
Novell

m
w w w . n o v e l l . c o

exteNd
Director

5 . 2
PA G E FL O W AN D FO RM G U I DE

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd DirectorPageflow and Form Guide

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 9

PART I CONCEPTS . 11

1 About Pageflows and XForms . 13
What is a pageflow? . 13

Pageflow components. 14
Pageflow data . 14
Pageflow engine . 14
Workflow and pageflow . 14

What is XForms technology?. 15
XForms structure . 16
Form data . 16
XForms processing . 17

About the Pageflow Modeler . 18
About the Form Designer. 18

2 Working with Pageflows . 19
About the pageflow process . 19
About the pageflow portlet descriptor . 19
Using scoped paths in a pageflow . 21

Scoped paths in the Pageflow Modeler. 21
Scopes you can use within a pageflow . 22

Pageflows and portlet runtime behavior . 22
Scoped paths and portlet runtime context. 22
Pageflow performance and portlet caching . 23

Pageflow logging . 24
Examples . 25

Example 1: Simple flow with HTML activities . 25
Example 2: Flow with link expressions . 25
Example 3: Flow with a system activity . 25
Example 4: Web Service and XHTML forms. 25
Example 5: Database pageflow . 26

3 Working with Activities . 27
About pageflow activities . 28

Categories. 28
Mode activity . 29
Form activity . 30
HTML activity . 31
XML activity . 32
Pageflow activity . 33
JSP activity . 34
Servlet activity . 36
Initial Query activity . 38
Get Page activity . 39
Get Record activity . 40
Record Insert activity . 40
Record Update activity. 41
Record Delete activity . 42
5

Apply Change Log activity . 42
Rule activity. 44
CheckPoint activity . 44
Exception activity . 46
Java activity . 48
XSL activity . 49
Web Service activity . 50
Composer Service activity . 51
Finish activity . 52
Workflow Return activity . 53

4 Working with Links . 55
About links . 55
Simple link. 55
Condition link . 57
Button link . 58
Smart linking . 60

PART II TOOLS . 63

5 Pageflow Modeler . 65
About the Pageflow Modeler. 65

Basic procedure . 65
Creating a view for a pageflow . 66

Starting the Modeler . 66
Process properties . 67

About the Modeler window . 69
Main features . 69
Navigating, selecting, and moving objects . 69

Adding activities . 70
Pageflow activity types. 70
Using activities . 72

Adding links. 73
Pageflow link types . 73
Drawing a link segment . 74

Using scoped paths . 74
Associating a scoped path with an activity . 75
Copying scoped paths . 76
Accessing scoped paths . 78
Copying a scoped path to the clipboard . 78

Creating link expressions . 79
Validating a process . 80
Adding and manipulating text labels . 80

Floating labels . 80
Attached labels . 80

Setting object display properties . 81
Using the layout features . 82

Full layout . 82
Incremental layout. 83
Setting preferences . 83

Using the zoom features . 84
Using the grid features . 84
Using the Bird’s Eye View. 85
Creating a resource view for a pageflow. 85
Deleting a pageflow . 86

6 Form Designer. 87
About XForms . 87
About the Form Designer . 87
Starting and stopping the Form Designer . 88
6 exteNd Director Pageflow and Form Guide

Creating forms . 88
About the wizard-generated forms . 91
Saving forms . 94

Defining the presentation. 94
About the Form tab . 94
Shortcut keys . 95
About form controls . 96
Manipulating controls . 97
Applying styles to controls. 100
Working with layout regions . 102
Binding controls to data. 106

Working with model elements . 109
About the Model tab . 110
Specifying model elements . 110
Specifying instance elements . 112
Specifying actions . 114
Specifying submission elements . 114
Specifying Bind elements . 116

Working with events and actions . 118
About the Event Editor . 118
XForms Actions Reference . 120
Customizing event handlers . 130

Testing forms . 130
Using XForms Preview . 131
Using View Form in browser . 131

7 Database Pageflow Wizard . 135
About the Database Pageflow Wizard . 135
Using the Database Pageflow Wizard . 141
Modifying a database pageflow . 147

General guidelines for editing a database pageflow . 147
Working with the Data Set. 148
Advanced settings. 149
Sort order . 151

8 Web Service Pageflow Wizard . 153
About the Web Service Pageflow Wizard . 153
Using the Web Service Pageflow Wizard . 155

9 Composer Pageflow Wizard . 157
About the Composer Pageflow Wizard . 157

Adding an exteNd Composer project. 158
Deploying the project . 158

Using the Composer Pageflow Wizard . 159

10 Java Activity Wizard . 163
About Java activities . 163
Using the Java Activity Wizard . 163
Coding the Java activity. 164

Accessing a scoped path from a Java activity. 164
Performing a JNDI lookup . 165

Example: Starting a workflow process. 165

PART III REFERENCE . 167

11 Working with RPC-Style Web Services . 169
About pageflows that use RPC-style Web Services . 169
Creating a pageflow that uses an RPC-style Web Service . 170

Generating the Web Service consumer . 170
Writing the Java activity class . 171
Creating the user interface for the pageflow . 172
Creating the pageflow . 173
7

8 exteNd Director Pageflow and Form Guide

About This Book

Purpose

This book introduces the basic concepts, architecture, and tools of the Novell® exteNd Director™
Pageflow subsystem.

Audience

This book is for anyone who needs to design pageflow processes or understand the features of the
Pageflow subsystem.

Prerequisites

This book assumes knowledge of Java programming and familiarity with HTML and XML.

Additional documentation

For the complete set of Novell exteNd Director documentation, see the Novell Documentation
Web Site (http://www.novell.com/documentation/).
9

new http://www.novell.com/documentation/
new http://www.novell.com/documentation/

10 exteNd Director Pageflow and Form Guide

I Concepts

Provides an overview of pageflow concepts

• Chapter 1, “About Pageflows and XForms”
• Chapter 2, “Working with Pageflows”
• Chapter 3, “Working with Activities”
• Chapter 4, “Working with Links”
11

12 exteNd Director Pageflow and Form Guide

1 About Pageflows and XForms

This chapter provides an introduction to the use of pageflows and XForms in exteNd Director
applications. It includes these topics:

What is a pageflow?

What is XForms technology?

About the Pageflow Modeler

About the Form Designer

What is a pageflow?
A pageflow defines the flow of control for a set of pages that execute within a single portlet. Each page
presents a set of controls that allow for user interaction. For example, the pages in a flow might provide
a way for the user to display stock quotes or weather forecasts, or access corporate data such as employee
information.

The pages within a flow can use either of the following technologies to define the user presentation:

HTML

XHTML (XForms)

In addition to presenting pages for user interaction, pageflows can perform background processing tasks.
For example, a pageflow might invoke a Web Service, access a database, or simply execute code written
in Java.

Wizards To facilitate database access, exteNd Director provides tools for creating pageflows that give
the user a way to find, display, and modify records in a database. exteNd Director provides the Database
Pageflow Wizard to help you create these pageflows. The Database Pageflow Wizard generates a set of
forms (XHTML pages that use XForms technology) as well as one or more pageflows that tie the forms
together into an integrated user interface.

exteNd Director also provides tools for creating pageflows that invoke Web Services. To help you create
these kinds of flows, exteNd Director provides the Web Service Pageflow Wizard. exteNd Director also
provides the Composer Pageflow Wizard to help you take advantage of exteNd Composer™ services.
About Pageflows and XForms 13

Pageflow components

The core of a pageflow application is the process descriptor, an XML file that you create visually using
the Pageflow Modeler. A pageflow process, which is the visual representation of the process descriptor,
is a branching series of activities and links that models a set of user interactions within a portlet. These
are the key parts of a pageflow process:

Pageflow data

A typical pageflow process includes data that is manipulated by pageflow users or program logic. To
access data in a pageflow, you use scoped paths. exteNd Director includes a group of predefined scoped
paths that are available from the Pageflow Modeler and the Workflow Modeler and through the Scoped
Path API.

For more information on scoped paths, see “Using scoped paths in a pageflow” on page 21.

Pageflow engine

The pageflow engine is responsible for executing and managing workflow processes. It uses the process
descriptor created with the Pageflow Modeler to:

Create new process instances

Start and stop activities

Execute the link to the next activity

Workflow and pageflow

It is helpful to understand pageflow by contrasting it with the exteNd Director workflow model.
Although workflow and pageflow share similar mechanics, pageflow has some distinguishing features,
as shown here:

Process component Description

Activity An object that represents a task. An activity can present information to the user
and respond to user interactions, or perform background functions that are not
visible to the user.

For more information on activities, see Chapter 3, “Working with
Activities”.

Link An object that represents a path in the routing logic of the flow. A link points to
an activity.

Links are what tie the activities in a pageflow together. A link is a single logical
path between two activities. A link can also move data between activities. An
activity can have multiple source (incoming) links and multiple destination
(outgoing) links.

For more information on links, see Chapter 4, “Working with Links”.

Workflow Pageflow

Process-based

A workflow is a linear business process that
might span several days, or even weeks.

Session-based

A pageflow is essentially open-ended, and
usually shorter (less than an hour) in duration.
14 exteNd Director Pageflow and Form Guide

NOTE: Although workflow and pageflow are different types of applications, the Workflow subsystem
provides facilities for integrating them. You can embed a pageflow in a workflow using the Pageflow
activity in the Workflow Modeler. You can also start a workflow process from a pageflow using a Java
activity.

For details on embedding on a pageflow in a workflow, see the chapter on working with activities
in the Workflow Guide. For details on starting a workflow process from a pageflow, see “Example:
Starting a workflow process” on page 165.

What is XForms technology?
XForms provide a robust, standards-based way to define Web forms. The advantages of the XForms
standard include:

Separate data, logic, and presentation modules

A powerful event model (so that you don’t have to use a lot of scripting for client-side validation or
calculations)

A way to process data in XML formats

XForms cannot run as standalone applications. They are designed to run as components within a host
language like XHTML. In the Novell implementation, XForms run within the context of a pageflow
application.

Definite starting point

Some specific event or condition triggers a
process instance. This can be a system-
generated event, like a monthly notification, or
user-generated, as in a telephone sales
transaction.

Designed entry point

The entry point is determined by the pageflow
itself and is typically not triggered by an external
event, unless the pageflow is being used in a
workflow.

Multiple users

A workflow assumes multiple users are
performing discrete tasks at each activity.

Single user

A pageflow application is driven by a single user.

Persistent data

Instance data must be stored outside the session
so that workitems can be passed to subsequent
activities.

Session data

A pageflow relies on instance data stored in the
current session, although the application can
access persistent data.

Definite ending point

Some specific event or condition ends the
process instance. In a sales order transaction,
the business process cannot conclude until the
customer verifies receipt.

User-controlled exit point

The user chooses when to end the session,
although some specific action could trigger a
workflow.

Workflow Pageflow
About Pageflows and XForms 15

new wfActivities.html

XForms structure

A single XForms document includes the sections shown in the following diagram:

For more information on using the Form Designer to define the Model, presentation, or events for
an XForms document, see Chapter 6, “Form Designer”.

Form data

In XForms, the data is defined in the Model element. The Model can contain one or more instance
elements.

At design time, you provide the Form Wizard with an XML schema or instance document that defines the
structure of the instance data. Once an initial form is created based on this structure, you’ll use the Form
Designer’s Model Editor to define additional information about the data such as constraints, calculations,
validations, and so on. In addition, you’ll define how the runtime data is:

Supplied—since the form runs in the context of a pageflow, you’ll specify the circumstances when
the data is supplied by the pageflow (if the instance data is inline).

Submitted—you’ll specify what part of the data to submit, and the other submission details such as:
the method (PUT, POST, GET) and the encoding.

Section Description

Model An element that defines the structure of the XML data used by the form. The
Model defines the data that is:

Displayed or entered by the user

Submitted to the server

Used for temporary calculations

The Model element might also include rules for validation, constraints, and
calculations.

Presentation The XForms 1.0 Specification defines a set of abstract controls you use to
define the user interface. You can bind the controls to data elements defined in
the Model.

Events and actions Defines the form’s processing logic. XForms Actions provide built-in logic to run
in response to events. Events and actions can be programmed on both Model
and presentation elements.
16 exteNd Director Pageflow and Form Guide

XForms processing

XForms can be processed via a browser plug-in or a server-side XForms processor.

At startup the exteNd Director portal checks to see if a browser plug-in is installed. If not, XForms
processing defaults to the Novell exteNd Director server-side processor. The server-side processor is
responsible for:

Generating an in-memory model of the form

Generating HTML and Javascript so that a browser can render an XForm.

Performing the data validation, calculations, constraints and so on defined on the form.

Responding to XML events and XForms actions that occur on the form.

The following diagram illustrates the interaction flow of the Novell exteNd Director server-side XForms
processor and a device such as a browser.

1 The browser makes a request for an XForms document—running in a pageflow.

2 The pageflow portlet receives the request (via the portal container), renders it, and passes it to the
XForms server-side processor.

3 If a browser plug-in does not exist, the XForms exteNd Director server-side processor:

Builds an in-memory model of the form.

Renders the form as HTML and Javascript (to render the XHTML in a format that a browser can
understand).

The XForms processor returns the markup fragment to the pageflow portlet.

4 The Portal returns the markup to the browser.

5 The browser establishes a network connection to the XForms server-side processor so all
subsequent communications within the form (for example, event processing) are direct with the
XForms server-side processor, bypassing the Portal container.
About Pageflows and XForms 17

About the Pageflow Modeler
Integrated into the development environment is a complete graphing package called the Pageflow
Modeler that allows you to quickly and visually create a pageflow process. The Pageflow Modeler allows
you to:

Graphically lay out, annotate, and format your pageflow

Create, change, and delete activities and links

Set activity and link properties

Use the Scoped Path Navigator to associate activities and links with data

When you save a pageflow, the Pageflow Modeler translates your document into an XML-based file
called a process definition. The process definition saves the layout and format of your pageflow and
translates the flow logic into a program the pageflow engine can read and execute.

The Pageflow Modeler also saves a portlet fragment deployment descriptor that maps your pageflow to
a pageflow runner. The pageflow runner is a Java class that is implemented as a portlet.

About the Form Designer
The exteNd Director Form Designer provides an environment for developing XForms 1.0-compliant
Web forms. The Form Designer is a graphical development tool that allows you to quickly create XForms
components for use in pageflow applications.
18 exteNd Director Pageflow and Form Guide

2 Working with Pageflows

This chapter introduces pageflow processes and provides several examples of complete pageflows. It
includes these topics:

About the pageflow process

About the pageflow portlet descriptor

Using scoped paths in a pageflow

Pageflows and portlet runtime behavior

Pageflow logging

Examples

About the pageflow process
The core of a pageflow application is the process descriptor, an XML file that you create visually using
the Pageflow Modeler. A pageflow process, which is the visual representation of the process descriptor,
is a branching series of activities and links that models a set of user interactions within a portlet.

The pageflow process descriptor is placed in the pageflow-process folder within the resource set.

Process object Each pageflow process contains a global object called the process object that defines
some general settings for the process as a whole.

For details on setting the properties associated with the process, see “Process properties” on
page 67.

Subflows (flows within flows) You can include a pageflow process within another pageflow
process. When you do this, the embedded flow is included within the containing flow.

About the pageflow portlet descriptor
When you save a pageflow, the Pageflow Modeler saves a portlet fragment deployment descriptor in the
resource set that maps your pageflow to a pageflow runner. The pageflow runner is a Java class that is
implemented as a portlet. exteNd Director ships with a prepackaged pageflow runner
(com.novell.afw.portal.portlet.pf.pageFlowRunner). This class can run any pageflow. You can write your
own pageflow runner, but this is not necessary.

For more information about the portlet fragment deployment descriptor, see the section on the
portlet fragment deployment descriptor in the Portal Guide.
Working with Pageflows 19

new pgPortletAppsAbout.html#exteNdDirectorportletfragmentdeploymentdescriptor
new pgPortletAppsAbout.html#exteNdDirectorportletfragmentdeploymentdescriptor

Each pageflow has a separate descriptor Although all pageflows use the same portlet runner
class, each pageflow has its own descriptor. The descriptor has a unique name that distinguishes it from
other portlet descriptors. By default, the name given to the descriptor is the same as the name given to the
pageflow. Therefore, when you save a pageflow in the Pageflow Modeler, you get two XML descriptors
with the same name. These descriptors are placed in different folders within the resource set:

The pageflow process descriptor is placed in the pageflow-process folder

The pageflow portlet descriptor is placed in the portal-portlet folder

To display a pageflow on a portal page, the user must select the portlet that runs the pageflow (not the
pageflow itself).

What’s inside the descriptor Each portlet descriptor created for a pageflow specifies distinct
initialization parameters, settings, and preferences. One of the initialization parameters, called PF_ID,
specifies the name of the pageflow process to run:

<init-param>
<description>Pageflow ID</description>
<name>PF_ID</name>
<value>MyPageflow</value>

</init-param>

Sample pageflow portlet descriptor Here is an example of a portlet descriptor that was generated
for a pageflow called MyPageflow:

<portlet xmlns="http://www.novell.com/xml/ns/portlet-fragment"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <description>MyPageflow</description>
 <portlet-name>MyPageflow</portlet-name>
 <display-name>MyPageflow</display-name>
 <portlet-class>com.novell.afw.portal.portlet.pf.pageFlowRunner

</portlet-class>
 <init-param>
 <description>Pageflow ID</description>
 <name>PF_ID</name>
 <value>MyPageflow</value>
 </init-param>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>MyPageflow</title>
 <short-title>MyPageflow</short-title>
 <keywords>MyPageflow</keywords>
 </portlet-info>
 <portlet-preferences>
 <preference>
 <name>width</name>
 <value>400px</value>
 <read-only>false</read-only>
 <data-type>String</data-type>
 <required>false</required>
 <multi-valued>false</multi-valued>
 </preference>
 <preference>
 <name>height</name>
 <value>400px</value>
 <read-only>false</read-only>
 <data-type>String</data-type>
 <required>false</required>
 <multi-valued>false</multi-valued>
 </preference>
 <preference>
20 exteNd Director Pageflow and Form Guide

 <name>Restrict Portlet Size</name>
 <value>false</value>
 <read-only>false</read-only>
 <data-type>Boolean</data-type>
 <required>false</required>
 <multi-valued>false</multi-valued>
 </preference>
 </portlet-preferences>
 <enable-title-bar>1</enable-title-bar>
 <supported-option>Restart</supported-option>
 <supported-option>edit</supported-option>
 <preview-image></preview-image>
 <auto-register enabled="true">
 <registration-id>MyPageflow</registration-id>
 </auto-register>
</portlet>

Pageflow portlet preferences The portlet descriptor for a pageflow includes three preferences that
can be used to control the runtime display of the portlet:

Using scoped paths in a pageflow
Scoped paths allow you to access different kinds of data from your pageflow process. exteNd Director
includes a group of predefined scoped paths that are available from the Pageflow Modeler and through
the Scoped Path API.

Data can be in either a nonpersistent or a persistent state. Data is nonpersistent if it is available to a single
user for a single application session. Data is persistent if it is available to multiple users and, potentially,
other applications. In the context of scoped paths, a path is the physical location of the data within a
specified scope.

Scoped paths in the Pageflow Modeler

In the Pageflow Modeler, you use scoped paths in several ways:

To bind an activity to an object (such as a rule, Java class, Web Service, HTML document, XHTML
form, or other external pageflow)

To specify the instance data for an activity

To copy data from one location to another

Preference Description

Restrict Portlet Size Controls whether <div> tags are placed around the result of the pageflow
request. This is useful for flows that are very wide or tall.

The tags will be added to the HTML only if Restrict Portlet Size is set to true
and the portlet is not in a maximized state.

NOTE: When the Restrict Portlet Size preference is set to true, the pageflow
runner portlet automatically sets the content type to text/html.

The default value for Restrict Portlet Size is false.

width Specifies the width (in pixels) when the Restrict Portlet Size preference is set to
true. This preference is ignored when Restrict Portlet Size is set to false.

The default value for width is 400px.

height Specifies the height (in pixels) when the Restrict Portlet Size preference is set
to true. This preference is ignored when Restrict Portlet Size is set to false.

The default value for height is 400px.
Working with Pageflows 21

Scopes you can use within a pageflow

All of the predefined scopes are available within a pageflow.

For complete details on using the predefined scopes, see the chapter on scoped paths in Developing
exteNd Director Applications.

These are some examples of scoped paths you might use within a pageflow.

Restrictions Although you can use any of the predefined scopes within a pageflow, some restrictions
apply to the Request and Response scopes. For more information, see “Pageflows and portlet runtime
behavior” on page 22.

Pageflows and portlet runtime behavior
This section discusses some of the ways in which portlet runtime behavior can change the behavior of a
pageflow.

Scoped paths and portlet runtime context

At each point in the execution of a pageflow, the runtime behavior of the pageflow runner portlet has a
direct effect on what kind of information is available to scoped paths. Therefore, when you’re deciding
which scoped paths to use in a pageflow, you need to be aware of the underlying portlet runtime context,
particularly when using the Request and Response scopes.

Restrictions that apply to the Request and Response scopes When working with the Request
and Response scopes, you need to be aware of these restrictions:

The api option on the Request scope is available only on render requests (in other words, during
the execution of the render() method of the pageflow runner portlet).

The render option on the Response scope is also available only on render requests (within the
execution of the render() method of the pageflow runner portlet).

All other Request and Response options are available on either a render (within the execution of the
render() method of the pageflow runner portlet) or an action (within the execution of the processAction()
method of the pageflow runner portlet).

Determining which portlet runtime context is available The following rules determine which
context applies at each stage of processing within a pageflow:

Scoped path Possible runtime value

/Request/prop/User-Agent Mozilla 6.0 (MSIE 6.0)

/String/true true

/ResourceSet/html/myHTML.html The contents of the myHTML.html file.

/ResourceSet/document-
template/employees.xml/emp_list/employees
[@id=’12345’]/firstName

The first name string of the employee whose ID is
12345. This value is located in the employees.xml file
within the resource set.

/Flow/document/InstanceData The contents of an XML document stored in the
document folder of the Flow scope.
22 exteNd Director Pageflow and Form Guide

cdScopedPaths.html

When a pageflow is first loaded, the pageflow runner portlet executes the render() method. If the
first activity following the Mode activity is a presentation activity (HTML, Form, JSP, or Servlet),
the runner performs any Copy Before operations specified for the activity and then executes the
presentation activity itself.

If there are any system activities (such as a Web Service activity, Composer activity, or Java
activity), the runner portlet executes these activities in order. Any Copy Before and Copy After
operations specified for these activities are also performed.

All Copy Before and Copy After operations are therefore performed within the render() phase from
the time the pageflow is first initiated until the first presentation activity is executed.

If an action occurs on the first presentation activity within the flow, any Copy After operations
associated with this activity are performed. The Copy After processing occurs within the
processAction() method. However, if a rerender occurs (because the user clicks on a render URL or
hits the browser refresh), the Copy After is performed only if the activity is preceded by a
CheckPoint activity. If it is not preceded by a CheckPoint activity, the Copy After operation is not
performed. The reason for this is that the Copy After is performed only when the engine moves to
another activity (as it does in the case of the CheckPoint activity).

In the event of a rerender, all Copy After processing occurs within the render() method.

NOTE: Different contexts are being used under the covers for the processAction() and render()
phases, so it is important to be aware of which context is available.

When system activities are executed within a pageflow, all Copy Before and Copy After
processing occurs in the phase in which they run. If a system activity follows a CheckPoint, the
Copy Before and Copy After operations will be executed within the render() method. If the activity
does not occur after a CheckPoint, then the Copy Before and Copy After operations all occur in the
processAction() method.

NOTE: All system activities executed before the first presentation activity are executed within the
render() method, regardless of whether a CheckPoint is present.

Pageflow performance and portlet caching

The caching behavior of the pageflow runner portlet has a direct effect on the performance of a pageflow.

You can define an expiration cache in the portlet descriptor for a pageflow:

A value of 0 disables caching for the portlet. When you specify 0, the portlet content is never
cached.

A value of -1 means the cached content never expires for that portlet. When you specify -1, the
cached content is used indefinitely.

Any other positive value defines an expiration cache whose content expires after the number of
seconds specified by the value. A positive value indicates the number of seconds to cache before
allowing render calls.

If you want to minimize the number of render operations associated with a pageflow, you may want to set
the expiration cache to a positive number.

Here’s an example that shows how you might set the expiration cache:

<portlet xmlns="http://www.novell.com/xml/ns/portlet-fragment"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <description>MyPageflow</description>
 <portlet-name>MyPageflow</portlet-name>
 <display-name>MyPageflow</display-name>
 <portlet-class>com.novell.afw.portal.portlet.pf.pageFlowRunner</portlet-class>
<init-param>
 <description>Pageflow ID</description>
 <name>PF_ID</name>
 <value>tdbphonelistPageflow</value>
</init-param>
<expiration-cache>1000</expiration-cache>
...
</portlet>
Working with Pageflows 23

Pageflow logging
The following logs are provided to help you gather information about the runtime behavior of a
pageflow:

To modify the settings associated with these logs, you can edit the config.xml file for the Pageflow
subsystem.

For example, you might want to increase the logging level for these logs from 3 to 5 to get more
information about pageflows running in your application:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties PUBLIC "-//SilverStream Software, LLC//DTD Framework Config
XML 3.0//EN" "framework-config_3_0.dtd">
 <properties>
 <property>
 <key>PageflowService/engine-id</key>
 <value>engine-id</value>
 </property>

...
<property>

 <key>PageFlowLog.LoggingLevel</key>
 <value>5</value>
 </property>
 <property>
 <key>PageFlowLog.LogFieldSeparator</key>
 <value>|</value>
 </property>
 <property>
 <key>PageFlowLog.LoggingProvider</key>

<value>com.sssw.fw.log.EboStandardOutLoggingProvider</value>
 </property>
 <property>
 <key>PageFlowFormLog.LoggingLevel</key>
 <value>5</value>
 </property>
 <property>
 <key>PageFlowFormLog.LogFieldSeparator</key>
 <value>|</value>
 </property>
 <property>
 <key>PageFlowFormLog.LoggingProvider</key>

<value>com.sssw.fw.log.EboStandardOutLoggingProvider</value>
 </property>

...
</properties>

NOTE: You can also change the logging levels in the Director Administration Console.

Log Description

PageFlowLog Logs information that is common to all pageflows.

PageFlowFormLog Logs information related to XForms processing associated with pageflows.
24 exteNd Director Pageflow and Form Guide

Examples
This section presents some examples that illustrate basic pageflow concepts.

Example 1: Simple flow with HTML activities

This is a simple pageflow that shows the required Mode Activity, followed by two HTML activities
connected by simple links. HTML activities are presentation activities that display static pages to the
user:

Example 2: Flow with link expressions

This example shows how link expressions can be used to control the navigation paths within a pageflow.
The expressions for Link 2 and Link 3 determine which button the user clicked on HTML 1. Depending
on which button was clicked, the user sees HTML 2 or HTML 3:

Example 3: Flow with a system activity

The following flow shows the use of the XSL activity, which is a system activity. XSL activity 1
transforms some XML instance data. The resulting HTML output is then used as input to HTML 1.

Since the XSL activity is a system activity, it is not visible to the user. When this flow is initiated, the user
sees only the HTML page:

Example 4: Web Service and XHTML forms

This flow contains a Web Service activity, another example of a system activity. This activity invokes a
Web Service that gets a stock quote. Before the Web Service is invoked, the user specifies the stock
symbol on an XHTML form associated with a Form activity. When the Web Service has finished
processing, a second Form activity displays the quote results. To handle browser refreshes, this flow
includes a CheckPoint activity. Whenever a refresh occurs, the flow returns to the Quote CheckPoint
activity and continues from that point forward:
Working with Pageflows 25

An Exception activity has also been added to this flow to handle exceptions that may occur at runtime.
For example, if the Web Service being called is unavailable for some reason, the Exception activity takes
control. This activity forwards processing to an HTML activity called Display Exception that displays a
helpful message to the user.

This flow also shows the use of smart linking. Smart linking reduces clutter within a pageflow when
many activities need to link to a common activity. In this example, the Help HTML activity is accessed
by means of a dynamic link generated at runtime.

Example 5: Database pageflow

This example shows a typical database pageflow used to access a single table. It includes several database
activities and forms that allow the user to enter search criteria and view search results. Also it includes
activities and forms that permit the user to perform inserts, updates, and deletes.

Every database pageflow process includes a Data Set object that provides all the information required to
access the database:

This flow was generated by the Database Pageflow Wizard.

For more information on the Database Pageflow Wizard, see Chapter 7, “Database Pageflow
Wizard”.
26 exteNd Director Pageflow and Form Guide

3 Working with Activities

This chapter introduces the activities you can use in a pageflow process. It includes these topics:

About pageflow activities

Mode activity

Form activity

HTML activity

XML activity

Pageflow activity

JSP activity

Servlet activity

Initial Query activity

Get Page activity

Get Record activity

Record Insert activity

Record Update activity

Record Delete activity

Apply Change Log activity

Rule activity

CheckPoint activity

Exception activity

Java activity

XSL activity

Web Service activity

Composer Service activity

Finish activity

Workflow Return activity
Working with Activities 27

About pageflow activities

Categories

There are several categories of pageflow activities:

NOTE: The Database tab in the Pageflow Modeler also includes the Data Set. The Data Set is not an
activity in the conventional sense. At design time, you can make changes to the definition of the Data Set,
just as you would make changes to any pageflow activity. But at runtime the Data Set does not behave like
an activity: it does not perform any processing or affect the flow of control as the other activities do.

For more information on the Data Set, see “Working with the Data Set” on page 148.

The pageflow activities have properties you can set in the Pageflow Modeler. Some of these properties
are common to all activities, whereas others are available only on some of the activities.

Most pageflow activities have a primary property. The primary property associates an object with the
activity. For presentation activities, this is the item to display. For system properties, this is the object you
want to execute.

Category Description Activites

Presentation Control the user interface for the flow Form

HTML

XML

JSP

Pageflow

Servlet

Database Allow a pageflow to find, display, and modify records in a
database

NOTE: The database activities are added by the Database
Pageflow Wizard. Therefore, you do not usually need to add
these by hand.

Initial Query

Get Page

Get Record

Record Insert

Record Update

Record Delete

Apply Change Log

System Perform background processing functions required by the
flow

Mode

XSL

Web Service

Composer Service

Rule

Java

Finish

Workflow Return

Directive Affect the underlying processing of the flow Exception

CheckPoint
28 exteNd Director Pageflow and Form Guide

Mode activity

Description The Mode activity is the starting point for a particular mode within a pageflow. The Mode activity
initiates a series of activities that are performed when the process is in that mode. Each mode activity
maps directly to a portlet mode, as defined by the Portlet specification (Java Portlet 1.0).

The Mode activity is a required activity. Each pageflow must have at least one Mode activity of type
View. When you create a new pageflow process, the Pageflow Modeler automatically adds a Mode
activity that has the View type.

A pageflow can have multiple Mode activities. For example, a pageflow might have Mode activities that
specify what happens when the flow is in View, Edit, or Help mode:

Properties The properties of the Mode activity are:

Usage What happens when a pageflow is initiated All pageflows start in View mode. Since the Portlet
specification requires that all portlets implement this mode, View mode is required in pageflows.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Mode Mode Specifies the mode type. Pageflows support the
following portletsmodes:

View

Edit

Help

Default Indicates whether this is the default mode for the
pageflow. A given pageflow can have only one Mode
activity that is marked as the default.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
Working with Activities 29

What happens when the user switches modes The user can switch modes at runtime—mode
switching is a runtime-only function. The pageflow runner detects mode switches by examining request
information provided by the Portlet container. If a mode switch is detected, the flow is restarted using the
named mode. If the mode specified cannot be found, an exception is thrown and the flow remains in its
previous state. The default mode is not used during mode switching.

Form activity

Description The Form activity is a presentation activity that specifies an XHTML file to display at runtime. The
XHTML file defines a form for user interaction. The form uses XForms technologies to define the user
interface. By providing access to the full range of XForms capabilities, the Form activity gives you an
extremely powerful tool for building presentation into a pageflow process. The form displayed by a Form
activity can include a variety of user controls, such as buttons, input fields, and labels. The form can also
give the user a way to interact with a database or Web Service.

The exteNd Director Form Designer provides a graphical environment for developing XForms 1.0-
compliant Web forms. The Form Designer lets you create and modify XHTML forms that can be
displayed with the Form activity.

For details on working with the Form Designer, see Chapter 6, “Form Designer”.

Properties The properties of the Form activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Form XHTML Specifies the XHTML content to display. You can
create the XHTML content using the Form Designer.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Instance Data Inbound
Documents

Specifies one or more documents that are used as
input to this activity. The location of each document is
specified by means of a scoped path.

The list of inbound documents for the activity is
determined by how many inbound documents are
defined in the XHTML file.

Outbound
Document Name

Specifies a document that contains output produced
by this activity. The location of the document is
specified by means of a scoped path.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
30 exteNd Director Pageflow and Form Guide

HTML activity

Description The HTML activity is a presentation activity that specifies HTML content to display at runtime.

If the HTML content you want to display contains an HTML form, the action for the form must specify
the wsrp_rewrite token, an industry-standard token defined by the WSRP specification:

action="wsrp_rewrite?wsrp-urlType=blockingAction/wsrp_rewrite"

NOTE: This version of exteNd Director does not provide full support for the WSRP protocol. But, support
for many WSRP features has been implemented. For example, the wsrp_rewrite token is required in the
action for a form.

XHTML content that you display in a Form activity can specify this abbreviated syntax in the action for
a form:

<xforms:submission
action="?verb=help"
id="help"
method="post"/>

NOTE: This syntax is not supported in HTML content.

Example 1 Here’s a sample HTML page that could be displayed with an HTML activity. The HTML
source for this activity has a Next button that passes a value of next for the parameter named verb:

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">
<p>Enter your name

<input type="name" name="name">

<input type="submit" name="verb" value="next">
<input type="submit" name="verb" value="help">

</form>

Example 2 This example shows tags that take advantage of the classes defined in the theme CSS file.
By mapping your tags to classes in the CSS file, you can ensure that these tags will alter their appearance
according to the display characteristics of the currently selected theme:

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">

Zip

<input class="portlet-form-field" type="name" name="zip" value="02630"

size="20”>

<input type="submit" name="verb" value="Continue">

</form>

Properties The properties of the HTML activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.
Working with Activities 31

XML activity

Description The XML activity is a presentation activity that specifies XML content. Pageflows can return content of
type text/xml. This allows you to use portal styling to control the presentation, which is particularly
useful when you want to perform transcoding for wireless applications.

A pageflow can have multiple renderable activities. When you return XML content, you must use XSL
to determine which template to use for the returned XML.

To style the content for a pageflow, you need to add the proper style to the portlet fragment deployment
descriptor associated with the pageflow.

Properties The properties of the XML activity are:

HTML HTML Specifies the HTML content to display. The HTML
page referenced by an HTML activity must reside
within the resource set.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

XML XML Specifies the XML content to display. The location of
the XML content is specified by means of a scoped
path.

Content Type Specifies the content type to display. The content type
is specified by means of a scoped path. For example,
you might specify /String/text/xml as the content
type.

If you do not specify a content type, the default is
text/html.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description
32 exteNd Director Pageflow and Form Guide

Pageflow activity

Description The Pageflow activity includes a separate pageflow within the current flow.

The Pageflow activity performs a runtime include. The Pageflow Modeler does not perform any design-
time checking to ensure that the flow specified by the Pageflow activity will actually work properly
within the containing flow.

When you include a pageflow within another pageflow, the Mode activity within the included flow must
have a type that matches the Mode type of the containing flow. Also the included flow must have a Finish
activity. The Finish activity tells the engine when to return to the containing flow. If the included flow
does not contain a Finish activity, control will never be returned to the containing flow.

When a pageflow is included within another pageflow, the Mode and Finish activities within the included
flow perform any scoped path functions required and then execute a forward operation.

Properties The properties of the Pageflow activity are:

Usage At runtime, the Pageflow activity doesn’t perform any processing itself. Instead, it just instructs the
pageflow engine to insert the included pageflow within the main pageflow before the process is started.

These are the basic steps the engine performs when it includes a pageflow within another pageflow:

1 Gets the pageflow to include using a scoped path.

2 Creates a new link between the main pageflow activity and the first Mode activity in the included
flow.

3 Moves all outbound links from the main pageflow to the included flow’s Finish activity.

4 Replaces the <modeactivity> nodes from the included flow’s document with <activity> nodes.

5 Imports all activities from the included flow into the main flow.

6 Imports all links from the included flow into the main flow.

7 Creates a new process using the dynamically generated pageflow document.

This process is repeated for each included flow.

Example Suppose you have a main pageflow that looks like this:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Pageflow Pageflow Indicates which pageflow to run by specifying a
pageflow descriptor in the resource set.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
Working with Activities 33

The Pageflow activity points to this flow:

At runtime, the main pageflow document is manipulated to create a flow that might look like this if it
were drawn in the Pageflow Modeler:

JSP activity

Description The JSP activity is a presentation activity that calls a JSP page.

The JSP page called by a JSP activity must handle the creation of its own URL for processing. To get the
correct URL for a JSP activity, you need to add these lines to your JSP page:

RenderResponse renderResponse =
(RenderResponse)request.getAttribute("javax.portlet.response");

String MYURL = renderResponse.createActionURL().toString();

The string javax.portlet.response is defined by the Portlet specification. Since exteNd Director
provides complete support for the Portlet specification, this string is available to all JSP pages (and
servlets) that run within exteNd Director.

Usage The form you create in your JSP page should look like this:

<form name='myform' method='post' action='MYURL'>

You can use the JSP Wizard to create JSP page files. If you plan to call a JSP page from a JSP activity,
you need to store the JSP page directly within the current WAR file. The JSP activity is not able to access
JSP pages stored within a JAR inside the WAR file.

To execute a flow that contains a JSP activity, you need to modify the portlet descriptor generated by the
Pageflow Modeler. You must add charset=ISO-8859-1 to the list of supported mime types:

<supports>
<mime-type>text/html; charset=ISO-8859-1</mime-type>
<portlet-mode>view</portlet-mode>

</supports>
34 exteNd Director Pageflow and Form Guide

Properties The properties of the JSP activity are:

Example Here is an example of a JSP page that you might call from a JSP activity:

<%@ page language="java"
 session="true"
 isThreadSafe="true"
 contentType="text/html; charset=ISO-8859-1" %>

<%
//**
// User needs to make sure to import "javax.portlet.*;"
%>
<%@ page import="javax.portlet.*" %>

<%
// For the JSP Activity to work, the user must build the correct
// URL for their HTML Form to submit to.

// The HttpRequest object is available to all JSPs by default.
// The user can get the RenderResponse object from the HttpRequest
// at the well-known location of JAVAX.PORTLET.RESPONSE on the
// HttpRequest object. The user can then build the URL from that
// RenderResponse by calling renderResponse.createActionUrl().
// Whatever the value of that URL is should be placed in the Form.

// Get the RenderResponse
RenderResponse renderResponse = (RenderResponse)request.getAttribute(
"javax.portlet.response");
String MYURL = "";
try {
 // Build the correct URL for the HTML Form
 MYURL = renderResponse.createActionURL().toString();
}
catch(Exception e) {
 e.printStackTrace();
}
%>

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

JSP JSP Specifies the JSP page to call. The JSP page you specify
must be a file in the current WAR.

You can use any scoped path to specify the JSP, as long
as the path provides the location of the JSP file within the
current WAR. For example, you might use a Session
scoped path to specify a variable containing a path to the
JSP file.

Most of the time, you will want to use the Artifact scope to
locate the JSP page. For example, you might specify
Artifact/war://jsps/MyJSP.jsp as the scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
Working with Activities 35

<% // Make sure the URL the user built is the "action" attribute
 // of the HTML Form %>
<form method="post" action="<%= MYURL %>">
<% //***
%>
 <hr>

 <p>Enter a value to POST back to Tom: <input name="testValue"/>

<input type="text" name="tomText"/>

 <input type="submit" name="Submit" value="Submit">

 <hr>
</form>

Servlet activity

Description The Servlet activity is a presentation activity that calls a servlet.

At runtime, the Servlet activity calls the doGet() method on the servlet. The doGet() method must return
HTML that can be displayed to the user.

The servlet called by a Servlet activity must handle the creation of its own URL for processing. To get the
correct URL for a Servlet activity, you need to add these lines to your servlet code:

RenderResponse renderResponse =
(RenderResponse)request.getAttribute("javax.portlet.response");

String MYURL = renderResponse.createActionURL().toString();

The string javax.portlet.response is defined by the Portlet specification. Since exteNd Director
provides complete support for the Portlet specification, this string is available to all servlets (and JSP
pages) that run within exteNd Director.

Usage The form you create in your servlet should look this:

<form name='myform' method='post' action='MYURL'>

You can use the Servlet Wizard to create new servlet Java class files. When you do this, the Servlet
Wizard automatically adds the required entries to the web.xml file for the new servlet.

If you plan to call a servlet from a Servlet activity, you need to store the servlet class directly within the
current WAR file. The Servlet activity is not able to access servlets stored within a JAR inside the WAR
file.

Properties The properties of the Servlet activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.
36 exteNd Director Pageflow and Form Guide

Example Here is an example of a servlet you might call from a Servlet activity:

package com.test;

import javax.portlet.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class myServlet extends HttpServlet {

static final String CONTENT_TYPE = "text/html";

// Handle the HTTP GET request
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();

//***
String url = "";
try {
// The Servlet Activity must have a certain URL as the value
// of its HTML Form "action" attribute.
// Like the HTML Activity, the user will be responsible for
// building this URL themselves. They must do this, or the
// flow will not move along to the next activity.

// The way to get this URL is from the RenderResponse object.
// The Portlet Spec tells us that the RenderResponse MUST BE //

AVAILABLE on the HttpServletRequest
// object as the JAVAX.PORTLET.RESPONSE attribute.
// This object will be there for any servlet who wants it.

RenderResponse renderResponse =
(RenderResponse)request.getAttribute
("javax.portlet.response");

// Once we have the RenderResponse object, the user needs to // create an
ActionURL from it,

// and then turn that ActionURL into a String.

Servlet Servlet Specifies the servlet to call. The servlet you specify
must map to a servlet name in the web.xml file.

Content Type Specifies the content type to display. The content type
is specified by means of a scoped path. For example,
you might specify /String/text/xml as the content
type.

If you do not specify a content type, the default is
text/html.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description
Working with Activities 37

// This is the URL the user should use as in the HTML form.

url = renderResponse.createActionURL().toString();
}
catch(Exception e) {

e.printStackTrace();
}

// Now the user needs to put the String as the value of the
// "action" attribute in the HTML Form.
// This way the Engine understands that it
// should move the flow along after a submit if that's what
// the user wants.

out.println("<form name='myForm' method='post' action='" + url + "'>");
 //***

out.println("<p>Servlet MyServlet has received an HTTP
GET.</p>");

out.println("<p>The servlet generated this page in response
 to the request.</p>");
out.println("<input type='text' name='tomText'/>");
out.println("<input type='submit' name='tomSubmit'
 value='blah'/>");
out.println("</form>");

}

// Handle the HTTP POST request
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();

out.println("<p>Servlet has received an HTTP POST.</p>");
out.println("<p>The servlet generated this page in response to
the request.</p>");

out.println("");
}

}

Initial Query activity

Description The Initial Query activity obtains the keys of all records from the database that match the user’s search
criteria. This activity takes an XML document that contains the search terms as input. When the keys
have been retrieved from the database, it stores the result set in a record cache.
38 exteNd Director Pageflow and Form Guide

Properties The properties of the Initial Query activity are:

Get Page activity

Description The Get Page activity retrieves the summary data for a single page of records. This activity uses the set
of keys returned by the Initial Query activity to determine which records to include in the summary data.

Properties The properties of the Get Page activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all
of the settings required to access the database.

Instance Data Inbound Document
Name

Specifies a document that is used as input to this
activity. The location of the document is specified by
means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all of
the settings required to access the database.

Instance Data Inbound
Document Name

Specifies a document that is used as input to this
activity. The location of the document is specified by
means of a scoped path.

Outbound
Document Name

Specifies a document that contains output produced by
this activity. The location of the document is specified by
means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.
Working with Activities 39

Get Record activity

Description The Get Record activity retrieves the detail fields for a single record.

Properties The properties of the Get Record activity are:

Record Insert activity

Description The Record Insert activity sends the data for the new record to the database by executing a SQL
INSERT statement.

NOTE: If you enable the change log, the SQL INSERT is not actually performed until the Apply Change
Logs activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all
of the settings required to access the database.

Instance Data Inbound Document
Name

Specifies a document that is used as input to this
activity. The location of the document is specified by
means of a scoped path.

Outbound
Document Name

Specifies a document that contains output produced
by this activity. The location of the document is
specified by means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description
40 exteNd Director Pageflow and Form Guide

Properties The properties of the Record Insert activity are:

Record Update activity

Description The Record Update activity sends the updated data for one record to the database by executing a SQL
UPDATE statement. To support optimistic concurrency control, the UPDATE statement includes the
original (cached) values in the WHERE clause.

NOTE: If you enable the change log, the SQL UPDATE is not actually performed until the Apply Change
Logs activity is executed.

Properties The properties of the Record Update activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all
of the settings required to access the database.

Instance Data Inbound Document
Name

Specifies a document that is used as input to this
activity. The location of the document is specified by
means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all
of the settings required to access the database.

Instance Data Inbound Document
Name

Specifies a document that is used as input to this
activity. The location of the document is specified by
means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.
Working with Activities 41

Record Delete activity

Description The Record Delete activity deletes the records selected by the user by executing a SQL DELETE
statement. To support optimistic concurrency control, the DELETE statement includes the original
(cached) values in the WHERE clause. The Record Delete activity sends a separate DELETE statement
for each selected record, but the statements are all executed in a single transaction.

NOTE: If you enable the change log, the SQL DELETE is not actually performed until the Apply Change
Logs activity is executed.

Properties The properties of the Record Delete activity are:

Apply Change Log activity

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in
the current pageflow. The Data Set
you specify must provide all of the
settings required to access the
database.

Instance Data Inbound Document
Name

Specifies a document that is used
as input to this activity. The location
of the document is specified by
means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path
location to another before the
activity is executed.

Copy After Copies data from one scoped path
location to another after the activity
is executed.

Design UI Design UI properties control the design-time appearance
of the activity. For more information, see “Setting object
display properties” on page 81.

Property Inspector tab Property name Description
42 exteNd Director Pageflow and Form Guide

Description The Apply Change Log activity applies all changes from the change log to the database.

When you run the Database Pageflow Wizard, you are given the option to store modifications in a change
log, as shown below:

If you indicate that you want to use a change log (as shown above), the wizard includes an Apply Change
Log activity in the generated flow:
Working with Activities 43

Properties The properties of the Apply Change Log activity are:

Rule activity

Description The Rule activity is a system activity that executes a business rule at runtime.

Properties The properties of the Rule activity are:

CheckPoint activity

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Data Set Specifies the name of a Data Set in the current
pageflow. The Data Set you specify must provide all
of the settings required to access the database.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Rule Rule ID Specifies the ID for the rule.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
44 exteNd Director Pageflow and Form Guide

Description The CheckPoint activity is a directive activity that allows you to specify the processing required to
refresh a page within a flow. The CheckPoint activity acts as a transaction marker, indicating the starting
point for processing required to rerender the page.

The CheckPoint activity is typically associated with a presentation activity (HTML, Form, or Portlet)
within a pageflow. When the user tries to reload the presentation activity, the engine tells the flow to go
back to the CheckPoint activity that precedes the presentation activity and continue from that point
forward.

Performance tip To enhance performance, you may not always want to include a CheckPoint activity
before a system activity that performs background processing required for a portlet to be rerendered. For
example, in a pageflow that invokes a Web Service, you might want to remove the CheckPoint activity
so that the Web Service is not executed whenever the user refreshes the page or takes an action on another
portlet within the page. If you know that the data associated with a page will not change frequently, then
the CheckPoint activity may not be required.

NOTE: An alternative to removing the CheckPoint activity is to use the portlet cache to minimize the
number of rerender operations associated with a pageflow.

For more information on using the portlet cache to improve performance in a pageflow, see
“Pageflow performance and portlet caching” on page 23.

Usage For example, suppose you have a pageflow that contains a Web Service activity and a Form activity that
display the results of the Web Service invocation. The Web Service gets a stock quote based on a ticker
symbol. Once the Web Service completes its processing, the Form activity displays the result. Whenever
the user reloads the page, the data must be refreshed. To accomplish this, you could create a flow that
looks like this:

Note the inclusion of the ManualQuoteRefresh link in this flow. This highlights the difference between a
rendering triggered by a request (represented by the ManualQuoteRefresh link) and one triggered by the
browser or Portlet container. Also note that the links SelectAnotherQuote and ViewAvailableStocks
target the GetStocksCheckPoint. A link directly to the QuoteSelection activity would not cause the
GetStocksCheckPoint and GetAvailableStocks activities to run.

In the example shown above, the same page is displayed for each rerender event, but with different data.
You might also use a CheckPoint activity in a flow where each rerender event causes a different page to
be displayed. For example, in Help mode you might want a flow to display a different help page each time
the user requests a reload:
Working with Activities 45

In this example, the links out of the helpCheckPoint activity are evaluated for each refresh to determine
which help page should be displayed.

A pageflow may have any number of CheckPoint activities, however, there can be only one CheckPoint
activity active at any point in time. At runtime, the CheckPoint activity performs these tasks:

1 Clears any previous CheckPoint activity registered with the process.

2 Registers itself with the process as the CheckPoint activity of record.

3 Sets a flag to indicate that it has just been executed and needs to be kept active.

4 Forwards processing on to any activities that are linked to it.

The logic that deals with how the engine reacts to the inclusion of a CheckPoint activity is built into the
presentation activities.

Properties The properties of the CheckPoint activity are:

Exception activity

Description The Exception activity is a directive activity that acts as the safety net for a pageflow. Its purpose is to
allow you to model how exceptions are handled within the flow. Each Exception activity is the starting
point for processing that handles one or more exceptions.

When you create a pageflow, you do not add explicit links that point to the Exception activities. Instead,
the links to the Exception activities are generated dynamically at runtime depending on which exception
occurred. When an Exception activity gets control at runtime, it simply forwards processing to any
activities that are linked to it. Once an Exception Activity has been called, control is not returned to the
flow.

Usage For example, suppose you define a pageflow that contains a Web Service activity. At runtime, it is
possible that the Web Service being invoked is not available. To deal with this, you might add an
Exception activity to the flow that traps java.rmi.ConnectException. In this case, the engine would
forward processing to this activity whenever this exception was encountered. The Exception activity
might then forward processing to an HTML activity that displays a meaningful message to the user:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
46 exteNd Director Pageflow and Form Guide

A pageflow may have any number of Exception activities defined for it. A given Exception activity is
associated with one or more exception classes. When you place an Exception activity on a flow, you
specify its exception string in the Exception property. You can specify a complete class name (for
example, java.lang,NullPointerException) or a partial name (for example, java.lang) to designate a set of
exceptions that this activity should handle.

When an exception is encountered, the pageflow engine tries to match the exception to an Exception
activity within the flow. You can instruct the engine to accept exact matches only for a particular
Exception activity by setting its Recursive property to false. However, if you set the Recursive
property to true, it will look for inexact matches as well, taking into consideration the package hierarchy
as well as the inheritance structure.

If a match is found, a dynamic link to the Exception activity is created and a number of scoped paths are
created to provide exception information to the custom exception handlers. These are the scoped paths
that are created:

If no match is found, or if the exception handler itself throws an exception, an EboProcessException is
generated and the exception is handled by the pageflow engine.

Example Suppose you added an Exception activity that has an exception string of java.lang and set the Recursive
property to true. In this case, suppose the java.lang.NullPointerException were thrown. This exception
would be resolved as follows:

1 The engine would compare java.lang.NullPointerException against the list of known exception
handlers within the flow and not find a match.

2 The engine would then drop the last segment of the qualified name and try again. This time it
would find a match with java.lang and dynamically link to the Exception activity for java.lang.

Suppose the java.security.GeneralSecurityException were thrown. Here’s how this exception would be
resolved:

Scoped path Description

Flow/exception/EXCEPTION Contains a String value that represents the value of the base
exceptions.

Flow/exception/STACK Contains the stack trace for the base exception.

Flow/exception/CLASS Contains the class name for the base exception.

Flow/exception/MESSAGE Contains the error message string for the base exception.
Working with Activities 47

1 The engine would compare java.security. GeneralSecurityException against the list of known
exception handlers within the flow and not find a match.

2 The engine would then drop the last segment of the qualified name and try again, still not finding a
match for java.security.

3 The engine would then drop the last segment of the qualified name and try again, still not finding a
match for java.

4 At this point, the engine would try to resolve the exception by looking at the superclass for
java.security.GeneralSecurityException, which is java.lang.exception. It would not find a match for
java.lang.exception.

5 The engine would drop the last segment of the qualified name and try again. This time, it would
find a match with java.lang and dynamically link to the Exception activity for java.lang.

The Exception activity provides you with a flexible architecture for handling exceptions with a flow. If
you want a particular Exception activity to catch a wide range of exceptions, you can specify an
exception string that has a partial class name and set the Recursive property to true. On the other hand, if
you want to exercise more control over what happens when a particular exception is thrown, you can
specify a complete class name for the exception string and set the Recursive property to false.

Properties The properties of the Exception activity are:

Java activity

Description The Java activity is a system activity that executes a Java class within the context of a pageflow. A Java
activity allows you to write custom business logic that executes automatically without user intervention.

The Java Activity Wizard helps you create a Java class that can be executed within a pageflow.

For information on using the Java Activity Wizard, see Chapter 10, “Java Activity Wizard”.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Exception Exception Specifies a complete class name (for example,
java.lang,NullPointerException) or a partial name (for
example, java.lang) to designate a set of exceptions
that this activity should handle.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
48 exteNd Director Pageflow and Form Guide

Properties The properties of the Java activity are:

XSL activity

Description The XSL activity is a system activity that uses XSL to transform an XML document.

Each XSL activity includes a property that specifies the XSL to use for the transformation. The activity
also specifies an Input Document and an Output Document. The Input Document specifies the XML
to transform. The Output Document specifies the document where the resulting transformation should be
placed.

Properties The properties of the XSL activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Class Name Class Name Specifies the name of the Java class to execute. The
package name must also be specified.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

XSL XSL Document Specifies a document that contains the XSL to use for
the transformation. The location of the document is
specified by means of a scoped path.

Input Document
Name

Specifies a document that is used as input to this
activity. This document contains the XML you want to
transform. The location of the document is specified
by means of a scoped path.

Output Document
Name

Specifies a document that contains output produced
by this activity. This document contains the result of
the XSL transformation. The location of the document
is specified by means of a scoped path.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.
Working with Activities 49

Web Service activity

Description The Web Service activity is a system activity that executes a Web Service.

The Web Service activity only provides support for document-style WSDL files that contain a schema.
However, you can create a pageflow that uses an RPC-style Web Service by using a Java activity.

For background information on Web Services, see the chapter on Web Service basics in Utility
Tools. For details on how to use an RPC-style Web Service in a pageflow, see Chapter 11, “Working with
RPC-Style Web Services”.

The quickest and easiest way to create a pageflow that executes a Web Service is to use the Web Service
Pageflow Wizard.

For details on using the Web Service Pageflow Wizard, see Chapter 8, “Web Service Pageflow
Wizard”.

Properties The properties of the Web Service activity are:

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Property Inspector tab Property name Description
50 exteNd Director Pageflow and Form Guide

new utoolsUnderstandingServices.html

Composer Service activity

Description The Composer Service activity is a system activity that executes an exteNd Composer service. exteNd
Composer services typically combine executable units of work called components and coordinate the
flow of data between them. A typical service might include a series of components that receive an input
XML document, perform sophisticated document mappings/transformations, collect information from
back-end data sources, execute transactions on mainframes and AS/400s, process error conditions, send
context-sensitive e-mail or JMS notifications, and/or return one or more XML response documents to the
original requestor(s). By breaking up a service's tasks into discrete components, important benefits—in
terms of testing, debugging, code maintenance, and code reuse—can be realized.

The quickest and easiest way to create a pageflow that executes an exteNd Composer service is to use the
Composer Pageflow Wizard.

Document Style Web Service Input
Document Path

Provides instance data for the request being made to
the service. The input document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Web Service Name The name of the service, as specified in the WSDL
file.

Web Service
Operation

The name of the operation, as specified in the WSDL
file.

Web Service
Output Parameter
(optional)

The node name of the element returned by the
service.

Web Service Port
Type

The port type for the service, as specified in the
WSDL file.

Web Service
Return Document
Path

Provides instance data for the response returned from
the service. The output document is specified by
means of a scoped path. Typically, the scope used for
the output document is Flow/document.

Web Service
WSDL Document
Path

Specifies the name of the WSDL file that describes
the Web Service.

TIP: Fill in this property first when you’re working in
the Pageflow Modeler. Once the property sheet has a
path to the WSDL file, it can automatically fill in many
of the other properties associated with the activity.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description
Working with Activities 51

For details on using the Composer Pageflow Wizard, see Chapter 9, “Composer Pageflow
Wizard”.

Properties The properties of the Composer Service activity are:

Finish activity

Description The Finish activity is a system activity that marks the end of a pageflow. The Finish activity is not
required in a pageflow unless it is being used within a another pageflow.

The Finish activity behaves differently depending on how the pageflow is being used:

In a standalone pageflow, the Finish activity does nothing. The Finish activity is optional within a
standalone pageflow.

When a pageflow is included within another pageflow, the Finish activity simply forwards
processing to the next activity within the containing pageflow. In this case, Finish is required so
that the pageflow engine knows when to return to the containing pageflow.

Properties The properties of the Finish activity are:

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.

Composer Service Input Document Provides instance data for the request being made to
the service. The input document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Service Indicates which exteNd Composer service to run by
specifying a service descriptor in the resource set

Output Document Provides instance data for the response returned from
the service. The output document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Copy Scoped Paths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
52 exteNd Director Pageflow and Form Guide

Workflow Return activity

Description The Workflow Return activity is a system activity that tells a pageflow to forward its workitem to a
workflow.

To use a pageflow in a workflow you:

Create a pageflow that lets a user update the persistent workitem that will be passed in from the
workflow. Use the Flow scope in the Pageflow Modeler to store the workitem data.

Add a Workflow Return activity at the point in the flow where you want to return to the workflow
and forward to the next workflow activity,

Add a Pageflow activity in the Workflow Modeler at the point where you want to include the
pageflow, and point to the pageflow descriptor. Use the Flow scope in the Workflow Modeler to
access the updated workitem.

For more information, see the section on using a pageflow in a workflow in the Workflow Guide.

The properties of the Workflow Return activity are:

Usage If you run a pageflow that contains a Workflow Return activity and there is no workflow queue to forward
(or the workflow engine is not running), the pageflow engine displays a message in the browser window:

The Workflow Return Activity cannot find a workflow to forward.

The user can click the Continue button to continue processing.

Property Inspector tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does

Automatically
Close Window

When selected, closes the client window after
returning to the workflow.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 81.
Working with Activities 53

wfDesign.html#Pageflowinaworkflow

54 exteNd Director Pageflow and Form Guide

4 Working with Links

This chapter introduces the links you can use in a pageflow process. It includes these topics:

About links

Simple link

Condition link

Button link

Smart linking

About links
The following types of explicit links are supported within a pageflow:

Simple links

Condition links

Button links

Pageflows also support smart linking. Unlike the other types of links, smart links are not actually drawn
on the pageflow diagram.

Links are mutually exclusive The links in a pageflow process are mutually exclusive. At runtime,
the pageflow engine will follow only one link out of a particular activity, even if more than one of the link
expressions might evaluate to true.

Links are evaluated in order of precedence When a particular activity is linked to more than one
activity, the pageflow engine uses precedence to determine which link to follow. Each link has a
precedence number associated with it. In cases where more than one link expression might evaluate to
true, the pageflow engine evaluates the links in precedence order, following the first link that returns true.

What happens when all link expressions return false You can mark a particular link as the
default path to follow out of a particular activity. When all the link expressions evaluate to false, the
pageflow engine follows the default link.

Simple link

A simple link represents a simple path from one activity to another. Simple links allow you to specify
expressions that evaluate to true or false. When the expression for a simple link evaluates to true, the link
is followed to the next activity. When the expression evaluates to false, the path is not followed.
Working with Links 55

Simple links provide an easy way to choose between multiple target activities. When an activity finishes
processing, you can use expressions on simple links to determine which activity should be executed next.
For example, you could use expressions on Link 2 and Link 3 in the following pageflow to determine
whether HTML 2 or HTML 3 would be displayed after HTML 1:

If you do not specify an expression for a simple link, the pageflow engine automatically moves to the
target activity when the source activity finishes. For example, you would not need an expression on Link
2 in this pageflow, since the HTML 1 activity has only one outgoing link:

A simple link has these properties:

HTML page with a simple link To initiate a simple link, an HTML page must have a submit button
that sets a request parameter to a value specified in the link expression.

For example, if the source activity were an HTML activity, the HTML source for this activity might have
a Next button that passes a value of next for the parameter named verb:

Property
Inspector tab Property name Description

Link Name A unique reference to this link that can be accessed in the flow.

Description A description of the link intended for the Pageflow Modeler user.

Copy Scoped
Paths

Use to copy scoped data to another scope. The scope gets copied
after the link is evaluated and before the target activity is executed.
The copy scope operation is performed only when the link
expression evaluates to true.

For details on using scoped paths, see the chapter on scoped
paths in Developing exteNd Director Applications.

Default Select to make this path the default. Use if you have multiple links
to or from an activity. The default is the path that is used if no other
path evaluates to true.

Expression Use to build a logical expression that evaluates to true or false. If
you do not build an expression, the path will evaluate to true and
the path will execute.

The expression for a simple link should check the value of a
request parameter passed by the source activity.

For details on specifying an expression, see “Creating link
expressions” on page 79.

Precedence Specify the order in which you want this link to be evaluated. Use if
you have multiple links to or from an activity.

Design UI Design UI properties control the design-time appearance of the link. For more
information, see “Setting object display properties” on page 81.
56 exteNd Director Pageflow and Form Guide

cdScopedPaths.html
cdScopedPaths.html

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">
<p>Enter your name

<input type="name" name="name">

<input type="submit" name="verb" value="next">
<input type="submit" name="verb" value="help">

</form>

The action for the form specifies the wsrp_rewrite token, an industry-standard token defined by the
WSRP specification:

action="wsrp_rewrite?wsrp-urlType=blockingAction/wsrp_rewrite"

NOTE: This version of exteNd Director does not provide full support for the WSRP protocol. However,
support for many WSRP features has been implemented. For example, the wsrp_rewrite token is required
in the action for a form.

Condition link

Like a simple link, a condition link represents a path from one activity to another. However, a condition
link does not have an expression directly associated with it. Instead, it executes a condition macro created
by using the Rule Editor. A condition macro executes a set of conditions that contain reusable business
logic.

Condition links evaluate to true or false. When a condition link evaluates to true, the link is followed to
the next activity. When it evaluates to false, the path is not followed.
Working with Links 57

A condition link has these properties:

Button link

A button link creates a dynamic submit button on a form. It is used in conjunction with Form activities
and must have a Form activity as its source:

At runtime, a navigation button is placed on the rendered form for each button link that comes out of the
Form activity.

The primary benefit of the button link is that it allows you to add navigation to forms dynamically.
Whenever you want to change the navigation paths from a form, you can simply add links to the
pageflow; you do not need to edit the XHTML form.

Button links specify expressions that evaluate to true or false. When the expression for a button link
evaluates to true, the link is followed to the next activity. When the expression evaluates to false, the path
is not followed.

Property
Inspector tab Property name Description

Condition Link Name A unique reference to this link that can be accessed in the
flow.

Description A description of the link intended for the Pageflow Modeler
user.

Copy Scoped
Paths

Use to copy scoped data to another scope. The scope gets
copied after the link is evaluated and before the target activity
is executed. The copy scope operation is performed only
when the link expression evaluates to true.

For details on using scoped paths, see the chapter on
scoped paths in Developing exteNd Director Applications.

Default Select to make this path the default. Use if you have multiple
links to or from an activity. The default is the path that is used
if no other path evaluates to true.

Condition macro ID The name of the condition macro XML descriptor, as specified
in the Rule Editor.

Precedence Specify the order in which you want this link to be evaluated.
Use if you have multiple links to or from an activity.

Design UI Design UI properties control the design-time appearance of the link. For more
information, see “Setting object display properties” on page 81.
58 exteNd Director Pageflow and Form Guide

cdScopedPaths.html

Flow Link Region control The button link does not work properly unless the XHTML form
associated with the Form activity has a Flow Link Region control. The form needs to have only one Flow
Link Region control. At runtime, this control is replaced with one or more submit buttons, depending on
the number of button links added to the flow. The engine adds a button to the form for each link that does
not already have a submit button associated with it.

Key parameter used to determine which button was pressed The pageflow engine uses a
special request parameter to determine which button the user pressed on the form. This key is called
novell_link_key and cannot be changed.

Button link expressions When you add a button link to a pageflow, the Pageflow Modeler
automatically defines an expression for a link. The expression checks to see whether the value of the
novell_link_key parameter passed on the HttpRequest object is equal to the name of this button link:

Request/param/novell_link_key (eq) Button Link 1 [string]

If the expression is true, then this link is followed. Ordinarily, you should not change the button link
expression or the name of the button link. If you edit the expression or the name, make sure the value used
in the expression matches the name for the button link. Otherwise, the link will not function properly at
runtime.

Button text At runtime, the engine uses the text specified for the Description property as the text for
the dynamically generated submit button.

A button link has these properties:

Property
Inspector tab Property name Description

Button Link Name A unique reference to this link that can be accessed in the flow.
Ordinarily, you should not change the name of the button link since
it is used in the expression for the link. If you edit the name, make
sure the value you specify matches the value used in the
expression. Otherwise, the link will not function properly at runtime.

Description A description of the link that is used as the text for the dynamically
generated button.

Copy Scoped
Paths

Use to copy scoped data to another scope. The scope gets copied
after the link is evaluated and before the target activity is executed.
The copy scope operation is performed only when the link
expression evaluates to true.

For details on using scoped paths, see the chapter on scoped
paths in Developing exteNd Director Applications.

Default Select to make this path the default. Use if you have multiple links to
or from an activity. The default is the path that is used if no other
path evaluates to true.

Expression Use to build a logical expression that evaluates to true or false.
When you add a button link to a flow, the expression is created for
you automatically. Ordinarily, you should not change the button link
expression. If you edit the expression, make sure the value used in
the expression matches the name for the button link. Otherwise, the
link will not function properly at runtime.

For details on specifying an expression, see “Creating link
expressions” on page 79.

Precedence Specify the order in which you want this link to be evaluated. Use if
you have multiple links to or from an activity.
Working with Links 59

cdScopedPaths.html
cdScopedPaths.html

Smart linking
You can use smart linking to reduce clutter in a pageflow diagram. Smart links do not actually appear on
the pageflow diagram. Instead, they are resolved dynamically at runtime. Smart linking is particularly
useful when many activities link to a common activity. For example, you might want to use smart linking
to allow all of the activities within a flow to link dynamically to a common Help page:

Smart linking applies to the entire pageflow process, not to individual activities within the process. When
smart linking is enabled, all of the activities within the flow can optionally use dynamic linking to access
common activities.

NOTE: The pageflow engine also generates dynamic links in the processing of the Exception and
CheckPoint activities. Whenever a pageflow includes these types of activities, dynamic linking is used
internally, regardless of whether Smart linking is enabled.

Process properties that affect smart linking Smart linking is controlled by the following
properties of the process object:

Activities reached through a dynamic link may or may not have outgoing links. In addition, these
activities may themselves spawn other dynamic links. In any case, the pageflow engine allows control to
return to any of the initiating activities. At runtime, the engine will first try to get a list of explicitly
defined links (links specified in the flow diagram) or dynamic links to traverse. If no explicit or dynamic
links are available from a particular activity, the engine will try to link back to the last activity executed.

Design UI Design UI properties control the design-time appearance of the link. For more
information, see “Setting object display properties” on page 81.

Property
Inspector tab Property name Description

Process Use Smartlinking Indicates whether smart linking is enabled or disabled for
the process. When smart linking is enabled, the pageflow
engine identifies the target activity for a smart link and
spawns a link from the current activity to the target
activity. The spawned link may be cached for later use.

Smartlink Verb A key that is used to identify the HTTP request parameter
whose value will be used to determine the target activity
for a dynamic link.

Property
Inspector tab Property name Description
60 exteNd Director Pageflow and Form Guide

HTML page with smart link To initiate a smart link, an HTML page must have a submit button that
sets the Smartlink Verb request parameter to the name of the activity that should be the target of the link.
Note that this is different from the technique used to initiate a simple link, where the value of the request
parameter passed must match a value specified in the link expression.

Here’s an example:

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">
<p>Enter your name

<input type="name" name="name">

<input type="submit" name="verb" value="next">
<input type="submit" name="verb" value="help">

</form>

The action for the form specifies the wsrp_rewrite token, an industry standard token defined by the
WSRP specification:

action="wsrp_rewrite?wsrp-urlType=blockingAction/wsrp_rewrite"

NOTE: This version of exteNd Director does not provide full support for the WSRP protocol. However,
support for many WSRP features has been implemented. For example, the wsrp_rewrite token is required
in the action for a form.

XHTML page with smart link An XHTML page might initiate a smart link in the following manner:

<xforms:submission
action="?verb=help"
id="help"
method="post"/>

When the form is rendered at runtime, the action attribute is marked up automatically, at which point it
looks like this:

<xforms:submission
action="wsrp_rewrite?wsrp-urlType=blockingAction&verb=help/wsrp_rewrite"
id="help"
method="post"/>

You can specify the fully marked-up syntax (as shown above), but this is not necessary, since the
complete syntax is generated automatically.
Working with Links 61

62 exteNd Director Pageflow and Form Guide

II Tools

Explains how to use the exteNd Director tools to build pageflows

• Chapter 5, “Pageflow Modeler”
• Chapter 6, “Form Designer”
• Chapter 7, “Database Pageflow Wizard”
• Chapter 8, “Web Service Pageflow Wizard”
• Chapter 9, “Composer Pageflow Wizard”
• Chapter 10, “Java Activity Wizard”
63

64 exteNd Director Pageflow and Form Guide

5 Pageflow Modeler

This chapter provides general information about how to create pageflow processes using the Pageflow
Modeler. It has these sections:

About the Pageflow Modeler

Starting the Modeler

About the Modeler window

Adding activities

Adding links

Using scoped paths

Creating link expressions

Validating a process

Adding and manipulating text labels

Setting object display properties

Using the layout features

Using the zoom features

Using the grid features

Using the Bird’s Eye View

Creating a resource view for a pageflow

Deleting a pageflow

About the Pageflow Modeler
The Pageflow Modeler allows you to create and save an XML document that can be executed by the
pageflow engine at runtime. This document can be called a pageflow process or a process definition.
Pageflow process refers to the graphical representation of the document; process definition more
precisely refers to the underlying XML descriptor.

Basic procedure

Creating a pageflow process is a three-step procedure:

1 Use the graphing environment of the Pageflow Modeler to lay out the logic of your process:

Add activities

Create links between activities

Add labels (optional)

2 Use the Property Inspector to configure Activity and Link properties that link the process to the
resources of your exteNd Director environment.

3 Save the process in your project resource set. The Pageflow Modeler translates it into the process
definition that the pageflow engine can execute.
Pageflow Modeler 65

Creating a view for a pageflow

You can create a custom view of all resource files that are associated with a pageflow. Once you’ve
created the view, you can use display it on the View tab.

exteNd Director allows you to export the contents of a view to a JAR. When you export resources from
a view, exteNd Director creates a JAR that contains all of the elements in the view, including the directory
structure—plus the XML file that defines the view from which the resources were exported. This JAR
can then be imported into another resource set.

For details on creating a view for a pageflow, see “Creating a resource view for a pageflow” on
page 85.

Starting the Modeler
To start the Pageflow Modeler, you create a new process or open an existing one.

To create a pageflow process:

1 With your project open in exteNd Director, select File>New.

2 Click the Portlet tab and select Pageflow:

3 Click OK.
66 exteNd Director Pageflow and Form Guide

The main window of the Pageflow Modeler opens in the editing area. The Mode activity is
automatically added to the process:

To save a pageflow process:

1 Select File>Save from the exteNd Director menu.

If the Pageflow Modeler detects any mistakes in the process, a popup message informs you and
asks if you would like to save anyway. This validation occurs on all save events. You can address
the warnings later.

2 Click Yes.

If this is your first save, the Save As dialog appears.

The contents of the pageflow-process folder display in your project resource set. Although you can
specify another directory, it is recommended that you accept the default.

3 Specify a file name and click Save.

To open a pageflow process:

1 Select File>Open from the exteNd Director menu.

2 Navigate to the pageflow-process folder in your project resource set.

3 Double-click to open.

Process properties

You can access the process property sheet to view current information about the process and set
properties.

To access process properties:

1 Do one of the following:

Click the Properties icon on the Modeler toolbar:

OR

With the cursor in the Modeler window, right-click and select Properties.
Pageflow Modeler 67

cdResourceSet.html

The Property Inspector displays the process properties:

2 Edit or view the process properties:

Property Description

Name The formal name of the process. The default is the name specified for the
process descriptor. If you need to name your processes according to some
naming convention, set it here.

Description A description of the process intended for the Pageflow Modeler user.

Use Smart
Linking

Indicates whether smart linking is enabled or disabled for the process. When
smart linking is enabled, the pageflow engine identifies the target activity for a
smart link and spawns a link from the current activity to the target activity. The
spawned link may be cached for later use.

Smartlink Verb A key that is used to identify the HTTP request parameter whose value will be
used to determine the target activity for a dynamic link.

Show
Precedence
Labels

Specifies whether precedence labels should be displayed in the pageflow
graph. When a particular activity is linked to more than one activity, the
pageflow engine uses precedence to determine which link to follow. Each link
has a precedence number associated with it. In cases where more than one
link expression might evaluate to true, the engine evaluates the links in
precedence order, following the first link that returns true.

Template Specifies whether this pageflow can be used as a template for the creation of
other pageflows.
68 exteNd Director Pageflow and Form Guide

About the Modeler window
TIP: To provide more screen space, you can close the Navigation and Output Panes in exteNd Director
by clicking the panel view selectors:

Main features

Here are the main features of the Pageflow Modeler:

Navigating, selecting, and moving objects

To navigate the window:

1 With the General tab selected, click the Pan button on the toolbar to change the cursor to pan
mode:

2 Drag the hand cursor on the graph area to scroll the graph in the editing area.

You can also use the horizontal and vertical scroll bars to achieve the same effect.
Pageflow Modeler 69

To select objects:

1 With the General tab selected, click the Select button on the toolbar.

NOTE: Select mode is the default.

2 Click any object to select it.

3 To select multiple objects, click empty space and drag the selection rectangle around the group.
You can also select more than one object by holding down the Ctrl key while clicking objects with
the mouse.

To move objects:

1 Select the objects.

2 Drag them to the desired location.

If you move an activity, any links associated with that activity move with it.

Adding activities
An activity represents a task in a pageflow. A pageflow activity can present an interface to the user or
perform background functions.

Pageflow activity types

Here is a summary of the activities in the Pageflow Modeler. For details about activity properties and
usage, click the appropriate item:

 Node
Toolbar
Icon Represents

Mode activity The starting point for a particular mode with a pageflow.

HTML activity A presentation activity that specifies HTML content to display at
runtime.

XML activity A presentation activity that specifies XML content. The XML
activity allows you to use portal styling to control the
presentation, which is particularly useful when you want to
perform transcoding for wireless applications.

Form activity A presentation activity that specifies an XHTML file to display at
runtime. The XHTML file defines a form for user interaction.

Pageflow activity Includes a separate pageflow within the current flow.

JSP activity A presentation activity that calls a JSP page.
70 exteNd Director Pageflow and Form Guide

Servlet activity A presentation activity that calls a servlet.

Initial Query activity Obtains the keys of all records from the database that match the
user’s search criteria.

Get Page activity Retrieves the summary data for a single page of records.

Get Record activity Retrieves the detail fields for a single record.

Record Insert
activity

Sends the data for the new record to the database by executing
a SQL INSERT statement.

Record Update
activity

Sends the updated data for one record to the database by
executing a SQL UPDATE statement.

Record Delete
activity

Deletes the records selected by the user by executing a SQL
DELETE statement.

Apply Change Log
activity

Applies all changes from the record cache to the database.

Rule activity A system activity that executes a business rule at runtime.

CheckPoint activity A directive activity that allows you to specify the processing
required to refresh a page within a flow. The CheckPoint activity
acts as a transaction marker, indicating the starting point for
processing required to rerender the page.

Exception activity A directive activity that acts as the safety net for a pageflow.
Each Exception activity is the starting point for processing that
handles one or more exceptions.

Java activity A system activity that executes a Java class within the context of
a pageflow.

XSL activity A system activity that uses XSL to transform an XML document.

 Node
Toolbar
Icon Represents
Pageflow Modeler 71

Using activities

To add an activity:

1 Click the Activities tab.

The activity toolbar displays:

2 Select an activity type.

See “Pageflow activity types” on page 70 for more information about the activity types.

3 Click anywhere on the graph to place the object.

To add a database activity:

1 Click the Database tab.

The activity tool bar displays:

2 Select an activity type.

See “Pageflow activity types” on page 70 for more information about the activity types.

3 Click anywhere on the graph to place the object.

To delete an activity:

1 Select the activity.

2 Press the Delete key or right-click and select Delete.

To access activity properties:

1 Select the activity.

2 Right-click and select Properties, or click the Eye icon on the General tab.

3 Click the appropriate tab in the property sheet.

Web Service activity A system activity that executes a Web Service.

Composer Service
activity

A system activity that executes a exteNd Composer service.

Finish activity A system activity that marks the end of a pageflow. The Finish
activity is not required in a pageflow unless it is being used
within another pageflow.

Workflow Return
activity

A system activity that tells a pageflow to forward its workitem to
a workflow.

 Node
Toolbar
Icon Represents
72 exteNd Director Pageflow and Form Guide

The properties are specific for the activity type. For more information, see “Pageflow activity
types” on page 70.

To open the source file for an activity:

1 Select the activity.

2 Click the General tab.

The General toolbar displays:

3 Click the Open Primary Editor icon on the toolbar.

The source file is displayed in an editor.

Adding links
A link is a single logical path from one activity to another activity. Links are represented by arrows in the
Pageflow Modeler.

Pageflow link types

Below is a summary of the activities in the Pageflow Modeler. For details about usage and setting link
properties, click on the appropriate item:

To create a link:

1 Click the Links tab.

The link toolbar displays:

2 Select a link type.

3 Click an activity and drag from the starting activity to the target activity, then release the mouse
button.

Link type
Toolbar
icon Represents

Simple link A logical path from one activity to one or more other activities. On the
link properties you specify the routing logic using the link expression
builder.

Condition link A logical path from one activity to one or more other activities. On the
link properties you specify a Condition Macro that you created using
the Rule Editor.

Button link Creates a dynamic submit button on a form. It is used in conjunction
with Form activities and must have a Form activity as its source. On
the link properties you specify a name and a description for link. When
you add a button link to a flow, the expression is created for you
automatically using the name you assigned to the link.
Pageflow Modeler 73

You can use link segments to enhance the legibility and appearance of the pageflow. For
more information on link segments, see “Drawing a link segment” on page 74.

To delete a link:

1 Select the link.

2 Press the Delete key or right-click and select Delete.

To access link properties:

1 Select the link.

2 Click the Eye icon on the General tab or right-click and select Properties.

3 Click the appropriate tab in the property sheet.

Properties are specific for the link type. For more information, see “Pageflow link types” on
page 73.

Drawing a link segment

A segment is the line between two points of a link. Segments are purely cosmetic. You can use them to
enhance the legibility and appearance of the pageflow. Here is a pageflow diagram that shows a link
(Link 2) with three segments:

To draw a segment:

1 Click any point on a link and drag in any direction.

The point you drag becomes the bend in the link.

2 Release the mouse button at the point you want to end the segment.

3 Click again and drag to add another segment.

4 For the final segment, drag to the destination activity and click it.

Using scoped paths
Scoped paths allow you to associate data with pageflow activities and links. exteNd Director provides a
set of predefined scoped paths that you can access using the scoped path dialogs and the Scoped Path
Navigator.

For background information about scoped paths, see the chapter on working with scoped paths in
Developing exteNd Director Applications.

This section describes how to:

Associate scoped paths directly with the primary property for an activity

Copy scoped paths before or after an activity or a link executes in the flow

View scoped paths used in a flow

Copy scoped paths to the clipboard

For information about scoped path usage with examples, see “Using scoped paths in a pageflow”
on page 21.
74 exteNd Director Pageflow and Form Guide

cdScopedPaths.html

Associating a scoped path with an activity

You can use a scoped path to associate an object with an activity. To do this, you specify a scoped path as
the value for the activity’s primary property. You can do this with any of the following types of activities:

Form activity

HTML activity

XML activity

Pageflow activity

JSP activity

Servlet activity

Web Service activity

Composer Service activity

XSL activity

Rule activity

Java activity

To associate a scoped path with an activity’s primary property:

1 Select the activity, then right-click and select Properties.

2 In the Property Inspector, click the tab that has the primary property. This tab typically has the same
name as the activity. For example: the HTML activity has an HTML tab where you can set the
primary property, and the Form activity has a Form tab.

3 Click the primary property for the selected activity. For details, see “Pageflow activity types” on
page 70.

The Choose The Scope dialog displays:

The dialog displays the default predefined path for this activity type.

4 Use one of these methods to specify the path:

Type the path in the text box.

This requires you to know the syntax for the scoped path. For more information, see the section
on predefined scoped paths in Developing exteNd Director Applications.

OR

Select any one of the paths already defined in this flow; these paths appear at the bottom of the
dropdown list below the dashes.

TIP: If you choose a current path that accesses the resource set, you can display the contents
of the file by clicking the icon next to the Browse button.

OR
Pageflow Modeler 75

cdScopedPaths.html#Predefinedscopes

Select one of the predefined scopes at the top of the dropdown and click Browse.

When you click Browse, the Scoped Path Navigator displays.

The Scoped Path Navigator is an interactive tool that allows you to specify the path using a tree
view (where applicable) and the XPath expression builder. The available options depend on the
scoped path you selected.

For more information on using the Scoped Path Navigator, see the section on using the
scoped paths in Developing exteNd Director Applications.

5 After you specify the path, click OK.

Editing a scope To edit an existing scoped path, repeat the procedure.

Copying scoped paths

With the exception of the Mode and Finish activities, you can copy scoped paths before or after the
execution of any activity, and copy scoped paths after the execution of a any link.

For design considerations that relate to copying scoped paths, see the section on copying scoped
paths in Developing exteNd Director Applications.

To copy a scoped path before or after an activity:

1 Select the activity, then right-click and select Properties.

2 In the Property Inspector, click the Copy Scoped Paths tab:

To copy the scoped path before execution, click the link Edit Scoped Paths under Copy
Before.

To copy the scoped path after execution, click the link Edit Scoped Paths under Copy After.
76 exteNd Director Pageflow and Form Guide

cdScopedPaths.html#UsingtheScopedPathandXPathNavigators
cdScopedPaths.html#UsingtheScopedPathandXPathNavigators
cdScopedPaths.html#Copyingscopedpaths
cdScopedPaths.html#Copyingscopedpaths

The appropriate Copy dialog (Copy Before or Copy After) displays:

3 Click the ellipsis for From scope.

The dialog displays the default predefined scope for this activity type. If you want to use another
scope, select it from the dropdown list.

4 To specify the path, use one of the methods described in Step 3 in the preceding procedure (“To
associate a scoped path with an activity’s primary property:” on page 75).

5 Click the ellipsis for To scope. Repeat the procedure for specifying the From scope.

6 Click Add and then OK to exit the Copy Scope dialog.

To edit a scope To edit an existing scope, repeat the procedure—but click Update instead of Add.

To copy a scoped path after the execution of a link:

1 Select the link, then right-click and select Properties.

2 In the Property Inspector, click the link Edit Scoped Paths under Copy Scoped Paths.

The Copy Scoped Paths dialog displays:

3 Click the ellipsis for From scope

The dialog displays the default predefined scope for this activity type. If you want to use another
scope, select it from the dropdown list.

4 To specify the path, use one of the methods described in Step 3 in the preceding procedure (“To
associate a scoped path with an activity’s primary property:” on page 75).

5 Click the ellipsis for To scope. Repeat the procedure for specifying the From scope.

6 Click Add and OK to exit the Copy Scope dialog.

7 On the Copy Scope dialog click Add and OK to exit the Copy Scope dialog.

To edit a scope To edit an existing scope, repeat the procedure—but click Update instead of Add.
Pageflow Modeler 77

Accessing scoped paths

You can view all of the current paths used for a selected object in the flow or for all objects in the flow.

To access current scoped paths for an activity or link:

1 Select the object.

2 Right-click and choose Scoped paths.

The Available Scoped Paths dialog displays.

To access all current paths in the flow:

1 From the Pageflow menu

Select View Scoped Paths.

OR

With no objects selected, right-click and choose Scoped paths.

The Available Scoped Paths dialog displays.

2 Click a scoped path. Notice that the objects that use it are highlighted:

Copying a scoped path to the clipboard

From the Available Scoped Paths dialog you can copy a selected path to the clipboard and paste it
wherever you want.

To copy a scoped path to the clipboard:

1 Access the scoped paths using one of the methods described in the preceding section.

2 Select the path you want to copy.

3 Double-click the path, or click Copy to Clipboard at the bottom of the dialog.

4 Go to where you want to copy the path and press Ctrl+V.
78 exteNd Director Pageflow and Form Guide

Creating link expressions
Link expressions let you use runtime values to choose between multiple target activities. When an
activity finishes processing, you can use expressions to determine which activity should be executed
next. The expression builder allows you to test runtime values in simple or compound expressions that
evaluate to true or false. Expressions apply to simple links and button links only.

For more information on simple links, see “Simple link” on page 55. For more information on
button links, see “Button link” on page 58.

To specify a link expression:

1 Select a simple link or a button link, right-click, and select Properties.

2 In the Property Inspector, select Edit Expression.

The Expression dialog displays:

3 Click ... to access a scope.

4 To specify the path, use one of the methods described in Step 4 in the procedure “To associate a
scoped path with an activity’s primary property:” on page 75.

5 In the Value field, specify the value to test against the scoped data.

6 Select the operator from the data operator dropdown list.

7 Select the data type (which must match the scoped data) in the data type dropdown.

For Boolean, you must enter true or false.

For Timestamp, use this format:
MM/DD/YYY < optional: HH:MM:SS>

The expression builder validates your entry.

8 Click Add.

This adds the expression to the text area at the bottom.

9 To add additional clauses to the expression, select the appropriate item from the logical operator
dropdown, complete the clause, and click Add. Add as many clauses as you need.

NOTE: To negate the current expression, enable the Not check box.

10 To edit or delete an expression, click Update or Delete.

11 Click OK when you’re done.
Pageflow Modeler 79

Validating a process
You can validate a process at design time whenever you choose. The modeler analyzes the process
structure and displays any errors encountered. Note that the validation applies to the design-time process
structure only.

To validate a process:

Select Validate Process from the Pageflow menu.

OR

With or without any objects selected, right-click and select Validate Process.

Adding and manipulating text labels
Labels are separate objects in the graphing environment and have their own property sheets. Labels have
two forms:

Floating labels

Attached labels

Floating labels

Floating labels are simply text you place on your pageflow graph and have no association with another
pageflow graph object. Titles, version numbers, notes, and legends are all good uses for floating labels.

To create a floating label:

1 From the Pageflow Modeler toolbar, select the Text Block button:

2 Click the location on the graph where you want the label to appear.

The label appears as a box with the text Untitled inside.

3 From the toolbar, select the arrow button.

4 Double-click inside the new label and edit the text.

5 Click outside the label to save your changes.

Attached labels

Most labels are associated with an activity or link and are called attached labels. By default, activities and
links start with a label.

To edit an attached label:

1 Right-click an activity icon or link.

2 From the popup menu, select Create Label.

A label appears directly below the activity or link.

3 Double-click inside the label and edit the text.

4 Click outside the label to save your changes.
80 exteNd Director Pageflow and Form Guide

An activity or link can have many labels. You can reposition the attached label by dragging it to a new
location. Note the line that appears as you drag. This line indicates the activity or link the label is attached
to.

To format any label:

1 Right-click the label and select Properties.

The Property Inspector displays showing the current formatting properties.

2 Make your changes. Properties are described in “Setting object display properties” on page 81.

Changes are saved as you make them.

To delete a label:

1 Select the label.

2 Press the Delete key.

Setting object display properties
Each activity, link, and label has a set of properties associated with it. Select and right-click an element,
and the properties of the element are displayed in the Property Inspector. The table below describes the
graphical properties found on some or all of the elements:

Graphical
properties Description

Arrowhead Height Customize the height (thickness) of the arrowhead for the selected links.

Arrowhead Width Customize the width (length) of the arrowhead for the selected links.

Border Color The color of the square outlining the activity. Click the color bar to display a
standard color selection dialog.

Color The background color of the activity. Click the color bar to display a standard
color selection dialog.

Font Click the data area to bring up a standard text formatting dialog.

Height (Read-only) Height of the activity in pixels. You can enlarge or shrink the activity
by dragging its handles.

Margin Height For labels, the amount of space on the top and bottom between the text and the
bounding box.

Margin Width For labels, the amount of space on the left and right sides between the text and
the bounding box.

Show Border When enabled, displays a square outline around the activity, even when the
background color is set to transparent.

Style Choose a solid line or one of several dashed patterns from the dropdown list.
Your choice affects only the currently selected link destination. To change
several destinations at once, hold down the Shift key and then click each one.
Select a style from the Property Inspector.

Text color The font color of the label. Click the color bar to display a standard color
selection dialog.

Transparent Overrides the color setting and makes the activity background transparent.

Width (Read-only) Width of the activity in pixels. You can enlarge or shrink the activity
by dragging its handles.
Pageflow Modeler 81

Using the layout features
The layout is the arrangement of the activities, links, and labels in your graph. The Pageflow Modeler has
a sophisticated layout feature that can completely rearrange your graph to maximize readability and
minimize space.

You can specify whether you want the new arrangement to have a horizontal or vertical orientation and
whether you want link links drawn as diagonal lines or composed of perpendicular segments.

There are two kinds of layout: full layout and incremental layout.

Full layout

Full layout gives the Pageflow Modeler great freedom to move activities, links, and labels around the
graph.

For example, this figure displays a hand-arranged layout:

This figure shows the result of applying a full layout to the hand-arranged layout:

X Center When the pageflow process is first created, the origin (0, 0) is the bottom-left
corner of the graph. The graph automatically resizes in all directions as you
create and drag items around. When this happens, the origin does not reset
itself to the new bottom-left corner; it remains fixed.

A positive value is the number of pixels above the origin the vertical center of the
icon is currently located. A negative value indicates a position below the origin.

Enter a new value to have the Pageflow Modeler automatically move the activity
to the vertical position specified.

Y Center When the pageflow process is first created, the origin (0, 0) is the bottom-left
corner of the graph. The graph automatically resizes in all directions as you
create and drag items around. When this happens, the origin does not reset
itself to the new bottom-left corner; it remains fixed.

A positive value is the number of pixels to the right of the origin the horizontal
center of the icon is currently located. A negative value indicates a position to
the left of the origin.

Enter a new value to have the Pageflow Modeler automatically move the activity
to the horizontal position specified.

Graphical
properties Description
82 exteNd Director Pageflow and Form Guide

To apply a full layout:

Choose Pageflow>Full Layout from the exteNd Director menu:

OR

Press Ctrl+Shift+L.

Incremental layout

Incremental layout tries to make a graph more attractive and organized but also tries to keep the basic
design of your hand-arranged layout.

This figure shows the result of applying an incremental layout to the hand-arranged layout shown above:

TIP: Try a layout on your graph. Select Edit>Undo to back out of a layout you don’t want.

To apply an incremental layout:

Choose Pageflow>Incremental Layout from the development environment menu.

OR

Press Ctrl+Shift+M.

Setting preferences

You can set layout preferences for a pageflow graph. These preferences let you specify whether you want
the new arrangement to have a horizontal or vertical orientation and whether you want link links drawn
as diagonal lines or composed of perpendicular segments.

To set layout preferences:

1 Choose Pageflow>Layout Settings from the development environment menu.

2 Select an orientation.

3 Select a link style.

4 Click OK.
Pageflow Modeler 83

Using the zoom features
The Pageflow Modeler gives you four ways to zoom:

Using the grid features
The Pageflow Modeler includes a drawing grid that works much like the grid in any graphics program:

When the grid is visible, the corners of activity and label objects stick to the intersections of
horizontal and vertical grid lines. This makes it much easier to line up objects and use consisting
spacing.

When the grid is invisible, objects can be positioned without constraint in one-pixel increments.

Turning the grid on does not reposition existing items to align with the grid.

To turn the grid on or off:

Choose Pageflow>Toggle Grid from the exteNd Director menu.

OR

Click the Grid button from the Pageflow Modeler toolbar:

OR

Press Ctrl+Shift+G.

To change the spacing of grid lines (grid size):

1 Choose Pageflow>Grid Size from the exteNd Director menu.

The Grid Size dialog displays:

2 Enter a value in pixels from 7.5 to 1000.

The default is 10.

3 Click OK.

Zoom type Toolbar icon Description

Standard
zoom

Allows you to pick from a list of common zoom percents

Marquee
zoom

Allows you to drag and select a portion of the graph area to be
zoomed to fill the graph window

Interactive
zoom

Allows you to zoom up or down by dragging up or down on the
graph

Fit in window Allows you to zoom the graph window to show all the activities in
the graph. To do this, it shrinks or enlarges the content of the
current document to fit in the graph window.
84 exteNd Director Pageflow and Form Guide

Using the Bird’s Eye View
The Bird’s Eye View is a popup window that gives you a view of the entire pageflow graph to help you
find your way around in a large graph. The Bird’s Eye View window:

Appears when you click the Bird’s Eye View button on the Pageflow Modeler toolbar:

Stays on top as you work in the graph area

Is dismissed by clicking the X button in the upper-right corner

Can be resized by dragging the corners

Indicates the area visible in the graph window with a blue outline box

You can use the blue outline box of the Bird’s Eye View window to do several useful things:

Creating a resource view for a pageflow
You can create a custom view of all resource files that are associated with a pageflow. Once you’ve
created the view, you can display it on the View tab.

exteNd Director allows you to export the contents of a view to a JAR. When you export resources from
a view, exteNd Director creates a JAR that contains all of the elements in the view, including the directory
structure—plus the XML file that defines the view from which the resources were exported. This JAR
can then be imported into another resource set.

TIP: To get to the View tab, you need to first click the Resources tab in the exteNd Director Navigation
Pane.

For more information on views, see the chapter on working with views in Developing exteNd
Director Applications.

To create a resource view for a pageflow process:

Choose Pageflow>Create Resource View from the exteNd Director menu.

The view created has the same name as the pageflow process descriptor. The view definition is
stored as an XML document in the my-views folder within the resource set.

Doing this Has this effect

Clicking outside the
outline box

Centers the outline box on the point clicked and pans the graph area to
correspond to the new location of the outline box

Dragging outside the
outline box

Draws the outline box in the new location and pans the graph area to
correspond to the new location of the outline box

Dragging inside the
outline box

Pans the outline box and pans the graph area to correspond to the new
location of the outline box

Dragging a corner of the
outline box

Resizes the outline box and zooms the graph area to correspond to the
new size of the outline box
Pageflow Modeler 85

new cdMyViews.html

Deleting a pageflow
To remove a pageflow, you need to delete the pageflow process descriptor file. When you delete the
descriptor file, any files referenced by the pageflow (such as Java source files, HTML files, XML files,
and other resources) are not removed. Therefore, if you want to remove these files, you need to delete
them by hand.

When you create a pageflow, the Pageflow Modeler saves a portlet fragment deployment descriptor in
the resource set. When you delete a pageflow, you need to delete this descriptor and unregister the portlet
as well.

For more information about deleting portlets, see the section on deleting portlets in the Portal
Guide.
86 exteNd Director Pageflow and Form Guide

new pgCustomPortlets.html#Deletingportletsfromportalapplications

6 Form Designer

This chapter introduces the Novell exteNd Director Form Designer and describes how to use it to create
and modify XForms 1.0-compliant Web forms. It includes these sections:

About XForms

About the Form Designer

Starting and stopping the Form Designer

Creating forms

Defining the presentation

Working with model elements

Working with events and actions

Testing forms

About XForms
XForms provide a robust, standards-based way to define Web forms. The advantages of the XForms
standard include:

Separate data, logic, and presentation modules

A powerful event model (so that you don’t have to use a lot of scripting for client-side validation or
calculations)

A way to process XML data

XForms cannot run as standalone applications. They are designed to run as components within a host
language like XHTML. In Novell’s implementation, they run within the context of a pageflow
application.

About the Form Designer
The Form Designer provides a graphical environment for developing XForms 1.0-compliant Web forms.

The Form Designer is divided into these tabs:

Tab Description

Form Lets you define the form’s user interface. You can graphically:

Lay out and style form controls

Bind form controls to data

Define events and actions for form controls

For more information, see “Defining the presentation” on page 94.
Form Designer 87

Starting and stopping the Form Designer
To start the Form Designer, you:

Open an existing form (see To open an existing form: next)

OR

Create a new form (see “Creating forms” on page 88)

To open an existing form:

1 Select File>Open.

2 Navigate to the location of the existing form (usually in the project’s \data\form directory).

3 Click the form file and choose Open. (Optionally, you can double-click the form.)

Creating forms
You use the Form Wizard to create either an initial unbound form or a data-bound form based on:

Schema

Sample XML data (instance data)

Other strategies To create a complete pageflow including input and output forms from any other
source, you’ll launch a different wizard. For more information on launching other wizards that generate
XForms within the scope of a pageflow application, see Chapter 7, “Database Pageflow Wizard”,
Chapter 8, “Web Service Pageflow Wizard”, and Chapter 9, “Composer Pageflow Wizard”.

To create a form using the Form Wizard:

1 Open an exteNd Director project.

TIP: You can’t start the Form Wizard unless you have a project that contains a resource set open.

2 Select File>New.

3 On the Portlet tab, choose Form and click OK. (Alternatively, you can double-click Form.)

The first panel of the Form Wizard displays:

Model Lets you define the form’s model elements. You can:

Create and edit models

Create and edit instance data

Set up data constraints

For more information, see “Working with model elements” on page 109.

Source Launches a powerful XML source editor.

For more information on working using the XML Editor, see the chapter on
the XML Editor in Utility Tools.

XForms Preview Lets you run a form in test mode.

For more information, see “Testing forms” on page 130.

Tab Description
88 exteNd Director Pageflow and Form Guide

utoolsXMLEditor.html

4 Specify the following options:

5 Click Next to proceed.

The following wizard panel displays:

.

Option What to do

Form name Specify a name for the form. You don’t need to specify any extension.

Use CSS
layout

Check this box when you want the wizard to use absolute positioning to layout
the controls on the form, otherwise, uncheck this box.

If you choose not to use CSS layout, absolute positioning is not available.

For more information about how the wizard uses CSS layout, see “About
the wizard-generated forms” on page 91.

Standard
portlet CSS
classes

Check this box when you want the wizard to use the WSRP CSS classes for
fonts and colors. (The defaults are defined in the wsrp-classifications.xml file
located in the Common\Resources\CSSClassifications directory).

When checked, these classes are used in combination with the portal theme
files at runtime for styling the page.

Uncheck this box if you want to define your own colors and fonts.
Form Designer 89

6 Specify one of the following file types for your initial instance data:

If you chose Schema, you are prompted to specify the root of the instance data defined by this
schema on the next pane:

6a Choose the root from the list supplied in the dropdown list.

6b Click Next.

7 Click Next.

The following wizard panel displays:

8 Specify the following options:

Option What to do

Schema Choose this option if you want the wizard to generate controls that are bound
to the instance data nodes created from the elements of an existing schema.

The schema type of each instance data node is automatically specified.

Sample XML
data

Choose this option if you want the wizard to generate controls that are bound
to instance data nodes.

If you want to specify formatting for the displayed data values, you will have to
add schema type information manually.

No initial
instance data

Choose this option to create XForms with no data-bound controls.

Specify a file Specify the name and location of the file containing the schema or the sample
XML data:

Browse—Choose this option when the file is located on disk.

Resource Set—Choose this option when the file is located in a resource set
within the currently open project.

Option What to do

Specify the number of columns for this
page

Specify how many columns of controls the wizard
should generate.

Specify how to align the labels relative to
the controls

Specify how the labels and the controls should be
aligned.

Specify the width for each column Specify the width and unit for each column.

The wizard converts the units to pixels.
90 exteNd Director Pageflow and Form Guide

9 Click Finish.

10 When the wizard reports that it has finished creating the form, click OK.

What happens When you click Finish, the Form Wizard generates an XHTML file including all of the
markup necessary to:

Build the form’s model and instance elements

Generate and bind default controls for each node of instance data

Generate a single absolute positioning region containing default controls (and labels) for each
component of the instance data

If the instance data contains repetitive, homogeneous child elements (indicating repeated data),
the wizard generates a repeat block containing default controls

Lay out the controls based on user input (such as the number of columns and how the label should
appear)

About the wizard-generated forms

The generated forms are XForms 1.0-compliant. They reside in an XHTML file. Each form generated by
the wizard has the following:

XML namespace declarations

XForms model element

XForms:action elements

<style> element

XML namespace declarations

XML namespace declarations are located at the top of the file and have this format:

xmlns:xforms="http://www.w3.org/2002/xforms"

XML namespaces identify the XML language an element belongs to—and how to process them. Some
example prefixes include:

What you do You are not required to change the wizard-added namespaces. You may have to add new
namespace declarations depending on your application.

Specify the font size that will be used in
the browser

Specify the font size and units to be used.

Specify the gap between rows Specify the amount of space (in pixels) between rows.

Specify the vertical gap between the
label and its control

Specify the amount of space (in pixels) between the
label and control.

xmlns prefix Description

xforms Treated as XForms language elements

ev Treated as XML event language elements

Option What to do
Form Designer 91

XForms model element

The XForms model element is located within the <head> of the XHTML document. The model element
defines the:

Structure of the data displayed to or entered by the user

Structure of the data to submit

Data for initializing form controls

Rules for validating user data

In the wizard-generated model element you’ll see an id attribute with a name that includes
_wsrp_rewrite_—like this:

<xforms:model
id="model1_wsrp_rewrite_">

A model ID is not required (unless there are multiple models); however, the Form Wizard always
generates a model ID. The wizard-generated model ID always includes the wsrp_rewrite token. At
runtime the wsrp_rewrite token is replaced with a unique name. This allows the runtime environment to
manage multiple forms and models running within a single page.

What you do You’ll use the Model tab to define instance data, submission elements, and model item
properties. The runtime environment will manage the replacement of the wsrp_rewrite token.

XForms:action elements

Within the model element, you’ll see two predefined XForms <action> elements containing two XForms
event handlers. They are default handlers for submit and data validation errors.

They provide user feedback when an error occurs on submission. They are intended to ensure that there
are no silent failures for your form. They look like this:

<xforms:action ev:event="xforms-invalid" ev:observer="div_wsrp_rewrite_">
<xforms:message level="modal">The data is invalid. Please check it and try
again.</xforms:message>
</xforms:action>

<xforms:action ev:event="xforms-submit-error">
<xforms:message level="modal">Submission error. Please check the

data and try again.</xforms:message>
</xforms:action>

What you do No action is required, but you can modify them or remove them if you do not want your
form to include this functionality.

<style> element

The <style> element contains the CSS definitions for the form and controls.

If you choose to use CSS layout (when generating the form), the styling information for the generated
page is contained in CSS styling rules located in a <style> element within the <head> of the XHTML file.
You can also store the CSS style rules in an external file referenced from the XHTML file through a link.

NOTE: If you specified not to use CSS styling (when generating the form via the wizard), the generated
form will not contain a style node.
92 exteNd Director Pageflow and Form Guide

The following applies to all XForms controls on a form:

What you do You can modify the default CSS styling rules by:

Creating your own style sheets and attaching them to the form

Adding to or modifying the class styles already defined

For more information, see “Using the CSS Style Manager” on page 102.

Each control... Details

Resides in a layout
region

A layout region is a container for the XForms controls on an XHTML page. It
allows you to position controls more precisely.

All layout regions must have the same width. The layout region is defined
by a single selector on the form. The selector is:

nv-block-width_wsrp_rewrite_

Each layout region has an individual rule to define height.

Is assigned a class
attribute beginning
with .nvP followed by
a number

The numbers are assigned sequentially.

Each control name also contains the token _wsrp_rewrite_ . The token is
replaced at runtime and is used to ensure uniqueness of control names
when more than one form resides in a single page.

Is styled according to
the CSS box model
and the CSS pseudo
element :: value

There are three types of controls—

Controls with no label, like <repeat>

Controls with an integral label, like <trigger>

Controls whose labels can be positioned separately from the text field, like
<input>

Controls with an integral label are given one selector. For example:

.nvP4_wsrp_rewrite_ {
position : absolute;
left : 10px;
top : 91px;
width : 67px;
height : 25px;

Controls with separate labels are given three selectors. For example:

One for a wrapper:

.nvP1_wsrp_rewrite_ {
display : block;

}

One for the control’s label:

.nvP1_wsrp_rewrite_ xforms|label {
display : block;
position : absolute;
left : 10px;
top : 1px;
width : 73px;
height : 20px;

}

One for the data area of the control:

.nvP1_wsrp_rewrite_::value {
display : block;
position : absolute;
left : 88px;
top : 1px;
width : 88px;
height : 20px;
Form Designer 93

Saving forms

To save a form:

Click the Save icon from the toolbar.

OR

Choose File>Save.

Defining the presentation
The Form tab provides the tools to define the user interface. This section describes how to use the Form
tab. It includes these topics:

About the Form tab

About form controls

Shortcut keys

About form controls

Manipulating controls

Applying styles to controls

Working with layout regions

Working with model elements

About the Form tab

The Form tab provides a graphical way to create and manipulate the form controls that make up the user
interface. The Form tab looks like this:
94 exteNd Director Pageflow and Form Guide

The Form tab provides:

Form tab limitations

Only the form controls in layout regions on the page are editable. You cannot use the Visual Editor to edit
the XHTML on the page. The XHTML tags are not expanded to display their content—only the tags are
displayed. You cannot insert a form control into an XHTML tag.

Shortcut keys

You can use the following shortcut keys in the Visual Editor:

Tool Description

Visual Editor Use the Visual Editor to graphically create and manipulate the controls. The
editor includes a tabbed toolbar that includes:

XForms toolbar—the set of controls and blocks that you can drop on your
form.

Align/Distribute toolbar—allows you to change the way selected controls are
aligned (left/right) or distributed (vertically/horizontally).

Instance Data Pane Use the Instance Data Pane to bind instance nodes to form controls.

You cannot use the Instance Data Pane (in the Form tab) to modify the
structure of the instance data. Use the Instance Data Pane in the Model tab for
those types of functions.

Property Inspector Use the Property Inspector to manipulate the CSS and data binding properties
on the currently selected control.

For more information on using the Property Inspector, see “Setting form
control properties” on page 104.

Event Editor Use the Event Editor to define the events and actions for controls on the form.

For more information, see “Working with model elements” on page 109.

Keystroke Description

Ctrl-X Cut

Ctrl-C Copy

Ctrl-V Paste

Delete Delete

Arrow keys (left, right, up, down) Moves the selected object 5 pixels in the
corresponding direction

Ctrl-arrow key (for example, Ctrl-right arrow) Moves the selected objects 1 pixel in the
corresponding direction

Shift-arrow key (for example, Shift-right arrow) Stretches the selected object 5 pixels in the
corresponding direction

Ctrl-Shift-arrow key (for example, Ctrl-Shift-right
arrow)

Stretches the selected objects 1 pixel in the
corresponding direction
Form Designer 95

About form controls

The Form Designer supports all of the XForms controls outlined in the XForms 1.0 specification and
several other controls used by the Form Designer to control formatting. The controls include:

Icon Control Description

XForms trigger
control

A standard XForms trigger control. For example, a button on a form.

Allows user-triggered actions.

XForms trigger
styled as a link

A standard XForms trigger control preconfigured to emulate a link. CSS
rules are applied to make the trigger look like a link not a button.

This means that:

The trigger contains an <xforms:action> event handler that listens for
the DOMActivate event (button press).

The action element contains an <xforms:load> element that loads a new
page via an HTTP GET operation. Use the control’s property sheet to
specify the URL to use for the GET.

See also Emulate link, Style as link, Request type, Target URL,
Submission in the section on “Setting form control properties” on
page 104.

XForms output Displays read-only data to the user.

This control supports the format property which allows you to specify
formatting for certain data types. You apply the formatting in the Property
Inspector .

XForms text
area

Allows users to enter freeform, multiline content.

XForms
upload control

Allows users to upload a file from the local file system.

IMPORTANT: The instance node to which the upload control is bound
must be defined as a schema type of base64Binary or you will encounter
inconsistent behavior at runtime. For example:

<lastname xsi:type=”xsd:base64Binary”/>

XForms input Allows users to enter single-line freeform data.

This control supports the format property which allows you to specify
formatting for certain data types. You apply the formatting in the Property
Inspector .

For more information, see “Format” on page 105.

XForms range Allows users to select from a sequential range of values.

XForms secret Allows users to enter single-line freeform data. The characters are
disguised during data entry. Useful for things like passwords.

XForms Select
One

Allows users to select a single item from a set of choices.

XForms Select
Many

Allows users to make more than one selection from a set of choices.

XForms submit
button

A special form of trigger that allows users to submit the contents of the
form.

XHTML image Displays an XHTML image loaded from the project’s resource set. Visible
in the Form tab, and View form in browser modes.
96 exteNd Director Pageflow and Form Guide

For more information on the properties that you can specify for the controls, see “Setting form
control properties” on page 104.

Manipulating controls

After you generate an initial form using the Form Wizard, you can refine it by adding or moving controls.
You can use the Form tab for:

Adding and removing controls

Moving controls

Sizing controls

Aligning controls

Grouping and ungrouping controls

Binding controls to data

HTML content
box

Read-only display of static HTML content.

Absolute
positioning
region

exteNd Director extension. Used for managing layout.

XForms repeat Use to display collections of homogeneous data.

To manage the repeated elements, add a repeat block to the form, then
add the controls representing a single instance of the repeated data within
the repeat block.

At runtime the processor renders the repeat block once for each data
element that the repeat control is bound to. Each instance of the repeated
data is processed as a block. Each block is placed below the preceding
block. All of the remaining, nonrepetitive content is placed below that.

You cannot directly position nonrepeated objects :

Below the repeated elements within the repeat block

To the right of the repeated elements within the repeat block

XForms switch Use to perform conditional processing of controls on the form.

The switch element allows any number of case elements as children. Each
case represents a subform, exactly one of which is rendered at any time by
the runtime processor. The case rendered is determined by an action in an
event handler not based on the result of a calculation.

The Form Designer represents switch elements as a layout region for each
case element.

You cannot specify the order of the case statements within a switch
block—but that is not necessary, since only one will be displayed at a time.
The event handler determines how cases are displayed in response to the
events that you specify.

Pageflow link
region

exteNd Director extension.

At runtime this control is replaced with one or more submit buttons.

For more information, see “Button link” on page 58.

Icon Control Description
Form Designer 97

Adding and removing controls

Adding controls

To add unbound controls from XForms toolbar:

1 Click on the control type in the toolbar.

2 Click within the layout area to place the upper-left corner of the control on the form.

To add unbound controls from the Form Designer menu:

1 Select Form Designer>Insert.

2 Select the control from the popup menu.

3 Click within the layout area to place the upper-left corner of the control on the form.

Removing controls

You cannot remove a control without also removing its label.

To remove a control:

1 Click the control.

2 Press the Delete key.

OR

3 Select Edit>Cut.

Moving controls

To move a control:

1 Click the control.

2 Drag it (or use the arrow keys to move it) to the new location.

To move more than one control:

1 Select the controls to move by:

Click one control, then press the Ctrl key and click any other control(s).

OR

Click and drag a box around the controls you wish to select—any controls within the box are
selected.

2 Drag the set of controls to the new location.

Sizing controls

By default, a control’s width and height are unspecified so that they can automatically adjust to their
content. You can specify an exact width and height in the two ways described below

NOTE: When you define the width and height, the contents of the control wrap to to accommodate the
specified size. The runtime results are not guaranteed.

To size a form control graphically:

1 Click the control so that the handles are visible.

2 Size the control by:

Selecting a handle and dragging it to the desired sized.

OR
98 exteNd Director Pageflow and Form Guide

Selecting a handle and using the arrow keys (Shift-arrow key).

To size a form control using the Property Inspector:

1 Select the control.

2 Open the Property Inspector and specify the width and height for the control.

Aligning controls

You can align controls within a layout, repeat, or switch block.

To align controls:

1 Select the control to use as a reference, plus the additional controls that you want to align with it.

2 Choose the alignment you want (from the Align toolbar) to apply to the selected objects.

OR

3 Choose Form Designer>Align Distribute selected objects.

Grouping and ungrouping controls

You may want to create groups of controls, because a group can:

Provide a hint to the client side XForms renderer, so that related controls can appear together on
limited capability devices, such as cell phones and PDAs.

Simplify the XPath expressions within a group by establishing a context for the controls in the
group.

Provide a container for the controls to which you can apply CSS styles within the group via
inheritance.

Rules for grouping controls

A control can belong to more than one group.

Groups must be strictly nested—that is, the entirety of a group must be contained by a higher-level
container such as group, repeat, or switch/case blocks.

The entirety of a control (not just the label, for example) belongs to a group.

Be careful when using groups. Grouping a set of controls in the Form Designer does not lock the
controls together spatially. You cannot ungroup and regroup a set of controls without losing
information (such as the instance data context, or style information attached to the group element).

Most of these rules are required because of the hierarchical nature of XML.

To create a group:

1 Select the controls you want to group.

2 Select Add to Group from the Form Designer menu or by right-clicking and selecting it from the
popup menu.

3 Choose New Group.

4 Enter a name for the group.

The Form Designer creates the new group, and it becomes the current selection. The Property
Inspector displays properties for the selected group. When the group is selected, it can be dragged
around the page to reposition the controls within the group.

What happens when you group controls

When you create a group:

The XML is reorganized to create a new group element whose parent is the parent of the control
that is the primary selection.
Form Designer 99

The selected controls become children of the new group element.

The nodeset binding for the group node is set to the instance data node that is the “lowest” ancestor
to the instance data nodes bound to the selected controls

The XPath bindings for the controls in the new group are adjusted to become relative to that node.

Binding specifications using the bind attribute are not adjusted.

To add a control to a group:

1 Select the control to add.

2 Select Form Designer>Group>Add to Group (or right-click to display a popup menu).

3 Select the name of the group to add the control to.

The selection does not change to the entire group, in case there are additional commands to be
performed on the selected control. The XML element for the control is moved under the group
element representing the group, and the instance data binding XPath is adjusted to be relative to the
node bound to the group element.

To remove controls from a group:

1 Select the control(s) to remove.

2 Right-click and select Remove from group (or select it from the Form Designer menu).

3 Choose the group from which the element should be removed.

The XML element(s) representing the control(s) are detached from the group element and made
siblings of it; the instance data XPath expressions are adjusted to absolute expressions. If no
controls remain in the group, the group element is removed from the document.

To remove a group:

To remove a group (but not its associated controls) from a form, you can:

Select Form Designer>Group>Remove Group.

What happens when you remove a group

When you remove a group:

The XML elements representing the controls in the group are detached from the group element and
made siblings of it.

The group node is deleted.

The instance data XPath expressions for the controls are adjusted to absolute expressions.

Applying styles to controls

The Form Designer provides default styles (based on standard portlet CSS class definitions) to
implement color, sizing, and fonts used in the form’s presentation. The default class attributes for the
styles are defined in wsrp-classification.xml (located in the \Common\Resources\CSSClassifications
directory). At runtime, the various portal theme files define the styles associated with these class
attributes, and with some internal Novell class attributes.

Changing CSS Classifications

The wizard generates class attributes for each of the controls on a form. For example, an input field on a
form could be given a name like:

class=”nvP1_wsrp_rewrite_ portlet-form-input-field”

The nvp1 class value references a unique selector in the internal style node that specifies the
absolute positioning rules for this element.
100 exteNd Director Pageflow and Form Guide

The wsrp_rewrite is a token that is replaced at runtime to ensure unique names for all of the
controls on a page in a multiportlet page.

The portlet-form-input-field is the class name that references a formatting rule in an external style
sheet (normally a portal theme file).

These classes are defined in WSRP-classification.xml in the Common\Resources\CSSClassifications
directory. This file maps the class names to particular control types. These class names are added by the
wizard if you check the Standard Portlet CSS Classes check box (on the first page of the wizard).

To apply CSS Classifications to a file that was not generated with these values:

1 Open the form in the Form tab.

2 Choose Form Designer>Set CSS Classification.

The Apply CSS classifications dialog displays:

3 Complete the panel as follows:

4 Click OK.

Field Description

Select the set(s) of
classifications to be applied
to this document

You must select WSRP.

NOTE: Further sets of classifications may be made available in
the future.

Apply new class values to
existing controls

Check this box to have the new class values added to existing
controls, as well as to new controls that get created later.

Remove old class values
from existing controls

Check this box to strip all of the classification-defined class values
from the controls on the form.

For example, a control with the attributes:

class=”nvP1_wsrp_rewrite_ portlet-form-input-field”

will become:

class=”nvP1_wsrp_rewrite_ “

If you check this box, you will lose any formatting associated with
the class values that were removed.
Form Designer 101

Using the CSS Style Manager

You can use the CSS Style Manager to edit any internal or external CSS style sheets associated with your
form from within the Form Designer. You can use it to specify CSS properties like background color, text
color, and font size associated with specific controls and labels. (The Form Designer directly handles
control and label positioning; you cannot use the CSS Style Manager for this function.)

To open the CSS Style Manager:

1 With a form open, choose Form Designer>Style Manager.

NOTE: Pressing cancel on this main dialog does not cancel completed actions.

You’ll use the CSS Editor to create, edit, and delete style rules for both internal and external style sheets.

For more information, see the chapter on the CSS Editor in Utility Tools.

Working with layout regions

To allow you more precise control of the layout of the controls on a form, the Form Designer requires you
to place form controls within a layout region. A layout region is a container for the XForms controls
within an XHTML page. Like other form controls, you can add, remove, size, and set properties on layout
regions. The following controls can act as layout regions:

Absolute positioning region

XForms repeat control

XForms switch/case control

Pageflow link region

Layout regions are identified with a gutter in the far left of the Visual Editor. :
102 exteNd Director Pageflow and Form Guide

utoolsCSSEditor.html

Click the gutter to select the control for setting layout region properties, resizing, or deleting.

To add a layout region to a form:

1 Choose the layout control to add from the XForms toolbar.

2 Position the cursor to the location where you want to add the control.

The cursor displays as a pink arrow.

3 Click to place the layout region.

The layout region is added to the form.

To remove a layout region:

1 Select the layout region (it is selected when the gutter label is highlighted).

2 Right-click and choose Delete.

To resize a layout region:

1 Select the layout region to resize.

2 Grab the handles of the layout region and drag the box to the required size.

To create nested repeat blocks:

Click the Insert XForms Repeat icon in the XForms toolbar.

Click in the white space of an existing repeat block in the Visual Editor (click away from the
block’s boundary—clicking on or near the lower boundary of the repeat block adds the new repeat
after, not within, the existing block).
Form Designer 103

The Form Designer adds an empty repeat group to the form. It looks like this:

To create a switch block:

1 Click the Insert XForms Switch icon in the XForms toolbar.

2 Move the pointer to the white space at the bottom of the bottommost block.

The Add New Cases to Switch dialog displays.

3 Enter two or more case IDs separated by spaces.

You’ll use the case IDs to program the behavior in the Event Editor.

4 Click OK.

The The Form Designer adds a switch block with a case block for each case id you entered.

5 Add controls to the case layout regions, as described in “Adding and removing controls” on
page 98.

TIP: You can add or remove cases by selecting the switch box, right-clicking and choosing the action
from the popup menu.

Setting form control properties

Properties are attributes that you can set at design time for a particular control. You specify property
values in the Property Inspector. See the table below for properties specific to the exteNd Director
extensions (such as the Pageflow link region) or conveniences (such as the Alert literal text). For all other
definitions, see the XForms specification.

Property
name Description Applies to

Alert literal
text

The text displayed in an alert box.

See “Informing users of validation errors” on page 118

All controls for
which model item
properties can be
defined

Button
height

Specifies the height of buttons added to the Pageflow link
region at runtime.

The default is 25.

Pageflow link
region

Button
layout

Specifies the layout of the buttons added to the Pageflow link
region at runtime.

The default is Horizontal.

Pageflow link
region

Button
spacing

Specifies the spacing between the buttons added to the
Pageflow link region at runtime.

The default is 5 pixels.

Pageflow link
region
104 exteNd Director Pageflow and Form Guide

http://www.w3.org/MarkUp/Forms/

Button width Specifies the width of the buttons added to the Pageflow link
region at runtime.

Pageflow link
region

Dynamic
choices

See “Populating the Select controls” on page 107 XForms Select
Many

Edit class
style rules

Launches a dialog that lets you:

Modify the CSS class styles on the currently selected control

Create new or edit existing styles (by launching the CSS
Editor)

All controls for
which CSS styling
applies

Emulate link Defines a trigger control’s appearance.

Checked—Trigger is styled as a link. Adds an <xforms:action>
event handler that listens for the DOMActivate event (button
press). The action element contains an <xforms:load> element
that loads a new page via an HTTP GET operation (and thus
the Request type is set to Get).

There is no default URL to use for the GET; you have to add
that via Target URL.

UnChecked—Trigger is styled as a button.

XForms trigger
control, XForms
trigger styled as a
link, Pageflow link
region

Field type Sets the data type that the control assumes for the instance
item it is bound to.

Use this in conjunction with the Format property.

Make sure that you specify a field type that is valid for the data
type of the field. When there is a conflict between these two
types:

The instance node the form control is bound to becomes
invalid.

The event xforms-invalid is dispatched to form controls
bound to that node.

The form control becomes invalid and thus the CSS styles
with the :invalid pseudoclass apply.

If the invalid instance node is part of the document fragment
being submitted, the submit fails.

See also Format

All controls that can
be bound to data

Format Specifies how to format the data when displaying it.

Valid formats are:

Number, currency, percent, ###,###.##, #####0.##, #####.00

See also Field type

All controls that can
be bound to data

Hint literal
text

The text displayed in a tooltip. All visible controls

ID A unique identifier for the control. All controls

Label The text displayed for the control’s label. All controls that can
have a label

Model ID The ID of the model associated with the Form control. All controls that can
be data bound.

Property
name Description Applies to
Form Designer 105

Binding controls to data

The Form Designer makes it easy to bind controls to a single node or a node set. In many cases you won’t
need to take any action to bind a control to data. For example:

The Form Wizard automatically creates data-bound controls

When you drag a data node from the Instance Data Pane onto a control in the Visual Editor, the
Form Designer generates the data bindings automatically

If you want to modify the generated bindings, or if you want to bind controls that you’ve added to the
form from the toolbar, you can use the Property Inspector to specify the binding attributes. You can also
set up a <bind> in the Model tab, then set the bind property to the <bind> element’s ID. See “Binding
elements to controls” on page 118.

NOTE: The following procedure generates a binding via a <ref> attribute on the control. It’s possible to
specify either a <ref> or a <bind>. When you specify one, the Form Designer removes the other. If you
enter both via the Source tab, the <bind> takes precedence.

To bind a control to a single node via an XPath:

1 In the Visual Editor, select the control you want to bind.

2 Using the Property Inspector, specify the model ID (when there is more than one model element for
the form).

Request
type

Get—Uses the <xforms:load> action. Requires a Target URL
property.

Post—Uses the <xforms:send> action. Requires a Submission
property.

XForms trigger
control, XForms
trigger styled as a
link, Pageflow link
region

Source Specifies the name of the source file containing the XHTML
image to insert.

XHTML image

Style as link Checked—The XForms Trigger control is styled as an HTML
link.

Adds a CSS class selector (nv-link-style) to the trigger's class
attribute. This CSS selector styles the trigger to look like the
default appearance of the HTML <a> tag. This selector rule is
added to the page’s <style> node so you can modify it to look
the way you want.

All triggers marked to emulate links share this same style.

Unchecked—Removes the selector name from the trigger's
class attribute, but does not delete the selector rule from the
<style> node.

XForms trigger
control, XForms
trigger styled as a
link, Pageflow link
region

Submission Specifies the value of <xforms:send>'s submission attribute.
(This is the ID of an <xforms:submission> in the
<xforms:model>.)

XForms trigger
control, XForms
trigger styled as a
link, Pageflow link
region

Target URL Specifies the value of <xforms:load>'s resource attribute.

(The URL that a GET is sent to in order to load the new page.)

This URL automatically gets marked up for URL rewriting in the
portlet context, so specifying a relative URL here will get back
to your portlet.)

XForms trigger
control, XForms
trigger styled as a
link, Pageflow link
region

Property
name Description Applies to
106 exteNd Director Pageflow and Form Guide

3 Specify the XPath by:

Typing the XPath in the text box of Reference (generates a <ref> attribute)

OR

Launching the XPath Navigator (by clicking the ellipsis next to the XPath text box)

3a In the XPath Navigator dialog, locate the node you want to bind to and select it.

For more information on using the XPath Navigator, see the chapter on scoped paths and
XPaths in Developing exteNd Director Applications.

3b Click OK to return to the Form Designer.

To bind a control to a node set:

NOTE: <repeat> elements require that you bind to a node set.

1 In the Visual Editor, select the control you want to bind.

2 Using the Property Inspector, specify the model ID.

2a In the XPath Navigator dialog, locate the node you want to bind to and select it.

For more information on using the XPath Navigator, see the chapter on scoped paths and
XPaths in Developing exteNd Director Applications.

2b Click OK to return to the Form Designer.

NOTE: If a <ref> resolves to multiple nodes, the first node is used.

Populating the Select controls

There are two ways to provide a list of values for the Select controls:

List values Lists have two types of values:

A label (for display)

A value (for storage)

The user sees the label, but the associated value is the value written to the instance node. This allows you
to display user-recognizable text while storing keys or other types of codes in the instance node. For
example, if you entered the words apples, oranges, and pears, these words would appear in the display
list. However, selecting apples might return the value 1, oranges could return 2, and so on.

Instance elements A Select control is usually associated with two instance elements:

One containing the display values

One containing the element to which the value is written

To load the list statically:

1 Highlight the Select control and access the property sheet.

2 Choose the Edit Select Choices link.

Method Enables you to When to use

Statically Specify the list values while you
are designing your form.

Use this method when the list is relatively short,
you know what the values are, and the values
won't change.

Dynamically Specify the list values come from
a nodeset.

Use this method when the information is located
in an XML file.

When you do not know what the list items will be
or the list changes frequently.
Form Designer 107

cdScopedPaths.html
cdScopedPaths.html
cdScopedPaths.html
cdScopedPaths.html

The Select Control Choices dialog displays.

3 Click the Static Choices radio button.

4 The dialog enables the Label and Value text boxes:

To change the predefined Label and Value choices, double-click within the text box and change
the text.

To add a new choice, click Add, and place the cursor within the added text box and add the
Label and Values.

5 When you are done, click OK.

To load the list dynamically:

1 Highlight the Select control and access its property sheet.

2 Choose the Edit Select Choices link.
108 exteNd Director Pageflow and Form Guide

The Select Control Choices dialog displays:

3 Click the Dynamic choices radio button.

4 Choose the model from the dropdown list box.

5 Click the ellipsis next to the Nodeset XPath to access the XPath Navigator to choose a nodeset.

6 Click the ellipsis beside Label XPath to access the XPath Navigator to the display value.

7 Click the ellipsis beside the Value XPath to access the XPath Navigator to choose storage value.
This value is written to the instance node.

8 When you are done, click OK.

Working with model elements
The XForms model element defines the structure of the XML data available to the form. It defines the:

Structure of the data displayed to or entered by the user

Structure of the data to submit

Data for initializing form controls (instance data)

Rules for validating user data

The Model tab includes these elements:

Element Description For more information, see

Model The model root “Specifying model elements”
on page 110
Form Designer 109

About the Model tab

The Model tab provides a graphical way to define the elements that comprise the form’s model. The
Model tab looks like this:

The Model tab provides:

Specifying model elements

By default, the wizard-generated forms include a model.

instance Points to or contains the data used to initialize the
form

“Specifying instance
elements” on page 112

action Defines event handlers and actions that can be
accessed from any part of the form

“Specifying actions” on
page 114

submission Defines the set of data to submit and how to submit
it

“Specifying submission
elements” on page 114

bind Defines properties (called model item properties) of
the instance data—like readonly, relevant,
calculations, and indirect binding, and so on

“Specifying Bind elements”
on page 116

Tool Description

Model Editor Use to add and remove elements.

Instance Data
Pane

Use the Instance Data Pane to modify the structure of the instance data.

For more information on using this tool, see XML Editor in the online
Utility Tools.

Property Inspector Use to create and modify attributes on the selected model element.

Event Editor Use to define the events and actions on the selected model element.

Element Description For more information, see
110 exteNd Director Pageflow and Form Guide

To add a model element:

1 With the form open in the Model tab, click Add (at the top of the Model Editor).

The following dialog is displayed.

You’ll see that wsrp_rewrite_ is appended to the model ID name. This is a placeholder that is
recommended. At runtime the wsrp_rewrite_ is replaced with a unique ID to ensure that no naming
conflicts occur among other forms or portlets on the same page.

2 Name the model and click OK.

The Form Designer creates a new, empty model tree and displays it in the Model Editor.

To remove a model element:

1 With the form open in the Model tab, select the model element you want to delete from the
dropdown list box.

2 Click Delete.

Specifying model properties:

1 Select the model in the Model Editor.

2 Access the Property Inspector and complete the properties as follows:

For information about adding events, see “Customizing event handlers” on page 130.

Property Description

ID Specifies a unique identifier for a model.

A model ID is not required (unless there are multiple models), but the Form Wizard
always generates a model ID and uses the token wsrp_rewrite. It is good practice to
use an ID because at runtime there might be multiple portlets with multiple XForms
on a single page.

Schema
URI

Specifies a list of external schema documents that are needed to describe the
structure of the instance data and allow it to be validated.

To add schema documents:

1 Click Edit schema list. (The Edit Schema File List dialog displays).

2 Click Add.

2a In the Select Schema File dialog, specify the name and location of the
schema file.

2b Click OK.

3 Click OK.
Form Designer 111

NOTE: Some element types only allow you to add elements to the root (like Instance). Others allow you
to nest elements within other elements (like bind). You can determine which elements can be nested by
selecting an element (not the root) and right-clicking to see if Add item is offered on the menu.

Specifying instance elements

To set instance data properties:

1 Select an instance element (not the root).

The instance element’s properties are displayed in the Property Inspector. They include:

Property Description

ID A unique identifier for the instance data. This is necessary only when there
are multiple instance data nodes in a single document.

It is good practice to always allow the Form Designer to add
_wsrp_rewrite_ because at runtime there might be multiple portlets with
multiple XForms on a single page.

Use pageflow data
at runtime?

Specifies how instance data should be handled at runtime (once the form
is incorporated within a pageflow).

Options are:

always (the default)—Always replace the data at runtime. If no
replacement data is available, a runtime error is generated.

if-available—Replace only if new data is available at runtime; otherwise
use the design-time data.

delete-if-not-available—Use new data if it is available at runtime. Don’t
ever use the design-time data—delete it.

never—Use the design-time data alone.

IMPORTANT: When you incorporate a form into a pageflow (as an
XForms activity), you’ll be able to specify a set of scoped paths (using the
Property Inspector for the activity), indicating the replacement data for
each of the replaceable <xforms:instance> nodes. (These are the instance
nodes whose Use pageflow data at runtime is set to always, if-available,
or delete-if-not-available.)

Is primary instance
data?

Specifies whether data for an <xforms:instance> node is treated as the
primary instance data.

The primary instance data is the input data to the page rendering's XSLT
transformation; it is the default context for use in XSLT expressions in the
page. All other input data is secondary input data and can be accessed
only via variable references in XSLT expressions.

For more information, see “About runtime replacement of instance
data” on page 113.

Is inline? Check this box when data is contained within the model element of the
form.

When this is checked, you can use the instance data generated by the
wizard or you can import the instance data from a file located within the
project’s resource set.

See Import instance data from file (below).

Uncheck this box when you want the data to be referenced from an
external file. See Source (URI) (below).
112 exteNd Director Pageflow and Form Guide

About runtime replacement of instance data

At runtime, the form’s data is replaced as specified by the Use pageflow data at runtime? property. The
data is replaced for each form (which runs as a portlet) separately, and it happens before aggregation into
the portal page. Additionally, the data corresponding to one or more input documents may be made
available, according to the following rules:

For more information on adding events to the instance element, see “Working with events and
actions” on page 118.

Import instance
data from file

To import instance data:

1 Click the ellipsis button.

2 In the Import File into Instance Node dialog,

2a Type the name of the file to import.

or

2b Click Import, navigate to the file to import, and click Open.

3 Click OK.

Source (URI) When the data is not inline, you can specify the location of the data using a
URI.

NOTE: The URI must reference a location within the current project’s
resource set.

To add a link to the instance data:

1 Click the ellipsis next to the Source URI text box.

2 In the Select File dialog, choose the file and click OK.

Rule Description

No replaceable
<xforms:instance>
element is specified as
the primary instance
data.

If there is only one instance element, that one instance element is
treated as the primary instance data. The primary input document is
mapped to the primary instance data.

If there is more than one default <xforms:instance> element in the
page, one instance element must be defined as the primary instance
data—and:

All other replaceable <xforms:instance> elements use secondary
input data.

All secondary input data is made available to XSLT expressions in
the page via XSLT variables. XSLT allows only a single input
document, so other documents must be made accessible via the
XSLT variable mechanism.

The variable identifiers are equal to the ID of the corresponding
<xforms:instance> elements. (You use a dollar sign in XSLT to
access a variable in an XPath expression; thus if you had
<xforms:instance id="foo"> you'd access its runtime data via
something like <xsl:value-of select="$foo/a/b/c"/>.)

Property Description
Form Designer 113

Specifying actions

The Form Designer provides multiple ways for defining actions within your form:

The remainder of this section describes how to specify actions in the Model tab.

To create an action/event handler:

1 From the Model tab, select the top-level action node from the model tree.

2 Right-click and choose Add item.

3 Navigate to the Property Inspector and supply the following properties:

4 Right-click and choose the action you want performed for the event.

5 Navigate to the Property Inspector to define the specification for the selected action.

Specifying submission elements

The submission element defines:

The structure of the data to submit

Where to submit it

How to submit it

To create a submission element:

1 From the Model tab, select the top-level submission node from the model tree.

2 Right-click and choose Add item.

3 Navigate to the Property Inspector and supply the following properties:

Method Description

The action node of
the Model tab

Use the action node of the Model tab as a place to create one or more
actions (with unique IDs) and then reference them elsewhere in your form.

The Event Editor in
the Form tab

Use the Event Editor launched from the Form tab to create actions for your
form controls

For more information, see “Working with events and actions” on
page 118.

Property What to specify

ID Provide a unique name for the action/event handler.

Event name Choose the event from the dropdown list.

Observer (Optional) Choose an element as the observer.

Target (Optional) Choose an element as the target of the action.

Property Description

ID Specifies a unique ID for the submission element.

Binding ID Specifies the ID of a Bind element. Choose the ID of the bind element
that specifies the node(s) to submit.

XPath of reference An XPath specifying the node(s) to submit.

Action (URI) Specifies the URI to the location where the submission is sent.
114 exteNd Director Pageflow and Form Guide

Method Specifies how to do the submission.

Values:

Post

Get

Put

form-data-post

multipart-post (treated like a Post)

urlencoded-post

Replace Specifies what the processor should do with the document returned
after the submission.

Values:

all (the default)

instance

none

Separator Specifies what separator character to use on url-encoded
serialization.

Values:

;

&

Indent For application/xml serialization only. Specifies whether to insert
white space.

Values:

True

False

Standalone For application/xml serialization only. Specifies whether to include a
declaration.

Values:

True

False

Omit XML declaration For application/xml serialization only. Specifies whether to include an
XML declaration.

Values:

True

False

Encoding For application/xml serialization only.

Specifies the type of encoding to use.

Property Description
Form Designer 115

For more information on adding events to the submission element, see “Working with events and
actions” on page 118.

Specifying Bind elements

Use the Bind element to set rules on the instance data. For example, you can define fields as required,
enabled, or disabled depending on selections that the user makes, and so on. You can also use a bind
element as an indirect way of specifying the binding for a control; instead of using <ref> or <nodeset>,
use the bind=bindingID attribute on the control. Once you have defined the bind elements in the Model
tab, you can return to the Form tab and associate them with form controls to create a UI Binding
expression.

To create a bind element:

1 Select bind.

2 Right-click and select Add item.

To delete a bind element:

1 Select the bind element.

2 Right-click and select Delete item.

To set properties on a bind element:

1 Select the bind element.

2 Access the Property Inspector and complete the properties as follows:

Edit namespace list For application/xml serialization only.

Specifies the namespaces to include in the serialized XML. Not
specifying any namespaces is the same as specifying all.

To edit the namespace list:

1 Click edit namespace list.

2 Select the namespaces you want to include. Use Shift to select a
contiguous group and Ctrl-Shift to select multiple non-contiguous
items.

3 Click OK.

Mediatype Specifies the Internet media type for the serialized instance data.

Version For application/xml serialization only.

CDATA section elements For application/xml serialization only.

To add CDATA elements:

1 Click Edit CDATA element list.

2 In the Edit CDATA item list dialog, click Add.

3 Type the name in the Add List dialog.

4 Click OK.

5 Click OK.

Property Description

ID A unique ID for the bind element.

Property Description
116 exteNd Director Pageflow and Form Guide

Specifying model item properties

You can specify these Model Item properties like this:

XPath of Nodeset The node(s) in the bind.

Model Item Properties Lets you define the model item properties to apply to the nodes defined
in the XPath of Nodeset above.

For more information, see Specifying model item properties below.

Type Specifies the XML schema data type for the associated node.

The Form Designer includes a convenience that allows you to specify
formatting for certain data types. Only the data types shown in bold
support this formatting.

You apply the formatting in the Form tab Property Inspector for the
control bound to such a node.

For more information, see “Format” on page 105

Model item property Description

Readonly Users are not allowed to change the data. Any form controls bound to a read-
only node are not enabled.

To make a node readonly:

1 In the Property Inspector, choose readonly.

2 Create an XPath expression that evaluates to a boolean, or change the
value to true().

Required Users are required to supply a value. Any form controls bound to a required
node will generate a submit error if a value is not supplied.

To make a node required:

1 In the Property Inspector, choose required.

2 Create an XPath expression that evaluates to a boolean, or change the
value to true().

Relevant Specifies whether a node is visible. Form controls bound to nonrelevant nodes
are disabled or not visible.

If you make a nonrelevant node required, the required property is ignored.

To make a node nonrelevant:

1 In the Property Inspector, choose relevant.

2 Create an XPath expression that evaluates to a boolean, or change the
value to false().

Calculate Specifies a calculation that defines the value of the node.

To create a calculation on a node:

1 In the Property Inspector, choose Calculate.

2 In the XPath Navigator, construct the calculation.

For more information, see the chapter on scoped paths and XPaths in
Developing exteNd Director Applications.

Constraint Specifies a boolean expression that when false causes the associated model
item to be regarded as valid. (The converse is not necessarily true.)

Property Description
Form Designer 117

Informing users of validation errors

The Form Designer makes it easy to notify users that a control (or the form) has failed one of the model
item property validation tests.

To notify users of an error:

1 When you’ve defined the model item properties, access the Form tab.

2 Select the control bound to the node for which the model item property is defined.

3 In the Property Inspector for the control, access the Hints tab.

4 Choose the Binding associated with the model item property definition from the dropdown.

5 Type a message in the Alert literal text to display to the user when a failure is encountered.

Binding elements to controls

When you’ve defined the bind elements in the Model tab, you can return to the Form tab and associate
them with form controls to create a UI Binding expression.

Working with events and actions
XForms supports and extends the DOM Level 2 event model which is based on the XML event model.

You use the Event Editor to create event handlers and define XForms Actions.

This section includes the following information:

About the Event Editor

XForms Actions Reference

Customizing event handlers

About the Event Editor

The Event Editor is available on both the Form tab and the Model tab. It looks like this:
118 exteNd Director Pageflow and Form Guide

The Event Editor is enabled when you select an item that allows event handlers such as a form control, a
submission element, or a bind.

The Event Editor supports all XForms events and actions, but not all events are presented as choices
when creating an event handler. If an event is not presented as a choice, you can type it in the choice box
or use the Source tab to define it.

To launch the Event Editor:

1 Navigate to the bottom of Form Designer (in the Form or Model tabs).

2 Click the icon next to the Event Handlers label. The following graphic shows the location of the
icon in the Form tab.

The Event Editor opens.

3 Select a form control or model item for which you want to define an event.

The Event Editor is now available to edit existing or create new Event Handlers.

To create an event handler:

1 Select the element that you want to define the event handler for.
Form Designer 119

2 Click the Create a new event handler icon.

The Create Event Handler for Element dialog displays:

3 Choose an event from the Event Type dropdown, or type an event name (if it is not listed).

3a If you want to further customize the event handler by adding observers, and default actions,
click Advanced options and see “To customize event dispatching:” on page 130.

4 Click OK.

The Event Editor now allows you to choose XForms Actions to respond to the event handler
(described next).

NOTE: You can’t put an event handler on the instance element because instance nodes are
restricted to a single child element. When you use the Event Editor to add an event handler to the
instance element, it will put it on the model.

To specify XForms Actions for an event handler:

1 After creating an event handler, click the New Action icon.

2 Select an XForms Action from the popup list.

The selected action and it’s properties are displayed.

3 Complete the properties.

4 Save the form.

The Event Editor generates the event handler and XForms Action defined by the properties you specified.

For more information about Action properties, see the XForms specification.

To delete an action:

1 Select the action from the Action List.

2 Click the delete icon.

To delete an event handler:

1 Select the event handler from the Event Handler list.

2 Click the delete icon.

XForms Actions Reference

Click an action to display complete information.

Action Action

Delete Reset model
120 exteNd Director Pageflow and Form Guide

http://www.w3.org/MarkUp/Forms/

Delete

Description Deletes a specific node of repeated instance data. Typically, the nodeset is bound to a repeat block.

Attributes To construct the action, use the Event Editor to define it’s attributes.

Complete the attributes as follows:

Dispatch Send instance data

Insert Set Focus

Load link Set index in repeat

Message Set value

Rebuild, Recalculate, Refresh, and Revalidate
model

Toggle select case in switch

Attribute What to do Notes

Use XPath
expression

Choose Use XPath expression to specify
an XPath expression that identifies the data
node to delete.

You can type the expression in the
choice box, or click the ellipsis to
launch the XPath Navigator.

The Event Editor constructs an
<xforms:action> with a nodeset
definition.

Model ID Optional.

Choose a Model ID from the choice box.

A Model ID is only needed when:

You choose Use XPath expression.

The form references multiple models
containing instance data elements of
the same name.

Use binding Choose Use binding to specify an existing
bind expression that identifies the data
node to delete, then choose a binding ID
from the choice box.

The choice box is only populated if
you’ve defined a binding element and
specified IDs for them in the Model tab.

Action Action
Form Designer 121

Dispatch

Description Dispatches XForms events to a named element on a form. You can dispatch events that are:

Standard XForms events—like xforms-enabled, xforms-disabled, and so on.

Custom XML events—A custom event that you’ve defined for the form.

Attributes To construct the action, use the Event Editor to define the attributes.

Complete the attributes as follows:

Location Specify the location of the data node to
delete via an XPath expression.

You can type the expression in the
choice box, or click the ellipsis to
launch the XPath Navigator.

Valid expressions include:

last()—specifies the last item in the
nodeset.

1—specifies the first item in the
nodeset.

index()—Refers to the position of the
current selection in the specified
repeat.

Attribute What to do Notes

Send event Choose an event to dispatch. If the event is not listed, you can type it in
the choice box.

target Choose the ID of the element the
event is dispatched to.

The choice box is populated with elements
for which you have defined IDs.

Valid target elements include:

Model elements

Instance elements

Action elements

Submission elements

Form controls

bubbles Check if the dispatched event bubbles. For custom events only.

Optional.

cancelable Check if the dispatched event can be
cancelled.

For custom events only.

Optional.

Attribute What to do Notes
122 exteNd Director Pageflow and Form Guide

Insert

Description Inserts a new node of instance data. The XForms Specification requires that the instance data be a
homogeneous collection (typically, a repeat block).

By default, the inserted node is a duplicate of the last node in the nodeset.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Attribute What to do Notes

Use XPath
expression

Click Use XPath expression to specify
an XPath expression that identifies the
data node to insert.

You can type the expression in the choice
box, or click the ellipsis to launch the XPath
Navigator.

Model ID Optional.

Choose a Model ID from the choice
box.

A Model ID is only needed when:

You click Use XPath expression.

The form references multiple models
containing instance data elements of the
same name.

Use binding Click Use binding to specify an
existing bind expression that identifies
the data node to delete, then choose a
binding ID from the choice box.

The choice box is only populated if you’ve
defined a binding element and specified an
ID for it (in the Model tab).

Location Specify the location for the insert, within
the data node, via an XPath
expression.

You can type the expression in the choice
box, or click the ellipsis to launch the XPath
Navigator.

Valid expressions include:

last()—specifies the last item in the
nodeset.

1—specifies the first item in the
nodeset.

index()—specifies the position of the
current selection in the specified repeat.

Position Choose Before to insert the new
node before the node specified by
the location attribute.

Choose After to insert the new node
after the node specified by the
location attribute.
Form Designer 123

Load link

Description Navigates an URL in the same or different browser window.

To test the Load link action, use View in browser option (available from the XForms Preview tab). The
Load Action is not supported in Preview mode.

If the link fails at runtime, no navigation occurs and the xforms-link-error event fires. You can set up an
event handler for the xforms-link-error event to intercept and handle this error gracefully.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Attribute What to do Notes

Data node Choose to specify a data node that
resolves to a URI.

The URI must include the URL scheme such
as HTTP or HTTP.

Choose Use XPath expression to
specify the URI via an an XPath
expression that resolves to a URI.

You can type the expression, or click the
ellipsis to launch the XPath Navigator.

A Model ID is only needed when:

You click Use XPath expression.

The form references multiple models
containing instance data elements of the
same name.

Click Use binding to specify an
existing bind expression that
resolves to a URI.

The choice box is only populated if you’ve
defined a binding element and specified an ID
for it in the Model tab.

URI Choose when you want to manually
specify the URL.

The URI must include the URL scheme such
as HTTP or HTTPS.

For example:

http://www.novell.com

New window Choose if successful navigation
should launch the URL in a new
window.

Current
window

Choose if successful navigation
should launch the URL in the
current window.
124 exteNd Director Pageflow and Form Guide

Message

Description Launches a modal, modeless, or ephemeral message box.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Attribute What to do Notes

Display
Message

Choose one:

Inline text Use for simple, static messages.

Type the message you want displayed in the text box.

URI Use to display the contents of the file at the specified
URL.The URL is invoked and the raw text is displayed in
an alert box.

For example:

http://www.myserver.com/error-msg/data-
error.txt)

TIP: You might use this as an alternate way of storing
(and localizing) error messages; the URL could even
pass arguments to a CGI script or a servlet to fetch
localized messages.

Data node Displays a message stored in an instance data node.

Expression Use to construct complex inline text messages.
Constructs an XForms output element as a child of the
xforms:message element.

For example:

if(string-length(“account-info/account-
number”)>4),’You have entered too many
characters.’, ‘The data is invalid’)

Message
level

Choose one:

Modal Blocks user input to all other windows until the user
dismisses the message.

Modeless Allows users to work with other windows without having
to respond to the message.

Ephemeral
Form Designer 125

Rebuild, Recalculate, Refresh, and Revalidate model

Description Forces xforms-rebuild, xforms-recalculate, xforms-refesh and and xforms-revalidate events to occur.
Use the corresponding actions to specify a behavior different from the default for these events.

For more information on XForms event processing flow, see the xforms-rebuild, xforms-
recalculate, xforms-refresh, and xforms-revalidate events in the XForms 1.0 Specification.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Reset model

Description Sets the instance data, of the specified model, to the values at form initialization.

For more information on XForms event processing flow, see the xforms-reset event in the XForms
1.0 Specification.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Send instance data

Description Forces the form to begin submit processing.

Attribute What to do Notes

Model ID Choose the Model ID from the choice
box.

This is the model that will receive the
event.

Attribute What to do

Model ID Choose the ID of the Model you want reset
126 exteNd Director Pageflow and Form Guide

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Set Focus

Description Use Set Focus to move focus to a specific form control.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Set index in repeat

Description Use the Set index to specify the current node of a repeat block.

Attribute What to do Notes

Submission ID Choose a submission ID Submission elements are defined in the
Model tab.

The choice box is only populated when a
Submission element is created and given
an ID.

Attribute What to do Notes

Control ID Choose a Control ID from the choice box. You can define a Control ID in the
Property Inspector (in the Form tab).

The choice box is only populated
when control elements are named in
the Property Inspector.
Form Designer 127

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Set value

Description Use to set the value of an instance node.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Attribute What to do

Repeat
element

Choose a repeat element from the
choice box.

Item index Specify an XPath expression that
defines index
128 exteNd Director Pageflow and Form Guide

Complete the attributes as follows:

Toggle select case in switch

Description Use to specify the case to display in a Switch element.

Attributes To construct the action, use the Event Editor to define it’s attributes:

Complete the attributes as follows:

Attribute What to do Notes

Data node Choose one to specify the data node
whose value you want to set.

Use XPath expression—to specify an
XPath expression.

You can type the expression in the choice
box, or click the ellipsis to launch the
XPath Navigator.

A Model ID is only needed when the form
references multiple models containing
instance data elements of the same
name.

 Use binding—to specify an existing
bind expression.

The choice box is only populated if you’ve
defined a binding element and specified
an ID for it in the Model tab.

New Value Choose one:

Inline text—to specify static values. For example:

This is a test value.

Expression—to construct dynamic
values based on user input or other
elements not known at design time.

For example:

concat('Test: ',
/data:test/data:form_data/data:i
nstance_node)

Attributes What to do Notes

Case to select Select the case ID from the choice box. The choice box is only populated
if you’ve defined a Switch
element.
Form Designer 129

Customizing event handlers

To customize event dispatching:

1 Access the Advanced Options dialog by:

Clicking Advanced options when you first choose the event you want to dispatch

OR

Clicking Options from the Event Editor.

2 Complete the dialog as follows:

3 Click OK.

Testing forms
You’ll want to test your form’s data processing logic and its look and feel. The Form Designer provides
built-in tools for each of these tasks:

Option Description

Handle event at observer
element

Choose an observer element from the list box.

This option moves the event handler to the selected XML element.

NOTE: You should not put an event observer on the body tag. To
achieve the same result, click Attach event handler to model,
select a model, and specify the body element as the observer.

Handle event during
phase

Lets you control the order in which event handlers are executed.

Restrict handler to events
on selected element

This is valid only when the event handler is attached to an ancestor
of the selected control; it makes the handler specific to the selected
control.

You can use this option to cause something to happen at a
particular point in the event-handling sequence for the specified
control.

Continue event
propagation after handlers
at this element

When used in combination with handlers on ancestor nodes and
phase options, this is a way to control which event handlers are
executed for a particular event.

Perform or cancel default
action button

Provides a means of overriding the default behavior of the XForms
processor.

Choosing cancel always cancels the default behavior—no
conditional processing is allowed. (Not all XForms events allow you
to cancel the default behavior.)

Use this tool To test this

XForms preview Event and data processing

XHMTL component look and feel

View Form in Browser The look and feel of all components on the page
130 exteNd Director Pageflow and Form Guide

Using XForms Preview

XForms Preview uses a Swing renderer to render the XForms controls on the page. This feature is
especially useful for testing the structure of your submitted data.

To use XForms Preview:

1 Open the form.

2 Choose the XForms Preview tab.

The form is rendered and is available for interaction:

Any controls that are unexpectedly disabled (you didn’t mark them disabled in your code) might
indicate a data binding problem.

You can view submission nodes in the left pane of the XForms Preview.

XForms Preview limitations The XForms Preview does not display any HTML associated with the
XHTML page.

Using View Form in browser

The View Form in browser uses an XHTML renderer to display both the XHTML and the HTML on a
single page. This feature is especially useful to help you work out any layout issues.

To use View Form in browser, your form’s project must be deployed to an application server. Once your
project is deployed, changes that you make to the form are immediately available—you don’t have to
redeploy your project.

To use View Form in browser:

1 Open the project.

2 Open the form you want to view.

3 Choose XForms Preview.

4 Choose the View Form in browser button.

The Specify Location of Processor Servlet dialog displays:

5 Complete the dialog using the following values:

Field What to specify

Location of processor servlet Specify the name of the server where the
Form’s project is deployed.

Use default browser Choose this radio button if you want the
Form Designer to locate the default browser
for the current machine.

User browser Choose this radio button and the
corresponding text field to specify a browser
other than the default.
Form Designer 131

6 Click OK.

The form displays in the browser. If you receive a Page Not Found error, make sure that the form’s
project has been deployed to the server specified.

For more information on deploying, see the chapter on deploying in Developing exteNd Director
Applications.

Testing portal themes

You may want to test what your form would look like using various portal themes.

To test what your form would look like using a portal theme:

1 Open the form in the Form tab.

2 Choose Form Designer>Set Portal CSS Theme.

The Apply Portal Themes dialog displays:

3 Complete the panel as follows:

4 Click OK.

This styling applies only at design time. The Form Designer deletes the link to the theme file when the
file is saved and restores it when the file is reopened (in the Form Designer). To remove the link
completely, reopen the dialog and choose No.

The portal theme is not used by XForms Preview or View form in browser.

Testing browser font sizes

You may want to test your form with various font sizes.

To test browser font sizes at design time:

1 Open the form in the Form tab.

2 Choose Form Designer>Set browser font override.

Field What to specify

Use portal theme? Choose yes to apply a theme.

Choose the portal theme for this page Choose the portal theme to apply.
132 exteNd Director Pageflow and Form Guide

The Set override font displays:

3 Complete the dialog as follows:

4 Choose OK.

The font you specify is applied as a font size style on the <body> tag.

This styling applies only at design time. The Form Designer deletes the link to the theme file when the
file is saved and restores it when the file is reopened (in the Form Designer). To remove the link
completely, reopen the dialog and choose No.

Validating the form’s XML structure

You can validate the form to ensure that its XML is well formed and that it conforms to the schemas for
the declared namespaces that can be resolved.

To validate a form:

1 Select Form Designer>Validate.

Field What to specify

Override font? Choose yes to override the browser’s font size in the design
environment.

Choose the override font size
and units for this page

Specify the font size and units to be used.
Form Designer 133

134 exteNd Director Pageflow and Form Guide

7 Database Pageflow Wizard

This chapter provides instructions for using the Database Pageflow Wizard. It contains the following
sections:

About the Database Pageflow Wizard

Using the Database Pageflow Wizard

Modifying a database pageflow

About the Database Pageflow Wizard
exteNd Director provides the Database Pageflow Wizard to help you create database pageflows. A
database pageflow is a flow that gives the user a way to find, display, and modify records in a database.

The Database Pageflow Wizard lets you create flows that access a single database table, or flows that
navigate to other tables that are related by many-to-one relationships (lookups) and/or one-to-many
relationships (master/detail).

After you use the wizard, you can run the generated pageflow right away. You can also use the Pageflow
Modeler to make changes to the pageflow, just as you would with any other pageflow.

The Database Pageflow Wizard generates a set of forms (XHTML pages that use XForms technology) as
well as one or more pageflow processes that tie the forms together into a simple database application.
This application provides a convenient and easy-to-use interface for accessing one or more database
tables.

Flows that access a single table The following example shows a typical database pageflow used to
access a single table:
Database Pageflow Wizard 135

Master/detail database flows When you build a database pageflow, you specify which table is the
primary table. When the wizard knows which table is primary, it can examine the relationships among
the various tables you’ve selected to determine how many levels there are within the query. A lookup
(many-to-one relationship) is treated as a single level within the query, whereas a master/detail (one-to-
many relationship) is treated as two levels.

When you build a database pageflow that combines data from tables that have a master/detail
relationship, the wizard generates multiple pageflow processes, one for each level within the query.

The flow that accesses data in the primary table is the parent flow. The parent flow has a Pageflow
activity (View Details) that references a child flow. The child flow accesses data in the detail table. When
the user clicks the View link, the parent flow reaches its Pageflow activity, which passes control to the
child flow. When the user clicks on the Back link, the child flow reaches its Finish activity, which passes
control back to the parent flow.

Here is an example of a parent flow:

Here is an example of a child flow that is referenced by the View Details activity:
136 exteNd Director Pageflow and Form Guide

Forms

When you create a database pageflow, the following forms (XHTML files) are generated for you:

Form Description

Search Form Provides a user interface for entering search criteria. When the user presses the
Search button, the search terms are sent to the server as an XML document.

View Results Displays summary data for a single page of search results. The summary data are
presented in tabular format.

This form has View, Edit, and Delete buttons that let the user perform operations on
the currently selected row. It also has a New Record button that lets the user insert a
new database record.

When you indicate that you want to use a change log to store modifications, the View
Results form also includes Apply Changes and Cancel Changes buttons.
Database Pageflow Wizard 137

View Details Displays details for one record in the result set. It also contains an Edit button to
allow the user to modify the values associated with the current record.

In a master/detail situation, the View Details form also displays the results view of the
child table in a tabular format. It shows all of the records of the child table that are
linked to the current parent record.

Edit Record Provides a user interface for editing the detail fields associated with the primary
table. The Edit Record form also contains Update and Cancel buttons.

The Edit Record form automatically sets a validation on each field to ensure that the
user does not try to enter a string that is longer than the width of the associated
database column.

NOTE: The Edit Record form does not allow you to modify columns in related
tables.

Form Description
138 exteNd Director Pageflow and Form Guide

Pageflows

Every pageflow process generated by the Database Pageflow Wizard includes a Data Set object that
provides all of the information required to access the database.

For more information on the Data Set, see “Working with the Data Set” on page 148.

Each pageflow process created by the Database Pageflow Wizard includes a Form activity for each form
created. In addition, the flow contains the following database activities:

New Record Provides a user interface for creating a new record in the primary table. This
interface provides fields for entering the column values associated with the new
record.

This form is very similar to the Edit Record form. The main difference is that the New
Record form lets the user specify values for key fields (except for those that are not
automatically incremented.) This form includes a Save button to allow the user to
add the new record to the database.

The New Record form does not allow you to enter values for columns in related
tables.

Activity Description

Initial Query activity Obtains the keys of all records from the database that match the search
criteria that the user specified on the Search Form.

This activity takes the XML document that contains the search terms (which
is generated by the Search Form) as input. Once the keys have been
retrieved from the database, this activity stores the result set in a record
cache.

Form Description
Database Pageflow Wizard 139

Get Page activity Retrieves the summary data for a single page of records. The Database
Pageflow Wizard lets you control which columns are included in the
summary data and specify how many records are included in each page.

The Get Page activity uses the set of keys returned by the Initial Query
activity to retrieve the records for one page of results. The order of records
in the summary data is based on the order established when the Initial
Query activity was executed, not by the order in which records are retrieved
by the Get Page activity.

Get Record activity Retrieves the detail fields for a single record.

Record Insert activity Sends the data for the new record to the database by executing a SQL
INSERT statement.

NOTE: If you enable the change log, the SQL INSERT is not actually
performed until the Apply Change Log activity is executed.

Here’s an example of the kind of statement that might be executed:

INSERT INTO employees (firstname, lastname, city, state,
phone) VALUES (‘Bob’, ‘Jones’, ‘Boston’, ‘MA’, ‘617-555-
9999’)

If the insert succeeds, the flow continues on to the next activity. Otherwise,
an error message is displayed.

Record Update activity Sends the updated data for one record to the database by executing a SQL
UPDATE statement. To support optimistic concurrency control, the UPDATE
statement includes the original (cached) values in the WHERE clause. If the
WHERE clause fails to match any rows, that means that the data has been
changed by another user, so a data concurrency exception is thrown to
indicate this to the user.

NOTE: If you enable the change log, the SQL UPDATE is not actually
performed until the Apply Change Log activity is executed.

Here’s an example of the kind of statement that might be executed:

UPDATE employees SET city = ‘Waltham’, phone = ‘781-484-8200’
WHERE firstname = ‘Joseph’ AND lastname = ‘Smithe’ AND city =
‘Boston’ AND state = ‘MA’ AND phone = ‘617-555-1213’ AND
employeeid = 61

If the update succeeds, the flow continues on to the next activity. Otherwise,
an error message is displayed.

Record Delete activity Deletes the records selected by the user by executing a SQL DELETE
statement. To support optimistic concurrency control, the DELETE
statement includes the original (cached) values in the WHERE clause. If the
WHERE clause fails to match any rows, that means that the data has been
changed by another user, so a data concurrency exception is thrown to
indicate this to the user.

NOTE: If you enable the change log, the SQL DELETE is not actually
performed until the Apply Change Log activity is executed.

Here’s an example of the kind of statement that might be executed:

DELETE FROM employees WHERE firstname = ‘Joseph’ AND lastname
= ‘Smithe’ AND city = ‘Boston’ AND state = ‘MA’ AND phone =
‘617-555-1213’ AND employeeid = 61

If the deletes succeed, the flow continues on to the next activity. Otherwise,
an error message is displayed.

Activity Description
140 exteNd Director Pageflow and Form Guide

If you specify that you want to use a change log, the Apply Change Log activity is also included in the
flow:

The pageflow also contains the following additional activities:

Using the Database Pageflow Wizard

To create a database pageflow process:

1 With your project open in exteNd Director, select File>New.

2 Click the Portlet tab.

3 Select Database Pageflow and click OK:

Activity Description

Apply Change Log activity Applies all changes from the record cache to the database.

For more information on the Apply Change Log activity, see
“Apply Change Log activity” on page 42.

Activity Description

View Mode activity that places the pageflow in View mode.

CheckPoint CheckPoint activity that handles page refreshes within the flow. The
CheckPoint activity acts as a transaction marker, indicating the starting
point for processing whenever the user refreshes the View Results,
View Details, Edit Record, and New Record forms.

Exception handler Exception activity that handles all exceptions thrown during the course
of processing.

Exception page An HTML activity that displays exception information in an HTML page.
Database Pageflow Wizard 141

4 If you do not have a profile for the database you want to connect to, create one by clicking the New
button.

4a Specify settings in the Create a New Database Profile dialog as follows:

Setting Description

Profile name Enter any name to identify the profile.

JDBC Driver Enter the class name of the JDBC driver. You can specify any JDBC 2.0-
compliant driver.

To use the Sun JDBC-ODBC bridge driver (which is included in the JRE),
specify sun.jdbc.odbc.JdbcOdbcDriver. If you specify a JDBC driver
other than Sun’s bridge driver, make sure the driver class can be loaded by
the development environment.

NOTE: The jConnect driver should be used with Adaptive Server
Anywhere instead of the Sun ODBC/JDBC bridge driver.

To use MySQL, specify com.mysql.jdbc.Driver.

JDBC URL Enter an URL that specifies the database you want. For example, you might
specify jdbc:odbc:TestDB (if TestDB were your ODBC data source name).
For a MySQL database, you might specify

jdbc:mysql://localhost:63306/ExpressPortal?user=root&password=no
vell

The text you enter after the first colon is driver specific.

Connection
Catalog

(Optional) Specify which SQL catalog (subset) of the database to connect
to—for example, PayrollDb. If your database driver does not support
catalogs, it will ignore this request.

If supported, the connection catalog lets you set up which database tables
are retrieved. Connection catalogs are useful when you are connecting to a
very large database or only want to connect to a subset of database tables
(for example, to exclude production database access).
142 exteNd Director Pageflow and Form Guide

A filled-in panel might look something like this:

4b Click Test to check the connection to the database specified by the JDBC URL.

This test makes a JDBC connection to the database. The test will fail when a connection is not
available or a setting is not correctly specified.

4c On the test popup, enter your database user name and password and click OK to verify access.

4d Click OK to close the Create a New Database Profile dialog.

5 Optionally enter your database user name and password on the Database Profile dialog and click
OK:

Datasource
Name

Specify the name of the data source to associate with this database profile.

You can specify either the datasource or the full JNDI specification. For
example, you might specify JDBC/ExpressPortal to use a connection pool
called ExpressPortal.

Setting Description
Database Pageflow Wizard 143

6 Select the primary table for your pageflow and click Next:

7 Select the columns you want to use in your database pageflow in the Database Columns dialog
and click OK:

Any tables directly related to the primary table are listed as choices in the Database Columns box,
along with columns defined on the primary table.

To select columns for a related table, first open the table in the Database Columns box, then select
the columns.

8 Specify the user interface options for the flow as follows:
144 exteNd Director Pageflow and Form Guide

8a Specify how many rows you want to show on each Results List page in the Preferred number
of results per page field.

8b Indicate whether you want the wizard to add search fields to the top of the Results List page.

8c Click Next.

9 Specify how you want to format the controls on forms:

These settings control the appearance of controls on the Search, View Details, Edit Record, and
New Record forms.

10 Click Next.

11 Select the details for each column as follows:
Database Pageflow Wizard 145

11a Select a column in the Column list.

11b Specify the details for the column:

12 Click Next.

13 Specify the Update Strategy and click Next:
146 exteNd Director Pageflow and Form Guide

14 Specify the base names for the files that will be generated. You need to specify a separate base
name for each database table you selected:

15 Click Finish.

Modifying a database pageflow
After you run the wizard, you use the Pageflow Modeler to make changes to the pageflow. You can also
use the Form Designer to make changes to the generated forms.

General guidelines for editing a database pageflow

Here are some things to keep in mind when editing a generated database pageflow:

When you make a change to a pageflow, this does not change any of the forms used by the flow.

If you want to add or remove a column in a database pageflow, you need to manually add or
remove the corresponding field in one or more forms. To add or remove a database column, you
need to make changes in the property sheet for the Data Set. Once you’ve done this, you typically
need to add the column to the design-time instance data in each form, as well as add the input or
output control to the form.

For complete details on making changes in the property sheet for the Data Set, see “Working
with the Data Set” on page 148. For complete details on modifying the instance data or the controls
associated with a form, see Chapter 6, “Form Designer”.

If you prefer not to make manual changes to a database flow, you can run the Database
Pageflow Wizard again. When you run the wizard, you can either overwrite your old flow and
forms, or create new ones.
Database Pageflow Wizard 147

Working with the Data Set

The Data Set provides all of the information that a pageflow requires to connect to a database and access
rows and columns of data. The Data Set lets you make changes to various database settings. In many
cases, it simply allows you to modify settings you specified when you first ran the Database Pageflow
Wizard. In other cases, it lets you make changes to more advanced settings that are not available in the
wizard.

Each Data Set has a unique name that is referenced by the following database activities:

Initial Query activity

Get Page activity

Get Record activity

Record Insert activity

Record Update activity

Record Delete activity

Since the Data Set encapsulates all of the information needed to access the database, these activities do
not need to specify this kind of information. Instead, they simply point to a Data Set object:

The properties of the Data Set are:

Property
Inspector
tab Property name Description

Activity Name Specifies a name for the activity.

Description Describes what the activity does.
148 exteNd Director Pageflow and Form Guide

Advanced settings

The Advanced Settings dialog lets you specify several settings that are not available in the Database
Pageflow Wizard.

Data Set Advanced Settings Allows you to specify concurrency and caching settings, as well
as other details that control database access.

For more information, see “Advanced settings” on
page 149.

Enable Changelog Indicates whether the change log will be enabled for this flow.

Changing this setting does not add or remove activities or links
within the flow, nor does it alter the forms associated with the
flow. Therefore, if you want to add or remove the Apply Change
Logs activity or the Apply Changes links in the forms, you need
to make these changes by hand.

JNDI Data Source Identifies the data source.

The valid data source types are:

JDBC/xxx Use this syntax to reference a database that is
set up as a connection pool.

jdbc/ref name Use this syntax to reference a resource
property in your deployment plan. If you do this, you must also
have a resource data source in the web.xml file.

Databases/xxx/DataSource Use this syntax to reference

a database that was added to the exteNd™ Application
Server.

Columns Lets you add or remove columns from the pageflow or change
their properties.

Row Limit Specifies the maximum number of rows that will be retrieved.

Rows Per Page Specifies the number of rows that will be displayed on each page
of the View Results form.

Sort Order Allows you to specify the order in which rows will be sorted in the
result set.

For more information, see “Sort order” on page 151.

Property
Inspector
tab Property name Description
Database Pageflow Wizard 149

Concurrency control

On the Concurrency tab, you can select columns for concurrency checking:

The columns you select are used to verify that no changes were made to the database record since the time
it was first retrieved. If any changes were made, an attempt to modify the record will fail.

Caching

On the Caching tab, you can specify a caching strategy for the flow, as shown below:

The caching strategy used for a database pageflow has a direct effect on how well the flow performs at
runtime. The strategy you select will depend on your application requirements. If you’re most concerned
about memory usage, select Strategy 1. If you’re most concerned about minimizing database access
operations, select Strategy 3. For a more balanced approach, select Strategy 2.

SQL Details

The SQL Details tab provides some additional settings for those who want greater control over how the
pageflow accesses the database at runtime. It lets you override the default SQL handler class and also
specify whether identifiers will be wrapped in quotes in SQL statements.
150 exteNd Director Pageflow and Form Guide

Sort order

The Sort Order dialog lets you specify the order in which rows will be sorted in the result set. A database
pageflow can have up to four levels of sorting:
Database Pageflow Wizard 151

152 exteNd Director Pageflow and Form Guide

8 Web Service Pageflow Wizard

This chapter provides instructions for using the Web Service Pageflow Wizard. It contains the following
sections:

About the Web Service Pageflow Wizard

Using the Web Service Pageflow Wizard

About the Web Service Pageflow Wizard
exteNd Director provides the Web Service Pageflow Wizard to help you create pageflows that execute
Web Services.

After you use the wizard, you can run the generated pageflow right away. You can also use the Pageflow
Modeler to make changes to the pageflow, just as you would with any other pageflow.

The Web Service Pageflow Wizard takes a Web Service Description Language (WSDL) file as input.
With the information provided in the WSDL file, it generates a set of forms (XHTML pages that use
XForms technology) as well as a pageflow process that ties the Web Service and the forms together into
a simple application. This application provides a convenient and easy-to-use interface for invoking Web
Service.

NOTE: The Web Service Pageflow Wizard provides support for document-style WSDL files that contain
a schema. However, you can create a pageflow that uses an RPC-style Web Service by using a Java
activity.

For details on how to use an RPC-style Web Service in a pageflow, see Chapter 11, “Working with
RPC-Style Web Services”.

Example The following example shows a typical Web Service pageflow for a service that takes an
argument:

It includes an input form that allows the user to pass a parameter to the service. When the user submits
the form, the service executes. Once the service has finished processing, the pageflow displays an output
form that shows the data returned by the service.
Web Service Pageflow Wizard 153

The generated pageflow also includes a CheckPoint activity, which is placed just before the Web Service
in the flow. When the page is refreshed (by the user clicking the Refresh button or taking an action on
another portlet running on the same portal page), the engine tells the flow to go back to the CheckPoint
activity and then execute the Web Service again.

NOTE: To enhance performance in a page that includes several portlets, you may want to remove the
CheckPoint activity so that the Web Service is not executed whenever the user refreshes the page or
takes an action on another portlet within the page.

What the user sees at runtime At runtime this pageflow would display an input form that allows
the user to pass a parameter to the service:

When the user submits the form, the service executes. Once the service has finished processing, the
pageflow displays an output form that shows the data returned by the service:

NOTE: If you create a pageflow that executes a Web Service that does not take a parameter, the flow
does not include the input form. At runtime the service executes and immediately displays the results of
the operation in the output form.

A typical Web Service pageflow also includes a common help page, as well as an exception handler.

For background information on Web Services, see the chapter on Web Service basics in Utility
Tools.
154 exteNd Director Pageflow and Form Guide

new utoolsUnderstandingServices.html

Using the Web Service Pageflow Wizard

To create a Web Service pageflow process:

1 With your project open in exteNd Director, select File>New.

2 Click the Portlet tab.

3 Select Web Service Pageflow and click OK:

4 Type a base name for the pageflow in the Base name field. This name is used as a prefix for the
files that will be generated.

5 In the WSDL file field, specify a path to the WSDL file that describes the service.

If the file is located within the resource set, you can navigate to it by clicking the Resource Set
button. If the file is located on the file system, you can find it by clicking the Browse button:

6 Click Next.

7 Choose a Web Service, a port, and an operation and click Next:
Web Service Pageflow Wizard 155

8 Select the target resource set in the Select a resource set dropdown and click Next:

9 Specify how you want to format the controls on the generated forms as follows:

10 Click Finish.
156 exteNd Director Pageflow and Form Guide

9 Composer Pageflow Wizard

This chapter provides instructions for using the Composer Pageflow Wizard. It contains the following
sections:

About the Composer Pageflow Wizard

Using the Composer Pageflow Wizard

About the Composer Pageflow Wizard
exteNd Director provides the Composer Pageflow Wizard to help you create pageflows that execute
exteNd Composer services.

After you use the wizard, you can run the generated pageflow right away. You can also use the Pageflow
Modeler to make changes to the pageflow, just as you would with any other pageflow.

The Composer Pageflow Wizard generates a set of forms (XHTML pages that use XForms technology)
as well as a pageflow process that ties the exteNd Composer service and the forms together into a simple
application. This application provides a convenient and easy-to-use interface for invoking an exteNd
Composer service.

Example The following example shows a typical exteNd Composer pageflow:

At runtime this pageflow would display an input form that allows the user to pass parameters to the
service:
Composer Pageflow Wizard 157

When the user submits the form, the service executes. When the service has finished processing, the
pageflow displays an output form that shows the data returned by the service.

This particular service uses a JDBC component to connect to a database and retrieve data from a table
that contains a list of employees and phone numbers.

A typical exteNd Composer pageflow also includes a common help page, as well as an exception handler.

Adding an exteNd Composer project

Before you run the Composer Pageflow Wizard, you need to add an exteNd Composer subproject to your
exteNd Director project. You can do this in either of two ways:

By creating a new exteNd Composer project

By adding an existing exteNd Composer project

For details on adding exteNd Composer subprojects, see the chapter on working with exteNd
Composer projects.

Deploying the project

Once you’ve added the exteNd Composer subproject to your exteNd Director project, you need to deploy
your exteNd Director project at least once. If you do not deploy the project, the portlet running the
pageflow will most likely display a java.lang.IllegalStateException that indicates that the service
could not be initialized.
158 exteNd Director Pageflow and Form Guide

cdComposerProjects.html

After deploying the project, you can begin to take advantage of the vulturing capabilities provided by the
resource set, since the exteNd Composer subproject is added to the resource set. The resource set ensures
that any change you make to an exteNd Composer project artifact is automatically picked up by the server
and can be tested right away. This is also true of the pageflow, since pageflows are also stored in the
resource set as well.

NOTE: The resource set that is being used by exteNd Composer must be the same as the one used by
the pageflow. If they are not the same, the pageflow will not be able to find all of the resources associated
with the service.

For complete details on working with exteNd Composer services, see the exteNd Composer Help.

Using the Composer Pageflow Wizard

To create an exteNd Composer pageflow process:

1 With your project open in exteNd Director, select File>New.

2 Click the Portlet tab.

3 Select Composer Pageflow and click OK:

4 Type a base name for the pageflow in the Base name field. This name is used as a prefix for the
files that will be generated.

5 In the Project dropdown, select the exteNd Composer project that contains the service you want to
execute.
Composer Pageflow Wizard 159

new ../../../Start_Composer_Help.html

6 In the Service dropdown, select the service to execute:

7 Click Next.

8 Select the target resource set in the Select a resource set dropdown and click Next:
160 exteNd Director Pageflow and Form Guide

9 Specify how you want to format the controls on the generated forms as follows:

10 Click Finish.
Composer Pageflow Wizard 161

162 exteNd Director Pageflow and Form Guide

10 Java Activity Wizard

This chapter describes how to create a Java activity to use in a pageflow process. It has these sections:

About Java activities

Using the Java Activity Wizard

Coding the Java activity

Example: Starting a workflow process

About Java activities
A Java activity is a system activity that executes a Java class within the context of a pageflow. A Java
activity allows you to write custom business logic that executes automatically without user intervention.

You can create the Java activity using the Java Activity Wizard, code the resulting Java class template,
and add the activity in the Pageflow Modeler. The pageflow engine automatically forwards work after the
Java Activity is processed.

For information about using the activity within your pageflow, see “Java activity” on page 48.

Using the Java Activity Wizard

To generate the Java Activity code template:

1 With your project open in exteNd Director, select File>New>File.

2 From the New File dialog select the Portlet tab and click Java Activity for Pageflow:

3 Click OK to start the wizard.
Java Activity Wizard 163

4 Complete the wizard panel:

5 Click Finish. The wizard generates the Java source template. Click OK on the popup to access the
template.

Coding the Java activity
The generated class implements the EbiJavaActivity interface and generates a method stub for the
invoke() method. This method supplies the context, and is called when work is forwarded to the Java
activity in the pageflow process.

Accessing a scoped path from a Java activity

The following example shows how to code the invoke() method to access a scoped path that is defined in
the pageflow in which the Java activity is running:

import com.sssw.wf.api.*;

 public void invoke(EbiContext context) {
 /*
 try {

Option What to do

Class name Specify a class name for the Java activity

Package (Optional) Specify a package hierarchy (with levels separated by periods) to
place the Java activity in a subdirectory of the base directory.

This affects only the directory where the Java activity is saved. For example, if
the base directory is ProjectDir/src and you specify com.myco as the package,
the Java activity will be created in ProjectDir/src/com/myco.

ResourceSet Select the Resource Set in which to store your application data.

For more information, see the chapter on using the resource set in an
exteNd Director application in Developing exteNd Director Applications.
164 exteNd Director Pageflow and Form Guide

cdResourceSet.html
cdResourceSet.html

 // how to get a value from a scopedPath (assuming a request var of fname)
 com.sssw.fw.api.EbiScopedPath fname =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Request/param/fname");
 String theFirstName = (String)fname.getValue(context);

 // how to set a value on a scopedPath.
 com.sssw.fw.api.EbiScopedPath sessionDoc =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Session/DOC");
 sessionDoc.setValue(context, "mySessionDocValue");

 // how to copy the request Referer into a session variable
 com.sssw.fw.api.EbiScopedPath from =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Request/prop/Referer");
 com.sssw.fw.api.EbiScopedPath to =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Session/Referer");
 com.sssw.fw.core.EboScopedPathUtil.copy(context, from, to);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 */

 }

Performing a JNDI lookup

In the code for a Java activity, you cannot use the InitialContext object to perform a JNDI lookup. Instead,
you need to use EbiServiceLocator interface.

For example, suppose you have an environment entry in the web.xml descriptor for a exteNd Director
WAR file:

<env-entry>
<env-entry-name>mydata</env-entry-name>
<env-entry-value>myvalue</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>

If you use the following code to try to retrieve the environment entry, you will not be able to access the
environment entry:

Context ic = new InitialContext();
Context env = (Context) ic.lookup("java:comp/env");
String value = (String) env.lookup("mydata");

However, the following code will work:

com.sssw.fw.api.EbiServiceLocator locator =
com.sssw.fw.factory.EboFactory.getServiceLocator();

String value = (String) locator.getEnvEntry("mydata");

Example: Starting a workflow process
One reason you might want to execute a Java class within the context of a pageflow is to start a workflow
process.

The following example shows how this is done:

// in the Java activity's invoke method
Java Activity Wizard 165

public void invoke(com.sssw.wf.api.EbiContext context) {
 com.sssw.wf.api.EbiContext newWFContext =
com.sssw.wf.client.EboFactory.createEbiContext();
 EbiWorkflowEngineDelegate engineDelegate =
com.sssw.wf.client.EboFactory.getWorkflowEngineDelegate();
 engineDelegate.startProcessByName("someProcess", newWFContext);
}

166 exteNd Director Pageflow and Form Guide

III Reference

Provides reference information describing how to use an RPC-style Web Service in a pageflow

• Chapter 11, “Working with RPC-Style Web Services”
167

168 exteNd Director Pageflow and Form Guide

11 Working with RPC-Style Web Services

This chapter explains how to create a pageflow that invokes an RPC-style Web Service. It includes these
topics:

About pageflows that use RPC-style Web Services

Creating a pageflow that uses an RPC-style Web Service

About pageflows that use RPC-style Web Services
exteNd Director provides the Web Service Pageflow Wizard to help you create pageflows that execute
Web Services. This wizard uses a Web Service activity to invoke the service.

The Web Service activity only provides support for document-style WSDL files. However, you can
create a pageflow that invokes an RPC-style Web Service by using a Java activity.

Example Here’s an example of a pageflow that executes an RPC-style Web Service:

Here’s what the input page would look like at runtime:

Here’s what the output page would look like at runtime
Working with RPC-Style Web Services 169

Creating a pageflow that uses an RPC-style Web Service
To use an RPC-style Web Service in a pageflow, you need to:

Generate a Web Service consumer (a program that accesses a Web Service)

Write a Java activity class that acts as a client to the Web Service

Create the user interface for the pageflow

Create a pageflow that includes the Java activity and the activities required to present the user
interface

Generating the Web Service consumer

To generate a Web Service consumer, you need to run the Web Service Wizard. When you run the
wizard, you provide a WSDL file as input. In this case, the WSDL file describes a Web Service that uses
RPC-style bindings.

Specifying the project, package, and directory for the consumer To ensure the generated
classes can be found at runtime, you need to provide the following settings when you’re running the
wizard:

For complete details on how to generate a consumer, see the chapter on generating Web Service
consumers in Utility Tools.

After running the wizard, you can test the Web Service consumer by running the Web Service Client
Runner. However, before you can do this, you need to:

Edit the xxxClient.java file

Add the archives required by the Web Services SDK to your project

Editing the xxxClient.java file Before using the generated xxxClient.java file, you:

Must edit the process() method to call one or more methods of the target Web Service.

May need to edit the getRemote() method to specify the correct location (binding) for accessing the
target Web Service.

Adding the archives required by the Web Services SDK to your project For a complete
list of the archives required, see the chapter on generating Web Service consumers in Utility Tools.
170 exteNd Director Pageflow and Form Guide

new utoolsGenWSCon.html
new utoolsGenWSCon.html
new utoolsGenWSCon.html

Writing the Java activity class

A Java activity is a system activity that executes a Java class within the context of a pageflow. A Java
activity allows you to write custom business logic that executes automatically without user intervention.

You can create a Java activity using the Java Activity Wizard, code the resulting Java class template, and
add the activity in the Pageflow Modeler.

To invoke a Web Service from a Java activity, you need to include some Java code to:

Create the initial context

Perform a lookup

Get the port for the service

Invoke the Web Service method

Using code generated by the Web Service Wizard

This logic is generated for you when you run the Web Service Wizard. You can simply copy this
logic from the generated xxxClient.java file to the invoke() method on your Java activity, as shown
below:
import com.sssw.wf.api.*;
import javax.naming.*;
import net.xmethods.sd.*;

public class TemperatureJavaActivity implements EbiJavaActivity
public TemperatureJavaActivity() {

 }

 public void invoke(EbiContext context) {

System.out.println("TemperatureJavaActivity");
try {

InitialContext ctx = new InitialContext();
 String lookup = "xmlrpc:soap:net.xmethods.sd.TemperatureService";

TemperatureService service = (TemperatureService)ctx.lookup(lookup);
TemperaturePortType remote =

(TemperaturePortType)service.getTemperaturePort();
// get the ZIP from the portlet session
String zip = (String)context.getEbiWhiteboard().getScopedValue("ZIP"

);
float f = remote.getTemp(zip);
context.getEbiWhiteboard().setScopedValue("TEMP", String.valueOf(f)

);

}
catch (Exception e) {

throw new RuntimeException (e);
}

...
}

Note that this Java activity also uses the scoped path API to get the zip code (ZIP) and set the temperature
(TEMP) on the Session object.

Using a helper class to invoke the service The exteNd Director API provides a helper class you
can use to invoke a Web Service. This class is called WebServiceActivityHelper. It is located in the
com.novell.afw.portal.portlet.pf package. The code example below shows the use of this helper class:

import com.sssw.wf.api.*;
import com.novell.afw.portal.portlet.pf.*;

public class TemperatureJavaActivity implements EbiJavaActivity {
public TemperatureJavaActivity() {

 }
Working with RPC-Style Web Services 171

 public void invoke(EbiContext context) {

System.out.println("TemperatureJavaActivity");
try {

WebServiceActivityHelper wsHelper
= new WebServiceActivityHelper();

net.xmethods.sd.TemperaturePortType remote =
(net.xmethods.sd.TemperaturePortType)
wsHelper.getRemote(
net.xmethods.sd.TemperatureService.class,
net.xmethods.sd.TemperaturePortType.class);

// get the ZIP from the portlet session
String zip =
(String)context.getEbiWhiteboard().getScopedValue("ZIP");

float f = remote.getTemp(zip);
context.getEbiWhiteboard().setScopedValue(
"TEMP", String.valueOf(f));

}
catch (Exception e) {

throw new RuntimeException (e);
}

...
}

Creating the user interface for the pageflow

Typically, you’ll want to create an input page as well as an output page for a pageflow that invokes a Web
Service. The input page allows the user to enter values for parameters that should be passed to the service.
The output page displays the data returned by the service.

Input page

Here’s some HTML for a sample input page:

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">

Zip

<input class="portlet-form-field" type="name" name="zip" value="02630"

size="20”>

<input type="submit" name="verb" value="Continue">

</form>

Output page

Here’s some HTML for a sample output page:

<form name="form1" method="post" action="wsrp_rewrite?wsrp-
urlType=blockingAction/wsrp_rewrite">

Zip Temperature : scopedpath?Session/TEMP/scopedpath

<input type="submit" name="verb" value="Continue">

</form>
172 exteNd Director Pageflow and Form Guide

In this example, the data returned (the temperature) is retrieved by means of a scoped path expression:

scopedpath?Session/TEMP/scopedpath

Creating the pageflow

Here’s what the pageflow would look like:

Here are the scoped paths for the flow:

Specifying a Copy After operation for the input page

The HTML input page would specify a Copy After operation that copies the zip code entered by the user
into a variable on the Session scope:
Working with RPC-Style Web Services 173

174 exteNd Director Pageflow and Form Guide

Index
A
action elements 92, 110
activities

about 14, 28
adding, in the Pageflow Modeler 70
Apply Change Log 42
Apply Change Logs 141
CheckPoint 44
Composer Service 51
database 28
Design UI properties 81
directive 28
Exception 46
Finish 52
Form 30
Get Page 39, 140
Get Record 40, 140
HTML 31
Initial Query 38, 139
Java 48
JSP 34
Pageflow 33
presentation 28
primary property for 28, 75
properties 28
Record Delete 42, 140
Record Insert 40, 140
Record Update 41, 140
Rule 44
Servlet 36
system 28
Web Service 50
Workflow Return 53
XML 32
XSL 49

activity
Get Record 39
Mode 29

adding controls 98
aligning controls 99
Apply Change Log activity 42
Apply Change Logs activity 141
attached label

in Pageflow Modeler 80

B
bind element 110

Bird’s Eye View window
in Pageflow Modeler 85

button link 58
Flow Link Region control 59

C
caching for database pageflows 150
CheckPoint activity 44
Composer Pageflow Wizard 13, 157
Composer Service activity 51
concurrency control for database pageflows 150
condition link 57
condition macro 57
controls

data binding 106
Copy After operations

scoped paths 23
Copy Before operations

scoped paths 23
Create Resource View menu option 85
CSS

use in XForms 92
CSS Classifications 100

D
Data Set

about 28
Database Pageflow Wizard 139
property for Apply Change Log activity 44
property for Get Page activity 39
property for Get Record activity 40
property for Initial Query activity 39
property for Record Delete activity 42
property for Record Insert activity 41
property for Record Update activity 41
working with the Data Set object 148

database activities 28
database pageflow

about 135
caching 150
concurrency control 150
sort order 151
SQL Details settings 150

Database Pageflow Wizard 135
about 13

Design UI properties 81
175

directive activities 28
document-style Web Service 50, 153

E
edge

creating in Pageflow Modeler 73
engine

pageflow 14
Event Editor 95, 110, 118

launching 119
events 118
Exception activity 46
expressions

for links 79
exteNd Composer

 see Novell exteNd Composer

F
Finish activity 52
floating label

in Pageflow Modeler 80
Flow Link Region control 59
font sizes 132
Form activity 30
Form Designer

about 18, 87
absolute positioning region 97
action elements 92, 110
adding controls 98
aligning controls 99
bind element 110
creating instance data 90
creating submission element 114
data binding 106
Event Editor 110
events 118
grouping controls 99
input 96
Instance Data Pane 110
instance element 110
layout regions 102
limitations 95
Model Editor 110
model element 92, 109
model item properties 117
moving controls 98
namespace declarations 91
output 96
Pageflow link region 97
Property Inspector 110
range 96
removing controls 98
repeat 97
replacing instance data at runtime 113
saving forms 94
secret 96
select 96

shortcut keys 95
sizing controls 98
starting 88
stopping 88
style element 92
styling controls 100
submission element 110
submit button 96
switch 97
testing 130, 131
testing font size 132
text area 96
trigger styled as link 96
upload 96
using the Form tab 94
validating XML 133
validation errors 118
XHTML content box 97
XHTML image 96

Form tab
about 94

forms
using with pageflows 15

full layout
in Pageflow Modeler 82

G
Get Page activity 39, 140
Get Record activity 39, 40, 140
graphical properties

in Pageflow Modeler 81
grid feature

in Pageflow Modeler 84
grouping controls 99

H
height preference 21
Help page

using smart linking to link to 60
HTML activity 31

I
incremental layout

in Pageflow Modeler 83
Initial Query activity 38, 139
instance data 110

replacing at runtime 113
Instance Data Pane 95
instance element 110
176

J
Java activity 48

about 163
coding 164
using to access an RPC-style Web Service 171

Java Activity Wizard 163
JSP activity 34

L
labels

in Pageflow Modeler 80, 81
layout features

in Pageflow Modeler 82
layout regions 102
links

about 14, 55
adding in the Pageflow Modeler 73
button 58
condition 57
Design UI properties 81
drawing a link segment 74
expressions 55, 79
mutual exclusivity 55
precedence 55
simple 55
smart linking 55, 60

M
Mode activity 29
Model Editor 110
model element 92, 109
model item properties

about 117
calculate 117
constraint 117
readonly 117
relevant 117
required 117

moving controls 98

N
namespace declarations 91
node

creating in Pageflow Modeler 72
see also activities

Novell exteNd Composer subproject
adding to your exteNd Director project 158

novell_link_key request parameter 59

P
pageflow

about 13
activity 33
components of 14
embedding within a workflow 15
engine 14
examples 19, 25
forms in 15
portlet descriptor for 19
process object 19
relationship with workflow 14
runner portlet 19
scoped paths in 14, 21
subflows 19

Pageflow link region 97
Pageflow Modeler

about 18, 65
adding activities 70
adding links in 73
Bird’s Eye View window 85
graphical properties in 81
grid feature 84
labels 80
layout features 82
zoom features 84

pageflow process
about 19
defining in Pageflow Modeler 66
descriptor for 19
opening in Pageflow Modeler 67
properties for 67
property settings in Pageflow Modeler 67
saving in Pageflow Modeler 67
validating 80

path
creating in Pageflow Modeler 73

portal themes and XForms 132
portlets

descriptor for a pageflow 19
modes 29
pageflow runner 19
pageflow runtime behavior 22
runtime context, and scoped paths 22

preferences
height 21
Restrict Portlet Size 21
width 21

presentation activities 28
primary property

for an activity 28, 75
primary table

for a database pageflow 136
process object 19
Property Inspector 95, 110
177

R
Record Delete activity 42, 140
Record Insert activity 40, 140
Record Update activity 41, 140
removing controls 98
Request scope 22
Response scope 22
Restrict Portlet Size preference 21
rewrite token for WSRP 31
Rule activity 44
Rule subsystem

condition macro 57

S
scoped paths

about 14
and portlet runtime context 22
Copy After operations 23
Copy Before operations 23
copying 76
in a pageflow 21
portlet runtime behavior 22
Request scope 22
Response scope 22
using in a pageflow 74

segment
creating in Pageflow Modeler 74

Servlet activity 36
simple link 55
sizing controls 98
smart linking 55, 60
sort order for database pageflows 151
SQL Details settings for database pageflows 150
style as link 106
style element 92
styling controls 100
subflows 19, 136
submission element 110
system activities 28

T
testing XForms 131
triggers 96

U
Use Smartlinking property 60

V
validating a process 80
validating XML 133
views

creating a resource view for a pageflow 66, 85, 86
Visual Editor 95

W
Web Service activity 50
Web Service Pageflow Wizard 13, 153, 169
WebService Pageflow Wizard 153
WebServiceActivityHelper class 171
width preference 21
workflow

embedding a pageflow within 15
relationship with pageflow 14

workflow process
starting from a pageflow 15, 165

Workflow Return activity 53
WSDL file

for a Web Service 50, 155
WSRP

rewrite token 31, 57, 61

X
XForms 97, 118

about 15, 87
absolute positioning region 97
action element 110
action elements 92
Actions 120
bind element 110
creating 88
creating instance data 90
CSS 92
custom event handlers 130
data 16
delete action 121
dispatch action 122
Event Editor 118
events 118
HTML content box 97
input 96
insert action 123
instance element 110
launching Event Editor 119
load action 124
message action 125
model element 92, 109
model item properties 117
namespace declarations 91
output 96
preview 131
processor 17
range 96
Rebuild action 126
Recalculate action 126
Refresh action 126
repeat 97
Reset action 126
Revalidate action 126
saving 94
secret 96
select 96
send action 126
178

set focus action 127
set index action 127
set value action 128
structure 16
style element 92
submission element 110
submit button 96
switch 97
testing 130, 131
testing font size 132
text area 96
toggle action 129
trigger styled as link 96
trigger, Form Designer 96
upload 96
using portal themes 132
validation XML 133
XHTML image 96

XForms validation errors 118
XHTML file

for defining a form 30
XML activity 32
XSL activity 49

Z
zoom features

in Pageflow Modeler 84
179

180

	About This Book
	I Concepts
	1 About Pageflows and XForms
	What is a pageflow?
	Pageflow components
	Pageflow data
	Pageflow engine
	Workflow and pageflow

	What is XForms technology?
	XForms structure
	Form data
	XForms processing

	About the Pageflow Modeler
	About the Form Designer

	2 Working with Pageflows
	About the pageflow process
	About the pageflow portlet descriptor
	Using scoped paths in a pageflow
	Scoped paths in the Pageflow Modeler
	Scopes you can use within a pageflow

	Pageflows and portlet runtime behavior
	Scoped paths and portlet runtime context
	Pageflow performance and portlet caching

	Pageflow logging
	Examples
	Example 1: Simple flow with HTML activities
	Example 2: Flow with link expressions
	Example 3: Flow with a system activity
	Example 4: Web Service and XHTML forms
	Example 5: Database pageflow

	3 Working with Activities
	About pageflow activities
	Categories

	Mode activity
	Form activity
	HTML activity
	XML activity
	Pageflow activity
	JSP activity
	Servlet activity
	Initial Query activity
	Get Page activity
	Get Record activity
	Record Insert activity
	Record Update activity
	Record Delete activity
	Apply Change Log activity
	Rule activity
	CheckPoint activity
	Exception activity
	Java activity
	XSL activity
	Web Service activity
	Composer Service activity
	Finish activity
	Workflow Return activity

	4 Working with Links
	About links
	Simple link
	Condition link
	Button link
	Smart linking

	II Tools
	5 Pageflow Modeler
	About the Pageflow Modeler
	Basic procedure
	Creating a view for a pageflow

	Starting the Modeler
	Process properties

	About the Modeler window
	Main features
	Navigating, selecting, and moving objects

	Adding activities
	Pageflow activity types
	Using activities

	Adding links
	Pageflow link types
	Drawing a link segment

	Using scoped paths
	Associating a scoped path with an activity
	Copying scoped paths
	Accessing scoped paths
	Copying a scoped path to the clipboard

	Creating link expressions
	Validating a process
	Adding and manipulating text labels
	Floating labels
	Attached labels

	Setting object display properties
	Using the layout features
	Full layout
	Incremental layout
	Setting preferences

	Using the zoom features
	Using the grid features
	Using the Bird’s Eye View
	Creating a resource view for a pageflow
	Deleting a pageflow

	6 Form Designer
	About XForms
	About the Form Designer
	Starting and stopping the Form Designer
	Creating forms
	About the wizard-generated forms
	Saving forms

	Defining the presentation
	About the Form tab
	Shortcut keys
	About form controls
	Manipulating controls
	Applying styles to controls
	Working with layout regions
	Binding controls to data

	Working with model elements
	About the Model tab
	Specifying model elements
	Specifying instance elements
	Specifying actions
	Specifying submission elements
	Specifying Bind elements

	Working with events and actions
	About the Event Editor
	XForms Actions Reference
	Customizing event handlers

	Testing forms
	Using XForms Preview
	Using View Form in browser

	7 Database Pageflow Wizard
	About the Database Pageflow Wizard
	Using the Database Pageflow Wizard
	Modifying a database pageflow
	General guidelines for editing a database pageflow
	Working with the Data Set
	Advanced settings
	Sort order

	8 Web Service Pageflow Wizard
	About the Web Service Pageflow Wizard
	Using the Web Service Pageflow Wizard

	9 Composer Pageflow Wizard
	About the Composer Pageflow Wizard
	Adding an exteNd Composer project
	Deploying the project

	Using the Composer Pageflow Wizard

	10 Java Activity Wizard
	About Java activities
	Using the Java Activity Wizard
	Coding the Java activity
	Accessing a scoped path from a Java activity
	Performing a JNDI lookup

	Example: Starting a workflow process

	III Reference
	11 Working with RPC-Style Web Services
	About pageflows that use RPC-style Web Services
	Creating a pageflow that uses an RPC-style Web Service
	Generating the Web Service consumer
	Writing the Java activity class
	Creating the user interface for the pageflow
	Creating the pageflow

	Index

