangeListener() method. For example:

EbiStateChangeProducer producer = new EbiStateChangeProducer()
BitSet events = new BitSet();
events.set(MyEvent.getEventID());//interested in MyEvent
events.set(MyEvent2.getEventID());//interested in MyEvent2
producer.addStateChangeListener(events, MyListenerClass);

The event IDs for content management, WebDAV, and task management are defined as constants in the
respective subsystem API packages. The com.sssw.cm.api also provides some helper methods for
populating the BitSet.

For more information, see the section on using the event helper class in the Content Management
Guide.

Creating custom events and producers
You can extend the Event API to write your own state change event and event producers.

Creating a custom event producer

You can write your own event producer that uses custom versions of the addStateChangeListener()
method. To create a state change producer, you must implement the
com.sssw.fw.event.api.EbiStateChangeProducer interface.

The example that follows shows how to delegate to the default event producer. It uses a factory method
to get the default state change producer, adds a description and log, and provides an implementation of
addStateChangeListener():

public class MySCP implements
 com.sssw.fw.event.api.EbiStateChangeProducer {
 protected EbiStateChangeProducer m_scp;
 public MySCP() {}
 public boolean addStateChangeListener(BitSet events, EbiStateChangeListener listener) {
 getScp().addStateChangeListener(events, listener);
 }
 // ….
 // other EbiStateChangeProducer methods, implemented with addStateChangeListener()…
 // ….
 protected EbiStateChangeProducer getScp() {
 if (m_scp == null) {
 m_scp = com.sssw.fw.event.factory.EboFactory.getStateChangeProducer();
 m_scp.setScpDescription("My state change event producer");
 m_scp.setScpLog(EboLogFactory.getLog(MYLOG));
}
return m_scp;
 }
}

Working with Events 151

cmgEvents.html#Usingtheeventhelperclass

Creating a custom event

A custom state change event must extend com.sssw.fw.event.api.EboStateChangeEvent. You need to
implement the following two methods that are marked abstract in the superclass:

 public abstract int getEventID();
 public abstract String getVerboseDescr();

NOTE: The exteNd Director Framework API reserves the value range 1 through 8000, so you must use
another value for your event ID.
152 Developing exteNd Director Applications

14 Working with Data Caches

This chapter describes how to handle data caching in exteNd Director applications. It has these sections:

About data caching

Request object caching

Session-level caching

server-lifetime caching

About data caching
Data caching provides a way to manage the temporary storage of application data. The most common
purposes for managing data caches are:

Improving performance by eliminating system resources needed to retrieve commonly used data

Recovering data in the event of session or server failure

exteNd Director supports data caching at different application levels, including HTTP request,
application session, portlet application, and server-lifetime (for server clusters).

About the Cache Manager

The EbiCacheManager interface allows you to manage session-level and server life-time data. It provides
two cache mechanisms:

Object cache container

Memory and disk cache containers

Object cache container

The object cache container stores all objects in memory, regardless of the size of the content. It is used
when the putObjectInCache() method is called from the cache holder object, described in the next section
(About the cache holder). The object cache does not require cached objects to be serializable.

Use the object cache container if you are not primarily concerned about the size of the cached content
and/or if you need the ability to store nonserializable objects.

How it works The object cache container uses the maximum number of objects specified in the cache
configuration to determine when to remove the least-used objects from its cache. In cases where the
maximum number of objects has not been reached but memory is running low, the object cache container
removes the least-used objects from its cache.
Working with Data Caches 153

new ../javadoc/com/sssw/fw/api/EbiCacheManager.html

Memory and disk cache containers

The memory cache and disk cache container mechanism stores objects either in memory or on disk
depending on the size of the object. This caching mechanism requires cached objects to be serializable.
It is used when the putValueInCache() method is called from the cache holder object. (See “About the
cache holder” on page 154.)

Use this implementation when you want to remove larger objects from memory and cache them on disk,
keeping in mind that the objects must be serializable.

How it works The memory and disk cache containers use a maximum byte-size value to determine
whether to cache items in memory or larger items on disk. You can use the Cache Manager to configure
this value.

NOTE: The object cache and the memory cache each maintain their own cache in memory, and are
managed separately.

Configuring the Cache Manager

 You can reconfigure the default Cache Manager settings using one of these methods:

Cache settings in the DAC

ContentCache settings in config.xml

Cache settings in the DAC You can use the Cache settings in the Director Administrator Console
(DAC) to configure the Cache Manager. Values set in the DAC are not stored beyond the current server
session.

For more information, see Chapter 22, “Using the General Configuration Section of the DAC”.

ContentCache settings in config.xml To make persistent changes, edit the ContentCache settings
in config.xml, located in the FrameworkService-conf directory in your project. For a description of the
settings, see Chapter 22, “Using the General Configuration Section of the DAC”.

About the cache holder

The EbiCacheHolder interface defines caching methods for the session-lifetime cache holder
(EbiSession) and the server-lifetime cache holder (EbiSrvLifetimeCacheHolder). A cache holder can
store content in the object cache container or the jointly managed memory and disk cache containers, as
described in the preceding section. (About the Cache Manager.)

To access the session cache, call the appropriate method in EbiSession. To access the server-lifetime
cache, call the appropriate method in EbiSrvLifetimeCacheHolder. Here are some of the methods
(inherited form EbiCacheHolder) on both of these objects:

Cache holder methods Usage

putObjectInCache()

getObjectInCache()

removeObjectInCache()

Put, get, and remove objects from the object cache.
Cached objects do not need to be serialized.

putValueInCache()

getValueInCache()

removeValueInCache()

Put, get, and remove objects from the memory and
disk cache containers. Cached objects must be
serialized.
154 Developing exteNd Director Applications

new ../javadoc/com/sssw/fw/api/EbiCacheHolder.html
new ../javadoc/com/sssw/fw/api/EbiSession.html
new ../javadoc/com/sssw/fw/api/EbiSrvLifetimeCacheHolder.html

Request object caching
You can access request parameters directly from the application’s request object or use temporary values
in the context object.

NOTE: If you need to cache request values for a session, for session-level fail over for example, you
must store them on the whiteboard. For more information, see “Using the whiteboard” on page 156.

Request object attributes

Request attributes are stored in the associated servlet or portlet request object: HttpServletRequest,
ActionRequest, or RenderRequest. You can access them using getAttribute() and setAttribute() on the
appropriate request object. Objects stored in the request object are available for the duration of a single
request. If you want to persist a value for subsequent requests, use the context object as described in the
next section.

You can access the underlying request object from the EbiRequest interface, which provides the wrapper
objects for each request type.

For more information, see EbiRequest in the API help system.

Temporary values

You can also access request attributes as temporary values using get/setTemporaryValue() on
EbiContext. The lifetime of the temporary value is the same as the lifetime of the EbiContext object.

For example, this code gets a request parameter and uses it to set a temporary value. The key is stored in
the constant USER_CHOICE:

String userChoice =
 context.getEbiRequest().getParameter(USER_CHOICE);
if (userChoice != null)
 context.setTemporaryValue(USER_CHOICE, userChoice);

This method gets the value:

String choice = (String) context.getTemporaryValue(USER_CHOICE);

Session-level caching
This section describes ways to cache session-level data.

Using the Cache Manager

You can use the Cache Manager and session cache holder to cache nonserializable or serializable session
objects in memory or on disk. You can cache data in either the object cache or the memory and disk
integrated cache by using the appropriate methods on EbiSession.

For more information, see “About the Cache Manager” on page 153 and “About the cache holder”
on page 154.
Working with Data Caches 155

new ../javadoc/com/sssw/fw/api/EbiSession.html
new ../javadoc/com/sssw/fw/api/EbiContext.html

Using the whiteboard

The whiteboard is a session-level cache for storing serializable objects. The whiteboard can be used to
access commonly used values and for session-level failover. You can access the whiteboard using these
methods on EbiContext:

session-level failover Session values that you want to preserve for session-level fail over must be
cached on the whiteboard. Session-level failover refers to the ability of an application to retain temporary
user data (state) across server failures in a cluster. The data is stored in a persistent storage repository
(such as a database or file system shared by the servers in the cluster) so that it can be recovered by any
server in the cluster in the event of a server failure.

IMPORTANT: Make sure the objects cached in the whiteboard are implementing java.io.Serializable.
Otherwise, they will not be recovered if the session fails.

Each application server has its own level of support for session-level failover. Refer to your application
server documentation for details.

For information regarding session-level failover using the exteNd Application Server, see the
chapter on server implementation notes in Application Server Facilities Guide.

Portlet session scopes

Portlet application data can be cached in a PortletSession object or in a PortletContext object, as defined
in the javax.Portlet specification.

Portlet session attributes

The PortletSession interface defines two scopes for caching objects:

APPLICATION_SCOPE Any object stored in the session using this scope is available to any other
portlet that belongs to the same portlet application that handles a request identified as being a port
of the same session.

PORTLET_SCOPE Objects stored in the session using this scope must be available to the portlet
during requests for the same portlet window.

You can access values in either scope using setAttribute() and getAttribute() on the PortletSession object
by passing in the scope.

For more information, see the API documentation for PortletSession.

NOTE: You can also access these scopes using the exteNd Director scoped paths feature. For more
information, see Chapter 12, “Working with Scoped Paths and XPaths”.

Portlet context attributes

Attributes cached in the context are global for all users and all Web components in the portlet application.
You can access these values using setAttribute() and getAttribute() on the PortletContext object. For
more information, see the API documentation for PortletContext.

Whiteboard access method Usage

get/setValue() Get a whiteboard value by specifying the key. Set a value by
specifying a key and the object.

removeValue() Remove a specified value from the whiteboard.

removeAllValues() Remove all current values from the whiteboard.

getAttributeNames() Enumerate the whiteboard key currently used.
156 Developing exteNd Director Applications

new ../../AppServer/books/facServerImplement.html
new ../javadoc/com/sssw/fw/api/EbiContext.html

server-lifetime caching
Objects stored in the server-lifetime cache can be cached for enhancing performance and can be
synchronized with other servers in a server cluster environment. This function is handled jointly by the
exteNd Director Cache Manager and Cache Coordinator.

About the server-lifetime cache

You can cache objects in the server-lifetime cache by calling putObjectInCache() from the server-lifetime
cache holder (EbiSrvLifetimeCacheHolder). The cached objects do not need to be implemented as
javax.io.Serializable.

The server life-time cache is managed by the Cache Manager on each server. The cached objects are
synchronized with the latest data stored in the database in a clustered environment. This function is
handled by the Cache Coordinator.

For more information, see Chapter 24, “Using the Cache Coordinator”.

Built-in cache holders

exteNd Director provides built-in server-lifetime cache holders for different type of subsystem runtime
data, including:

Content management artifacts

Portal artifacts

Directory users and groups

Security settings

Workflow processes

These caches are listed in the Director Administration Console under the Cache Holders section.

For more information, see Chapter 22, “Using the General Configuration Section of the DAC”.
Working with Data Caches 157

158 Developing exteNd Director Applications

15 Logging Information

This chapter provides information about logging information in exteNd Director applications. It has the
following sections:

About the exteNd Director logging facility

Using logs in your application

About the exteNd Director logging facility
exteNd Director provides a runtime logging facility that writes information in one of several standard
logs or in your own custom logs. You decide what level of detail you want in the logs. The output of the
logs displays on the server console.

In addition to the standard logging facility, exteNd Director includes two logging providers that let you
generate:

Log information as well-formed XML files

IPDR (Internet Protocol Detail Record) files

For more information, see Chapter 16, “Using the XML and IPDR Logging Providers”.

Uses for logging

In your application code, you can log all kinds of information. Uses for logging include:

Recording errors and the application details when they occur

Debugging during development

Auditing application usage to determine what parts of your site are most successful

Logging timing data to determine how long portions of the application take to run

Logging transactions that are also stored in your database to provide an audit trail of sales or other
agreements made with users

If you use analysis tools to study your Web site usage, you can write the log in a format expected by the
tools.

What gets logged

Various classes in exteNd Director send status and information about errors to one of the standard logs.
In addition, in your code you can instantiate a log variable for one of the standard logs or for your own
log and write information to it.
Logging Information 159

Available logs

exteNd Director provides a log for each of the main packages. You can create additional logs in your
application code when you get a log from EboLogFactory by specifying your own log identifier. The
messages for all the logs are sent to the server console.

Detail levels

exteNd Director supports four detail levels that determine how much information is written to the log.
These detail levels are defined as constants on the EbiLog interface. Framework classes only send
messages to the log that are at or below the current detail level. When you write the log you specify a
detail level—and if the log’s detail level is lower than the message being logged, the message does not
appear.

You can change the detail level for a log in the DAC or in your exteNd Director application. For
information about code that changes the level, see “Setting the detail level” on page 162.

Information in the log

The information in the logs has this format:

logname | detail-level | time | thread | message

Here the separator is a vertical bar. You can change the separator character. For example, if you want to
export the log to a spreadsheet, you could create a tab-delimited or comma-delimited log.

Package Log identifier Purpose of log: messages from the

com.sssw.cm CM Content Management subsystem

com.sssw.fw.directory DIRECTORY Directory subsystem

com.sssw.fw FW Framework subsystem

com.sssw.portal PORTAL Portal subsystem

com.sssw.re RE Rule subsystem

com.sssw.search SEARCH Search subsystem

com.sssw.fw.security SECURITY Security subsystem

com.sssw.fw.usermgr USER User subsystem

com.ssw.wf WF Workflow subsystem

Detail level name Value Description

DEACTIVATE_LEVEL 0 Nothing is written to the log

CRITICAL_ERROR_LEVEL 1 Critical errors are written to the log

ERROR_LEVEL 2 Unexpected errors are written to the log

WARNING_LEVEL 3 Expected errors are written to the log

INFO_LEVEL 4 Informational messages written to the log

TRACE_LEVEL 5 Debugging messages and messages about application
progress are written to the log
160 Developing exteNd Director Applications

Configuring the logs

In the DAC, you can specify the detail level for each of the logs, including your custom logs. You can also
define your own custom logs by adding several entries to the config.xml for the target subsystem. For
example, you could add a custom log called MyLog to the Portal Web tier by adding the following
property settings to the config.xml for your application:

<property>
<key>MyLog.LoggingLevel</key>
<value>3</value>

</property>
<property>
<key>MyLog.LogFieldSeparator</key>
<value>|</value>

</property>
<property>
<key>MyLog.LoggingProvider</key>
<value>com.sssw.fw.log.EboStandardOutLoggingProvider</value>

</property>

You can also change log settings in code. For information, see com.sssw.fw.api.EbiLog and “Using logs
in your application” next.

Using logs in your application
Some of the file generation wizards in exteNd Director include logging code. For example, when you
create a new portlet using the Portlet Wizard, logging code is automatically added to the source code. The
code gets a log object and writes messages at the trace level for each method. You can modify this code
to get a different log. You can add logging statements that report exceptions that have been caught or that
log information about the application’s status. This section describes the code you would use.

Logging and scoped paths

You can use the exteNd Director scoped paths feature to access logs within pageflow and workflow
applications.

For more information, see Chapter 12, “Working with Scoped Paths and XPaths”.

Logging API

The Logging API includes these classes:

com.sssw.fw.log.EboLogFactory—Use this class to get log objects

com.sssw.fw.api.EbiLog—The log object, which has methods for getting and setting the log’s detail
level and writing messages in the log

Getting a log

To get a log object for one of the standard logs, use code like this:

import com.sssw.fw.log.*;
EbiLog log = EboLogFactory.getLog(EboLogFactory.PORTAL);

To create a unique log of your own, specify the log name as the argument:

import com.sssw.fw.log.*;
EbiLog log = EboLogFactory.getLog("WebAppLog");
Logging Information 161

It will use the default settings, which you can change with EbiLog methods:

Detail level: CRITICAL_ERROR_LEVEL

Field separator: vertical bar (|)

Setting the detail level

At any point in your code you can check or change the logging level for a log. Any changes affect future
logging until the setting is changed again in code or in the DAC. For example, to set the logging level to
trace, you would need to add this line of code:

log.setLoggingLevel(EbiLog.TRACE_LEVEL);

NOTE: The logging level must be set to trace if you want to see logging messages for a portlet that is
generated by the Portlet Wizard, or any other wizard that generates logging code.

You can check the current level with isLevel() or one of the methods that check specific levels:

boolean traceOn = log.isLevel(EbiLog.TRACE_LEVEL);
boolean traceOn = log.isTrace();

For efficiency, it is useful to check the level before logging a message, described next.

Adding messages to the log

When you write code that sends a message to the log at a particular detail level, the message is logged
only if the current detail is at that level or lower. If the detail level is CRITICAL_ERROR_LEVEL, when
the application runs and calls trace() the message won’t be logged.

Because messages won’t always be logged, you can avoid the inefficiency of instantiating strings that
won’t be used by checking the detail level for logging the message.

For example, log.isCritical(), the lowest logging level, returns true for this logging level and higher, so
critical messages are always written to the log unless logging is off.

log.isError() returns true for ERROR_LEVEL and higher, so error-level messages are logged unless the
level is set to CRITICAL_ERROR_LEVEL.

To accept all logging, set the level to TRACE_LEVEL, the highest and most verbose logging level.

Logging messages

To log a message at a specific detail level, you can call the method for that level:

if (log.isTrace())
{

log.trace("Portlet returned content type: "
+ request.getContentType());

}

In a catch block, you could log the error like this:

catch (EboException e)
{

log.error("General portal exception:"
+ e.printStackTrace(context.getLocale()));

}

You can also call the generic logString() method and specify the level:

log.logString("message", EbiLog.ERROR_LEVEL);
162 Developing exteNd Director Applications

Broadcasting a message to all logs

You can send a message to all logs with the broadcast() method of EboLogFactory. You might use this
when you want to set a mark in logs when conditions change so that you can note changes in application
behavior:

EboLogFactory.broadcast("Application going into production now!");

The broadcast is sent at the critical error level so it will appear unless logging is deactivated. The message
will appear once for each log.

Logging session information

You can identify individual sessions by including the user’s ID as part of the log message. For example:

log.error(request.getUserPrincipal(getName() + log.getLogFieldSeparator()
+ "General portal exception: "
+ e.printStackTrace(context.getLocale()));

Sample logging code for portlets

This section shows some sample logging code that could be used in a portlet application.

Logging for tracing and debugging

If you want to use logging to observe the execution of your portlet application, you might instantiate a
PORTAL log like this:

EbiLog log = com.sssw.fw.log.EboLogFactory.getLog(
 com.sssw.fw.log.EboLogFactory.PORTLET);

The portlet code can generate content at the trace level and can log any caught exceptions at the error
level. This example shows logging in the portlet doView() method:

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, java.io.IOException {

 try {
 PortletURL renderUrl = response.createRenderURL();
 renderUrl.setPortletMode(PortletMode.VIEW);

response.setContentType(
 EbiPortletConstants.MIME_TYPE_HTML);

PrintWriter writer = response.getWriter();

 // Build the screen of HTML, set it as the content
 StringBuffer sb = new StringBuffer();

 // Output code goes here
 sb.append("View Mode");
 sb.append("
</br>");

 writer.print(sb.toString());
 }

catch (EboUnrecoverableSystemException e)
{

... // code to respond to error
// Error string replaces portlet content
sb.replace(0, sb.length(),

"msg describing what user should do");
if (log.isCritical()) {

log.criticalError(this.getPortletName()
Logging Information 163

+ " : Bad system error \n" + e.printStackTrace());
}

}

catch (EboApiException e)
{

... // code to respond to error
if (log.isError()) {

log.error(this.getPortletName()
+ " : framework error \n" + e.printStackTrace());

}
}
catch (EboFactoryException e)
{

... // code to respond to error
if (log.isError()) {

log.error(this.getPortletName()
+ " : factory exception \n" + e.printStackTrace());

}
}
catch (RuntimeException e)
{

... // code to respond to error
if (log.isWarning()) {

log.warning(this.getPortletName()
+ " : runtime exception \n" + e.printStackTrace());

}
}

 catch (Throwable e) {
 // Log other errors generated
 log.error(e);
 new PortletException(e);
 }
 }

Documenting portal usage in a log

If you want to collect data about the clients your users use and the pages they access, you could add this
information to an APP_USAGE log, as shown in this example:

// Instantiate the log
EbiLog log = com.sssw.fw.log.EboLogFactory.getLog(APP_USAGE);
// log data in this format:
// currentpage!browsername!browserversion!platform!callingpage

java.util.Map browserinfo = context.getBrowserInfo();
StringBuffer sb = new StringBuffer();

sb.append(context.getURI());
sb.append("!");
sb.append(getMapValue(browserinfo,

EboRequestHelper.BROWSER_NAME));
sb.append("!");
sb.append(getMapValue(browserinfo,

EboRequestHelper.BROWSER_MAJOR_VER));
sb.append("!");
sb.append(getMapValue(browserinfo, EboRequestHelper.PLATFORM));
sb.append("!");
sb.append(context.getCallingPage());

if (log.isInfo())
{

log.info(sb.toString());
}
// Private method to get browser information from the Map object:
private String getMapValue(Map map, String key)
164 Developing exteNd Director Applications

{
String val;
if (map.containsKey(key))
{

val = (String) map.get(key);
}
else
{

val = "";
}
return val;

}
Logging Information 165

166 Developing exteNd Director Applications

16 Using the XML and IPDR Logging Providers

This chapter includes instructions for using the XML and IPDR logging providers that ship with exteNd
Director.

The chapter has the following sections:

About the XML and IPDR logging providers

Working with XML templates

Working with IPDR templates

Built-in properties

Sample code

About the XML and IPDR logging providers
In addition to the standard logging facility, exteNd Director includes two logging providers that let you
generate:

Log information as well-formed XML files

IPDR (Internet Protocol Detail Record) files

IPDR defines an open, extensible record format for exchanging resource and service usage
information. For more information about IPDR, see the IPDR.org Web site.

The behavior of the XML and IPDR logging providers is very similar to the behavior of the standard
logging mechanism supported by exteNd Director.

For details on using the standard logging mechanism, see Chapter 15, “Logging Information”.

To use the XML or the IPDR logging providers, you first need to get the log object, which is an
instance of EboLog. To do this you need to use the getLog() method on the EboLogFactory class, as
shown below:

logXML = (EboLog) EboLogFactory.getLog("XML Test");
logIPDR = (EboLog) EboLogFactory.getLog("IPDR Test");

You can then add either of the two logging providers by using the addLoggingProvider() method on
EboLog.

To add a logging provider object for XML logging, you might use this method call:

logXML.addLoggingProvider(EboUniqueXMLFileLoggingProvider.class.getName());

To add a logging provider object for IPDR logging, you might use this method call:

logIPDR.addLoggingProvider(EboUniqueIPDRFileLoggingProvider.class.getName());

Both providers have templates for the log file format, described next. Both kinds of templates should be
placed in the FrameworkService-conf directory within the FrameworkService.jar file.

The name of the template can be specified as a tag in the log string. Each variable in the template should
also be specified in the log string, unless it is one of the built-in properties:
Using the XML and IPDR Logging Providers 167

http://www.ipdr.org/

logIPDR.audit("<template>sms_bin</template><WapID>aaaaa</WapID><pnummer>1</pnummer
>")

For more information on the built-in properties, see “Built-in properties” on page 169.

Working with XML templates
The template for an XML log file specifies one or more XML elements, as well as variables that will be
replaced with log data. For example, the format for an XML file might be:

<?xml version="1.0"?>
<root>${event}</root>

When a new log file is created, the template is used to format the file. The ${} variable is replaced with
the actual log strings. The value specified within the braces is also added as an enclosing element. For
example:

<?xml version="1.0"?>
<root><event>logString2</event>
<event>logString2</event>
</root>

Working with IPDR templates
The template for an IPDR log file contains a set of standard IPDR elements. In addition, it may contain
variables that will be replaced with log data. For example:

<IPDRDoc seqNum="6530" version="1.0">
<IPDRRec info="Novell"/>
<IPDR seqNum="${Sequence}" time="${Time}">
<SS id="sms" service="bin">
<SC>
<v name="customer_id">${WapID}</v>

</SC>
<SE>
<v name="service">sms-bin</v>

</SE>
</SS>
<UE>
<v name="pnummer">${pnummer}</v>

</UE>
</IPDR>

</IPDRDoc>
168 Developing exteNd Director Applications

Built-in properties
The following built-in properties have been added to support XML and IPDR logging. Each of these
properties can be set in the config.xml file for the Framework subsystem, or by calling a method on the
EboLog class:

Sample code
Here is sample code for using XML and IPDR logging:

// XML logging sample:
private com.sssw.fw.log.EboLog log;

log = (EboLog) EboLogFactory.getLog("XML Test");
log.addLoggingProvider(EboUniqueXMLFileLoggingProvider.class.getName()); log.audit("xml_file This is my
event");
log.removeLoggingProvider(EboUniqueXMLFileLoggingProvider.class.getName()); log2 =
 (EboLog) EboLogFactory.getLog("IPDR Test");

// IPDRF logging sample ...
private com.sssw.fw.log.EboLog log2;

log2.addLoggingProvider(EboUniqueIPDRFileLoggingProvider.class.getName());
log2.audit("sms_bin555123455");
log2.removeLoggingProvider(EboUniqueIPDRFileLoggingProvider.class.getName());

Property Description Value EboLog method

logFileTemplate The log file template to be used The name of a
template placed in
the conf directory
for the Framework

Default value: xml-
file.tpl

setLogFileTemplate
(String
logFileTemplate)

addLogDateInfo Indicates whether a log Date
should be added to the log string

true/false

Default value: true

setAddLogDateInfo
(String
addLogDateInfo)

logDateFormat
Mask

The mask to use for the log Date
information

java.text.Simple
DateFormat mask

Default value:
dd/MM/yy
HH:mm:ss

setLogDateFormatM
ask (String
logDateFormatMask)

addLogTimeInfo Indicates whether a log Time
should be added to the log string

true/false

Default value: true

setAddLogTimeInfo
(String
addLogTimeInfo)

logDateFormat
Mask

Indicates whether a log Time
should be added to the log string

java.text.Simple
DateFormat mask

Default value:
yyyy-MM-
dd'T'HH:mm:ss'Z'

setLogTimeFormat
Mask (String
logDateFormatMask)

addLogSequence
Info

Indicates whether a unique
Sequence should be added to
the log string

true/false

Default value: true

setAddLogSequence
Info (String
addLogSequenceInfo
Using the XML and IPDR Logging Providers 169

170 Developing exteNd Director Applications

17 Working with JSP pages

This chapter describes how to use the exteNd Director tag libraries with JavaServer Pages (JSP). It
includes the following topics:

About JSP pages and the exteNd Director tag libraries

Adding the JAR and TLD files to your project

Using a custom tag in a JSP page

About JSP pages and the exteNd Director tag libraries
exteNd Director provides a set of custom tag libraries for use with JavaServer Pages (JSP). These tags
wrap many of the most commonly used methods in the exteNd Director API.

Tag library JAR files The exteNd Director tag libraries are distributed in the following JAR files:

ContentMgmtTag.jar

FrameworkTag.jar

PortalTag.jar

RuleTag.jar

WorkflowTag.jar

TLD files Each of these JAR files has an associated tag library descriptor (TLD) file. The TLD file is
an XML file that describes the tags in the library.

The exteNd Director tag libraries are described in the following TLD files:

ContentMgmtTag.tld

FrameworkTag.tld

PortalTag.tld

RuleTag.tld

WorkflowTag.tld

For complete details on using tags in
this file See

ContentMgmtTag.jar The tag library reference in the Content Management Guide

FrameworkTag.jar The tag library reference in the User Management Guide

PortalTag.jar The tag library reference in the Portal Guide

RuleTag.jar The tag library reference in the Rules Guide

WorkflowTag.jar The tag library reference in the Workflow Guide
Working with JSP pages 171

cmgTagLibrary.html
usTagLibRef.html
pgTagLibRef.html
reTagLibRef.html
wfTagLibRef.html

To use a custom tag library, you need to include the tag library JAR file and the associated TLD file in the
WAR that contains your JSP pages.

Where to put your JSP pages You should package your JSP pages in the WAR for your Web
application, along with your exteNd Director resources. But the JSP pages should be at the root of the
WAR, or in a subdirectory of the root. They should not be stored inside the resource set, or anywhere
inside the WEB-INF/lib directory.

For complete details on JSP and the Java Servlet API, see the Sun documentation.

Adding the JAR and TLD files to your project
When you use the Director Project Wizard to create your WAR file, you can select the tag libraries you
need for your application. The JAR and TLD files you need are automatically added to the project:

The tag library JAR files are placed in the WEB-INF/lib directory of the WAR file.

The TLD files are placed in the WEB-INF/tag directory of the WAR file.

The web.xml file for the WAR file maps the tag library URIs to the included TLD files, as shown below:

<web-app>
...

<taglib>
<taglib-uri>/cm</taglib-uri>
<taglib-location>/WEB-INF/tag/ContentMgmtTag.tld</taglib-location>

</taglib>
<taglib>
<taglib-uri>/fw</taglib-uri>
<taglib-location>/WEB-INF/tag/FrameworkTag.tld</taglib-location>

</taglib>
<taglib>
<taglib-uri>/portal</taglib-uri>
<taglib-location>/WEB-INF/tag/PortalTag.tld</taglib-location>

</taglib>
<taglib>
<taglib-uri>/re</taglib-uri>
<taglib-location>/WEB-INF/tag/RuleTag.tld</taglib-location>

</taglib>
<taglib>
<taglib-uri>/wf</taglib-uri>
<taglib-location>/WEB-INF/tag/WorkflowTag.tld</taglib-location>

</taglib>

...
</web-app>
172 Developing exteNd Director Applications

http://java.sun.com/products/jsp

Using a custom tag in a JSP page

To use a custom tag in a JSP page:

1 Add a tag library directive to the page to notify the server that the page relies on a custom tag
library. Once you have added this directive to the page, all tags in the library are available to the
page. Here’s an example of a tag library directive that makes the tags described in the PortalTag.tld
file available to the page:

<%@ taglib uri="/portal" prefix="ep" %>

This example assumes the web.xml file for the WAR file maps the URI to an appropriate TLD file.
Here the URI /portal is mapped to /WEB-INF/lib/PortalTag.tld:

<web-app>
...
<taglib>
<taglib-uri>/portal</taglib-uri>
<taglib-location>/WEB-INF/lib/PortalTag.tld</taglib-location>

</taglib>

</web-app>

2 Add the custom tag to the page.

Here’s an example that shows how to display a PID page on a JSP page:
<ep:displayPID PID="MyPID.html" />
Working with JSP pages 173

174 Developing exteNd Director Applications

18 Working with servlets

This chapter describes how to use servlets in an exteNd Director applications. It includes the following
topics:

About servlets and exteNd Director applications

Using the exteNd Director API in a servlet

About servlets and exteNd Director applications
exteNd Director applications can include custom servlets. This version of exteNd Director supports
servlets that conform to the Servlet 2.2 or 2.3 specification. Any servlets you create should conform to
the specification supported by your target application server.

Where to put your servlets You should package your servlets in the WAR file that contains your
Web application resources. Typically this WAR will be configured to use an internal resource set for
exteNd Director resources. The servlets should be located in the WEB-INF/classes directory or in a JAR
stored in the WEB-INF/lib directory within the WAR.

Using the exteNd Director API in a servlet
A custom servlet can access methods in the exteNd Director API. A servlet can use these methods to
display portal pages and exteNd Director portlets, as well as to fire rules and access documents in the
Content Management subsystem.

Example Suppose you want to use an exteNd Director portal page in a servlet. In this case, you would
need to add some Java code that instructs the Portal Aggregation Controller to display the page. These
are the basic steps you would need to follow:

1 Create a Portal context object based on the HttpServletRequest, HttpServletResponse, and Servlet
Context objects.

2 Use the Portal Manager object to get an array of objects that provides information about pages
defined to the Portal.

NOTE: In the example below, the array of objects includes information about pages for all users.
However, the API provides methods you can use to restrict the list by user.

3 Communicate with the Portal Aggregration Controller to render a portal response that includes the
requested page.

Here is some sample Java code that shows how this is done:
Working with servlets 175

package com.novell.afw.portal.aggregation;

import com.sssw.portal.factory.EboFactory;
import com.sssw.portal.api.EbiPortalContext;
import com.sssw.portal.api.EbiSharedPageInfo;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SampleServlet extends HttpServlet {

 public void init() throws ServletException {
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, java.io.IOException {
 callService(request, response);
 }

 protected void doPost(HttpServletRequest request, HttpServletResponse
response) throws ServletException, java.io.IOException {
 callService(request, response);
 }

 /**
 * Service a HTTP request
 */
 protected void callService(HttpServletRequest request, HttpServletResponse
response) throws ServletException, java.io.IOException {

 try {

 // Create a Portal Context based on the HttpServletRequest,
HttpServletResponse and Servlet Context
 // Portal context object is used to pass useful information around
 EbiPortalContext portalContext =
com.sssw.portal.factory.EboFactory.createPortalContext(request, response,
this.getServletContext());

 // Determine if a page was selected from the list of available pages
 String pageName = request.getParameter("pageName");

 if (pageName == null) {

 // No page name was supplied - show the user the available pages
(reports) they have access to
 StringBuffer pageBuffer = new StringBuffer();

 pageBuffer.append("<html>\n");
 pageBuffer.append("<head>\n");
 pageBuffer.append("<title>Available Reports</title>\n");
 pageBuffer.append("<link type=\"text/css\" rel=\"stylesheet\"
href=\"http://localhost:8080/Director/resource/portal-
theme/DottedBorder/theme.css\">\n");
 pageBuffer.append("</head>\n");
 pageBuffer.append("<body>\n");

 pageBuffer.append("<form id=\"reports\" method=\"post\"
action=\"\">\n");
 pageBuffer.append(" <div style=\"padding:5px;\">Available
Reports:</div>\n");
 pageBuffer.append(" <select name=\"pageName\"
style=\"height:150;width:290;\" size=\"10\">\n");
176 Developing exteNd Director Applications

 // Get a list of shared pages from the Portal Manager
 EbiSharedPageInfo[] pageInfos =
EboFactory.getPortalManager(portalContext).getSharedPageInfoList(portalContext);

 for (int i=0; i<pageInfos.length;i++) {
 pageBuffer.append(" <option>" +
pageInfos[i].getPageName() + "</option>\n");
 }

 pageBuffer.append(" </select>\n");
 pageBuffer.append(" <p/>\n");
 pageBuffer.append(" <input value=\"Show Report\"
type=\"submit\">\n");
 pageBuffer.append("</form>\n");
 pageBuffer.append("</body>\n");
 pageBuffer.append("</html>\n");

 response.setContentType("text/html");

 response.getWriter().print(pageBuffer.toString());

 } else {

 // A report (page) was selected from the list
 // Use the Portal's Aggregation Controller to display the selected
report (shared page)

EboPortalAggregationController.getController().renderPortalResponse(portalContext,
null, pageName);

 }

 } catch (Exception e) {
 e.printStackTrace();
 throw new ServletException(e);
 }
 }

 /**
 * the servlet is being taken out of service, clean up and free handles
 */
 public void destroy() {

 }
}

Here are the lines you would need to add to the web.xml to map the servlet to an URL pattern. This servlet
listens on the URL pattern /reports/*:

<servlet>
<servlet-name>SampleServlet</servlet-name>
<display-name>Sample Servlet</display-name>
<description>Sample Servlet demostrating creating a custom servlet with hooks

into the portal.</description>
<servlet-class>
com.novell.afw.portal.aggregation.SampleServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>SampleServlet</servlet-name>
<url-pattern>/reports/*</url-pattern>

</servlet-mapping>
Working with servlets 177

178 Developing exteNd Director Applications

19 Developing a Struts Application

This chapter describes developing Struts applications that take advantage of the services provided by
exteNd Director. Topics include:

About Struts

Extending Struts with exteNd Director services

How to implement Struts with exteNd Director services

About Struts
Struts is part of the Jakarta Project of the Apache Software Foundation. It is a framework that implements
the Model-View-Controller (MVC) design pattern for J2EE Web applications (WARs).

Understanding MVC

MVC prescribes a way of partitioning application code to keep the user interface (the view) isolated from
the business logic (the model). A controller determines how user requests are routed to pages and what
business logic is invoked to process each request.

The combination of JSP pages for the view and servlets for the controller is known as Model 2. This is
the currently accepted way to implement an MVC architecture in a Web application.

To learn more about MVC architecture, see the Sun J2EE Blueprints.

How Struts implements MVC

Struts is based on Model 2. It provides a servlet controller, tag libraries, and form classes that handle
information display in JSP pages. It uses a configuration file to tell the controller what classes to
instantiate to process application data.

A typical Struts application includes:

JSP pages with Struts custom tags that display text, create forms for data input, and process
collections of data for presentation on the page

ActionForm bean classes that populate forms with data and retain data for future requests

Action classes that set up data for JSP pages and process user input

An action servlet that acts as the controller, routing requests to action classes and selecting JSP
pages to display

A configuration file that defines the associations among URLs, action classes, form classes, and
JSP pages

Resource files that contain the text strings for the application, which can be provided in several
languages
Developing a Struts Application 179

new http://www.apache.org
new http://java.sun.com/j2ee/blueprints

Here’s a summary of how these pieces work together to implement MVC:

The following diagram illustrates this architecture:

Example

Consider how a simple order entry system might be architected using Struts.

How it works The first component of the application is the order form where customers fill in order
data. The HTML form itself is a JSP page that defines the text fields to be entered. This JSP page is
mapped in the struts-config.xml file to an ActionForm class that collects and validates the input data. An
Action class then processes the information and accepts the order. Finally, an action mapping tells the
controller where to go next.

In this example, the form in the JSP page is defined using a Struts form tag:

<strutshtml:form action="order.do" name="orderForm" type="mine.OrderForm">

When a user clicks the Submit button, the controller knows to redirect to the mine.OrderForm class
(which extends ActionForm) to collect the information entered. If there’s a validation error, the controller
can return to the form page; otherwise, it executes the order.do action.

MVC part Struts implementation

Model Action classes use the request or the session to store application state information.
They can instantiate business logic classes to handle application data.

You write an action class for each URL the controller processes.

View JSP pages and ActionForm beans display data and forms. ActionForm beans populate
form fields with data and retain and validate that data. The data can remain available
between requests, and the form can display the previously entered data again.

You write an ActionForm class for each form on your JSP pages.

Controller The ActionServlet class (or your extension of it) runs as a server process and processes
URLs it recognizes. It reads the struts-config.xml file to find out what action classes to
instantiate and what JSP pages to display for each URL.

You can use the ActionServlet class as is or extend it to provide custom behavior.
180 Developing exteNd Director Applications

Using the struts-config.xml file, the controller determines the specific Action class mapped to the
order.do action and provides the collected order data to that class for processing. Depending on the result
of the processing, the Action class returns an ActionMapping object to the controller that indicates what
to do next. If the result is success, for instance, the controller looks in the struts-config.xml file to find the
JSP page mapped to success for the Action class. In this application, the controller displays
ThankYou.jsp if the order is successful and TryAgainLater.jsp if there is a problem.

Benefit Isolating the details of control flow in the struts-config.xml file means the application
maintains flexibility, making it easier to add or change portions later. For example, this helps when
adding a back-order module to the order entry application.

As mentioned earlier, a specific Action class processes the order information submitted by the user. That
class may simply calculate the total cost of an order—or it may call to external code that validates the
customer ID, processes the credit card data, and updates inventory before providing a response to the
user. Because the Action class itself is part of the Struts framework, it’s a good idea to implement
application-specific business logic outside that class in reusable JavaBeans, EJBs, or other objects.

To learn more about Struts, visit jakarta.apache.org/struts/index.html.

Extending Struts with exteNd Director services
By itself, the Struts framework can help you develop J2EE Web applications that follow a standard
architecture (MVC, Model 2) and benefit from good design practices (such as the separation of
presentation from business logic and the use of a configuration file for declaring details of control flow).
Still, there are significant areas of application functionality that Struts does not address.

By adding exteNd Director services, you can extend the abilities of Struts applications in several specific
areas, including:

Business logic (via rules)

Business process (via workflow)

Dynamic content (via content management)

The following diagram illustrates the use of exteNd Director services with Struts:
Developing a Struts Application 181

new http://jakarta.apache.org/struts/index.html

Business logic

Struts limitation Even within a well-structured Struts application, business logic resides in coded
objects that must be maintained and modified by programmers. This results in delays for business
managers who need to make rapid changes to that logic in response to changing business plans and
conditions.

exteNd Director benefit By using the exteNd Director Rule subsystem, you can maintain business
logic in a much more accessible way, making it possible for both programmers and business managers to
make changes. Once a rule change is made, it’s immediately available to the application without the need
for redeployment.

For example, suppose you want to give discounts to your best customers. You can create a rule called
isBestCustomer(custid) that checks to see if a customer falls into the best category. Today a best
customer is defined as having purchased $2000 worth of goods in one year, but maybe tomorrow a
business manager will want to change that to $5000. Such modifications are easy—open the rule in the
Rule Editor and change the amount from $2000 to $5000. As soon as you save the rule, the application
starts using the $5000 requirement for best-customer discounts.

You can take advantage of rules in any of the logic components of a Struts application. In particular, you
should consider using them to handle validation for ActionForm classes and business logic for Action
classes.

Business process

Struts limitation Although Struts provides a good approach for handling control flow within an
application, it doesn’t go beyond the application to address how information and processes flow through
a business. That’s where the exteNd Director Workflow subsystem comes in.

exteNd Director benefit Workflow helps you map your business processes (including where
individual applications fit) and move data through them. This eliminates the need to make particular
applications aware of how they are linked, enabling you to develop them independently and keep them
modular. For instance, an order entry application doesn’t need to deal with what happens after an order is
placed. It simply tells the Workflow subsystem that it has completed its part of the process.

Workflow manages the higher-level process logic. For example, it guides a customer’s order from the
order entry application to a person in shipping, then to someone in billing, and finally to a service rep who
follows up with the customer to make sure everything arrived safely.

Dynamic content

Struts limitation Another important application requirement not addressed by Struts is support for
dynamic content. For instance, while the use of JSP pages in Struts does help isolate the presentation
layer of an application, there generally remains hardcoded HTML. In this scenario, content changes may
require you to recompile.

exteNd Director benefit With the exteNd Director Content Management subsystem, content can be
maintained and modified outside the application framework and fed into the application dynamically.
Content Management includes features to version content, control access to content, control distribution
of content, control expiration of content, and handle diverse styling of content via XML/XSL.

Suppose the main JSP page of an order entry application needs to display information about specials.
Because specials are always changing, this content should be maintained dynamically; so you create a
document in Content Management that holds the HTML for it. The JSP page is coded to obtain the
content at runtime.
182 Developing exteNd Director Applications

Nonprogrammers can use the CMS Administration Console to maintain and edit the content. You can
put the content through an approval process and set a date for a new version of it to appear on the site. A
rollback feature is available for cases where invalid content is created.

You can take advantage of styling capabilities to display the same content to different users in different
formats. Content Management allows multiple XSL style sheets to be associated with a single document,
so you don’t need to maintain extra copies of content to support various looks.

How to implement Struts with exteNd Director services
To access exteNd Director services in a Struts application, you use several classes provided in the
StrutsPlus.jar file, which is installed in the exteNd Director utilities\Struts directory. All of the classes
you need are in the exteNd Director package com.sssw.portal.struts.

The com.sssw.portal.struts package has these classes:

DirectorAction
This class extends the Struts Action class. It provides several methods you can call to access
common exteNd Director managers and delegates.

To use DirectorAction, first extend the class. Then, in your DirectorAction subclass, implement the
following abstract methods:

public abstract ActionForward perform(com.sssw.fw.api.EbiContext
fwContext,com.sssw.portal.struts.EboStrutsContext strutsContext)throws

java.io.IOException, javax.servlet.ServletException;
public abstract void

init(com.sssw.fw.api.EbiContextfwContext,com.sssw.portal.
struts.EboStrutsContext strutsContext);

DirectorActionForm
This class extends the Struts ActionForm class. It provides several methods you can call to access
common exteNd Director managers and delegates.

To use DirectorActionForm, first extend the class. Then, in your DirectorActionForm subclass,
implement the following abstract methods:

public abstract ActionErrors validate(com.sssw.fw.api.EbiContext
fwContext,com.sssw.portal.struts.EboStrutsContext strutsContext);

public abstract void reset(com.sssw.fw.api.EbiContextfwContext,
com.sssw.portal.struts.EboStrutsContext strutsContext);

public abstract void
init(com.sssw.fw.api.EbiContextfwContext,com.sssw.portal.
struts.EboStrutsContextstrutsContext);

DirectorHelper
This is a utility class that provides several methods you can call to access common exteNd Director
managers and delegates. These are the same methods as in DirectorAction and
DirectorActionForm.

To use DirectorHelper, you instantiate it, passing in the request and response as well as the servlet
context. Then you can access the exteNd Director objects you need by calling the DirectorHelper
get methods.

DirectorHelper can be used anywhere, as long as you can supply the request, response, and servlet
context.

The DirectorAction, DirectorActionForm, and DirectorHelper classes provide several get methods you
can use to access common managers and delegates. You need to uncomment the get methods for the
subsystems you plan to use in your application. To access a particular manager or delegate, you can then
call the appropriate get method anywhere in your code. In your DirectorAction and DirectorActionForm
subclasses, you would typically want to do this in the init method.

For example, to use the Rule subsystem, you would need to uncomment the following block of code:
Developing a Struts Application 183

/*
//uncomment this section if you are using the rule subsystem
public com.sssw.re.api.EbiRuleManager getRuleManager() throws

com.sssw.fw.exception.EboFactoryException {
try{

return com.sssw.re.factory.EboFactory.createRuleManager();
} catch (com.sssw.fw.exception.EboFactoryException ex){

throw ex;
}

}
*/

To access the rule manager, you would then call the getRuleManager() method, as shown below:

public class MyDirectorAction extends DirectorActionForm {
...
com.sssw.re.api.EbiRuleManager myRuleManager;

...
public void init(com.sssw.fw.api.EbiContext
fwContext,com.sssw.portal.struts.EboStrutsContext strutsContext)

{
...
myRuleManager = getRuleManager();

...
}

184 Developing exteNd Director Applications

V Deploying Applications

Explains how to deploy an exteNd Director application

• Chapter 20, “Deploying exteNd Director Applications”
185

186 Developing exteNd Director Applications

20 Deploying exteNd Director Applications

This chapter provides information about deploying exteNd Director applications. It contains these
sections:

Deploying an exteNd Director project

Testing the deployment

What happens to exteNd Director subsystems at deployment

Troubleshooting the deployment

Changing your deployment configuration

About exteNd Director database tables

Deploying an exteNd Director project
After you build and archive your project, you can deploy it to a J2EE application server. You can deploy
a newly created project—you do not have to add any application-specific functionality to a project before
deploying it.

The following table lists the deployment configurations supported for each exteNd Director project type:

For more information on shared library configurations, see “Changing a project’s shared library
configuration” on page 53.

exteNd Director
project

Shared library
configuration Deployment configuration description

Portlet application Full The target application server must:

Be configured to use full shared libraries

Have an exteNd Director portal already deployed

3rd party only Must be incorporated in an exteNd Director EAR or WAR

Nonshared Must be incorporated in an exteNd Director EAR or WAR

exteNd Director
project

Full The target application server must:

Use shared libraries

Not have a portal deployed

3rd party only The target application server must:

Be configured as a 3rd party JARs only server

Each exteNd Director project must use its own database

Nonshared The target application server must:

Be configured as a nonshared library server

Each exteNd Director project must use its own database
Deploying exteNd Director Applications 187

Depending on the server you are deploying to, you’ll need to do some predeployment setup and possibly
some post-deployment configuration.

The deployment process includes these tasks:

Predeployment tasks

Deployment tasks

Post-deployment tasks

Predeployment tasks

The tasks in the following table apply to Portlet Application Projects and Director projects. Before you
deploy your application, make sure of the following:

Make sure that For information see

You have a relational database
available to the application server you
are deploying to.

“Setting up an exteNd Director database” on page 189

For production deployments, you have:

Turned off vulturing

Generated a new AES key

For information on vulturing, see “Dynamic loading of
resources and classes” on page 77

To generate a new AES key, see “Changing the
configuration” on page 49

Your project and the target server use
the same shared library configuration

“Changing a project’s shared library configuration” on
page 53

The necessary JARs and files are
copied to the correct location for your
server

“Setting up JARs and the server’s classpath” on page 189

For portlet applications, you’ve
determined if you can use
asynchronous rendering

The section on asynchronous portlet rendering in the
Portal Guide.

Your server’s predeployment tasks are
complete

“Tomcat predeployment tasks” on page 191

“LDAP predeployment tasks (eDirectory only)” on
page 191
188 Developing exteNd Director Applications

Setting up an exteNd Director database

Many of the exteNd Director subsystems require a relational database to store persistent data. Follow the
steps outlined below to set up a database for use by exteNd Director:

For a list of the exteNd Director database tables, see “About exteNd Director database tables” on
page 204.

Setting up JARs and the server’s classpath

exteNd Director requires you to use exteNd Director’s version of these JARs:

xercesImpl

xalan

Phaos_Crypto_FIPS

Phaos_SSLava

Phaos_Security_Engine

You’ll need to copy the file from the exteNd Director install to a specific directory on your application
server.

1 Copy each of these files from this install location:

2 Place the copy of exteNd Director’s version of these JARs in the proper location for your
application server as described in the next table.

Step Task For more information

1 Use your DBMS tools to create a
database for the exteNd Director
tables.

For more information on creating a database, see your
DBMS documentation.

For more information about the supported databases,
see the Release Notes.

2 Use your server’s tools to create
a connection pool for the
database you created in Step 1.

See your application server’s documentation for creating
a connection pool.

For more information about the supported application
servers, see the Release Notes.

For help on configuring Tomcat, see “Tomcat
predeployment tasks” on page 191.

IMPORTANT: To use an Oracle database with the
Novell exteNd Application Server, you must use the
application server’s Add Database functionality (not the
connection pool).

3 Make sure the database driver
you are using to connect to the
exteNd Director database is in
the application server’s classpath

For information on adding to the server’s classpath, see
your application server’s documentation.

Copy this JAR From this exteNd Director install directory

xalan.jar extend5\Director\templates\Director\library

xercesImpl.jar

Phaos_Crypto_FIPS Common/jre/lib/ext

Phaos_SSLava

Phaos_Security_Engine
Deploying exteNd Director Applications 189

NOTE: If you are using the exteNd Application Server, these files are installed into the proper
location by default, so you are not required to make any changes.

IMPORTANT: Restart the server after copying these files.

IMPORTANT: If you are developing on a Windows platform and deploying to a non-exteNd application
server running on UNIX, copy the Phaos_Crypto_FIPS_UNIX.jar from the Common\lib\other directory to
the directory for your server specified above. Rename it Phaos_Crypto_FIPS.jar.

Server JAR Instructions

BEA
WebLogic

xalan 1 Create a subdirectory called endorsed in the JRE
used by WebLogic. For example:

c:\bea\jdk141_02\jre\lib\
endorsed

2 Copy exteNd Director’s xalan.jar to the endorsed
directory.

xercesImpl 1 Copy to the server’s \lib directory.

2 Edit the server’s start command to reference the
xercesImpl.jar as the first item in the server’s
Classpath.

Phaos_Crypto_FIPS

Phaos_SSLava

Phaos_Security_Engine

Copy to the server’s jre\lib\ext directory.

IBM
WebSphere

xalan 1 Copy to the server’s \lib directory. (You should first
save WebSphere’s copy of xalan.jar to a different
location.)

xercesImpl 1 Rename WebSphere’s xerces.jar and move it out
of the WebSphere\lib directory.

2 Copy exteNd Director’s xercesImpl.jar to
WebSphere’s \lib directory.

Phaos_Crypto_FIPS

Phaos_SSLava

Phaos_Security_Engine

Copy to the server’s jre\lib\ext directory.

Apache
Tomcat

xalan Copy to server’s \common\endorsed directory.

xercesImpl Copy to server’s \common\endorsed directory.

Phaos_Crypto_FIPS

Phaos_SSLava

Phaos_Security_Engine

Copy to the server’s jre\lib\ext directory.
190 Developing exteNd Director Applications

Tomcat predeployment tasks

1 Locate the FrameworkService-conf and DirectoryService-conf files for your project type:

2 Make sure the following Framework services settings are correct:

In the FrameworkService-conf config.xml file:

In the DirectoryService-conf config.xml file. The values for PersistManager are:

The values for LDAP are:

TIP: Using the PersistManager realm causes the application database to function as the user
authentication repository. The LDAP realm specifies that user authentication repository is an
eDirectory server.

LDAP predeployment tasks (eDirectory only)

If you are using an eDirectory LDAP realm configuration, you need to:

Import a UUID auxiliary class

(Optional) Set up your LDAP server to use SSL

Importing the UUID auxiliary class Before you deploy a project that implements one of the LDAP
application server realms, you need to import the provided auxiliary class specified in the UUID auxiliary
class property in the Directory LDAP Configuration panel. exteNd Director uses this class to access
portal users in the LDAP tree.

You import this class using the NDS Import Wizard in the Novell ConsoleOne® eDirectory tool.

Archive type Project location

EAR \Library\ConfigService\ConfigService.spf\

WAR WEB-INF\lib\ConfigService\ConfigService.spf\

Key Value

com.sssw.userTransaction.enable False (unless you have a JTA extension installed)

com.sssw.fw.datasource.jndi-name Matches the name of the connection pools that you
created to store your exteNd Director tables

Key Value

DirectoryService/realms/readable com.sssw.fw.directory.api.EbiPersistMgrRealm

DirectoryService/realms/writeable com.sssw.fw.directory.api.EbiPersistMgrRealm

Key Value

DirectoryService/realms/readable com.sssw.fw.directory.api.EbiJndiLdapRealm

DirectoryService/realms/writeable com.sssw.fw.directory.api.EbiJndiLdapRealm
Deploying exteNd Director Applications 191

To import the UUID auxiliary class in ConsoleOne:

1 With the NDS container selected in ConsoleOne, select Wizards>NDS> Import/Export:

2 Click Import LDIF File and choose Next:
192 Developing exteNd Director Applications

3 Navigate to the ldif file in your exteNd Director installation path and select it (it is located at
bin/extElemImport.ldif). Click Next:

4 Verify the LDAP host name and port, choose Authenticated Login, and specify your administrator
DN (distinguished name) and password:
Deploying exteNd Director Applications 193

5 Verify the information and click Finish:

Configuring and using SSL for LDAP connections Complete the procedures described here if
you want to connect to your LDAP realm using Secure Socket Layer (SSL).

NOTE: SSL connections are slower than plain or clear-text connections. The initial portal connection can
take up to 30 seconds to be established.

To configure the LDAP server to support SSL:

1 In ConsoleOne, open the properties on the LDAP Server object that represents the LDAP server
you are using with exteNd Director.

2 Select the SSL Configuration tab.

3 In the SSL Certificate field, select an SSL Certificate object.

4 Make note of the SSL Port (typically 636).

5 Make sure the Disable SSL Port option is not checked.

6 Save the settings and refresh the NLDAP server:

6a Open the properties of the LDAP server.

6b Click the Refresh NLDAP Server Now button on the General page.

To export the Trusted Root Certificate:

1 Open the properties on the SSL certificate object that you configured in the preceding procedure.

2 Select the Certificates tab.

3 Select the Trusted Root Certificate subtab.

4 Click Export and save the file in binary DER format, typically named TrustedRootCert.der.

To download and install the Java Secure Socket Extension (JSSE):

This step is required only if your server is running with a JRE older than 1.4 and is not already configured
to use JSSE.
194 Developing exteNd Director Applications

Follow the installation instructions for JSSE—summarized as follows:

1 Copy JSSE.JAR, JNET.JAR, and JCERT.JAR to the server’s JRE extensions directory (for
example: jre/lib/ext).

2 Find and edit the java.security file, located in the lib/security directory of the server’s JRE (for
example: jre/lib/security/java.security).

3 Follow the directions at the beginning of the document to add the JSSE SSL provider:

Add a line to the security providers section using the format below, replacing name with the next
provider number in succession:
security.provider.name =com.sun.net.ssl.internal.ssl.Provider

To import the Trusted Root Certificate into your cacerts or jssecacerts trust store file:

1 Find the cacerts or jssecacerts file. It is located in the lib/security directory of the server’s JRE (for
example: jre/lib/security/cacerts).

2 Find keytool, located in the /bin folder relative to your Java home folder.

IMPORTANT: You must use a keytool that comes with JVM 1.3 or later.

3 Run the following command, making replacements listed below:
keytool -import -alias aliasName -file TrustedRootCert.der -keystore cacerts -
storepass changeit

Replace aliasName with a unique name for this certificate.

Make sure the full path for cacerts and the full path for TrustedRootCert.der are specified.

Note that changeit is the default keystore password. Use the appropriate keystore password if it
has been changed.

To configure exteNd Director to use SSL in the Directory service:

1 Open your exteNd Director project.

2 Select Project>Director Project>Configuration.

3 Click the Directory tab and then click the Directory Ldap Options lower tab.

4 Change the LDAP host to include the SSL port for eDirectory (for example: localhost:636).

5 Make sure Use SSL is checked and click OK.

6 Rebuild your project and redeploy.

Deployment tasks

Once you’ve completed all the predeployment steps, you can start deployment.

To deploy to IBM WebSphere Advanced Edition, you must use the WebSphere deployment tools;
see “Using IBM WebSphere deployment tools” on page 196.

To deploy to any other supported server, see “Using exteNd Director deployment tools” next.

Using exteNd Director deployment tools

To use the exteNd Director deployment tools, complete these deployment tasks:

Step Task For more information

1 Define a server profile See the chapter on creating a server profile in Utility Tools

2 Define deployment settings See the chapter on creating deployment settings in Utility
Tools.
Deploying exteNd Director Applications 195

utoolsBasics.html
utoolsDeployment.html

Using IBM WebSphere deployment tools

To deploy to WebSphere Advanced Edition, you must use the WebSphere Advanced Administrative
Console—you cannot use the exteNd Director deployment tools. Here are the general steps to follow
when using the console. For more details, see the IBM documentation.

Post-deployment tasks

After deployment you need to:

3 Create a deployment
document (if required by the
target server)

See the chapter on Deployment Plan Editor in Utility Tools.

4 Build and archive the project See the chapter on Projects and Archives in Utility Tools.

5 Deploy the project See the chapter on deploying an exteNd Director project in
Utility Tools.

IMPORTANT: When you deploy multiple WARs to the
Apache Tomcat server, you must deploy the WAR containing
the exteNd Director Portal first, verify that the exteNd
Director tables are created, then deploy any remaining
portlet application WARs.

6 Move portal data (such as
container, shared, personal
pages, and portlets) from your
test environment to the
production environment.

See the chapter on moving portal data in the Portal Guide.

Step Task Details

1 Build the EAR in exteNd
Director.

Use exteNd Director’s Build and Archive or Rebuild All and
Archive commands; both commands are described in the
section on compiling, building, and archiving in Utility Tools.

2 Use the Administrative
Console to deploy and start
the application.

Use your DBMS tools to verify that exteNd Director tables
are in the database. The list of tables that should be added
are included in “About exteNd Director database tables” on
page 204.

3 Set ClassLoader Mode and
ClassLoader Visibility

After successfully deploying your application, make sure:

ClassLoader Mode is set to PARENT_FIRST

ClassLoader Policy is set to Application

Step Task For more information

1 Do the post-deployment tasks
that apply to the application
server you deployed to

See the section specific to your server:

“Novell exteNd Application Server” on page 197

“IBM WebSphere” on page 197

NOTE: For the Tomcat and BEA WebLogic servers, no
action is required.

2 Make sure the Locksmith user
is a valid user in the realm

—

Step Task For more information
196 Developing exteNd Director Applications

utoolsDeployPlanEditor.html
utoolsProjects.html
utoolsDeployment.html
utoolsProjects.html
pgPortalImportExport.html

* If you redeployed on a shared library server, and also copied new or updated existing JARs in the shared library
directory, you’ll need to restart the server after the redeployment.

Novell exteNd Application Server

If you are using connection pools to access the exteNd Director database, you do not need to perform
any post-deployment tasks—so you can skip this section.

If you used the deprecated AddDatabase feature to access the exteNd Director database, you’ll need
to perform the procedure that follows. (Because the deployment procedure adds tables to the exteNd
Director database, the schema changes render the server’s snapshot of the database schema out of sync.
To fix this, you need to synchronize the database schema.)

To synchronize the database schema:

1 While the server is running, start the Server Management Console (SMC).

2 Select the Databases panel.

3 In Settings for database, select your exteNd Director database.

4 Click Synchronize Database Schema.

IBM WebSphere

You’ll need to do these postdeployment tasks only if your project does either of the following:

Uses the WebSphere custom realm (at project creation, you chose WebSphere as your realm).
Because this acts as a custom registry, you’ll need to make the custom registry entries described in
the following procedures.

Uses an LDAP realm (at project creation, you chose LDAP as the realm). You’ll just need to follow
the procedure “To define global security:” on page 198.

To define general properties:

1 In the Custom User Registry, define the following properties with the values shown:

2 Click Save.

3 Test the deployment* See “Testing the deployment” on page 199

4 (Optional) To enable
contextual searching,
configure Autonomy

See the section on configuring your environment for
conceptual searching in the Content Search Guide.

Property Value

Server User ID admin

Server
Password

admin

Custom Registry
Classname

com.sssw.fw.server.websphere.realm.EboWebSphere
Realm

Ignore case Not selected

Step Task For more information
Deploying exteNd Director Applications 197

srcConfigure.html
srcConfigure.html

To define Custom User Registry Custom properties:

1 Define these values:

2 Click Save.

To define global security:

1 Define these values:

2 Click Save.

3 Restart the server for all property settings to take effect.

Name Value

driver Enter the JDBC driver class name used to connect to the exteNd Director database.
This is not the Datasource class name. For example, the JDBC driver class name
for the Microsoft SQL Server type 4 driver is:

com.microsoft.jdbc.sqlserver.SQLServerDriver

For Oracle Thin Driver:

oracle.jdbc.OracleDriver

url The JDBC URL to connect to the exteNd Director database.

For example, for Microsoft SQL Server type 4 driver:

jdbc:microsoft:sqlserver://host:port;user=myuser;password=secret;d
atabasename=Directordatabase

For Oracle Thin Driver:

jdbc:oraclce:thin:@wd40:1521:ocl

user Enter the username that you used when you added that database to the server.

password Enter the password.

Property Value

Enabled Selected

Enforce Java 2 security Not selected

NOTE: If you want to use Java 2 security, change the value to
selected and configure the Java security policy file.

Active User Registry Custom or LDAP
198 Developing exteNd Director Applications

Testing the deployment

To test the deployed application:

1 In your browser, try the URLs that match your deployment configuration:

Variables in the URLs In this procedure, the variables have these meanings:

server is the name of your application server.

port is the port number for your application server. The defaults are:

database is the database to which you deployed the archive (Novell exteNd only)

context is the namespace for the exteNd Director application, which you specified in the Project
Wizard

What happens to exteNd Director subsystems at deployment
At deployment, exteNd Director applications are compiled, archived, and deployed to the specified
server (described in the deployment chapter of Utility Tools). For applications that rely on one or more
exteNd Director subsystems, there are additional activities that occur (without user intervention) at
deployment. They are described in the following sections:

How the subsystems register themselves with the Framework

How the subsystems access persistent data

How the subsystems access application resources

Server URL

Novell exteNd—
deployed to
SilverMaster

http://server:port/context/portal

For example:

http://localhost/ExpressPortal/portal

BEA WebLogic

IBM WebSphere

Novell exteNd—
deployed to non-
SilverMaster

http://server:port/database/context/portal

For example:

http://localhost/MyDatabase/MyPortal/portal

Server Default port

Novell exteNd 80 (Windows)

8080 (UNIX)

83 (NetWare)

Tomcat 8080

WebLogic 7001

WebSphere 9080
Deploying exteNd Director Applications 199

How the subsystems register themselves with the Framework

To make its services available, a subsystem must register itself with the Framework. The process of self-
registration involves loading configuration and service information into the Framework. Once this
information has been loaded, the appropriate factories can produce the correct implementations for each
requested service. The registration process is initiated by the boot servlet, which starts up automatically
when you deploy an exteNd Director EAR or restart your application server. An autostart servlet must be
the first servlet to load within an exteNd Director EAR.

Boot process During the framework boot process, the boot servlet starts up the base factory for the
framework, which performs these operations:

1 Reads the config.xml file for each subsystem into the framework’s memory space.

The config.xml file sets the configuration properties for a subsystem. It is typically located in the
subsystem-name-conf subdirectory of the ConfigService.spf.

2 Performs any database processing required for each subsystem. For each subsystem that needs to
load data into a database, the base factory creates the schema and loads the data, if necessary.

Each subsystem that requires database processing delivers scripts for creating the schema and
loading the data. These scripts are located in the database subdirectory of the subsystem-name-conf
subdirectory of the ConfigService.spf.

For more information about how the subsystems perform database processing, see “How the
subsystems access persistent data” on page 200.

3 Reads the services.xml file for each subsystem into the framework’s memory space.

The services.xml file sets properties for each of the services associated with a subsystem. It is
located in the subsystem-name-conf subdirectory of the ConfigService.spf.

4 Notifies subsystem-specific service loaders that the main processing is done.

5 Starts all autostart services listed in services.xml files.

Autostart services have a startup property value of A (for automatic). Those services that have a
startup element of M (for manual) are not started.

How the subsystems access persistent data

The following subsystems depend on a database to store persistent information:

Content Management

Directory

Security

User

Workflow
200 Developing exteNd Director Applications

After the Framework boot servlet reads the config.xml file for each subsystem, it performs any database
processing required for the subsystems. The boot servlet checks the config.xml file to determine if it
needs to create the schema and load data. It does this by examining the following configuration
properties:

For example, the config.xml file for the Directory subsystem has these settings for the db-load-on-startup
and test-db-on-startup properties:

<property>
<key>DirectoryService/db-load-on-startup</key>
<value>true</value>

</property>
<property>
<key>DirectoryService/test-db-on-startup</key>
<value>AUTHGROUPS</value>

</property>

When database processing is required for a subsystem, the boot servlet executes the scripts in the
database subdirectory of the subsystem-name-conf subdirectory of the ConfigService.spf.

NOTE: Do not edit the database scripts provided with the exteNd Director subsystems. These scripts
should be used as they are.

How the subsystems access application resources

exteNd Director subsystems often require access to application resources that are not stored in a database
or defined in the configuration and service elements for the subsystems. Resource sets provide a known
location for these resources. A resource set holds definitions for rules, pageflows, portlets, styles, and
various descriptors that implement features provided by exteNd Director subsystems. It can also hold
Java classes and images for your application.

Resource sets are also a tool for streamlining development, because they can be configured to load
resources from disk as well as from a deployed JAR. This dynamic loading of resources allows you to
modify and test changes without having to redeploy the whole exteNd Director EAR.

For information on how to use resource sets, see Chapter 6, “Using the Resource Set in an exteNd
Director Application”.

Troubleshooting the deployment
This section contains troubleshooting for the following categories:

General troubleshooting

Troubleshooting BEA WebLogic deployments

Property Description

db-load-on-startup Tells the boot servlet to check the database to see if its schema was created
previously:

If the schema has not yet been created, it creates the schema automatically.

If the schema has been created, it does not perform any database
processing.

This test ensures that the process of uploading the schema does not occur
every time the server is started (or every time the EAR is deployed).

test-db-on-startup Tells the boot servlet which table should be used to test for schema creation.
Deploying exteNd Director Applications 201

General troubleshooting

Troubleshooting BEA WebLogic deployments

Problem Cause Solution

You encounter the following
error:

Server Console Trace:

WARNING: This portal app
context, Director51, does
not match the
portal.context property
set in the PortalService-
conf/config.xml file.
Only one portal per data
base is allowed. Data has
been loaded using the
previous portal context.
To correct this you must
revert back to the
previous portal name of,
null, please consult the
documentation.
java.lang.reflect.Invocat
ionTargetException

Your application server is configured
to use shared libraries and an
exteNd Director portal is already
deployed—you are attempting to
deploy another application that
includes a portal.

In a shared library environment, you are
restricted to a single deployed portal. You have
two options. You can:

Change the server and project configuration
to nonshared library so that you can deploy
multiple portals.

For more information, see “Changing a
project’s shared library configuration” on
page 53.

OR

Complete the following steps (that will
undeploy your already deployed portal so that
you can deploy the new project.

1 Use your server's tools to undeploy the
archive containing the existing exteNd
Director portal.

2 Create a new exteNd Director database for
the new portal, and create a new connection
pool for it.

3 Build the project for the new portal (and a
deployment plan if needed).

4 Choose Project>Director>Shared Lib.

5 Click Copy JARs and copy the shared library
JARs to the appropriate location for your
server.

NOTE: If you do not perform this step, the
application server will still contain references to
the previously deployed portal's configuration,
and you'll get the same error.

6 Deploy the archive.

Problem Action

Redeploying an EAR fails If you’ve deployed before and the update deployment option fails to
replace the existing EAR, you can use the WebLogic Console to
remove the EAR. Then open the Deployment Settings, change the
Deployment Options value back to deploy, and try deploying again.

You did not generate targets After deploying, you may receive an error stating that no target was
set. If so, you can use the WebLogic Console to specify the target
server for each of the Web modules in the EAR.
202 Developing exteNd Director Applications

TIP: Be sure to check the Release Notes for additional information about configuring WebLogic for
exteNd Director.

Changing your deployment configuration
When you configure an exteNd Director application, you make choices based on the application server
you plan to use. If you want to deploy the application to a different server later, there are several things
to change. All changes can be made using exteNd Director editors.

For details on making changes, see the procedures in Chapter 3, “Reconfiguring exteNd Director
Projects”.

The items you need to change are as follows:

Out-of-memory errors occur When deploying multiple times to WebLogic, you may see Out of
Memory errors occur. This can occur when deploying two separate
EARs. By default, WebLogic.cmd sets memory to 64, as shown
below:

-ms64m -mx64m

To increase the amount of memory available, increase the value as
shown below:

-ms64m -mx256m

Portal URLs are not relative After deploying, you may notice that the some of the URLs associated
with your application are not relative, but instead reference localhost.
To fix this problem, you may need to modify the configuration for the
machine you set up for deployment. Select the machine and click the
Server tab. Then, if necessary, add the server (for example,
myserver) to the Chosen list and click Apply. Once you’ve made these
changes, restart your server.

You are unable to upload
large files

When you try to upload large files to WebLogic, you may find that the
operation times out. This can happen if the JTA timeout setting in
WebLogic is not too small. The default timeout setting is 30 seconds.
To increase the timeout setting, select JTA under mydomain. Then
increase the value in the Timeout Seconds field and click Apply.

What to change
For information on how to change it
(paths shown for archive layout in exteNd Director)

Realm for user
authentication

See “Directory configuration” on page 38.

Locksmith ID See “Framework configuration” on page 41.

JNDI name for the
application database

URIs that proxy resource
sets use to redirect
resource requests to
remote resource sets

See “Working with entries for resourcePath and libPath” on page 84.

NOTE: If you are also changing the server where the remote resource
set is deployed, you will need to edit the proxy resource set’s URI to point
to the new location.

Problem Action
Deploying exteNd Director Applications 203

About exteNd Director database tables
The exteNd Director database tables hold information that the subsystems need to persist.

NOTE: The items listed are reserved for exteNd Director’s use. This listing is provided for informational
purposes only.

Subsystem Table

Directory AUTHGROUPBINDINGS

AUTHGROUPS

AUTHUSERS

Content Management CMCATEGORIES

CMDOCCATEGORIES

CMDOCCONTENTS

CMDOCCONTENTSVERSIONS

CMDOCFIELDIDS

CMDOCFIELDS

CMDOCFIELDVALUES

CMDOCLAYOUTS

CMDOCLAYOUTSTYLES

CMDOCLINKS

CMDOCTYPES

CMDOCUMENTS

CMFOLDERS

CMLAYOUTDOCUMENTS

CMREPOSITORIES

Portal PORTALCATEGORY

Portlet PORTALPORTLETHANDLES

PORTALPRODUCERREGISTRY

PORTALPRODUCERS

PORTALREGISTRY

PORTALPORTLETSETTINGS

User PROFILEGROUPREFERENCES

PROFILEUSERCONTENTS

PROFILEUSERFIELDVALUES

PROFILEUSERMETA

PROFILEUSERPREFERENCES

PROFILEUSERS

RSS RSS
204 Developing exteNd Director Applications

Security SECURITYACCESSRIGHTS

SECURITYPERMISSIONMETA

SECURITYPERMISSIONS

Workflow WFAUDIT

WFAUDITLOG

WFDISPATCH

WFDOCUMENT

WFENGINESTATE

WFFINISHEDPROCESS

WFMESSAGE

WFPROCESS

WFPROCESSSTATE

WFQUEUE

WFSUSPENDEDACTIVITIES

WFWORK

WFWORKITEM

Subsystem Table
Deploying exteNd Director Applications 205

206 Developing exteNd Director Applications

VI Administering Deployed Applications

Provides information about the Portal Administration Console, runtime logging, the Cache
Coordinator, and the Debug subsystem.

• Chapter 21, “About the Director Administration Console”
• Chapter 22, “Using the General Configuration Section of the DAC”
• Chapter 23, “Using the Debug Subsystem”
• Chapter 24, “Using the Cache Coordinator”
207

208 Developing exteNd Director Applications

21 About the Director Administration Console

This chapter describes how to access the Director Administration Console (DAC) and provides links to
information about using specific functions. It includes these sections:

About the DAC

Accessing the DAC

Using the DAC

About the DAC
To administer a running exteNd Director application, you use the browser-based Director Administration
Console (DAC). The DAC is a predefined exteNd Director Web tier application that you can use
immediately after deploying any exteNd Director project that includes the Portal subsystem.

The DAC provides a point-and-click user interface for administering the following subsystems:

Content Management

Directory

Framework

Portal

Portlet

User

Security

Workflow

Accessing the DAC

To access the DAC from the Portal Home page:

1 Open a Web browser.

2 Go to the Portal Home page by typing an URL that uses this format.
http://server/context/portal/

For example.
http://localhost/ExpressPortal/portal/

3 Click Portal Administration in the upper-right corner of the Portal Home page.

4 Click Director Administration Console.
About the Director Administration Console 209

5 If you have not yet logged in, the DAC login page asks for a user name and password:

6 Type an authorized user name and password and click OK.

You must log in as a user that has administrative privileges.

NOTE: User names and passwords may be case sensitive depending on how the realm is
configured. For information about configuring realms, see the User Management Guide.

The DAC displays, with the Portlet Management tab selected:

To access the Director Administration Console directly:

1 Open a Web browser.

2 Type an URL that uses this format.
http://server/context/PAC/

For example.
http://localhost/ExpressPortal/PAC/
210 Developing exteNd Director Applications

Using the DAC
When the DAC opens in your browser, examine the toolbar:

Each tool administers a specific subsystem (use the links below for information):

Tool Description For information see

Portlet
Management

Using the Portlet section of the DAC in the Portal Guide

Portal
Management

Using the Portal section of the DAC in the Portal Guide

User Profile
Management

Using the Profiles section of the DAC in the User Management Guide

General
Configuration

Chapter 22, “Using the General Configuration Section of the DAC” in
this book

Security
Management

Using the Security section of the DAC in the User Management Guide

Directory
Management

Using the Directory section of the DAC in the User Management Guide

Administration
Tools

The help text presented in the Create Director Database Tables portlet

Content
Management

Content Management Guide

Workflow
Administration

Workflow Administration in the Workflow Guide

Director Home
page

“About Novell exteNd Director” on page 17 in this book
About the Director Administration Console 211

pgPACPortlet.html
wfAppAdmin.html
pgPAC.html
usPACProfiles.html
usPACSecurity.html
usPACDirectory.html

212 Developing exteNd Director Applications

22 Using the General Configuration Section of the
DAC

This chapter describes the General Configuration section of the Director Administration Console (DAC),
the section that allows you to view and modify settings that control the general behavior of your exteNd
Director application. Topics include:

General

Logs

Cache

For information about running the DAC, see Chapter 21, “About the Director Administration
Console”.

General
The General page displays information about your application. For example, it displays the datasource
name for the database in which exteNd Director tables are stored, as well as the build numbers for the
subsystems:
Using the General Configuration Section of the DAC 213

Logs
exteNd Director provides a logging facility that writes information in one of several standard logs. After
you set up logging, you can use the DAC to set or reset the level of detail for each standard log element:

Various levels of detail determine how much information is written to the log. A value of 0 means no
messages are logged, and a value of 5 means all messages are logged.

For more information about setting up logging and detail levels, see Chapter 15, “Logging
Information”.

Cache
exteNd Director can use a built-in server-side cache to store reusable, temporary data to optimize
performance. An optional Cache Coordinator allows the cache to work within a server cluster. This
section describes:

Cache Settings

Cache Holders

Cache Coordinator

Cache Statistics
214 Developing exteNd Director Applications

Cache Settings

The Cache Settings section of the Configuration panel allows you enable or disable the content cache and
set the size of the resources the Cache Manager can control:

NOTE TO SELF: use file finder thingy here

You can use the Save button to temporarily change the in-memory cache settings. To change the settings
permanently, modify the config.xml of the Framework service and redeploy the application.

For more information, see Chapter 14, “Working with Data Caches” and “Cache Statistics” on
page 216

Cache Holders

The Cache Holders section of the Configuration panel allows you to flush cached objects from all server-
lifetime cache holders, or any specific cache holder:

These cache holders are used internally to cache exteNd Director subsystem data for server cluster
environments. Click the dropdown list button to see a list of cache holders.

NOTE: These caches are flushed automatically by the system based on how frequently data is used. You
can use the Flush option if you have a specific need to flush selected caches or all caches manually.

For more information, see “server-lifetime caching” on page 157.and Chapter 24, “Using the
Cache Coordinator”.
Using the General Configuration Section of the DAC 215

Cache Coordinator

The Cache Coordinator section of the Configuration panel displays the Cache Coordinator parameters set
at deployment time:

This section applies only if you are running in a server cluster.

For more information, see Chapter 24, “Using the Cache Coordinator”.

Cache Statistics

The Cache Statistics section of the Configuration panel displays the current state of the content cache:

There are three cache containers implemented in the Cache Manager:

Object cache container

Memory cache container

Disk cache container

For more information, see Chapter 14, “Working with Data Caches”.

Here is a description of the statistics:

If your portal application uses only the object cache container, you can check
ContentCache.Object.currentSize and, if necessary, increase the maximum object size in the cache
configuration to allow better performance. That value is defined in the config.xml of the Framework
service:

ContentCache.Object.maxSize

NOTE: To make a persistent change to this value, you must redeploy the application. A change you make
from the DAC lasts only until the application server restarts.

Cache statistics item Description

ContentCache.Object.currentSize: The number of objects currently stored in the object cache.

ContentCache.Memory.currentSize: The current total size (bytes) of objects stored in the
memory cache. If this item is 0, the memory cache is not
being used. it

ContentCache.Disk.currentSize: The current total size (bytes) of objects stored in the disk
cache. If this item is 0, the disk cache is not being used. it
216 Developing exteNd Director Applications

23 Using the Debug Subsystem

This chapter explains how to use the Debug subsystem of exteNd Director. Topics include:

About the Debug subsystem

Setting up the Debug subsystem

Running the Debug subsystem

About the Debug subsystem
The Debug subsystem helps you troubleshoot a deployed exteNd Director application by providing
reports about the application and its server environment. These reports include:

How it works

The Debug subsystem consists of a set of JSP pages that display various debugging reports, along with a
supporting tag library (debug.tld) and underlying classes:

index.jsp is the Debug subsystem’s home page.

debugEbo.jsp displays the exteNd Director Resources report. It uses the custom tag DebugEbo
defined in debug.tld.

debugResources.jsp displays the HTTP Resources report. It uses the custom tag DebugResources
defined in debug.tld.

debugJNDI.jsp displays the JNDI Resources report. It uses the custom tag DebugJNDI defined in
debug.tld.

debugArchives.jsp displays the Novell Archive Resources report. It uses the custom tag
DebugArchive defined in debug.tld.

In an EAR project, the Debug subsystem is packaged in the Debug.war file. In a WAR project, the
resources required for the subsystem are located in appropriate places within the WAR. For example, the
JSP pages are located in the pages folder at the top level of the WAR.

Report Description

exteNd Director
Resources

Queries the subsystem configuration and service entries for your application
to display their current (in-memory) values

Also lets you validate resource set bindings.

HTTP Resources Displays information about the application’s deployed servlets and JSP pages

JNDI Resources Displays the tree of JNDI resources available to your application on its J2EE
server

exteNd Director
Archive Resources

Lists the archives deployed to an exteNd Application Server and lets you
display archive details (contents, unresolved JAR references)
Using the Debug Subsystem 217

Security considerations

The Debug subsystem exposes a lot of information about the environment it runs in. By default, this
subsystem is not secured.

Typically, you should not deploy the Debug subsystem to a production environment. If you choose to do
so, you should at least restrict the /Debug/ URI (by editing the Debug web.xml file) so that only
authorized users can access it.

Setting up the Debug subsystem

To use the Debug subsystem in your exteNd Director application:

1 Add the Debug subsystem to your exteNd Director project.

When you create a new exteNd Director project via File>New Project and request a typical setup,
the Debug subsystem is automatically included. If you request a custom setup, you’ll need to select
the Debug subsystem explicitly.

You can later modify your exteNd Director project via Project>exteNd Director Project>Setup to
add or remove the Debug subsystem.

2 Build, archive, and deploy the project to your J2EE server.

You should now be able to run the Debug subsystem.

Running the Debug subsystem
Once you’ve deployed the Debug subsystem as part of your exteNd Director application, running it is just
a matter of using your Web browser to visit one or more of the Debug pages:

Going to the Debug home page

Reporting on exteNd Director resources

Reporting on HTTP resources

Reporting on JNDI resources

Reporting on exteNd Director archive resources

Going to the Debug home page

The Debug subsystem provides a home page that displays links to the Debug reports:
218 Developing exteNd Director Applications

To go to the home page of the Debug subsystem:

1 In your Web browser, type one of the following URLs:

2 When the Debug home page appears, click the links to view Debug reports.

Reporting on exteNd Director resources

You can use the exteNd Director Resources report to do any of the following:

Display subsystem configuration entries for your application.

By default the report lists all entries, but you can optionally select just those that start or end with a
specified string. The current (in-memory) value of each entry is shown. (These values are loaded
from the subsystem config.xml files, but may then be modified temporarily via API calls.)

Display subsystem service entries for your application.

By default the report lists all entries, but you can optionally select just those that start with a
specified string. The current (in-memory) value of each entry is shown. (These values are loaded
from the subsystem services.xml files, but may then be modified temporarily via API calls.)

Validate ResourceSet bindings for your application.

If you’ve deployed to The URL is

An exteNd Application Server http://server/database/ear-namespace/Debug/

For example:

http://localhost/MyDirectorDB/MyDirectorApp/Debug/

Another J2EE server http://server/ear-namespace/Debug/

For example:

http://localhost/MyDirectorApp/Debug/
Using the Debug Subsystem 219

The Debug subsystem also provides an alternative way to get this report information—the echo servlet.

To report on your application’s exteNd Director resources:

1 From the Debug home page, click Debug Director Resources.

The exteNd Director Resources report page displays.

2 Use the choose type dropdown to select which kind of information you want the report to display:

Config Entries

Service Entries

ResourceSet Entries

3 If you select Config Entries or Service Entries, you can optionally narrow the report query. To
display only those entry names that contain a particular string:

Fill in the text box with that string (for example, com.sssw.portal).

Select the starts with or ends with radio button to specify where to look for that string in entry
names.

NOTE: For Service Entries, you can only select starts with.

4 Click the Submit button.

The report results display on the page.
220 Developing exteNd Director Applications

To use the echo servlet:

1 In your Web browser, start typing the echo servlet URL as follows:

2 Finish typing the URL by adding information about the report to generate:

For example, this URL invokes the echo servlet to display subsystem configuration entries that start with
com.sssw.portal:

http://localhost/MyDirectorDB/MyDirectorApp/Debug/echo?type=c&sw=com.sssw.portal

If you’ve deployed to Start the URL with

An exteNd Application Server http://server/database/ear-namespace/Debug/echo?

For example:

http://localhost/MyDirectorDB/MyDirectorApp/Debug/echo?

Another J2EE server http://server/ear-namespace/Debug/echo?

For example:

http://localhost/MyDirectorApp/Debug/echo?

If you want to Add this to the URL

Display subsystem
configuration entries

One of the following:

To get configuration entry names that start with a particular string:

type=c&sw=string

To get configuration entry names that end with a particular string:

type=c&ew=string

To get all configuration entry names:

type=c&sw=

Display subsystem
service entries

One of the following:

To get service entry names that start with a particular string:

type=s&sw=string

To get all service entry names:

type=s&sw=

Validate resource
set bindings

type=rs
Using the Debug Subsystem 221

Reporting on HTTP resources

You can use the HTTP Resources report to display information about the servlets and JSP pages mapped
to particular URIs in your application. The report gets this information by using the Servlet API:

To report on your application’s HTTP resources:

1 From the Debug home page, click Debug Http Resources.

The HTTP Resources report page displays.

2 Fill in the get attribs from URI text box with the mapping you want information about.

Start with the EAR namespace you’ve established for your application. In this example, the EAR
namespace is MyDirectorApp:

/MyDirectorApp/Portal/

3 Click the Submit button.

The report results display on the page.

Reporting on JNDI resources

You can use the JNDI Resources report to display a tree of the JNDI resources available to your
application on its J2EE server. Code in your exteNd Director application can access these resources via a
JNDI lookup.

This report works best with an exteNd Application Server.

To report on your J2EE server’s JNDI resources:

From the Debug home page, click Debug JNDI Resources.

The JNDI Resources report page displays, including its results.
222 Developing exteNd Director Applications

Reporting on exteNd Director archive resources

You can use the exteNd Director Archive Resources report to list the archives deployed to an application
server. You can then use that list to select archives you want to display details about. Archive details
provided by this report include:

Contents (classes, other archives, and so on)

Unresolved JAR references
The report checks for JAR files that are referenced in the manifest classpath but are not available in
the classpath on the server. Such unresolved references can cause a ClassNotFoundException at
runtime. The report displays them in red to warn you.

To report on your exteNd Director archive resources:

1 From the Debug home page, click Debug exteNd Director Archive Resources.

The exteNd Director Archive Resources report page displays.

2 Fill in the get Jars from URL text box to point to the appropriate server and database. For
example:

http://localhost:80/MyDirectorDB

3 Click the get archives button.

This populates the Archives dropdown with the current list of archives from that location.

4 Use the Archives dropdown to select an item you want details about.

You can select a particular archive or -all- (for details on every archive).

5 Click the Check It button.

The archive details display on the page.
Using the Debug Subsystem 223

224 Developing exteNd Director Applications

24 Using the Cache Coordinator

This chapter describes how to set up the exteNd Director Cache Coordinator for server cluster
configurations. It has these sections:

About the Cache Coordinator

Reconfiguring the Cache Coordinator

Running the Cache Coordinator

Logging Cache Coordinator activity

For background information, see Chapter 14, “Working with Data Caches”.

About the Cache Coordinator
exteNd Director provides a Cache Coordinator for managing cached data in server cluster
configurations. Specifically, the Cache Coordinator manages objects stored in the server-lifetime cache.
(see Chapter 14, “Working with Data Caches”). The Cache Coordinator runs on one machine in the server
cluster.

How the Cache Coordinator works

You may store any objects in a server-lifetime cache holder. However, only the objects that are
instantiated from data from a persistent store (such as a database) can be synchronized in the cluster
environment.

All servers in a server cluster access the same persistence store. Any cached objects that are instantiated
from the persistence store can be synchronized among application servers that are running in a clustered
environment. Here’s how it works:

When data (or an object) has been updated in the database, the cached object is updated accordingly
in the affected server’s lifetime cache holder. At this point the server’s Cache Manager triggers a
cache invalidation event that sends a notification to the Cache Coordinator.

The Cache Coordinator broadcasts a message to the rest of the registered server instances to tell
them that this data has been changed.

After receiving the message, each server flushes its server-lifetime cache.

The next time this data is requested, each server instantiates the updated object by fetching it from
the persistent store, and recaches it in its server-lifetime cache. This ensures that the cached objects
are always up-to-date.

The Cache Coordinator also periodically verifies that each cluster server is running, removing from
the cluster any server that has failed.

NOTE: Data is not replicated to different server instances. This means if you store temporary data in the
server lifetime cache, the data will not be replicated to other server instances.
Using the Cache Coordinator 225

Triggering a cache invalidation event

If you want to cache an object that will automatically trigger an invalidation event, use
EbiSrvLifetimeCacheHolder.putObjectInCache() and pass in EboState.UPDATE. Calling
EbiSrvLIfetimeCacheHolder.removeObjectInCache() always triggers the cache invalidation event.

IMPORTANT: Do not remove objects from cache if those objects are not physically removed from
persistent storage.

If you want to cache an object without triggering the cache invalidation event, use
EbiSrvLifetimeCacheHolder.putObjectInCache() and pass in EboState.SILIENCE.

For more information, see EbiSrvLifetimeCacheHolder in the API Reference.

NOTE: exteNd Director provides built-in server-lifetime cache holders for many types of subsystem
runtime data, as described in “Built-in cache holders” on page 157.

Reconfiguring the Cache Coordinator
By default, the Novell exteNd Installation Wizard installs the Cache Coordinator. (You can override this
behavior using a custom installation). Here is a list of Cache Coordinator properties that you can
reconfigure and where you can access each property.

Setting Description Editable in

Server Host The name of the host machine the Cache
Manager runs on. The default value is
localhost.

IMPORTANT: You must change the
hostname from localhost to the actual host
name for the Cache Coordinator server.
The localhost entry will disable the cache
invalidation feature.

FrameworkService config.xml

Server Port RMI registration port the Cache
Coordinator listens on. The default value is
54490.

You must specify the same value when you
create an exteNd Director project.

SilverCache.props

FrameworkService config.xml

Application Identifier UID for the exteNd Director application.
This is created automatically in the exteNd
Director Project Wizard when you select
clustering.

IMPORTANT: If you plan to use the
shared library feature in a server cluster,
each server must point to a single
ConfigService.jar that includes the cluster
properties.

Not editable

Start retry count Number of times the server application
instance attempts to connect with the
Cache Coordinator before generating an
error.

FrameworkService config.xml

Start retry interval Number of seconds before each
connection retry.

FrameworkService config.xml
226 Developing exteNd Director Applications

new ../javadoc/com/sssw/fw/api/EbiSrvLifetimeCacheHolder.html

To edit Cache Coordinator properties in config.xml:

1 In your exteNd Director project, open config.xml in the FrameworkService-conf directory.

2 This opens the XML Editor. Find the property you want and edit the value.

NOTE: The following shows the source view of the properties. You can also use the Graphical
(default) view in the editor. Choose Graphical View or XML Source View in the editor.

</property>
 <property>
 <key>com.sssw.fw.coordinator.Host</key>
 <value>myCMServer</value>
 </property>
 <property>
 <key>com.sssw.fw.coordinator.Port</key>
 <value>54490</value>
 </property>
 <property>
 <key>com.sssw.fw.coordinator.start.sleepInterval</key>
 <value>10</value>
 </property>
 <property>
 <key>com.sssw.fw.coordinator.Start.tryCount</key>
 <value>3</value>
 </property>
 <property>
 <key>com.sssw.fw.coordinator.reconnect.sleepInterval</key>
 <value>60</value>
 </property>

3 Save the file and deploy the project.

To edit properties in SilverCache.props:

1 Open SilverCache.props, located at:

installdir/exteNdDirector/bin/SilverCache.props

2 Find the property you want and edit the value:
This properties file contains properties for the
extendDirector Cache Coordinator
version 4.0 or later

cc.port=54490
cc.watcher.interval=60
cc.logging.level=3

3 Save the file and run the Cache Coordinator, as described next.

Watcher sleep
interval

Number of seconds the Cache Coordinator
waits between attempts to contact the
server application instance. If an
application fails, the Cache Coordinator
drops it from the cluster.

SilverCache.props

Reconnect sleep
interval

How long after a connection failure the
Cache Coordinator will wait before
attempting to reconnect.

FrameworkService config.xml

Setting Description Editable in
Using the Cache Coordinator 227

Running the Cache Coordinator

To run the Cache Coordinator:

Depending on your platform, do one of the following:

To run the Cache Coordinator as a service (Windows only):

1 Go to the Services panel.

In Windows NT choose Services from Control Panel>Administrative Services.

In Windows 2000 choose Services from Control Panel>Administrative Tools.

2 Select Silver cache coordinator.

3 Select Start to manually start the program, or select Startup and change the service to automatic
so it will automatically run in the background when you start the server cluster.

Recovering from a Cache Coordinator failure
If a server in the cluster cannot connect to the Cache Coordinator, the server disables the cache
invalidation function and reconnects to the Cache Coordinator. If the reconnect fails, you can flush the
cluster server caches without restarting the servers. You can access each server in the cluster from the
Director Administration Console (DAC) and use the Flush All option to:

Clean up the caches

Reconnect to the Cache Coordinator instance in the cluster

NOTE: This option does not apply to a server cluster running on the WebSphere application server. You
must restart each server in the cluster.

If you restart the servers in the cluster, then flushing the cache is not necessary: the servers start with
nothing cached.

For more information about accessing cache information using the DAC, see Chapter 22, “Using
the General Configuration Section of the DAC”.

Logging Cache Coordinator activity
exteNd Director provides logging facilities for Cache Coordinator activity. You can monitor cache
invalidation messages sent from each server instance to the Cache Coordinator, and monitor activity on
the Cache Coordinator itself.

To set up cache invalidation logging you need to do the following:

Update the logging level to 5 for each server instance and for the Cache Coordinator.

To make logging more legible, provide a server identifier for each server instance.

Platform What to do

Windows 1 Make sure the server cluster is running.

2 Go to Start>All Programs>Novell exteNd n.n>Director>Director Cache
Coordinator.

Windows,
UNIX, or
Linux

1 Go to the Novell exteNd installation directory.

2 Run the executable file named SilverCacheCoordinator in the Director\bin
directory.
228 Developing exteNd Director Applications

NOTE: A ServerID is provided automatically with some application servers. See “Providing server
identifiers” on page 229.

For general information about logging and logging levels, see Chapter 15, “Logging Information”.

Updating the logging level for server instances and the Cache Coordinator

Cache invalidation logging uses Cache logging level 5.

You can set the log level two ways:

To change the logging level permanently Change the EboCacheLog.LoggingLevel property (in
FrameworkService-conf /config.xml) to 5. Updating this property value will persist the change for
subsequent server sessions.

For information on editing this file, see “To edit Cache Coordinator properties in config.xml:” on
page 227.

To change the logging level for the server session Change the logging level using the DAC.
Making this change allows you to monitor cache invalidation messages sent from this server instance to
the Cache Coordinator for the current server session.

For more information, see Chapter 22, “Using the General Configuration Section of the DAC”.

Updating the logging level for the Cache Coordinator

You also need to update the logging level to 5 on the Cache Coordinator server. Use one of these methods:

To change the logging level permanently Change the logging.level property in SilverCache.props
to 5. Updating this property value will persist the change for subsequent server sessions.

For information on editing this file, see “To edit properties in SilverCache.props:” on page 227.

To change the logging level for the server session Run the Cache Coordinator in debug mode
by adding an option switch:

SilverCacheCoordinator -l 5

This will provide information about how many application instances are registered with the Cache
Coordinator.

TIP: For more information about command options, run:

SilverCacheCoordinator -?

Providing server identifiers

In order to allow better logging and have a readable server ID for each registered server instance, certain
application servers provide an attribute that clearly identifies each server instance. As an alternative you
can use the -D server startup option

Support for exteNd Application Server There is an attribute available from ServletContext called
com.novell.appsrv.servlet.application.host:port that automatically provides a different Server ID for
each server instance.

Support for WebSphere Application Servers There is an attribute available from ServletContext
called com.ibm.websphere.servlet.application. that automatically provides a different ServerID
(host:port#) for each server instance.
Using the Cache Coordinator 229

Server startup option You can use the +D server startup option to provide your own n identifier for
each server instance. Specify a value for the ServerID attribute, as shown in this example:

Silverserver +Dcom.novell.afw.ServerID=myID

where myID represents a unique identifier.

NOTE: This option overrides any identifiers specified elsewhere.

The ServerID attribute is combined with a Cache Manager ID that is an automatically generated UUID
for each server restart.

NOTE: If a ServerID is not specified only the Cache Manager ID is used. Since this value is difficult to
read in the context of logging, it is not recommended.

About the logging messages

Logging messages are generated on the sever instances and the Cache Coordinator whenever a server is
started and when server instances generate cache invalidation messages.

Server startup logging

A message is generated on each serve instance when it attempts to register with the Cache Coordinator at
startup. Here is what the logging message looks like on a server instance:

EboCacheLog|5|11/11/03|15:20:09:113|<Connect> to the cache coordinator @ michigan:54490...
EboCacheLog|5|11/11/03|15:20:09:154|<Cache Coordinator Service rmi URI> is: 'rmi
 ://michigan:54490/EboCacheCoordinator/exteNdDirectorCacheCoordinator'.
EboCacheLog|5|11/11/03|15:20:09:424|<Register> this exteNd Director instance with the
 cache coordinator...
EboCacheLog|5|11/11/03|15:20:09:464|<Connect OK> connected to the cache coordinator
 successfully.

A corresponding message is generated on the Cache Coordinator. The serverID in the example is clone1.
The client count (which is 1 in the example) indicates the number of servers currently connected:

EboCacheLog|5|11/11/03|15:20:09:464|<Register> a client [ServerID: <clone1:
 c373e9f8cc736a65b1c7444553544200> AppID: <c373e9f8cc46d5b9b9d4444553544200>].

EboCacheLog|4|11/11/03|15:20:09:464|<Registered client count> for [AppID:
 <c373e9f8cc46d5b9b9d4444553544200>] is: 1.

Cache invalidation message logging

The first example shows output triggered on the server instance when putObjectInCache() is called (with
state=EboState.UPDATE) from an EbiSrvLifetimeCacheHolder:

EboCacheLog|5|11/11/03|15:27:01:416|<Send notification> from [ServerID: <clone1:
c373e9f8cc736a65b1c7444553544200> AppID: <c373e9f8cc46d5b9b9d4444553544200>]
to cache coordinator, message: cached content with [key: <admin> cache holder ID: <
DirectoryService.UserCacheHolder.exteNd Server>] has been modified [state 113].

Here is the corresponding output on the Cache Coordinator server console:

EboCacheLog|5|11/11/03|15:27:01:426|<Receive notification> from
[ServerID: <clone1:c373e9f8cc736a65b1c7444553544200> AppID: <c373e9f8cc46d5b9b9d4444553544200>]
message: cached content with [key: <admin> from cache holder: <DirectoryService.
UserCacheHolder.exteNd Server>] has been modified [state: 113].

The second example shows output triggered when the removeObjectInCache() method is call from
EbiSrvLifetimeCacheHolder:

EboCacheLog|5|11/11/03|15:32:11:572|<Send notification> from [ServerID: <clone1:
230 Developing exteNd Director Applications

c373e9f8cc736a65b1c7444553544200> AppID: <c373e9f8cc46d5b9b9d4444553544200>] to
cache coordinator, message: cached content with [key: <PacPortletDetails.html> c
ache holder ID: <testCluster.PageCacheHolder>] has been removed [state 112].

Here is the corresponding output from the Cache Coordinator server console:

EboCacheLog|5|11/11/03|15:32:11:592|<Receive notification> from
[ServerID: <clone1:c373e9f8cc736a65b1c7444553544200> AppID: <c373e9f8cc46d5b9b9d4444553544200>]
message: cached content with [key: <PacPortletDetails.html> from cache holder: <
testCluster.PageCacheHolder>] has been removed [state: 112].

Remote Cache Coordinator administration

You can get an EbiRemoteCoordinatorAdmin object for the Cache Manager by calling
EbiCacheManager.getRemoteCoordinatorAdmin(). This object allows you to administrator the Cache
Coordinator from any application server instance. For example, you can get the list of registered server
instances that are currently connecting to the Cache Coordinator. You might implement a servlet or a
portlet to perform remote administration

For more information, see EbiRemoteCoordinatorAdmin in API Reference.
Using the Cache Coordinator 231

new ../javadoc/com/sssw/fw/cachemgr/api/EbiRemoteCoordinatorAdmin.html

232 Developing exteNd Director Applications

VIIThird-Party Tools

Explains how to use Macromedia Dreamweaver with exteNd Director applications

• Chapter 25, “Using Dreamweaver with exteNd Director”
233

234 Developing exteNd Director Applications

25 Using Dreamweaver with exteNd Director

This chapter describes how to use Macromedia Dreamweaver with exteNd Director. It includes these
sections:

About exteNd Director and Dreamweaver

Installing Dreamweaver extensions

Using the exteNd Director Integration extension

This chapter assumes that you are familiar with Dreamweaver.

About exteNd Director and Dreamweaver
Dreamweaver is an integrated development environment for creating Web pages and creating and
managing Web sites and Internet applications . exteNd Director ships with the Novell exteNd Integration
extension that lets you use Dreamweaver with exteNd Director applications to:

NOTE: This extension works with both Dreamweaver and Dreamweaver UltraDev.

Use Dreamweaver to Description

Add portlets and
components to PID
(Portal ID) pages

The Novell exteNd Director Integration (Novell_Director.mxp) extension

PID pages are the only type of exteNd Director pages that can be used with
this extension

For instructions, see “Using the exteNd Director Integration extension”
on page 236

Edit files in the
Content Management
repository

Requires you to configure:

WebDAV access from Dreamweaver’s Site Manager to the Content
Management repository.

For instructions on using WebDAV with an exteNd Director
application, see Dreamweaver’s Site Manager documentation and the
WebDAV chapter in the Content Management Guide

The exteNd Director application so that PID pages are stored in the
Content Management repository, not their typical resource set location

For instructions, see “Displaying PID pages from Content
Management” on page 238
Using Dreamweaver with exteNd Director 235

cmgWebDAVServer.html
cmgWebDAVServer.html

Installing Dreamweaver extensions
You’ll use Macromedia’s Extension Manager to install the exteNd Director Dreamweaver extension.

To install the exteNd Director Dreamweaver extension:

1 Open the Macromedia Extension Manager.

2 Choose File>Install Extension.

3 Navigate to the directory containing the extension you want to install:

4 Choose the .mxp file associated with the extension you want to install.

5 Click Install.

6 Follow the extension manager’s installation instructions.

Using the exteNd Director Integration extension
The exteNd Director Integration extension allows the Dreamweaver work area to:

Insert portlets or components into exteNd Director PID pages by selecting from a list obtained from
a deployed exteNd Director application. See Inserting component tags next.

Use WebDAV to access the Content Management repository of a deployed exteNd Director
application.

Using these two features together requires configuring the exteNd Director application before
deployment. See “Displaying PID pages from Content Management” on page 238.

Inserting component tags

The exteNd Director Integration extension allows the Dreamweaver work area to connect to a deployed
exteNd Director portal application and insert s3-component tags into PID pages. You can select from a
list of portlets or components in the Portal WAR of the deployed application.

Extension File location

Novell exteNd
Director Integration

Director\Utilities\Dreamweaver\Novell_Director.mxp
236 Developing exteNd Director Applications

To insert a component tag:

1 In Dreamweaver Design View, put the cursor where you want to insert the portlet or component.

2 Select Commands>Novell Director>Director Insert Portlet.

3 In the Director Insert Portlet, specify:

4 Click the Get Portlet List.

The dialog displays a dropdown list box that shows all of the available portlets and components in
the target portal.

5 Select a portlet or component and click Insert Portlet.

The extension inserts an s3-component tag into the PID page HTML code and displays a
corresponding icon at the specified location in the design view:

Setting What to specify

Hostname/IP:port The host name (or IP address) and optionally the
port number of the application server your exteNd
Director application has been deployed on. For
example, localhost.

Database The name of the exteNd Director application
database on the application server. For example,
SilverMaster50.

(Leave this blank for servers that do not use a
database.)

Portal Location (Portal
or namespace/Portal)

The exteNd Director application’s namespace (if
the application is configured with one) followed by
the name of the portal. For example,
ExpressPortal.
Using Dreamweaver with exteNd Director 237

Displaying PID pages from Content Management

By default, PID pages are not stored in the Content Management repository of an exteNd Director
application; they are stored in a resource set. For that reason you must add a new EboResourceServlet
that can fetch and display PID pages from the Content Management repository.

To configure the exteNd Director application:

1 Before deploying your exteNd Director project, do the following:

1a Open web.xml for the Portal WAR.

1b Add the following lines of XML code to the file:
<servlet>

<servlet-name>cmresources</servlet-name>
<servlet-class> com.sssw.cm.servlet.EboResourceServlet</servlet-class>
<init-param>

<param-name>enable-pid-support</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<!--This is the directory in the cm system that -->
<!--stores pids-->
<param-name>pid-path</param-name>
<param-value>/cmpages</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>cmresources</servlet-name>
<url-pattern>/cmresources/*</url-pattern>
</servlet-mapping>

Insert the tags immediately following the other <servlet> and <servlet-mapping> tags.

See “EboResourceServlet initialization parameters” on page 239 for an explanation of
the code.

1c Build and deploy (or redeploy) the exteNd Director application.

2 After deploying your exteNd Director project, do the following:

2a Set your Dreamweaver WebDAV connection’s remote site folder to /cmpages.

2b Use the CMS Administration Console to move the PID pages of interest from the resource set
of your exteNd Director project to the Content Management repository of the deployed
application (or create new ones).

2c Use the CMS Administration Console to move the images and other objects used by each PID
page; this is necessary because the resource servlet does not modify the relative URLs
contained in a page.

For information about using the CMS Administration Console, see the Content Management
Guide.

To access PID pages in the Content Management repository:

Specify the servlet-name and the pid-path folder in the URL. For example:
http://localhost/Director/Portal/cmresources/cmpages/myPID.html

NOTE: To access a PID page in the Content Management repository from another PID page, use the
CMPIDReader component.

CMPIDReader accepts a single parameter CMPATH that represents the path to the PID page that is being
retrieved from the Content Management repository. The CMPATH can be sent via an s3-component tag
or an HTML request. Examples:

<s3-component ID="CMPIDReader" NAME="CMPIDReader" CMPATH="/cmpages/myPID.html" />

http://localhost/Director/Portal/main/comp/CMPIDReader?cmpath=%2fcmpages%2fmyPID.html
238 Developing exteNd Director Applications

EboResourceServlet initialization parameters

The Content Management resource servlet (EboResourceServlet) provides URL access to any object in
the Content Management repository via path or document ID. By adding the initialization parameters
shown below, you can enable this servlet to also render PID pages stored in the Content Management
subsystem.

The Content Management resource servlet has two initialization parameters:

Initialization parameter Description

enable-pid-support If enable-pid-support is true, the resource servlet checks the incoming
path of the Content Management document. If it matches the path set
under pid-path, the resource servlet assumes that the HTML document is
a PID page and processes it using the MIME type designated by the
Content Management subsystem. Objects in all other path locations are
returned as is.

pid-path The pid-path designates one specific folder in the Content Management
repository as storage for PID pages. Restricting PID pages to a single
folder is necessary for performance reasons. Content Management
folders potentially contain vast numbers of large documents, and
scanning every document for s3-component tags would be quite
inefficient.
Using Dreamweaver with exteNd Director 239

240 Developing exteNd Director Applications

241

VIIIReference

Provides general reference information for developers using exteNd Director

• Chapter 26, “Project File Locations”

242 Developing exteNd Director Applications

26 Project File Locations

A typical exteNd Director project contains a large set of editable subsystem configuration files and
application resources. This chapter helps you quickly locate different types of files in your EAR or WAR
project.

NOTE: For convenient access, a link to this document is available in the contents pane of the help
system.

This chapter has these sections:

Related documentation

Configuration files

Services files

Resource set descriptors

Portal application resources

Portal application resources

Related documentation
Understanding project disk structure This chapter assumes you have a basic familiarity with the
exteNd Director product architecture and design patterns.

Understanding project resources This chapter assumes you have a basic familiarity with the
exteNd Director project resources.

For information, see Chapter 6, “Using the Resource Set in an exteNd Director Application”.

Using resource management to locate files exteNd Director provides a set of tools that can be
very useful for locating project files. For information, see:

Chapter 8, “Using the Relationship Viewer”

Chapter 9, “Searching a Resource Set”

Chapter 10, “Working with Views”

TIP: Predefined views can be very useful for locating project files within a resource set. You can
construct your own views by saving search results and/or editing view definition files.

“Using predefined views” on page 101
Project File Locations 243

Configuration files

Content Management subsystem configuration files

CM task list configuration file

CM task types configuration file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ContentMgmtService-conf\config.xml

Source project_name.spf\library\ConfigService\ConfigService.spf\Conten
tMgmtService-conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar/ContentMgmtService-conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\ConfigService.spf\
ContentMgmtService-conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ContentMgmtService-conf\Default_tasklist.xml

Source project_name.spf\library\ConfigService\ConfigService.spf\Conten
tMgmtService-conf\Default_tasklist.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\ContentMgmtService-
conf\Default_tasklist.xml

Source project_name.spf\WEB_INF\lib\ConfigService\ConfigService.spf\
ContentMgmtService-conf\Default_tasklist.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ContentMgmtService-conf\tasktypes.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\ContentMgmtService-conf\tasktypes.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\ContentMgmtService-conf\tasktypes.xml

Source project_name.spf\WEB_INF\lib\ConfigService\ConfigService.spf\
ContentMgmtService-conf\tasktypes.xml
244 Developing exteNd Director Applications

Directory subsystem configuration file

Framework subsystem configuration file

Novell-portlet configuration file

Portal subsystem configuration file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
DirectoryService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\DirectoryService-conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\DirectoryService-conf\config.xml

Source project_name.spf\WEB_INF\lib\
ConfigService\ConfigService.spf\DirectoryService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
FrameworkService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\FrameworkService-conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\FrameworkService-conf\config.xml

Source project_name.spf\WEB_INF\libConfigService\ConfigService.spf\
FrameworkService-conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_App_name.war\WEB-INF\novell-
portlet.xml

Source project_name.spf\Portal_app_name.spf\WEB-INF\novell-
portlet.xml

WAR Archive project_name.spf\WEB-INF\novell-portlet.xml

Source project_name.spf\WEB-INF\novell-portlet.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\PortalService-
conf\config.xml

Source project_name.spf\library\ConfigService\ConfigService.spf\Portal
Service-conf\config.xml
Project File Locations 245

WAR Archive project_name.spf\WEB_INF\lib\ConfigService.jar\PortalService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\ConfigService.spf\
PortalService-conf\config.xml

Project archive Layout type Location
246 Developing exteNd Director Applications

Portlet configuration file

Rule subsystem configuration file

Search subsystem configuration file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
PortletService-conf\config.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\PortletService-conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\PortletService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\PortletService-
conf\config.xml

Project Archive Layout Type Location

EAR Archive project_name.spf\library\ConfigService.jar\
RuleService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\RuleService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\RuleService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\RuleService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
SearchService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\SearchService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\SearchService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\SearchService-
conf\config.xml
Project File Locations 247

Security subsystem configuration file

User subsystem configuration file

Portal configuration file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
SecurityService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\SecurityService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\SecurityService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\
ConfigService\ConfigService.spf\
SecurityService-conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
UserService-conf\config.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\UserService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\UserService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\UserService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\
WEB-INF\conf\config.xml

Source project_name.spf\Portal_app_name.spf\
WEB-INF\conf\config.xml

WAR Archive project_name.spf\WEB-INF\conf\config.xml

Source project_name.spf\WEB-INF\conf\config.xml
248 Developing exteNd Director Applications

Workflow subsystem configuration file

Pageflow subsystem configuration file

WSRP Consumer subsystem configuration file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
WorkflowService-conf\config.xml

Source project_name.spf\library\
ConfigService\
ConfigService.spf\WorkflowService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\WorkflowService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\WorkflowService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
PageflowService-conf\config.xml

Source project_name.spf\library\
ConfigService\
ConfigService.spf\PageflowService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\PageflowService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\PageflowService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
WSRPConsumerService-conf\config.xml

Source project_name.spf\library\
ConfigService\
ConfigService.spf\WSRPConsumerService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\WSRPConsumerService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\WSRPConsumerService-
conf\config.xml
Project File Locations 249

Composer subsystem configuration file

Services files

Content Management subsystem services file

Directory subsystem services file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ComposerService-conf\config.xml

Source project_name.spf\library\
ConfigService\
ConfigService.spf\ComposerService-
conf\config.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\ComposerService-
conf\config.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\ComposerService-
conf\config.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ContentMgmtService-conf\services.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\ContentMgmtService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar/ContentMgmtService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\ContentMgmtService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
DirectoryService-conf\services.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\DirectoryService-
conf\services.xml
250 Developing exteNd Director Applications

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\DirectoryService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\DirectoryService-
conf\services.xml

Project archive Layout type Location
Project File Locations 251

Framework subsystem services file

Portal subsystem services file

Portlet services file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
FrameworkService-conf\services.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\FrameworkService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\FrameworkService-
conf\services.xml

Source project_name.spf\WEB_INF\libConfigService\
ConfigService.spf\FrameworkService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
PortalService-conf\services.xml

Source project_name.spf\library\ConfigService\
ConfigService.spf\PortalService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\PortalService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\PortalService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
PortletService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\PortletService-conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\PortletService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\PortletService-
conf\services.xml
252 Developing exteNd Director Applications

Resource set configuration file

Rule subsystem services file

Search subsystem services file

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\
WEB-INF\conf\resourceset.xml

Source project_name.spf\Portal_app_name.spf\
WEB-INF\conf\resourceset.xml

WAR Archive project_name.spf\WEB-
INF\conf\resourceset.xml

Source project_name.spf\WEB-
INF\conf\resourceset.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
RuleService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\RuleService-conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\RuleService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\RuleService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
SearchService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\SearchService-conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\SearchService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\SearchService-
conf\services.xml
Project File Locations 253

Security subsystem services file

User subsystem services file

Portal services file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
SecurityService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\SecurityService-conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\SecurityService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\SecurityService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
UserService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\UserService-conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\UserService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\UserService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_App_name.war\
WEB-INF\conf\services.xml

Source project_name.spf\Portal_App_name.spf\
WEB-INF\conf\services.xml

WAR Archive project_name.spf\WEB-INF\conf\services.xml

Source project_name.spf\WEB-INF\conf\services.xml
254 Developing exteNd Director Applications

Workflow subsystem services file

Pageflow subsystem services file

WSRP Consumer subsystem services file

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
WorkflowService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\WorkflowService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\WorkflowService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\WorkflowService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
PageflowService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\PageflowService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\PageflowService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\PageflowService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
WSRPConsumerService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\WSRPConsumerService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\WSRPConsumerService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\WSRPConsumerService-
conf\services.xml
Project File Locations 255

Composer subsystem services file

Resource set descriptors

Framework database descriptor

Views descriptor

Project archive Layout type Location

EAR Archive project_name.spf\library\ConfigService.jar\
ComposerService-conf\services.xml

Source project_name.spf\library\ConfigService\Config
Service.spf\WSRPComposerService-
conf\services.xml

WAR Archive project_name.spf\WEB_INF\lib\
ConfigService.jar\WSRPComposerService-
conf\services.xml

Source project_name.spf\WEB_INF\lib\ConfigService\
ConfigService.spf\WSRPComposerService-
conf\services.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\
WEB-INF\lib\Portal_app_name_resource.jar\
framework-database\mydbdescriptor.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\framework-
database\mydbdescriptor.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\
framework-database\mydbdescriptor.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\framework-
database\mydbdescriptor.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\my-
views\myview.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\my-
views\myview.xml
256 Developing exteNd Director Applications

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\my-
views\myview.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\my-views\myview.xml

Project archive Layout type Location
Project File Locations 257

Pageflow process descriptor

Portal category descriptor

Portal component descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\
pageflow-process\mypageflowprocess.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\pageflow-
process\mypageflowprocess.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\
pageflow-process\mypageflowprocess.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\pageflow-
process\mypageflowprocess.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
category\myportalcategory.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
category\myportalcategory.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
category\myportalcategory.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
category\myportalcategory.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
component\myportalcomponent.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
component\myportalcomponent.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
component\myportalcomponent.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
component\myportalcomponent.xml
258 Developing exteNd Director Applications

Portal data definition descriptor

Portal device profile descriptor

Portal Layout descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
data-definition\mydatadefinition.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-data-
definition\mydatadefinition.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
data-definition\mydatadefinition.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-data-
definition\mydatadefinition.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
device-profile\mydeviceprofile.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-device-
profile\mydeviceprofile.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
device-profile\mydeviceprofile.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-device-
profile\mydeviceprofile.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
layout \mylayout.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
layout\mylayout.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
layout\mylayout.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-layout\mylayout.xml
Project File Locations 259

Portal option descriptor

Portal page descriptor

Portal portlet fragment deployment descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
option\myportaloption.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
option\myportaloption.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
option\myportaloption.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
option\myportaloption.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
page\myportalpage.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
page\myportalpage.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
page\myportalpage.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
page\myportalpage.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
portlet\myportlet.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
portlet\myportlet.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
portlet\myportlet.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-portlet\myportlet.xml
260 Developing exteNd Director Applications

Portal style descriptor

Portal theme descriptor

Rule descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
style\myportalstyle.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
style\myportalstyle.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
style\myportalstyle.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
style\myportalstyle.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
theme\myportaltheme.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\portal-
theme\myportaltheme.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\portal-
theme\myportaltheme.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\portal-
theme\myportaltheme.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule\my
rule.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule\myrule.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule\my
rule.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule\myrule.xml
Project File Locations 261

Rule action macro descriptor

Rule condition macro descriptor

Rule group binding descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
action-macro\myactionmacro.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-action-
macro\myactionmacro.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
action-macro\myactionmacro.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-action-
macro\myactionmacro.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
condition-macro\myconditionmacro.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-condition-
macro\myconditionmacro.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
condition-macro\myconditionmacro.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-condition-
macro\myconditionmacro.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
group-binding\mygroupbinding.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-group-
binding\mygroupbinding.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
group-binding\mygroupbinding.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-group-
binding\mygroupbinding.xml
262 Developing exteNd Director Applications

Rule pipeline descriptor

Rule pipeline binding descriptor

Rule user binding descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
pipeline\mypipeline.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-
pipeline\mypipeline.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
pipeline\mypipeline.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-
pipeline\mypipeline.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
pipeline-binding\mypipelinebinding.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-pipeline-
binding\mypipelinebinding.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
pipeline-binding\mypipelinebinding.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-pipeline-
binding\mypipelinebinding.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
user-binding\myuserbinding.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\rule-user-
binding\myuserbinding.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\rule-
user-binding\myuserbinding.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\rule-user-
binding\myuserbinding.xml
Project File Locations 263

Security role descriptor

Workflow activity policy descriptor

Workflow process descriptor

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\securit
y-role\mysecurityrole.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\security-
role\mysecurityrole.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\securit
y-role\mysecurityrole.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\security-
role\mysecurityrole.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\workfl
ow-activity-policy\activity-policy.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\workflow-
activity-policy\activity-policy.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\workfl
ow-activity-policy\activity-policy.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\workflow-activity-
policy\activity-policy.xml

Project archive Layout type Location

EAR Archive project_name.spf\Portal_app_name.war\WEB-
INF\lib\Portal_app_name_resource.jar\
workflow-process\myworkflowprocess.xml

Source project_name.spf\Portal_app_name.spf\Portal
_app_name-resource.spf\data\workflow-
process\myworkflowprocess.xml

WAR Archive Portal_app_name.spf\WEB-
INF\lib\Portal_app_name_resource.jar\
workflow-process\myworkflowprocess.xml

Source Portal_app_name.spf\Portal_app_name-
resource.spf\data\workflow-
process\myworkflowprocess.xml
264 Developing exteNd Director Applications

Portal application resources
This section describes how to locate portal resources by searching your exteNd Director project resource
set.

To locate a portal resource:

1 In the exteNd Director development environment Navigation Pane, click the Resources tab.

2 Click the Search tab.

The Search tab displays a panel for specifying searches:

3 In the Directory field, enter portal and click Search.

This displays the directories containing portal resources—for example:

4 Select the appropriate directory:

Portal resource directory Contents

portal-category Portal category descriptors (xml)
Project File Locations 265

TIP: To create a writable version of a resource, select it, right-click, and choose Save as.

portal-component Portal component descriptors (xml)

portal-data-definition Transcoding definition for Phonelist portlet (xml)

portal-device-profile Device profile descriptors for supported wireless
devices (xml)

portal-general Various portal artifacts such as image files and
Java script.

portal-layout Portal layout definitions and layout descriptors
(xml)

portal-option Portal option descriptors (xml)

portal-page Portal PID pages (html and xhtml)

portal-portlet Portlet descriptors (xml)

portal-style Portal style sheets (xsl and xml)

portal-theme Style sheets and descriptors for each portal
theme (css and xml).

Portal resource directory Contents
266 Developing exteNd Director Applications

Index
A
action macro descriptor

location of in a project 262
activity policy descriptor

location of in a project 264
APIs

about 114
exceptions 121
exteNd Director 115
Java 115

Application scoped path 128
applications

namespacing 45
resources, accessing 201
see also Novell exteNd Director applications

archives
Debug report for 223

Artifact scoped path 128
auxiliary class

and LDAP configurations 191

C
cache containers

disk and memory 154
object 153

Cache Coordinator
about 225
cache invalidation event 226
logging facilities 228
reconfiguring 226
remote administration 231
running 228
SilverCache props and 227

cache holder
about 154

cache invalidation event
in Cache Coordinator 226

Cache Manager
about 153
configuring 154
using 155

classes
about 113

classloader
dynamic loading 78
issues within EAR files 45

client JAR files 46

CM scoped path 129
CMS Administration Console

about 23
Web tier 22

comments in Java 114
Composer subsystem

config.xml location 250
services.xml location 256

condition macro descriptor
location of in a project 262

config.xml file 71, 200
location of for portal 248
location of for subsystems 244

Content Management subsystem
about 19
caching, configuration settings 38
config.xml location 244
search, configuration settings 37
services.xml location 250
tasklist.xml location 244
tasktypes.xml location 244

D
DAC (Director Administration Console)

about 209
accessing 209
Web tier 22

data caches
about 153
portlet context 156
portlet session 156
request scope 155
server-lifetime cache 157
session-level 155

data types
in Java 114

databases
exteNd Director application 25
storing subsystem data 200

DataSource
accessing 41

db-load-on-startup property 201
Debug subsystem

about 217
running 218
security considerations 218
setting up 218
267

default project 29
delegates

using to access subsystem services 118
deploying

servers, changing 203
deployment

exteNd Director projects 187
predeployment tasks 188
testing 199
troubleshooting 201
using exteNd Director tools 195
using IBM WebSphere tools 196

Director Administration Console
see DAC

Directory subsystem
about 19
changing realm 203
config.xml location 245
services.xml location 250

DirectoryServiceRealm.jar file 47
disk and memoery cache containers 154
displaying views 92, 97, 100
Document scoped path 129
Dreamweaver integration

about 235
using for exteNd Director development 235

dynamic loading
about 77
classloader, special considerations 78

E
EAR files

classloading within 45
EAR namespacing 45
EAR project structure for exteNd Director applications 44
EbiCacheHolder

abaout 154
EbiCacheManager

about 153
EbiRemoteCoordinatorAdmin 231
EbiRequest

data caching and 155
EboResourceClassElementComparator class 94
EboResourceElementComparator class 94
EboResourceElementTemplate class 94
EboResourceREGEXPElementComparator class 94
EboResourceSearch class 94
echo (Debug) servlet 221
EJB JAR files 46
errors

avoiding 121
catching 121
displaying to user 123
handling 120

events
API 147
classes 147
creating listeners 148
custom 151
custom listeners 150
custom, creating 152
event handling overview 145
event model in exteNd Director 143
event producers, custom 151
listener interfaces 148
object types 144
producer interfaces 148
registering for 151
registering listeners 148
regular listeners 145
vetoable listener 146, 149

exceptions
catching 121
catching, bad technique for 122
catching, good technique for 122
handling 120
packages 121
parent 123

exporting a view to a JAR 106
exporting resources into a view 106
expressions

in Java 114
exteNd Director

see Novell exteNd Director
external development environment

using Dreamweaver 235

F
fields

about 113
Flow scoped path 130
Format scoped path 131
framework database descriptor

location of in a project 256
Framework Datasource 41
Framework subsystem 20

config.xml location 245
services.xml location 252

G
getmacaddr utility 42
group binding

descriptor location in a project 262

H
hot loading

about 201
HTTP resources

Debug report for 222
268

I
iChain single sign-on 134
importing a view JAR 105
importing resources into a view 105, 106

J
J2EE

APIs 115
resources for learning 115
support for 113
using exteNd Director API in 115

J2SE
API 115
support for 113

JAR files
about 113
client JAR files 46
EJB JAR files 46
service JAR files 45, 46
tag library JAR files 46, 171

Java
about 113
APIs 115
core language 114
platform support 113
resources for learning 114

Java syntax
about 114

JavaServer Pages (JSP)
 171
custom tag libraries for 171

JNDI name
accessing 41

JNDI resources
Debug report for 222

L
LDAP realms

and SSL 194
UUID auxiliary class, importing 191

listeners
creating and registering 148
custom 150
in exteNd Director events 145
log notification 149
mail notification 149
print notifiaction 149

locales for error messages 123
Locksmith

changing 203
setting 41

log notification listener 149
Log scoped path 131

logging
about 159
available logs 160
broadcasting to all logs 163
Cache Coordinator and 228
code in components 161
debugging and 163
detail levels 160
format of log 160
getting log 161
identifying user’s session 163
IPDR provider 167
messages in log 162
parameters, setting in the DAC 214
portal usage 164
setting level 162
setting up 161
XML provider 167

M
mail notification listener 149
managers

getting direct references to 119
methods

about 113
MVC

about 179

N
nonshared libraries

about 54
Novell exteNd Director API

about 115
packages 116
reference documentation 118
terminology 118
use in J2EE applications 115

Novell exteNd Director applications
adding subsystems 51
avoiding errors 121
catching exceptions 121
changing deployment server 203
creating projects for 33
displaying error messages 123
EAR project structure 44
events 143
localized error messages 123
logging 159
removing subsystems 51
resource sets 67
testing deployment 199

Novell exteNd Director projects
configurations 54
EAR project structure 44
portlet applications 30
Project Type setting 33
269

O
object cache container 153
operators in Java 114

P
packages

about 113
exteNd Director API 116

Pageflow subsystem
about 20
services.xml location 255

partial shared libraries
about 54

pipeline binding descriptor
location of in a project 263

pipeline descriptor
location of in a project 263

portal category descriptor
location of in a project 258

portal component descriptor
location of in a project 258

portal data definition descriptor
location of in a project 259

portal device profile descriptor
location of in a project 259

portal page descriptor
location of in a project 260

Portal scoped path 132
Portal subsystem

about 20
config.xml location 245, 247
services.xml location 252

PortalAction 183
PortalActionForm 183
PortalHelper 183
portlet applications

configuring 31
creating projects 30
novell-portlet.xml 33

portlet context
data caching and 156

portlet preferences
scoped paths and 138

portlet session
data caching and 156

Portlet subsystem
about 20

PortletPreference scoped path 133
print notification listener 149
production mode, setting 77
profiling application usage 159
project type

portlet application 29
project 30

Project Wizard
about 33
adding subsystems 51
removing subsystems 51
using 33

projects
creating exteNd Director EAR 33

R
realms

changing 203
relationship analyzers

about 87
creating custom relationship analyzers 88

Relationship Viewer
about 87

Request scoped path 133
resource bundles

for error messages 123
using (code example) 123

resource sets
about 201
binding to subsystems 71
configuring 71
content of resourceset.xml 71
directory structure 69
dynamic loading 77
events 79
JAR location 68
navigating relationships within 87
project in exteNd Director 70
Relationship Viewer 87
resource.xml location 253
role in application 67
saving a search as a view 93
searching 87, 91, 92, 93
using views to display resources 31, 70, 97
validating 81
vultures 77
web.xml file for WAR 71
xml descriptor locations 256

resource.xml file
location of in a project 253

ResourceBundle scoped path 134
ResourceSet bindings

Debug report for 219
ResourceSet scoped path 134
resourceset.xml

about 71
directory keys 76
general settings 73
resourcePath and libPath 73
variables 72

Response scoped path 135
rule action macro descriptor

location of in a project 262
rule condition macro descriptor

location of in a project 262
270

rule descriptor
location of in a project 261

rule group binding descriptor
location of in a project 262

rule pipeline binding descriptor
location of in a project 263

rule pipeline descriptor
location of in a project 263

Rule subsystem
about 20
config.xml location 247
services.xml location 253

rule user binding descriptor
location of in a project 263

S
scoped paths

about 125
APIs 139
Application scope 128
Artifact scope 128
CM scope 129
copy options 136
Document scope 129
dynamic resolution of 138
Flow scope 130
Format scope 131
in portlet preferences 138
in rules 138
Log scope 131
Portal scope 132
PortletPreference scope 133
predefined in Director 126
Request scope 133
ResourceBundle 134
ResourceSet scope 134
Response scope 135
Session scopeSession scoped path 135
String scope 135
substitution syntax 138
User scope 136
XPath and 139

search
for objects in a resource set 87, 91, 92, 93
saving a search 93

Search subsystem
about 20
config.xml location 247
configuration settings 37
services.xml location 253

security role descriptor
location of in a project 264

Security subsystem
about 21
config.xml location 248
services.xml location 254

server
changing deployment target 203
cluster options 42

server failure
recovery in a server cluster 228

server-lifetime cache
about 157
managing in the DAC 157

servers
shared libraries 54

services
autostart 200
for subsystems 19

services.xml
location of for subsystems 250

services.xml file 200
servlets

and exteNd Director API 175
in exteNd Director applications 175

session-level caching 155
session-level failover

in exteNd Director applications 156
shared libraries

about 54
changing 54
changing configurations 56
determining configuration 56

SilverCache props file 227
single sign-on support 134
SSL

with LDAP realms 194
statements in Java 114
String scoped path 135
Struts applications

about 179
extending with exteNd Director services 181

subsystems
adding to EAR 51
architecture 46
binding to resource sets 71
configuration, Debug report for 219
Content Management 19
Debug 217
delegates for 118
deployment dependencies 46
Directory 19
Framework 20
list of 19
managers for 118
Pageflow 20
Portal 20
Portlet 20
removing from EAR 51
Rule 20
Search 20
Security 21
self-registration process 200
services for 19, 200
services, Debug report for 219
storing persistent data for 200
User 21
Workflow 21
271

syntax
in Java 114

T
tag libraries

JAR files for 171
TLD files for 171
using 171

tag library directives 173
tag library JAR files 46
tasklist.xml file

location of in a project 244
tasktypes.xml file

location of in a project 244
test-db-on-startup property 201
third-party JARs 54

about 54
TLD files 171
Tomcat

see Apache Tomcat

U
UID generation 42
user binding descriptor

location of in a project 263
User scoped path 136
User subsystem

about 21
config.xml location 248
services.xml location 254

UUID auxiliary class
importing 191

V
variables

about 113
in Java 114

vetoable listener
creating 149
in exteNd Director events 146

views
about 31, 70, 97
default view 98
defining custom views 106
descriptor, location of in a project 256
descriptors for 100
displaying 92, 97, 100
exporting resources from 106
importing resources into 105, 106
opening a view in a separate tab 100
saving a search as a view 93
view definition file 107

vultures
 see resource sets

W
WAR files 44

service WAR files 44
supporting WAR files 44

WAR projects 33
Web tiers

about 22
CMS Administration Console 22
Director Administration Console (DAC) 22

web.xml and resource sets 71
whiteboard

data caching and 155, 156
workflow activity policy descriptor

location of in a project 264
workflow process descriptor

location of in a project 264
Workflow subsystem

about 21
config.xml location 249
services.xml location 255

WSRP Consumer subsystem
config.xml location 249
services.xml location 255

X
XPath

about 126
creating expressions 140

XPath Navigator
using 139
272

273

274

275

276

	About This Book
	I Introduction
	1 About Novell exteNd Director
	About Novell exteNd Director
	exteNd Director portal
	Deployment configurations
	Standards compliance

	exteNd Director subsystems
	exteNd Director tools
	exteNd Director development environment
	exteNd Director Web tiers

	exteNd Director API
	Building an application
	Using the Express Portal application out of the box
	Working in the Express Portal project
	Creating a new project

	II Working with Projects
	2 Creating exteNd Director Projects
	About exteNd Director projects
	Choosing the project type

	Creating projects
	Creating a portlet application project
	Creating an exteNd Director project

	Subsystem architecture

	3 Reconfiguring exteNd Director Projects
	Changing the configuration
	Changing configuration settings using a wizard
	Changing configuration settings by editing the config.xml file directly
	Changing configuration settings using a predefined view

	Adding subsystems
	Removing or disabling subsystems
	Updating a project license
	Changing a project’s shared library configuration
	About nonshared library configurations
	About shared library configurations
	About 3rd party JAR configurations
	Procedures for changing the project configuration

	4 Updating exteNd Director Projects
	Procedure for updating your exteNd Director project

	5 Working with exteNd Composer Projects
	About exteNd Composer projects
	Creating new exteNd Composer projects
	Adding existing exteNd Composer projects

	III Managing Application Resources
	6 Using the Resource Set in an exteNd Director Application
	Role of a resource set in your application
	What to put in a resource set
	Subdirectories for resources and Java classes
	Projects for a resource set

	Binding subsystems to a resource set
	Configuring the resource set
	Variables
	General settings
	Types and locations of resources: resourcePath and libPath
	Directory keys for indexing

	Dynamic loading of resources and classes
	Using events to report resource set changes
	Working with listeners
	Types of events
	What listeners do

	Validating a resource set
	Storing XML files that contain MBCS characters

	7 Editing the Configuration of a Resource Set
	About the Resource Set Editor
	Using boolean variables in check box fields
	Working with entries for resourcePath and libPath
	Using resource set utilities

	8 Using the Relationship Viewer
	About the Relationship Viewer
	Navigating relationships within a resource set
	Creating a custom relationship analyzer
	Creating a relationship analyzer class

	9 Searching a Resource Set
	About the Search tab
	Searching a resource set
	Saving a search as a view
	Working with the Search API
	Example 1: using the internal search template object
	Example 2: creating your own search template object
	Example 3: serializing a search request

	10 Working with Views
	About views
	Displaying a view
	Using predefined views
	Importing resources into a view
	Exporting resources from a view
	Defining custom views
	About the view definition file
	Searching for items within a resource set
	Defining folders in a view
	Including elements that are outside a view’s resource set
	Referencing other views within a view definition

	IV Working with Core Technologies
	11 Coding Java for exteNd Director Applications
	About coding Java for exteNd Director applications
	Using Java
	Java platform support
	About the core language
	About APIs
	Resources for learning Java

	Using the Java APIs
	Resources for learning J2EE

	Using the exteNd Director API
	exteNd Director API packages
	exteNd Director API terminology
	exteNd Director API reference documentation

	Accessing subsystem services
	Accessing a subsystem service by using a delegate
	Getting a direct reference to a subsystem manager

	Handling exceptions
	Errors thrown by the exteNd Director API
	Avoiding errors
	Catching errors
	Displaying messages
	Displaying errors in the user’s language

	12 Working with Scoped Paths and XPaths
	About scoped paths
	Advantages of scoped paths

	About XPaths
	Predefined scopes
	Application scope
	Artifact scope
	CM scope
	Document scope
	Flow scope
	Format scope
	Log scope
	Portal scope
	PortletPreference scope
	Request scope
	ResourceBundle scope
	ResourceSet scope
	Response scope
	Session scope
	String scope
	User scope

	Copying scoped paths
	Copy options
	When to copy on activites
	When to copy on links

	Using the scoped path substitution syntax
	Scoped path syntax in pageflow activites
	Dynamic resolution in scoped paths

	About the Scoped Path API
	Using the Scoped Path and XPath Navigators
	Creating XPath expressions

	13 Working with Events
	About the exteNd Director event model
	Event model object types
	Event handling

	About the Event API
	Event classes
	Producer interfaces
	Listener interfaces

	Creating and registering listeners
	Using notification listeners
	Using a vetoable listener
	Creating a custom state change listener
	Registering for events

	Creating custom events and producers
	Creating a custom event producer
	Creating a custom event

	14 Working with Data Caches
	About data caching
	About the Cache Manager
	About the cache holder

	Request object caching
	Request object attributes
	Temporary values

	Session-level caching
	Using the Cache Manager
	Using the whiteboard
	Portlet session scopes

	server-lifetime caching
	About the server-lifetime cache
	Built-in cache holders

	15 Logging Information
	About the exteNd Director logging facility
	Uses for logging
	What gets logged
	Configuring the logs

	Using logs in your application
	Logging and scoped paths
	Logging API
	Getting a log
	Setting the detail level
	Adding messages to the log
	Sample logging code for portlets

	16 Using the XML and IPDR Logging Providers
	About the XML and IPDR logging providers
	Working with XML templates
	Working with IPDR templates
	Built-in properties
	Sample code

	17 Working with JSP pages
	About JSP pages and the exteNd Director tag libraries
	Adding the JAR and TLD files to your project
	Using a custom tag in a JSP page

	18 Working with servlets
	About servlets and exteNd Director applications
	Using the exteNd Director API in a servlet

	19 Developing a Struts Application
	About Struts
	Understanding MVC
	How Struts implements MVC
	Example

	Extending Struts with exteNd Director services
	Business logic
	Business process
	Dynamic content

	How to implement Struts with exteNd Director services

	V Deploying Applications
	20 Deploying exteNd Director Applications
	Deploying an exteNd Director project
	Predeployment tasks
	Deployment tasks
	Post-deployment tasks

	Testing the deployment
	What happens to exteNd Director subsystems at deployment
	How the subsystems register themselves with the Framework
	How the subsystems access persistent data
	How the subsystems access application resources

	Troubleshooting the deployment
	General troubleshooting
	Troubleshooting BEA WebLogic deployments

	Changing your deployment configuration
	About exteNd Director database tables

	VI Administering Deployed Applications
	21 About the Director Administration Console
	About the DAC
	Accessing the DAC
	Using the DAC

	22 Using the General Configuration Section of the DAC
	General
	Logs
	Cache
	Cache Settings
	Cache Holders
	Cache Coordinator
	Cache Statistics

	23 Using the Debug Subsystem
	About the Debug subsystem
	How it works
	Security considerations

	Setting up the Debug subsystem
	Running the Debug subsystem
	Going to the Debug home page
	Reporting on exteNd Director resources
	Reporting on HTTP resources
	Reporting on JNDI resources
	Reporting on exteNd Director archive resources

	24 Using the Cache Coordinator
	About the Cache Coordinator
	How the Cache Coordinator works
	Triggering a cache invalidation event

	Reconfiguring the Cache Coordinator
	Running the Cache Coordinator
	Recovering from a Cache Coordinator failure
	Logging Cache Coordinator activity
	Updating the logging level for server instances and the Cache Coordinator
	Updating the logging level for the Cache Coordinator
	Providing server identifiers
	About the logging messages
	Remote Cache Coordinator administration

	VII Third-Party Tools
	25 Using Dreamweaver with exteNd Director
	About exteNd Director and Dreamweaver
	Installing Dreamweaver extensions
	Using the exteNd Director Integration extension
	Inserting component tags
	Displaying PID pages from Content Management

	VIII Reference
	26 Project File Locations
	Related documentation
	Configuration files
	Content Management subsystem configuration files
	Directory subsystem configuration file
	Framework subsystem configuration file
	Novell-portlet configuration file
	Portal subsystem configuration file
	Portlet configuration file
	Rule subsystem configuration file
	Search subsystem configuration file
	Security subsystem configuration file
	User subsystem configuration file
	Portal configuration file
	Workflow subsystem configuration file
	Pageflow subsystem configuration file
	WSRP Consumer subsystem configuration file
	Composer subsystem configuration file

	Services files
	Content Management subsystem services file
	Directory subsystem services file
	Framework subsystem services file
	Portal subsystem services file
	Portlet services file
	Resource set configuration file
	Rule subsystem services file
	Search subsystem services file
	Security subsystem services file
	User subsystem services file
	Portal services file
	Workflow subsystem services file
	Pageflow subsystem services file
	WSRP Consumer subsystem services file
	Composer subsystem services file

	Resource set descriptors
	Framework database descriptor
	Views descriptor
	Pageflow process descriptor
	Portal category descriptor
	Portal component descriptor
	Portal data definition descriptor
	Portal device profile descriptor
	Portal Layout descriptor
	Portal option descriptor
	Portal page descriptor
	Portal portlet fragment deployment descriptor
	Portal style descriptor
	Portal theme descriptor
	Rule descriptor
	Rule action macro descriptor
	Rule condition macro descriptor
	Rule group binding descriptor
	Rule pipeline descriptor
	Rule pipeline binding descriptor
	Rule user binding descriptor
	Security role descriptor
	Workflow activity policy descriptor
	Workflow process descriptor

	Portal application resources

	Index

