
Novell

m
w w w . n o v e l l . c o

exteNd
Director

5 . 2
W O R KFL O W GU I DE

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd DirectorWorkflow Guide

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 9

PART I CONCEPTS . 11

1 About Workflow in exteNd Director . 13
What is workflow? . 13
About the Workflow Modeler . 14

About the workflow process . 15
Workflow architecture . 16
Workflow and pageflow . 17
About the Workflow API. 18

2 Designing Workflows . 19
Getting started with workflow. 19
Process design concepts. 19

Single-branch flow . 19
Multiple-branch flows . 20

Pageflow in a workflow . 21
Using the Workflow Return activity . 22
Locking and unlocking workitems . 23

3 Working with Activities . 25
About workflow activities . 25
Pageflow activity . 26
User activity . 28
Web Service activity . 29
Rule activity . 31
Java activity . 31
Synchronize Merge activity . 32
Start activity . 33
Composer Service activity . 33
Finish activity . 34

4 Working with Links . 35
About links . 35
Simple link . 35
Condition link . 37
5

PART II TOOLS . 39

5 Workflow Modeler . 41
About the Workflow Modeler. 41
Starting the Workflow Modeler . 42

Process properties . 43
About the Modeler window . 44

Navigating, selecting, and moving objects . 45
Adding activities . 45

Workflow activity types. 45
Adding links. 47

Workflow link types . 47
Drawing a link segment . 47

Using scoped paths . 48
Associating a scoped path with an activity . 48
Copying scoped paths . 50
Accessing scoped paths . 52
Copying a scoped path to the clipboard . 52

Creating link expressions . 53
Validating a process . 54
Adding text labels . 54

Floating labels . 54
Attached labels . 54

Setting object display properties . 55
Using the layout features . 56

Full layout . 56
Incremental layout. 57
Setting preferences . 57
Undoing a layout . 58

Using the zoom features . 58
Using the grid features . 58
Using the Bird’s Eye View. 59
Creating a process resource view. 60

6 Java Activity Wizard . 61
About Java activities . 61
Using the Java Activity Wizard . 61
Coding the Java activity . 62

Accessing a scoped path . 62
Performing a JNDI lookup . 63

7 Workflow Administration . 65
Using the workflow administration portlets . 65

Engine and Queue Administration Console . 65
Workflow Administration Client. 66

Auditing runtime processes. 67
Generating runtime exception reports. 68
Configuring workflow to run in a cluster . 68

What you need to do . 68
What happens at server restart . 69

PART III APPLICATIONS . 71

8 Content Life Cycle Application . 73
About the Content Life Cycle application . 73
Running the application . 74

Dynamic addressing of workitems . 74
Content life Cycle application sources . 75
6 exteNd Director Workflow Guide

PART IV REFERENCE . 77

9 Workflow Tag Library . 79
addressee . 79
createProperty . 80
forwardWorkitem . 81
getDocument . 81
getProcessList . 82
getProperty . 83
getPropertyList. 83
getQueueStatus. 85
getWorkitem. 85
getWorklist . 85
hasDocument. 88
hasProperty . 88
isDocumentLocked . 89
isWorkitemLocked . 89
setProperty . 90
startProcess. 91
updateDocument . 92
workitemLock. 93
7

8 exteNd Director Workflow Guide

About This Book

Purpose

This book introduces the basic concepts, architecture, and tools of the Novell® exteNd Director™
Workflow subsystem. It also presents some introductory workflow programming topics.

Audience

This book is for anyone who needs to design workflow processes or understand the features of the
Workflow subsystem.

Prerequisites

This book assumes knowledge of Java programming and familiarity with the basic ideas of process
automation.
9

10 exteNd Director Workflow Guide

I Concepts

• Chapter 1, “About Workflow in exteNd Director”
• Chapter 2, “Designing Workflows”
• Chapter 3, “Working with Activities”
• Chapter 4, “Working with Links”
11

12 exteNd Director Workflow Guide

1 About Workflow in exteNd Director

This chapter introduces the exteNd Director Workflow subsystem. It includes these topics:

What is workflow?

About the Workflow Modeler

Workflow architecture

Workflow and pageflow

About the Workflow API

What is workflow?
Workflow is the automation of a business process, in whole or part, during which documents, information,
or tasks are passed from one participant to another for action, according to a set of procedural rules.
Workflow can apply to business-to-customer, business-to-business, or internal processes.

Before you decide to implement workflow, your organization might be executing its work manually, with
minimal automation if any. By studying the current work, a business analyst can isolate one or more
procedures that together achieve an objective of the organization. Workflow designers call this set of
procedures a business process.

The figure below shows two business processes: one that models how an organization executes telephone
sales orders and one that models the shipping process.
About Workflow in exteNd Director 13

A business process:

Has a definite starting point, or entry conditions—In the telephone sales example, a customer
phone call on a workday between 9 a.m. and 5 p.m. makes up a common set of entry conditions.
Entry conditions trigger the start of a business process.

Accomplishes an objective of the organization—Executing a sale is the objective of the business
process triggered by the phone call.

Can be manual, partially automated, or completely automated—In the shipping process,
packing the product could be manual, choosing a carrier could be partially automated, and
inventory management could be completely automated. Each step is still part of the business
process.

Can be broken down into smaller business processes as necessary—In the sales example, the
original Ship Order step could be replaced by the shipping business process.

Has a definite ending point, or defined outputs—For example, perhaps the business process
cannot conclude until the customer verifies receipt.

Workflow automates the routing of work from activity to activity according to procedural rules. Work is
expressed as a dynamic set of documents (data) associated with information that characterizes the set of
documents (metadata). Taken together, the data and metadata are called a workitem. Users can act on the
information in the workitem, accomplish tasks, update workitem information, and trigger the
continuation of the workitem in the workflow.

The exteNd Director Workflow Subsystem provides the framework and resources for creating and
running a workflow application using Java and XML technologies.

About the Workflow Modeler
The core of a workflow application is the process definition, an XML file that you create visually using
the Workflow Modeler. A workflow process is the visual representation of the process descriptor in the
Workflow Modeler.

The Workflow Modeler that allows you to quickly and visually create a workflow process. The Workflow
Modeler allows you to:

Graphically lay out, annotate, and format your workflow

Create, change, and delete activities and links

Set activity and link properties

Use the Scoped Path Navigator to associate activities and links with workitems

When you save a workflow process, the Workflow Modeler translates it into an XML-based file called a
process definition. The process definition saves the layout and format of your workflow and translates the
flow logic into a program the workflow engine can read and execute.
14 exteNd Director Workflow Guide

About the workflow process

Here is what a process looks like in the workflow Modeler:

Here is a summary of the main features of a workflow:

Process component Description

Activity Each process has a set of activities that control the runtime execution of the
flow. The Workflow Modeler provides activities that present information to the
user and respond to user interactions (User and Pageflow activites in the
example above) and system activities that perform background tasks that are
not visible to the user (Java activity in the example). Two of the system
activities are required in every workflow:

Start activity: represents the Workflow subsystem functions necessary to
create a new workitem and optionally to assign an initial document to the
workitem.

Finish activity: represents the Workflow subsystem functions necessary to
bring a workflow process to a normal end.
About Workflow in exteNd Director 15

Workflow architecture
The Workflow subsystem architecture consists of the following key components:

Workflow engine

Workflow queue

Workitems

Workflow client

Workflow engine The workflow engine is responsible for executing and managing workflow
processes. The workflow engine uses the process descriptor created with the Workflow Modeler to:

Create new process instances

Start, suspend, resume, and terminate activities

Evaluate links and forward to the next activity

Direct the workitem to the specified addressee

The workflow engine acts as a process container, controlling startup of new processes and lifecycle
management for the processes. The workflow process implementation controls execution forwarding and
for a process.

Workflow queue The workflow queue consists of the queue itself and a queue manager, which
coordinates traffic between the workflow engine and workitems.

The queue persists workitems so they can be made available to workflow users. The queue stores
workitem instances and data associated with them, such as the addressee (user) and the addressee type
(user or security role). When the activity is completed, the queue manager tells the engine to forward the
workitem to the next activity.

When workflow activities want to persist workitems in the queue, they send messages to the workflow
queue dispatcher. Workitems are persisted to the WFQUEUE table in the database. There is a single
instance of the queue dispatcher class that is instantiated at boot time.

Workitems The workitem is a container for the application data. It represents the state of the data at
any given point in a process instance. In a typical workflow scenario, the workflow engine moves a
workitem from activity to activity according to the link logic. (The workitem should not be confused with
the data itself, which is typically modified by each activity.)

Link Links are what tie the activities in a workflow together (Links are represented
by arrows in the workflow process). A link is a single logical path between two
activities. An activity can have multiple source (incoming) links and multiple
destination (outgoing) links. The Workflow Modeler provides two types of links:

Simple link: allows you to specify expressions that evaluate to true or false.
When the expression for a simple link evaluates to true, the link is followed
to the next activity.

Condition macro link: allows you to specify one or more conditions that
are evaluated by the Rules subsystem. When a condition link evaluates to
true, the link is followed to the next activity.

Scoped path Scoped paths is a core exteNd Director feature that provides a syntax for
accessing application data. exteNd Director includes a scoped path called flow
that lets you access workitem data from the Workflow modeler. The example
above shows the Java activity accessing the copy scoped paths feature.

Process component Description
16 exteNd Director Workflow Guide

Workflow client The workflow client provides access to the engine, queue and workitems through the
workflow API. The diagram below shows how a workflow queue delegate (instance of
EbiQueueDelegate) accesses queued items for a specified addressee:

The diagram illustrates a single process instance, but in a real application there are likely to be many
processes instances running at any given time. The queue can contain up to the number of active process
instances for an activity (assuming that a workitem has reached the activity in each process).

NOTE: exteNd Director includes core portlets for starting the workflow engine and accessing the queue.
For more information, see Chapter 8, “Content Life Cycle Application”.

Workflow in a cluster The workflow subsystem provides support for clustering. A cluster is a group
of application servers running on different hosts that share the processing load for a single application. In
a cluster configuration, clients interact with the cluster as if it were a single high-performance server.
Clustering offers several benefits, including scalability and high availability.

NOTE: For details on configuring a workflow application to run in a cluster, see “Configuring workflow to
run in a cluster” on page 68.

Workflow and pageflow
It might be helpful to understand workflow by contrasting it with the exteNd Director pageflow model.
A workflow and a pageflow are modeled in a similar manner, but a workflow application has some
distinguishing features, as shown in this comparison:

Workflow Pageflow

Process-based

Workflow is a linear business process that might
span several days, or even weeks.

Session-based

A pageflow is open-ended and the duration is
controlled by a single user.
About Workflow in exteNd Director 17

NOTE: Although workflow and pageflow are used to build different types of applications, the Workflow
subsystem provides facilities for integrating them. See “Pageflow in a workflow” on page 21.

About the Workflow API
The Workflow API lets clients access workitems and define application logic for Java activities and User
Activities. You can also use the APIs to access the engine and queue.Most of the classes for developing
business logic are contained in the com.sssw.wf.api and com.sssw.wf.client packages. Here are some key
classes:

Definite starting point

Some specific event or condition triggers a
process instance. This can be a system-
generated event, like a monthly notification, or
user-generated.

Designed entry point

The entry point is determined by the flow itself,
and is typically not triggered by an external
event.

Multiple users

A workflow assumes multiple users are
performing discrete tasks at each activity.

Single user

A pageflow application is driven by a single user.

Persistent data

Instance data must be stored outside the session
so workitems can be passed to subsequent
users.

Session data

A pageflow relies principally on instance data
stored in the current session, although the
application can access persistent data.

Definite ending point

Some specific event or condition ends the
process instance.

User-controlled exit point

The user chooses when to end the session,
although some specific action could trigger a
work flow.

Interface Description

EbiWorkitemDelegate Used by clients to interact with workitems. It provides methods for
accessing workitem properties and associated documents, and for
locking and unlocking workitems for users or user sessions.

EbiContext Provides access to the workflow context for process instances.

EbiDocumentManager Provides access to documents and document properties.

EbiQueueDelegate Provides operations for accessing, forwarding, and reassigning
queued workitems.

EbiWorkflowEngineDelegate Provides methods for starting a process instance.

EbiJavaActivity Provides methods for coding a Java Activity.

EbiActivity Provides methods for accessing the behavior of activities at runtime.

Workflow Pageflow
18 exteNd Director Workflow Guide

new ../javadoc/com/sssw/wf/api/EbiJavaActivity.html
new ../javadoc/com/sssw/wf/api/EbiActivity.html
new ../javadoc/com/sssw/wf/client/EbiWorkitemDelegate.html
new ../javadoc/com/sssw/wf/api/EbiContext.html
new ../javadoc/com/sssw/wf/api/EbiDocumentManager.html
new ../javadoc/com/sssw/wf/client/EbiQueueDelegate.html
new ../javadoc/com/sssw/wf/client/EbiWorkflowEngineDelegate.html

2 Designing Workflows

This chapter describes how to get started with workflow and introduces some workflow deign concepts.
It includes these topics:

Getting started with workflow

Process design concepts

Pageflow in a workflow

Getting started with workflow
Before you begin to develop a workflow you might want to look at the installed Content Life Cycle
application. This workflow follows a document through several activities, including document
assignment, authoring, approval, and publishing to the Content Management subsystem. It also uses the
installed WorkflowStartProcess portlet and WorkflowQueue portlet to start the process and queue
workitems for User activity addressees.

For information about running the application and accessing the sources, see Chapter 8, “Content
Life Cycle Application”.

You should get familiar with the Workflow Modeler by opening the Content Life Cycle process or by
creating your own process. If you have used the exteNd Director Pageflow modeler, you will find the
design environment is similar.

For more information, see Chapter 5, “Workflow Modeler”.

Process design concepts
The Workflow subsystem allows you to create two basic flow structures:

Single-branch flow

Multiple-branch flow

Single-branch flow

In a single-branch structure, the workflow engine forwards a single workitem from one activity to the
next until the process finishes. The installed Content Life Cycle workflow is an example of a single-
branch flow:
Designing Workflows 19

Multiple-branch flows

For more complex requirements, you can split the flow to allow for parallel or exclusive work by
different process branches. In parallel execution the process follows two or more paths so that different
work can be executed at the same time. for example, you might have two documents in the workitem that
require different processing. Here is an example of parallel execution:

In this example, it is assumed that work is being forwarded on both branches following the Start activity.
In the case of conditional branching like this, you must merge the branches using the Synchronize
Merge activity.

How synchronize merge works

Here is how the workflow engine synchronizes multiple branches:

1 When encountering a split, the engine forwards the workitem to the next activity in each branch,
where the link evaluates to true.

2 The work is processed by each branch activity and forwarded according to the flow logic, until each
one reaches the Synchronize Merge activity.

3 The workflow engine waits until work is completed on all branches and forwards the workitem to
the next activity.

Multiple splits

This example illustrates how to handle multiple splits. You must merge each split before proceeding to
another split:
20 exteNd Director Workflow Guide

Exclusive branching and looping

The next example illustrates two more points:

When your logic dictates that only one of multiple branches will execute exclusively, a
Synchronize Merge activity is not necessary.

You can loop back to a split that occurs earlier in the process as long as you return to an activity that
is executed before the split.

In this example, it is assumed that the split after the last activity will proceed exclusively to the Finish
activity or loop back to the first activity before the split:

For more information, see “Synchronize Merge activity” on page 32.

Pageflow in a workflow
exteNd Director supports the integration of pageflows and workflows. The Pageflow activity in the
Workflow Modeler allows you to specify a pageflow to run as a presentation activity within a workflow.
This allows you to incorporate the rich client features of the exteNd Director Pageflow Modeler in your
workflow process.

To use a pageflow in a workflow you need to implement these components:

Workflow/Pageflow
integration component Description

Pageflow activity Place a Pageflow activity in the workflow process where you want the
pageflow to run.

This activity passes the persistent workitem to the pageflow.
Designing Workflows 21

Using the Workflow Return activity

Here is what a Pageflow activity looks like in a workflow process:

Here is what a pageflow that the Pageflow activity points to might look like:

This example shows how you can handle a common requirement in a workflow: allow a user to edit a
workitem with the option to forward or not forward but persist the current state of the workitem for
another session. For example, one link might be followed when the user selects a Save and Forward
button and the other when the user selects Save without Forwarding.

The Workflow Return activity handles the first requirement. To address the second requirement this
example uses an HTML activity that does nothing more than close the window:

<script>self.close()</script>

Workflow Return activity Place a Workflow Return activity in the pageflow where you want to return
the workitem to the workflow.

This activity tells the workflow to forward the workitem to the next activity.

Flow scoped path Use the Flow scoped path in both the pageflow and the workflow to store
workitem instances.

A pageflow that is included in a workflow accesses the same persistent
workitem through the Flow scope.

Workflow/Pageflow
integration component Description
22 exteNd Director Workflow Guide

Locking and unlocking workitems

Being able to lock and unlock a workitem for workflow users at runtime is a basic workflow requirement.
The workflow API provides lock() and unlock() methods on EbiWorkitemDelegate for this purpose. For
pageflows running in a workflow, there are some Flow scope properties you can use to lock and unlock
workitems:

The locking and unlocking of work takes place within the pageflow activity. As a rule, you want to lock
the workitem when you start the pageflow, and unlock it before the Workflow Return activity is executed.

Suppose you have a Pageflow activity in a workflow calling the pageflow shown above, and you want to
lock the workitem when the addressee accesses it from the queue. This is the basic procedure to follow:

NOTE: This section does not describe the mechanics of copying scoped paths in the Workflow Modeler.
For more information, see Chapter 5, “Workflow Modeler”. For more information about scoped paths, see
the chapter on using scoped paths in Developing exteNd Director Applications

1 Use Flow/lock to lock the workitem and copy the return value to another location. For example:
Flow/lock ---> Flow/property/lockSuccess

You could do the copy scope before or after the Mode activity.

2 Test the return value and handle both cases.

If the return value is false, you could display a message that tells the user that the workitem is
already locked by another user, as shown in Link 1 in the example

If the return value is true, provide the flow logic that lets the user update the workitem, as shown
in link 2. When finished, link to a Workflow Return activity.

Flow scope property Description

lock Attempts to lock a workitem for the current user:

Returns true if the workitem was successfully locked or if the workitem is
already locked for this user.

Returns false if the workitem is already locked for another user.

unlock Attempts to unlock a workitem for the current user:

Returns true if the workitem was successfully unlocked or if the workitem is
already unlocked.

Returns false if the workitem could not be unlocked because it is locked for
another user.

persistent Returns the state of the workitem.

Returns true if the workitem is in a persistent state (workflow context) and
false if not persistent (pageflow context).
Designing Workflows 23

cdScopedPaths.html

3 Use Flow/unlock to unlock the workitem before it is returned to the workflow. For example:
Flow/unlock ---> Flow/property/unlockSuccess

You could do the copy scope before the Workflow Return activity.

In this case you might ignore the return value.
24 exteNd Director Workflow Guide

3 Working with Activities

This chapter describes the activities you can use in the Workflow Modeler. It includes these topics:

About workflow activities

Pageflow activity

User activity

Web Service activity

Rule activity

Java activity

Synchronize Merge activity

Start activity

Composer Service activity

Finish activity

For information about using the Workflow Modeler, see Chapter 5, “Workflow Modeler”.

About workflow activities
There are two types of workflow activities:

About activity properties The workflow activities have properties you can set in the Workflow
Modeler. Some of these properties are common to all activities, and others are available only on some of
the activities.

Some activities have a primary property. The primary property associates an object with the activity. For
presentation activities, this is the item to display. For system properties, this is the object you want to
execute.

Category Description Activites

Presentation Provide user interaction for the flow Pageflow

User

System Perform background processing
functions required by the flow

Start

Web Service

Rule

Java

Synchronize Merge

Composer

Finish
Working with Activities 25

About scoped paths Scoped paths are pointers to application data that you can select visually in the
Workflow Modeler. You can use scoped paths to select the activity’s primary property. In addition, most
activities allow you to copy scoped paths before or after the execution of an activity.

For more information, see the chapter on working with scoped paths in Developing exteNd
Director Applications.

Pageflow activity

Description The Pageflow activity represents a task or step in your business process that uses a portlet created using
the Pageflow Modeler. Including a pageflow in a workflow allows you to take advantage of the Pageflow
Modeler’s integrated client technology.

Properties The properties for the Pageflow activity are

Specifying the addressee The addressee property determines where the workitem will be routed by
the workflow engine. Each link can accept a single value for its Addressee property. Typically this value
is a role, and the role defines a list of users with permission to perform work at the activity. You can also
specify that the addressee value be dynamically derived at runtime from a workitem property.

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Pageflow Portlet Portlet Primary property. Specifies the pageflow descriptor in
the resource set.

Addressees Addressee A valid user, group, or role name.

See Specifying the addressee below.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity. For
more information, see “Setting object display properties” on page 55.
26 exteNd Director Workflow Guide

cdScopedPaths.html

To specify an addressee:

1 Open the Property Inspector for the activity and choose the Addressees tab.

2 Click Edit Addressee:

3 In the Value field specify a scoped path for a user or role. See the examples at the bottom of the
Addressee form.

Click User if you are specifying a user known to your directory realm. For example:
String/JSmith

NOTE: If you are accessing an LDAP realm, specify the distinguished name. For example:

cn=user,ou=users.

Click Role if you are specifying a security role descriptor. For example:
String/workflowUser

The name of the security role you specify must be the name of a security role descriptor file,
without the file extension. For the example shown above to work, you would need to define the
role workflowUser in a file called workflowUser.xml.

For information about creating and using roles, see the chapter on using security roles in the
User Management Guide.

Usage At runtime, the Workflow engine delegates processing to the specified pageflow until the Workflow-
Return activity in the pageflow is executed.

This activity ensures that the workflow engine does the following:

Executes a forward operation to the next workflow activity in the containing workflow.

Closes the portlet window, if the close window property on the Workflow-Return activity is
selected.

This process is repeated for each included pageflow.

For more information with examples, see “Pageflow in a workflow” on page 21.
Working with Activities 27

usSecurityRole.html

User activity

Description The User activity represents a task or step in your business process that requires user interaction. Use this
activity is for:

A custom portlet, JSP page, or servlet not created or associated with a pageflow

A non-Web client such as a word processing program or spreadsheet

Properties The properties for the User activity are:

Usage Binding activities to client types The default client for workflow applications is the Portal
subsystem. The Workflow subsystem provides a mechanism for specifying different client types for
workflow activities. For example, you might want the UI for a particular workitem to be a spreadsheet
application, a Java client, or some other application.

With a User activity you are required to specify clients in a descriptor called activity-policy.xml.

Creating an Activity policy descriptor You need to create a descriptor that follows the schema is
defined in activitypolicy.xsd, located in library/WorkflowService/schema in your installation directory.
Place the descriptor in the data/workflow-activity-policy directory in your exteNd Director project’s
resource JAR.

NOTE: The name of the file must be activity-policy.xml

Here is the activity policy defined for three portlets used in the installed Content Life Cycle workflow
application.

<?xml version="1.0" ?>
- <activitypolicy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="activitypolicy.xsd">
- <activity name="AssignContent">
<client type="portal" uri="/portal/portlet/WorkflowAssignPortlet">Portal</client>
</activity>

Property Inspector tab Property name Description

Activity Name Primary property.

The name must match the name element in the activity
policy descriptor, as described in “Binding activities to
client types” on page 28.

Description An optional description of the activity for the Workflow
Modeler user.

Addressees Addressee A valid user or role name.

See “Specifying the addressee” on page 26.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.
28 exteNd Director Workflow Guide

- <activity name="CreateContent">
<client type="portal" uri="/portal/portlet/WorkflowCreatePortlet">Portal</client>
</activity>
- <activity name="AuthorizeContent">
<client type="portal" uri="/portal/portlet/WorkflowAuthorizePortlet">Portal</client>
</activity>
</activitypolicy>

Adding client types To provide a different client type you must modify the activity policy file and
add the new client type and associated URLs. The XSL of the WorkflowQueue core portlet
(WorkflowQueueDefault.xsl) looks for portal as the client type and uses the associated URL as the link
for the activity. To reference a different client type, modify the XSL for the queue portlet and the activity-
policy client type accordingly.

NOTE: The WorkflowQueue portlet only supports direct URL references as an URI pointer.

Accessing policy information EbiWorkitemDelegate provides access to activity policy
information. Here are some of the methods:

Coding the User activity You need to access the workitem and define your presentation logic in the
implementation class. For code examples, refer to the sources for the User activities in the Content Life
Cycle application.

For more information see “Content life Cycle application sources” on page 75.

Web Service activity

Description. The Web Service activity is a system activity that executes a Web Service.

Element Description

name The name of the activity. This must match the Name property in the Workflow Modeler.

For example, the Name property in the Workflow Modeler for the first activity would be
AssignContent

client The client type and URI for the application portlet or JSP page. The default client type is
portal, which means the activity will use exteNd Director portal services to render the
client.

NOTE: You can also specify default as the client type and provide an implementation.
You can also add a client tag under <activitypolicy> as a global default using the string
default.

Client info method Description

getClientTypes() Returns an array of all client types for this activity

getClientURI() Returns the URI of the specified client type

getPolicyDefaultURI() Returns the default policy client URI for this activity

hasClientType() Determines whether the activity includes the specified client type

hasClientDefault() Determines whether the activity has a default client type
Working with Activities 29

The Web Service activity only provides support for document-style WSDL files that contain a schema.
However, you can create a pageflow that uses an RPC-style Web Service by using a Java activity.

For background information on Web Services, see the chapter on Web Service basics in Utility
Tools.

For details on how to use an RPC-style Web Service in the context of a pageflow, see the chapter
on working with RPC-Style Web Services in the Pageflow and Form Guide.

Properties The properties of the Web Service activity are:

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Document Style Web Service Input
Document Path

Provides instance data for the request being made to
the service. The input document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Web Service Name The name of the service, as specified in the WSDL
file.

Web Service
Operation

The name of the operation, as specified in the WSDL
file.

Web Service
Output Parameter
(optional)

The node name of the element returned by the
service.

Web Service Port
Type

The port type for the service, as specified in the
WSDL file.

Web Service
Return Document
Path

Provides instance data for the response returned from
the service. The output document is specified by
means of a scoped path. Typically, the scope used for
the output document is Flow/document.

Web Service
WSDL Document
Path

Specifies the name of the WSDL file that describes
the Web Service.

TIP: Fill in this property first when you’re working in
the Workflow Modeler. Once the property sheet has a
path to the WSDL file, it can automatically fill in many
of the other properties associated with the activity.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55
30 exteNd Director Workflow Guide

new utoolsUnderstandingServices.html
xfRPCWS.html

Rule activity

Description The Rule activity represents the Rule subsystem functionality needed to execute a rule within a
workflow. Rules allow you to build complex logic into your workflow by using installed conditions and
actions.

Properties The properties for the Rule activity are:

Java activity

Description The Java activity represents an unattended task or step in your process. This can be any kind of logic or
processing that you want to happen automatically without user intervention. You specify a Java class you
want to execute, which you create using the Java Activity Wizard. The class that you define extends
EbiJavaActivity.

For information about creating and coding the Java class, see Chapter 6, “Java Activity Wizard”.

Properties The properties for the Java activity are:

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Rule RuleID Primary property. Specifies the rule descriptor in the
resource set.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.
Working with Activities 31

new ../javadoc/com/sssw/wf/api/EbiJavaActivity.html

Synchronize Merge activity

Description The Synchronize Merge activity is used to synchronize a split in a workflow process. This activity is
necessary only in cases when workitems are forwarded on more than one path of the split.

Here is how the workflow engine synchronizes multiple branches:

1 When encountering a split the engine forwards the workitem to the next activity in each branch
where the link evaluates to true.

2 The work is processed by each branch activity and forwarded according to the flow logic, until each
one reaches the Synchronize Merge activity.

3 The workflow engine waits until work is completed on all branches and forwards the workitem to
the next activity.

Properties The properties for the Synchronize Merge activity are:

Usage For more information and examples, see “Process design concepts” on page 19.

Class Name Class Name Primary property. The Java class that you want to
execute.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.

Property Inspector tab Property name Description
32 exteNd Director Workflow Guide

Start activity

Description The Start activity represents the Workflow subsystem functions necessary to create a new workitem, and
optionally to assign an initial document to the workitem. The start activity is created when a new
workflow process is created and cannot be deleted from the process. There is only one Start activity per
process.

Properties The properties for the Start activity are:

Composer Service activity

Description The Composer Service activity is a system activity that executes an exteNd Composer service. exteNd
Composer services typically combine executable units of work called components and coordinate the
flow of data between them. A typical service might include a series of components that receive an input
XML document, perform sophisticated document mappings and transformations, collect information
from back-end data sources, execute transactions on mainframes and AS/400s, process error conditions,
send context-sensitive e-mail or JMS notifications, and/or return one or more XML response documents
to the original requestor(s).

By breaking up a service’s tasks into discrete components, important benefits—in terms of testing,
debugging, code maintenance, and code reuse—can be realized.

For details on using the Composer Pageflow Wizard, see the chapter on the Composer Pageflow
Wizard in the Pageflow and Form Guide.

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for run-
time processing.

Description A description of the activity intended for the Workflow
Modeler user.

Document Document Name A unique reference for the start document that can be
accessed from other flow objects.

Start Document A name and a string (separated by a space) that
points to the contents of the start document. The
pointer can be an URL.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.
Working with Activities 33

xfComposerWizard.html
xfComposerWizard.html

Properties The properties of the Composer Service activity are:

Finish activity

Description The Finish activity represents the Workflow subsystem functions necessary to bring a workflow process
to a normal end. There must be one (and only one) Finish activity in a workflow process.

Properties The properties for the Finish activity are:

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Composer Service Input Document Provides instance data for the request being made to
the service. The input document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Service Indicates which service to run by specifying a service
descriptor in the resource set

Output Document Provides instance data for the response returned from
the service. The input document is specified by
means of a scoped path. Typically, the scope used for
the input document is Flow/document.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.

Property Inspector tab Property name Description

Activity Name A unique reference to this activity that is used for
runtime processing.

Description A description of the activity intended for the Workflow
Modeler user.

Copy Scoped XPaths Copy Before Copies data from one scoped path location to another
before the activity is executed.

Copy After Copies data from one scoped path location to another
after the activity is executed.

Design UI Design UI properties control the design-time appearance of the activity.

For more information, see “Setting object display properties” on
page 55.
34 exteNd Director Workflow Guide

4 Working with Links

This chapter describes the links you can use in a workflow process. It includes these topics:

About links

Simple link

Condition link

For information about adding links to your workflow, see Chapter 5, “Workflow Modeler”.

About links
The following types of explicit links are supported within a workflow:

Simple links

Condition links

Links are evaluated in order of precedence When an activity is linked to more than one other
activity, the workflow engine uses precedence to determine which link to follow. Each link has a
precedence number associated with it. In cases where more than one link expression might evaluate to
true, the engine evaluates the links in precedence order, following all links that return true.

What happens when all link expressions return false You can mark a link as the default path to
follow out of a particular activity. When all of the link expressions evaluate to false, the workflow engine
follows the default link.

About scoped paths Scoped paths are pointers to application data that you can select visually in the
Workflow Modeler. You can use scoped paths to select test values for link expressions or to specify the
path for an activity’s primary property. You can also copy scoped paths after the execution of a link.

For more information, see the chapter on working with scoped paths in Developing exteNd
Director Applications.

Simple link

A simple link represents a simple path from one activity to another. Simple links allow you to specify
expressions that evaluate to true or false. When the expression for a simple link evaluates to true, the link
is followed to the next activity. When the expression evaluates to false, the path is not followed.

Simple links provide an easy way to choose between multiple target activities. When an activity finishes
processing, you can use expressions on simple links to determine which activity should be executed next.
Working with Links 35

cdScopedPaths.html

For example, you could use expressions on Link 2 and Link 3 in the following workflow to determine
whether Java activity 1 or Java activity 2 would be executed after User activity 1:

If you do not specify an expression for a simple link, the workflow engine automatically moves to the
target activity when the source activity finishes. For example, you would not need an expression on Link
2 in the following workflow, since the User activity1 activity has only one outgoing link:

A Simple link has these properties:

Property
Inspector tab Property name Description

Link Name A unique reference to this link that can be accessed in the flow.

Description A description of the link intended for the Workflow Modeler user.

Copy Scoped
Paths

Use to copy scoped data to another scope. The scope gets copied
after the link is evaluated and before the target activity is executed.

For more information, see “Using scoped paths” on page 48.

Default Select to make this path the default. Use if you have multiple links
to or from an activity. The default is the path that is used if no other
path evaluates to true.

Expression Use to build a logical expression that evaluates to true or false. If
you do not build an expression, the path will evaluate to true and
will be executed.

For more information, see “Creating link expressions” on
page 53.

Precedence Specify the order in which you want this link to be evaluated. Use if
you have multiple links to or from an activity.

Design UI Design UI properties control the design-time appearance of the link.

For more information, see “Setting object display properties” on page 55.
36 exteNd Director Workflow Guide

Condition link

Like a simple link, a condition link represents a path from one activity to another. However, a condition
link does not have an expression directly associated with it. Instead, it executes a condition macro created
in the Rule Editor. A condition macro executes a set of conditions that contain reusable business logic:

Condition links evaluate to true or false. When a condition link evaluates to true, the link is followed to
the next activity. When it evaluates to false, the path is not followed.

A Condition link has these properties:

Property
Inspector tab Property name Description

Condition Link Name A unique reference to this link that can be accessed in the
flow.

Description A description of the link intended for the WorkFlow Modeler
user.

Copy Scoped
Paths

Use to copy scoped data to another scope. The scope gets
copied after the link is evaluated and before the target activity
is executed.

For more information, see “Using scoped paths” on
page 48.

Default Select to make this path the default. Use if you have multiple
links to or from an activity. The default is the path that is used
if no other path evaluates to true.

Condition macro ID The name of the condition macro XML descriptor, as
specified in the Rule Editor.

For more information, see the chapter on rule and
macro editors in the Rules Guide.

Precedence Specify the order in which you want this link to be evaluated.
Use if you have multiple links to or from an activity.

Design UI Design UI properties control the design-time appearance of the link. For more
information, see “Setting object display properties” on page 55.
Working with Links 37

reEditorMacros.html
reEditorMacros.html

38 exteNd Director Workflow Guide

II Tools

• Chapter 5, “Workflow Modeler”
• Chapter 6, “Java Activity Wizard”
• Chapter 7, “Workflow Administration”
39

40 exteNd Director Workflow Guide

5 Workflow Modeler

This chapter has general information about how to create workflow processes using the Workflow
Modeler. It has these sections:

About the Workflow Modeler

Starting the Workflow Modeler

About the Modeler window

Adding activities

Adding links

Using scoped paths

Creating link expressions

Validating a process

Adding text labels

Setting object display properties

Using the layout features

Using the zoom features

Using the grid features

Using the Bird’s Eye View

Creating a process resource view

About the Workflow Modeler
The Workflow Modeler allows you to create and save an XML document that can be executed by the
workflow engine at runtime. Creating a workflow process is a three-step process:

1 Use the graphing environment of the Workflow Modeler to lay out the logic of your process:

Add activities

Create links between activities

Add labels (optional)

2 Use the Property Inspector to configure activity and link properties that link the process to the
resources of your exteNd Director environment.

3 Save the process in your project resource set. The Workflow Modeler converts it to a process
definition that the workflow engine can execute.
Workflow Modeler 41

Starting the Workflow Modeler
To start the Workflow Modeler you create a new process or open an existing one.

To create a workflow process:

1 In the development environment, select File>New.

2 Click the Workflow tab:

3 Select Workflow Process and click OK.

The main window of the Workflow Modeler opens in the editing area. The flag icon represents the
Start activity for the process:

To save a workflow process:

1 Select File>Save from the exteNd Director menu.

If the Workflow Modeler detects any mistakes in the process, a popup message informs you and
asks if you would like to save anyway. This validation occurs on all save events. You can address
the warnings later.

2 Click Yes.
42 exteNd Director Workflow Guide

If this is your first save, the Save As dialog appears.

The contents of the workflow process definitions folder display in your project resource set.
Although you can specify another directory, it is recommended that you accept the default.

3 Specify a file name and click Save.

To open a workflow process:

1 Select File>Open from the exteNd Director menu.

2 Navigate to the workflow process in your project resource set.

3 Double-click to open.

Process properties

You can access the process property sheet to view current information about the process and set UI
properties.

To access process properties:

1 Do one of the following:

Click the Properties icon on the Modeler toolbar:

OR

With the cursor in the Modeler window, right-click and select Properties.

The Property Inspector displays the process properties:

2 Edit or view the process properties:

Property Description

Name The formal name of the process. The default is the name specified for the
process descriptor.

Description A description of the process intended for the Workflow Modeler user.
Workflow Modeler 43

locator cdLocator.html#Workflowprocessdescriptor
cdResourceSet.html

About the Modeler window
Providing more screen space To provide more screen space you can close the Navigation and
Output Panes in exteNd Director by clicking the panel view selectors:

Command features Here are the command features of the Workflow Modeler:

Roles A semicolon-delimited list of existing security roles that are authorized to start a
process and create workitems. For example:

authors;developers;managers

For more information, see the chapter on using security roles in the User
Management Guide.

Show
Precedence
Labels

Specifies whether precedence labels should be displayed in the workflow
graph. When an activity is linked to more than one other activity, the Workflow
engine uses precedence to determine which link to follow.

Each link has a precedence number associated with it. In cases where more
than one link expression might evaluate to true, the engine evaluates the links
in precedence order, following the first link that returns true.

Template Specifies whether this workflow can be used as a template for the creation of
other workflows.

WorkName A descriptive name for the Workflow Modeler user.

Property Description
44 exteNd Director Workflow Guide

usSecurityRole.html

Navigating, selecting, and moving objects

To navigate the window:

1 With the General tab selected, click the Pan button on the toolbar to change the cursor to pan
mode:

2 Drag the hand cursor on the graph area to scroll the graph in the editing area.

You can also use the horizontal and vertical scroll bars to achieve the same effect.

To select objects:

1 With the General tab selected, click the Select button on the toolbar:

NOTE: Select mode is the default

2 Click any object to select it.

3 To select multiple objects, click empty space and drag the selection rectangle around the group.

To move objects:

1 Select the object.

2 Drag it to where you want it.

When you move an activity, any associated links move with it.

Adding activities
An activity represents a workitem in the workflow process. You associate the activity with a workitem
and/or business logic by setting properties on the activity icon, or node.

Workflow activity types

The following is a summary of the activities in the Workflow Modeler. For details about activity
properties and usage, click on the appropriate item:

 Node
Toolbar
icon Represents

Pageflow activity A pageflow created with the Pageflow Modeler

User activity A presentation activity for custom client implementations

Web Service activity A system activity that executes a Web Service
Workflow Modeler 45

To add an activity:

1 Click the Activities tab.

The activity toolbar displays:

2 Select an activity type.

3 Click anywhere on the graph to place the activity. Click and drag to move.

To delete an activity:

1 Select the activity.

2 Press the Delete key or right-click and select Delete.

To access activity properties:

1 Select the activity.

2 Right-click and select Properties—or click the Eye icon on the General tab.

3 Click the appropriate tab in the property sheet.

The properties are specific for the activity type. For more information, see “Workflow
activity types” on page 45.

Rule activity A system activity that executes a business rule at runtime

Java activity A system activity for executing custom business logic

Synchronize Merge
activity

A system activity that provides a synchronization point for
parallel branches of execution

Start activity A system activity that marks the beginning of a workflow
(required)

Composer Service
activity

A system activity that executes an exteNd Composer service

Finish activity A system activity that marks the end of a workflow (required)

 Node
Toolbar
icon Represents
46 exteNd Director Workflow Guide

Adding links
A link is a single logical path from one activity to another activity. Each link represents a potential routing
of workitems exiting a single activity. Links are represented by arrows in the Workflow Modeler.

Workflow link types

There are two types of links:

To create a link:

1 Click the Links tab.

The link toolbar displays:

2 Select a link type.

3 Click on an activity and drag from the starting activity to the target activity, then release the mouse
button.

See also “Drawing a link segment” on page 47.

To delete a link:

1 Select the link.

2 Press the Delete key or right-click and select Delete.

To access link properties:

1 Select the link.

2 Click the Eye icon on the General tab—or right-click and select Properties.

3 Click the appropriate tab in the property sheet.

Properties are specific for the link type. For more information, see “Workflow link types” on
page 47.

Drawing a link segment

A segment is the line between two points of a link. Segments are purely cosmetic. You can use them to
enhance the legibility and appearance of the process model:

Link type
Toolbar
icon Represents

Simple link A logical path from one activity to one or more other activities. On the
link properties you specify:

Routing logic using the link expression builder

Destination addressee as a user or role

Condition link A logical path from one activity to one or more other activities. On the
link properties you specify a Condition Macro that you created using
the Rule Editor.
Workflow Modeler 47

To draw a segment:

1 Click any point on a link and drag in any direction.

The point you drag becomes the bend in the link.

2 Release the mouse button at the point where you want to end the segment.

3 Click again and drag to add another segment.

4 For the final segment, drag to the destination activity and click on it.

Using scoped paths
Scoped paths allow you to associate data with workflow activities and links. exteNd Director provides a
set of predefined scoped paths that you can access using the Scoped Path Navigator.

For background information about scoped paths, see the chapter on working with scoped paths in
Developing exteNd Director Applications.

This section describes how to:

Associate scoped paths directly with the primary property for an activity

Copy scoped paths before or after an activity or a link executes in the flow

Associating a scoped path with an activity

You can use a scoped path to associate an object with an activity. To do this, you specify a scoped path as
the value for the activity’s primary property.

Activities you can associate You can do this with any of the following types of activities:

Portlet activity

User activity

Java activity

Rule activity

Start activity

Web Service activity

Composer Service activity

Two procedures Associating a scoped path with an activity requires two procedures:

To associate a scoped path with an activity’s primary property:

To specify a scoped path:
48 exteNd Director Workflow Guide

cdScopedPaths.html

To associate a scoped path with an activity’s primary property:

1 Select the activity, then right-click and select Properties.

2 In the Property Inspector, click the tab that has the primary property. This tab typically has the same
name as the activity. For example, the Pageflow activity has a Pageflow tab where you can set the
primary property.

3 Click the primary property for the selected activity. For details, see “Workflow activity types” on
page 45.

The Choose The Scoped XPath dialog displays showing the default predefined path for this activity
type:

The Show XML File Content check box applies to the Browse option. If selected, the XPath
Navigator will display the tree contents of the XML file. If not selected the contents will not
display. For more information, see “To browse to a new path:” on page 50.

4 Complete the next procedure to specify a scoped path.

To specify a scoped path:

1 Use one of these methods to specify the path:

To enter the path directly:

Type the path in the text box.

This requires that you know the syntax for the scoped path. For more information, see the
section on predefined scoped paths in Developing exteNd Director Applications.

To select another path or a path already defined for this flow:

Open the dopdown list for the current path:

Select another predefined path from the top of the list, or select a current path (already defined
for this flow) from the bottom of the list.

TIP: If you choose a current path that accesses the resource set, you can display the contents
of the file by clicking the icon next to the Browse button.
Workflow Modeler 49

cdScopedPaths.html#Predefinedscopes

To browse to a new path:

Click Browse.

When you click Browse the XPath Navigator displays:

The XPath Navigator is an interactive tool that allows you to specify the path using a tree view
(where applicable) and the XPath expression builder. The available options depend on the
scoped path you selected.

For more information on using the XPath Navigator, see the section on using the XPath
Navigator in Developing exteNd Director Applications.

2 Click OK.

Editing a scoped path To edit an existing scoped path, repeat the two procedures above (To associate
a scoped path with an activity’s primary property: and To specify a scoped path:).

Copying scoped paths

With the exception of the Start and Finish activites, you can copy scoped paths before or after the
execution of any activity, and copy scoped paths after the execution of a any link.

For design considerations that relate to copying scoped paths, see the section on copying scoped
paths in Developing exteNd Director Applications.

To copy a scoped path before or after an activity:

1 Select the activity, then right-click and select Properties.

2 In the Property Inspector click the Copy Scoped XPaths tab.

To copy the scoped path before execution, click the link Edit Scoped XPaths under Copy
Before.

To copy the scoped path after execution, click the link Edit Scoped XPaths under Copy After.
50 exteNd Director Workflow Guide

cdScopedPaths.html#UsingtheScopedPathandXPathNavigators
cdScopedPaths.html#UsingtheScopedPathandXPathNavigators
cdScopedPaths.html#Copyingscopedpaths
cdScopedPaths.html#Copyingscopedpaths

The appropriate Copy dialog (Copy Before or Copy After) displays:

3 Click the ellipsis for From scope.

The dialog displays the default predefined scope for this activity type. If you want to use another
scope, select it from the dropdown list.

4 To specify the path, use one of the methods described under “To specify a scoped path:” on
page 49.

5 Click the ellipsis for To scope. Repeat the procedure for specifying the From scope.

6 On the Copy Scope dialog, click Add, then click OK to exit the dialog.

7 To edit an existing scope, repeat the procedure and click Update instead of Add.

To copy a scoped path after the execution of a link:

1 Select the link, then right-click and select Properties.

2 In the Property Inspector click the link Edit Scoped XPaths under Copy Scoped XPaths.

The Copy Scoped XPaths dialog displays:

3 Click the ellipsis for From scope

The dialog displays the default predefined scope for this activity type. If you want to use another
scope, select it from the dropdown list.

4 To specify the path, use one of the methods described under “To specify a scoped path:” on
page 49.

5 Click the ellipsis for To scope. Repeat the procedure for specifying the From scope.

6 On the Copy Scope dialog click Add, then click OK to exit the dialog.

7 To edit an existing scope, repeat the procedure and click Update instead of Add.
Workflow Modeler 51

Accessing scoped paths

You can view all of the current paths used for a selected object in the flow or for all objects in the flow.

To access current scoped paths for an activity or link:

1 Select the object.

2 Right-click and choose Scoped paths.

The Available Scoped XPaths dialog displays.

To access all current paths in the flow:

1 Do one of the following:

From the Workflow menu, select View Scoped Paths.

OR

With no objects selected, right-click and choose Scoped paths.

The Available Scoped XPaths dialog displays.

2 Click a scoped path. Notice that the objects that use it are highlighted, as shown with the Java
activity in this example:

Copying a scoped path to the clipboard

Form the Available Scoped XPaths dialog you can copy a selected path to the clipboard and paste it
wherever you want.

To copy a scoped path to the clipboard:

1 Access the scoped paths using one of the methods described in the preceding section.

2 Select the path you want to copy.

3 Double-click the path or click Copy to Clipboard at the bottom of the dialog.
52 exteNd Director Workflow Guide

4 Go to where you want to copy the path and press Ctrl+V.

Creating link expressions
Link expressions let you dynamically route work based on runtime workitem values. The expression
builder allows you to test workitem properties in simple or compound expressions that evaluate to true or
false. Expressions apply to the Simple link only.

For more information, see “Simple link” on page 35.

To specify a link expression:

1 Select a Simple link, then right click and select Properties.

2 In the Property Inspector select Edit Expression.

The Expression dialog displays:

3 Click Choose Scope to access a workitem.

4 To specify the path, use one of the methods described under “To specify a scoped path:” on
page 49.

5 In the Value field, specify the value to test against the scoped data.

6 Select the operator from the data operator dropdown list.

7 Select the data type (which must match the scoped data) in the data type dropdown.

The expression builder validates your entry:

For Boolean, you must enter true or false.

For Timestamp, use this format:
MM/DD/YYY < optional: HH:MM:SS>

8 Click Add to add the expression to the text area at the bottom.

9 To add additional clauses to the expression, select the appropriate item from the logical operator
dropdown, complete the clause, and click Add for as many clauses as you need.

NOTE: Enable the Not check box to negate the current expression.

10 To edit or delete an expression, click Update or Delete.

11 Click OK when you’re done.
Workflow Modeler 53

Validating a process
You can validate a process at design time whenever you choose. The Workflow Modeler analyzes the
process structure and displays any errors encountered. Note that the validation applies to the design-time
process structure only.

To validate a process:

Use one of these methods:

Select Validate Process from the Workflow toolbar menu.

OR

Right-click and select Validate Process.

Adding text labels
Labels are separate objects in the graphing environment and have their own property sheets. Labels have
two forms: floating and attached.

Floating labels

Floating labels are simply text you place on your workflow graph and have no association with another
workflow graph object. Titles, version numbers, notes, and legends are all good uses for floating labels.

To create a floating label:

1 From the Workflow Modeler toolbar, select the Label button:

2 Click the location on the graph where you want the label to appear.

The label appears as a box with the text Untitled inside.

Each click creates a new label.

3 From the toolbar, select the arrow button.

4 Double-click inside a new label and edit the text.

5 Click outside the label to save your changes.

Attached labels

Most labels are associated with an activity or link and are called attached labels. By default, activities and
links start with a label.

To edit an attached label:

1 In the Workflow Modeler, right-click an activity icon or link.

2 From the popup menu, select Create Label.

A label appears directly below the activity or link.

3 Double-click inside the label and edit the text.

4 Click outside the label to save your changes.

An activity or link can have many labels. You can reposition the attached by dragging it to a new location.
Note the line that appears as you drag. This line indicates the activity or link the label is attached to.
54 exteNd Director Workflow Guide

To format any label:

1 In the Workflow Modeler, right-click the label and select Properties.

The Property Inspector displays showing the current formatting properties. (If the Property
Inspector is already open, just click the label.)

2 Select the Design UI tab.

3 Make the changes you want.

For a description of the UI properties, see “Setting object display properties” on page 55.

To delete a label:

1 Select the label.

2 Press the Delete key.

Setting object display properties
Each activity, link, and label has a set of graphical properties associated with it. Select and right-click an
element, and the properties of the element are displayed in the Design UI tab in the Property Inspector.
The table below describes the graphical properties found on some or all of the elements:

Activity graphical
properties Description

Arrowhead Height Customize the height (thickness) of the arrowhead for the selected links.

Arrowhead Width Customize the width (length) of the arrowhead for the selected links.

Border Color The color of the square outlining the activity. Click the color bar to display a
standard color selection dialog.

Color The background color of the activity. Click the color bar to display a standard
color selection dialog.

Font Click the data area to bring up a standard text formatting dialog.

Height (Read-only) Height of the activity in pixels. You can enlarge or shrink the activity
by dragging its handles.

Margin Height For labels, the amount of space on the top and bottom between the text and the
bounding box.

Margin Width For labels, the amount of space on the left and right sides between the text and
the bounding box.

Show Border When enabled, displays a square outline around the activity, even when the
background color is set to transparent.

Style Choose a solid line or one of several dashed patterns from the dropdown list.
Your choice affects only the currently selected link destination. To change
several destinations at once, hold down the Shift key and click each one. Select
a style from the Property Inspector.

Text color The font color of the label. Click the color bar to display a standard color
selection dialog.

Transparent Overrides the color setting and makes the activity background transparent.

Width (Read-only) Width of the activity in pixels. You can enlarge or shrink the activity
by dragging its handles.
Workflow Modeler 55

Using the layout features
The layout is the arrangement of the activities, links, and labels in your graph. The Workflow Modeler
has a sophisticated layout feature that can completely rearrange your graph to maximize readability and
minimize space.

You can specify whether you want the new arrangement to have a horizontal or vertical orientation and
whether you want links drawn as diagonal lines or composed of perpendicular segments.

There are two kinds of layout: full layout and incremental layout.

Full layout

Full layout gives the Workflow Modeler great freedom to move activities, links, and labels around the
graph.

For example, this figure displays a hand-arranged layout:

This figure shows the result of applying a full layout to the hand-arranged layout:

X Center When the workflow process is first created, the origin (0, 0) is the bottom-left
corner of the graph. The graph automatically resizes in all directions as you
create and drag items around. When this happens, the origin does not reset
itself to the new bottom-left corner; it remains fixed.

A positive value is the number of pixels above the origin the vertical center of
the icon is currently located. A negative value indicates a position below the
origin.

Enter a new value to have the Workflow Modeler automatically move the activity
to the vertical position specified.

Y Center When the workflow process is first created, the origin (0, 0) is the bottom-left
corner of the graph. The graph automatically resizes in all directions as you
create and drag items around. When this happens, the origin does not reset
itself to the new bottom-left corner; it remains fixed.

A positive value is the number of pixels to the right of the origin the horizontal
center of the icon is currently located. A negative value indicates a position to
the left of the origin.

Enter a new value to have the Workflow Modeler automatically move the activity
to the horizontal position specified.

Activity graphical
properties Description
56 exteNd Director Workflow Guide

To apply a full layout:

Choose Workflow >Full Layout.
OR

Press Ctrl+Shift+L.

Incremental layout

Incremental layout attempts to make a graph more attractive and organized but also tries to keep the basic
design of your hand-arranged layout.

This figure shows the result of applying an incremental layout to the hand-arranged layout:

To apply an incremental layout:

Choose Workflow>Incremental Layout.
OR

Press Ctrl+Shift+M.

TIP: Try a layout on your graph and select Edit>Undo to back out of a layout you don’t want.

Setting preferences

You can set layout preferences for a workflow graph. These preferences let you specify whether you want
the new arrangement to have a horizontal or vertical orientation and whether you want link links drawn
as diagonal lines or composed of perpendicular segments.

To set layout preferences:

1 Choose Workflow>Layout Settings.
Workflow Modeler 57

2 Select an orientation.

3 Select a link style.

4 Click OK.

Undoing a layout

You can undo a layout selection and return to the previous layout.

To undo or redo a layout:

From the Main Menu select Edit>Undo.

From the Main Menu select Edit>Redo.

Using the zoom features
The Workflow Modeler gives you four ways to zoom:

To zoom using the toolbar:

Select the appropriate icon from the General tab on the toolbar.

OR

Right-click in the Modeler window and select Zoom><option> from the popup window.

Using the grid features
The Workflow Modeler includes a drawing grid that works much like the grid in any graphics program:

When the grid is visible, the corners of activity and label objects stick to the intersections of
horizontal and vertical grid lines. This makes it much easier to line up objects and use consisting
spacing.

When the grid is invisible, objects can be positioned without constraint in one-pixel increments.

Turning the grid on does not reposition existing items to align with the grid.

Zoom type Toolbar icon Description

Standard
zoom

Allows you to pick from a list of common zoom percents

Marquee
zoom

Allows you to drag and select a portion of the graph area to be
zoomed to fill the graph window

Interactive
zoom

Allows you to zoom up or down by dragging up or down on the
graph

Fit in window Allows you to zoom the graph window to show all the activities
in the graph. To do this, it shrinks or enlarges the content of the
current document to fit in the graph window.
58 exteNd Director Workflow Guide

To turn the grid on or off:

Choose Workflow>Toggle Grid.

OR

Click the Grid button from the Workflow Modeler toolbar:

OR

Press Ctrl+Shift+G.

To change the spacing of grid lines (grid size):

1 Choose Workflow>Grid Size.

The Grid Size dialog displays:

2 Enter a value in pixels from 7.5 to 1000.

The default is 10.

3 Click OK.

Using the Bird’s Eye View
The Bird’s Eye View is a popup window that gives you a view of the entire workflow graph to help you
find your way around in a large graph. The Bird’s Eye View window:

Appears when you click the Bird’s Eye View button on the Workflow Modeler toolbar:

Stays on top as you work in the graph area

Is dismissed by clicking the X button in the upper-right corner

Can be resized by dragging the corners

Indicates the area visible in the graph window with a blue outline box

You can use the blue outline box of the Bird’s Eye View window to do several useful things:

Doing this Has this effect

Clicking outside the
outline box

Centers the outline box on the point clicked and pans the
graph area to correspond to the new location of the outline
box

Dragging outside the
outline box

Draws the outline box in the new location and pans the
graph area to correspond to the new location of the outline
box

Dragging inside the
outline box

Pans the outline box and pans the graph area to
correspond to the new location of the outline box

Dragging a corner of
the outline box

Resizes the outline box and zooms the graph area to
correspond to the new size of the outline box
Workflow Modeler 59

Creating a process resource view
You can create a custom view of all resource files associated with a workflow. Once you’ve created the
view, you can use display it on the View tab.

TIP: To get to the View tab, you need to first click on the Resources tab in the Navigation Pane.

To create a custom view for a workflow process:

Choose Workflow> Create Resource View.
60 exteNd Director Workflow Guide

6 Java Activity Wizard

This chapter describes how to create a Java activity to use in a workflow process. It has these sections:

About Java activities

Using the Java Activity Wizard

Coding the Java activity

About Java activities
A Java activity is a Java class that executes within the context of an exteNd Director workflow
application. A Java activity allows you to write custom business logic that executes automatically
without user intervention.

You can create the Java activity using the Java Activity Wizard, code the resulting Java class template,
and add the activity in the Workflow Modeler. The workflow engine automatically forwards work after
the Java activity is processed.

Using the Java Activity Wizard

To generate the Java activity code template:

1 With your project open in exteNd Director, select File>New>File.

2 From the New File dialog, select the Workflow tab and click Java Activity:
Java Activity Wizard 61

3 Click OK to start the wizard. This panels displays:

4 Complete the wizard panel:

5 Click Finish. The wizard generates the Java source template.

6 Click OK on the popup to access the template.

Coding the Java activity
The generated class implements the EbiJavaActivity interface and generates a method stub for the
invoke() method. This method supplies the workflow context, and is called when work is forwarded to
the Java activity in the workflow process.

Accessing a scoped path

The following example shows how to access a scoped path in the Java activity at runtime. This example
uses the Session scope. Typically workitems in a workflow are stored in the Flow scope.

Option What to do

Class name Specify a class name for the Java activity

Package (Optional) Specify a package hierarchy (with levels separated by
periods) to place the Java activity in a subdirectory of the base
directory.

This affects only the directory where the Java activity is saved. For
example, if the base directory is ProjectDir/src and you specify
com.myco as the package, the Java activity will be created in
ProjectDir/src/com/myco.

Resource Set Select the Resource Set in which to store your application data.
62 exteNd Director Workflow Guide

import com.sssw.wf.api.*;

 public void invoke(EbiContext context) {

 try {
 // how to get a value from a scopedPath. (assuming a request var of fname)
 com.sssw.fw.api.EbiScopedPath fname =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Request/param/fname");
 String theFirstName = (String)fname.getValue(context);

 // how to set a value on a scopedPath.
 com.sssw.fw.api.EbiScopedPath sessionDoc =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Session/DOC");
 sessionDoc.setValue(context, "mySessionDocValue");

 // how to copy the request Referer into a session variable
 com.sssw.fw.api.EbiScopedPath from =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Request/prop/Referer");
 com.sssw.fw.api.EbiScopedPath to =
 com.sssw.fw.factory.EboScopedPathFactory.createScopedPath(
 "/Session/Referer");
 com.sssw.fw.core.EboScopedPathUtil.copy(context, from, to);
 }
 catch (Exception e) {
 System.out.println(e);
 }

 }

Performing a JNDI lookup

In the code for a Java activity, you cannot use the InitialContext object to perform a JNDI lookup. Instead,
you need to use EbiServiceLocator interface.

For example, suppose you have an environment entry in the web.xml descriptor for a exteNd Director
WAR file:

<env-entry>
<env-entry-name>mydata</env-entry-name>
<env-entry-value>myvalue</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>

If you use the following code to try to retrieve the environment entry, you will not be able to access the
environment entry:

Context ic = new InitialContext();
Context env = (Context) ic.lookup("java:comp/env");
String value = (String) env.lookup("mydata");

However, the following code will work:

com.sssw.fw.api.EbiServiceLocator locator =
com.sssw.fw.factory.EboFactory.getServiceLocator();

String value = (String) locator.getEnvEntry("mydata");
Java Activity Wizard 63

64 exteNd Director Workflow Guide

7 Workflow Administration

This chapter describes how to use the Workflow administration tools and features. It has these sections:

Using the workflow administration portlets

Auditing runtime processes

Generating runtime exception reports

Configuring workflow to run in a cluster

Using the workflow administration portlets
The exteNd Director install includes two workflow administration portlets for managing the engine,
queue, and runtime processes:

Engine and Queue Administration Console (WorkflowEngineAdmin)

Workflow Administration Client (WorkflowAdminClient)

Workflow administrators can access these portlets from the Director Administration Console (DAC).

For more information, see the chapter about the Director Administration Console in Developing
exteNd Director Applications.

Engine and Queue Administration Console

The engine and queue administration console provides the following functionality:

Start, suspend, or shut down the workflow queue

Start, suspend, or shut down the workflow engine

Start, suspend, or shut down both

Start functions Start the selected operation. This option starts an operation from scratch, resumes a
suspended operation, or restarts an operation that was shut down.

Suspend functions Suspend the specified operation. Any messages sent to the engine or queue are
stored but not executed until you select Start.
Workflow Administration 65

cdAppAdmin.html

Shutdown functions Shut down the specified operation. Any messages sent to the engine or queue
during the shutdown phase are lost.

NOTE: You cannot shut down the engine or the queue if it is in the suspended state. In other words, the
engine or queue must be running in order for the shutdown function to work.

Workflow Administration Client

This portlet allows you to manipulate the execution of a process instance by allowing you to:

See lists of running, suspended, and finished process instances

See a list of the activities and their states in a selected process instance

Suspend or resume a process instance

Suspend or resume an activity in a process instance

Terminate a process instance

Process functions

Process functions operate on all workitems associated with the process, unless that work is already
displayed in a user’s queue. In this case, workitems are not affected by suspending or resuming either
processes or activities. Essentially, the user owns this work, and no existing functions (apart from
locking) can prevent the user from updating and forwarding this work.

Suspending a process Suspending a process tells the Workflow subsystem that no updates should
be made to workitems associated with that process. Resuming a process returns it to the running state.
The effect of suspending and resuming is apparent only when a user forwards work from one activity to
another.

For example, assume there are two work queues, workqueue-A and workqueue-B. Also assume that
workitem-1 is displayed in workqueue-A, and a forward on workitem-1 would normally result in the
work appearing in workqueue-B.

If the workflow process currently being executed by workitem-1 is suspended (by someone selecting the
Suspend Process button on the Process Administration Console), a forward on workitem-1 would result
in the work disappearing from workqueue-A but not appearing in workqueue-B.

Resuming a process Resuming a process returns it to its original state. Continuing with the same
example, assume the workflow process is resumed (by selecting the Resume Process button on the
Process Administration Console). A refresh of workqueue-B will reveal workitem-1, ready for updating
and forwarding by the user.
66 exteNd Director Workflow Guide

Terminating a process Terminating a process tells the Workflow subsystem to remove the process
instance and its associated activities from the engine queue process. When a process is terminated, it
cannot be recovered.

Activity functions

Suspending and resuming activities is similar to suspending and resuming processes, but enables more
precision.

An activity can be in one of the following states:

Suspending an activity Suspending an activity tells the Workflow subsystem not to forward work to
this activity in this process. Only idle activities may be suspended; attempting to suspend a running or
finished activity will have no effect. Other combinations may also be ignored (such as attempting to
suspend a process or activity that is already suspended).

IMPORTANT: Java activities cannot be suspended, so you cannot access this type of activity using the
workflow administration client portlet or the administration APIs.

Continuing with the example from the preceding section, assume there is an additional work queue
(workqueue-C) but that workitem-1 is currently displayed in workqueue-A as before. Further assume that
a forward from workqueue-B would result in the work appearing in workqueue-C (giving a simple A-B-
C queue sequence).

If the workflow activity for workqueue-C is suspended (by someone selecting the Suspend Activity
button), then a forward on workitem-1 (currently in workqueue-A) would result in the work showing up
in workqueue-B, as expected. However, a forward from workqueue-B would not result in workitem-1
showing up in workqueue-C, since the associated activity is currently suspended.

Resuming an activity Now assume that the activity for workqueue-C is resumed (by someone
selecting the Resume Activity button). A refresh of workqueue-C will then reveal workitem-1, ready for
updating and forwarding by the user.

Auditing runtime processes
The Workflow API provides the EbiAuditDelegate.getAuditInfo() method for getting audit information
about workflow processes, activities, workitems, and workitem properties. Here is the method
declaration:

public Document getAuditInfo(
String processId, String runNumber, String activityName, Date startDate, Date

endDate)
throws com.sssw.wf.client.EboAuditLoggerException

The DTD for the return document is available in your exteNd Director project directory at
library/WorkflowService/DTD/workflow-auditlist.dtd.

NOTE: All parameter values are optional. To return all information, specify null for the parameter.

This state Means the workitem

Idle Is not yet running and has not been suspended

Running Is active and cannot be suspended

Suspended Has been suspended; resuming the activity will reopen the workitem

Finished Has been completed and forwarded to the next activity; cannot be suspended

Pending Activity has finished executing and is waiting for the engine that owns the process to
forward to the next activity. Applies only to presentation activities running in a cluster.
Workflow Administration 67

Generating runtime exception reports
The Workflow API includes exception-handling classes for the Workflow subsystem portlets, including
EboEngineException, EboQueueException, and EboWorkitemException. By default, exception
messages are written out to the server console. But you can have the messages sent via e-mail to a
specified user. The setting for this option is in config.xml.

To configure exception messages to be sent to an administrator:

1 Outside exteNd Director, open the following file:
My_Project/library/WorkflowService/WorkflowService-conf/config.xml

2 Uncomment the following lines:
 <!--

<property>
<key>WorkflowService/administrator-host</key>
<value>SomeHost</value>

</property>
<property>

<key>WorkflowService/administrator-address</key>
<value>SomeAddress</value>

</property>
-->

NOTE: After you uncomment the properties, you can access them in the XML Editor in exteNd
Director.

3 Set the two properties to a valid user or admin group with a valid e-mail address. For example:
<property>

<key>WorkflowService/administrator-host</key>
<value>SMPT mail server hostname</value>

</property>
<property>

<key>WorkflowService/administrator-address</key>
<value>admin@addresss.com</value>

</property>

4 Save the file.

Configuring workflow to run in a cluster
The workflow subsystem provides support for clustering. A cluster is a group of application servers
running on different hosts that share the processing load for a single application. In a cluster
configuration, clients interact with the cluster as if it were a single high-performance server. Clustering
offers several benefits, including scalability and high availability.

To ensure that each workflow process instance executes successfully in a cluster, the workflow
subsystem carefully manages the state of the process throughout its execution. The workflow subsystem
also manages state information for the workitem and the queue.

What you need to do

To deploy a workflow application to run in a cluster, you need to deploy the project that contains the
workflow to each server in the cluster. Then you start each server with a system property that specifies
the ID for the workflow engine.
68 exteNd Director Workflow Guide

Deploy the application to each server

To run a workflow application in a cluster, you must first deploy the application to each server in the
cluster. The procedure for deploying the application is the same as for any exteNd Director application.
The only restriction you need to be aware of is that all of the servers within the cluster must share a single
exteNd Director database.

For more information, see the chapter on deploying applications in Developing exteNd Director
Applications.

Start each server with a unique engine ID

A workflow process instance must execute on a single workflow engine running within a cluster. To bind
a process instance to an engine, the workflow subsystem associates the process with an engine ID that is
specified when the server is first started. The system property used to specify the engine ID is
com.novell.afw.wf.engine-id. This property setting overrides the value specified in the config.xml
file for the workflow subsystem.

The standard format for specifying system properties for the server is:

-DpropName=propvalue

You can use this format to specify the engine ID. For example, when starting the exteNd Application
Server, you would include this argument to set the engine ID:

+Dcom.novell.afw.wf.engine-id=engine-id-value

The value you specify for the engine ID is a logical name that can include numbers or letters.

IMPORTANT: The workflow administrator is responsible for ensuring that each engine ID value is
unique for all the workflow engine instances running in the cluster.

Once started by an engine running on a particular server, a workflow process instance can only run and
complete on that server. This ensures that the workflow process executes safely. However, it does not
provide process instance failover support. If a server in the cluster crashes, the process instance will not
be restarted until an engine with the same ID is restarted.

What to do if a machine cannot be recovered If a server machine cannot be restarted because of a
serious hardware or software failure, you can start the application server on a new machine, associating
the server with the workflow engine ID that was specified on the unrecoverable machine. Since the
engine ID is a logical name, not a direct mapping to the physical machine on which the engine was
running, the dangling process instance will complete successfully on the new machine.

What happens at server restart

When a server is restarted after a crash, the workflow engine restarts automatically rather than waiting
for a client component to make a request. At this point, the engine restarts any processes that were left
dangling at the time of the crash. These processes in turn forward execution to any activities that have not
been completed.

Process restart is handled by the engine All logic required for process startup is handled by the
workflow engine. During process restart, the engine restarts only those processes that have the same ID
as that of the engine. Therefore, the process instance will be restarted by only one server in the cluster.
When the engine is restarted, it reads process state information from the WFPROCESSTATE table in the
exteNd Director database.

Activity dispatch is handled by the process All logic required for activity dispatch (forwarding
of execution) is handled by the process. Any activities (user or system activities) that have completed
successfully (including corresonding database updates) are not reexecuted when the process is restarted.
Workflow Administration 69

cdDeploy.html

Process instances are tied to the engine that started the process. However, a user may logon to any engine
in a cluster to execute a presentation activity (user activity or pageflow activity). When the workflow
engine forwards from a presentation activity to the next activity in the workflow, it must execute on the
engine that started the workflow process instance. When a workflow engine is finished executing a
presentation activity for a process that it does not own, the activity state in the database is set to
PENDING. The other engines in the cluster periodically poll the activity state table looking for activities
that belong to a process they own. Whenever an engine finds one of these activities, it then forwards to
the next activity in the process.

Activity state management To keep track of which activities should be executed at restart time, the
system stores activity states in the WFACTIVITYSTATE table in the exteNd Director database. These
activity states provide checkpoints that can be used to determine where execution should resume after a
restart.

The activity states are as follows:

Once an activity is finished processing, it is transitioned to Idle.

Here’s a scenario that illustrates what happens when two activities (activity A and activity B) are
executed sequentially.

1 Before execution is dispatched to activity A, the process makes an entry in the
WFACTIVITYSTATE table that contains the name of the activity and its state. The entry has the
values {“Activity A”, “Running”}.

2 Activity A is executed.

3 After activity A finishes executing, the entry is modified to be {“Activity A”, “Finished”}.

4 Before execution is dispatched to activity B, the process makes an entry for this activity {“Activity
B”, “Running”}. Following that, the entry for activity A is removed.

When the engine restarts a process, the process uses data in the WFACTIVITYSTATE table to determine
where to resume execution within the process. The data in the WFACTIVITYSTATE table indicates the
last finished activity of every executing branch. This information is treated as a kind of checkpoint from
which processing can resume. Once the last finished activity is identified, execution is resumed with the
following activity.

Workitem state management Workitems retrieved from the engine always update their state
directly from the database, rather from a cache. Therefore, all process engines running in a cluster access
queue, workitem, and lock state that is consistent and up-to-date.

Workitem changes made by a user on one machine in the cluster are not overwritten by changes made by
another user on a different machine. The workflow subsystem uses an optimistic concurrency control
that relies on the use of the SQL WHERE clause to safeguard changes made to the workitem. Each
UPDATE statement issued against the database includes a WHERE clause that specifies some of the
values initially retrieved. If the record has been modified by another engine since it was first retrieved,
the update operation fails.

Activity state Description

Idle Activity is not executing but can be dispatched to.

Running Activity is executing.

Suspended Activity has been suspended.

Finished Activity has finished execution.

Pending Activity has finished executing and is waiting for the engine that owns the process to
forward to the next activity. Applies only to presentation activities running in a cluster.
70 exteNd Director Workflow Guide

III Applications

• Chapter 8, “Content Life Cycle Application”
71

72 exteNd Director Workflow Guide

8 Content Life Cycle Application

This chapter describes how to run the installed Content Life Cycle workflow application and how to
access the application sources. It has these sections:

About the Content Life Cycle application

Running the application

Content life Cycle application sources

About the Content Life Cycle application
Content Life Cycle is a workflow portlet application that allows different users to complete activities
representing the life cycle of a document. Here is what the process looks like in the Workflow Modeler:

Each of the User activities is associated with a different user. Let’s assume the following users:

Content Creation Request: sample

Content Creation: sample2

Content Authorization: sample3

Here’s how the application works:

1 The user sample creates a new process and completes a form that requests the creation of a
document. Sample then forwards the workitem.

2 Sample2 creates a document and adds it to the Content Management subsystem. Sample2 then
forwards the workitem.

3 Sample3 reviews the document and indicates whether the document is authorized for publication,
and forwards the workitem to the next activity:

The two links from the Content Authorization activity use the Flow scoped path to test the value of
a workitem document property called authorized. If the value is true the link to the Content
Publishing Java activity is followed. If it is false the link back to the Content Creation activity is
followed.

4 When the content is authorized, the Content Publishing activity (a Java activity) publishes the
document using the CM subsystem APIs.

The Java activity uses a scoped path to point to the executable Java class in the project resource set.
Content Life Cycle Application 73

Running the application
Before running the Content Life Cycle application, you need add some sample users to your server
directory realm.

To add sample users:

1 Use your application server tools or the Director Administration Console (DAC) to add the
following sample users:

sample

This is the user specified in the workflow process descriptor. The other two can have any name you
want, for example:

sample2

sample3

To run the Content Life Cycle application:

1 In three separate browsers log in to exteNd Director MyPortal using each sample user.

2 For the sample user create a personal page called workflow and add these installed portlets to the
content:

WorkflowStartProcess

WorkflowQueue

3 Repeat steps 1 and 2 for the other two users, but just add the WorkflowQueue portlet to the personal
pages.

4 Run the portal personal page in each browser. In the sample user browser go to the Workflow Start
Process, select the process from the dropdown list, and click Start.

This creates a workitem in the WorkflowQueue portlet.

NOTE: You can create as many instances as you want.

5 Select the workitem and click View Item. This displays a workitem form for assigning a document.

6 Complete the form, specify one of your workflow users as an addressee, and choose Forward.

7 Follow the process through content creation, approval, and publish:

Click Refresh in the WorkflowQueue portlet in the appropriate browser.

Select the workitem and click View Item.

Complete each form, specify an addressee, and forward where appropriate.

Dynamic addressing of workitems

The Content Life Cycle application uses a static addressee (the user called sample) for the Content
Creation Request activity. However, the application allows users to specify the addressee for the Content
Creation and Content Authorization activities dynamically at runtime. In the process definition, the
addressee field for these activities uses the Flow scoped path to scope to a workflow property called
target_addressee.

The value of this property is set by the portlet source for the User activity. Whatever the value is at the
time the activity gets forwarded determines the addressee. When the portlet sets a new addressee, it sets
a workitem property on the EbiWorkitemDelegate:

EbiProperty addrProp = new EboProperty(WORKITEM_ADDRESSEE,
 m_addressee, EboConstants.ATT_STRING, false);
delegate.setProperty(addrProp, WFcontext);

TIP: You can also use the Set Workitem Value action in the Rules subsystem to dynamically set workitem
properties. For more information, see the chapter on installed actions in the Rules Guide.
74 exteNd Director Workflow Guide

reActionsRef.html

Content life Cycle application sources
The application source files and artifacts are contained in JAR files at:

 install_dir/Director/templates/Director/TemplateResources/

Here is a summary:

Parent directory and JAR Contents

workflow-portlets/
workflow_portlets.jar

Class files and XSL descriptors for the
WorkflowStartProcessPortlet and WorkflowQueuePortlet.

WorkflowUsers security role descriptor

workflow-portlets/
workflow_portlets_src.jar

Java sources for WorkflowStartProcessPortlet and
WorkflowQueuePortlet.

workflow-sample-portlets/
workflow_sample_portlets.jar

Class files for the User activities

activitypolicy.xml for specifying the client classes for the
User activities

 The Content Life Cycle process descriptor

workflow-sample-portlets/
workflow_sample_portlets_src.jar

Java sources for the User activity classes
Content Life Cycle Application 75

76 exteNd Director Workflow Guide

IV Reference

• Chapter 9, “Workflow Tag Library”
77

78 exteNd Director Workflow Guide

9 Workflow Tag Library

This chapter describes how to use the JSP tags contained in WorkflowTag.jar.

For background information, see the chapter on using the exteNd Director tag libraries in
Developing exteNd Director Applications.

These are the JSP tags:

addressee

createProperty

forwardWorkitem

getDocument

getProcessList

getProperty

getPropertyList

getQueueStatus

getWorkitem

getWorklist

hasDocument

hasProperty

isDocumentLocked

isWorkitemLocked

setProperty

startProcess

updateDocument

workitemLock

addressee

Description Specifies a workitem addressee that is passed to the tag within which it is nested. This tag is a nested tag.
It can only be used as the child of another tag.

The parent tag must have a method of signature addAddressee(String x). The addressee tag calls that
method on the parent tag and passes in the addressee.

See also getWorklist

Syntax <prefix:addressee>addressee</>

Example This example shows how to specify addressee nested tags in the getWorklist parent tag:

<epwf:getWorkList id="example" iterate="true" >

<epwf:addressee>user1</epwf:addressee>
Workflow Tag Library 79

cdUsingTagLib.html

<epwf:addressee>user2</epwf:addressee>

 Activity = <%=activity%>

 workitemid = <%=workitemid%>

 name = <%=name%>

 lockedby = <%=lockedby%>

 message = <%=message%>

</epwf:getWorkList>

createProperty

Description Creates an EbiProperty object for a workitem or document using the specified values for property name,
value, and type.

If docName is provided, the property object is created for the document. The EbiProperty object is
returned in a default scripting variable called newProperty, or the name provided in the id attribute.

This tag wraps a version of createProperty() on the EbiWorkitemDelegate interface.

Syntax <prefix:createProperty workitemID="workitemID" docName="docName" propName="propName"

value="value" type= "type" immutable="immutable" id="id"/>

Example This example creates a workitem property and gets the property name from the returned object:

<epwf:createProperty id="example" workitemID="<%=wid.getWorkitem().getId()%>"
propName="wiproperty2" value="testvalue" type="string" / >

<% com.sssw.wf.api.EbiProperty prop =
(com.sssw.wf.api.EbiProperty)pageContext.getAttribute("example");%>

<%=prop.getPropertyName()%>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName No Yes Name of the document to which to add the property

propName Yes Yes Name for the property

value Yes Yes Property value

type Yes Yes Data type for the property value; for valid entries, see
EbiProperty in the API documentation

immutable No Yes Boolean value (true or false) that specifies whether
the property is immutable; default is false

id No No Name of the variable in which to store the returned
property object; default name is newProperty
80 exteNd Director Workflow Guide

new ../javadoc/com/sssw/wf/api/EbiProperty.html

forwardWorkitem

Description. Forwards a workitem to the next activity and returns a boolean representing whether the attempt to
forward was successful.

The value is returned on a scripting variable called wi_forward or the name provided in the id attribute.

This tag wraps the forward() method on the EbiQueueDelegate interface.

Syntax <prefix:forwardWorkitem workitemID="workitemID" id="id"/>

Example <epwf:forwardWorkitem id="forward" workitemID='<%=x%>' />
 <%=pageContext.getAttribute("forward") %>

getDocument

Description Returns a document for a specified workitem ID. By default it returns the document as an object of type
org.w3c.dom.Document. If returnDOM is set to false, the document is returned as a String. The value is
returned on a scripting variable called wi_document or the name provided in the id attribute.

This tag wraps getDocument() on the EbiWorkitemDelegate interface.

Syntax <prefix:getDocument workitemID="workitemID" docName="docName" returnDOM="returnDOM"

id="id"/>

Example This example gets a workitem document as a String:

<epwf:getDocument id="example" workitemID="<%=wid.getWorkitem().getId()%>"
docName="mydoc1" returnDOM="false" />
<%=pageContext.getAttribute("example")%>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Current workitem ID

id No No Name of the variable in which to store the return value;
default name is wi_forward

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName Yes Yes Name of the document

returnDOM No Yes Boolean that returns the document as an object of type
org.w3c.dom.Document (true) or as a String (false); the
default is false

id No No Name of the variable in which to store the return value;
default name is wi_document
Workflow Tag Library 81

getProcessList

Description Retrieves a list of available workflow processes. Returns the list as a DOM or as variables that can be set
within the tag. The result is returned using a scripting variable called processList or by a value set in the
id attribute.

Tag options Do one of the following:

Set returnDOM to true (returns DOM) or false (returns String XML). In this case the iterate
attribute must be false.

OR

Set iterate to true to return results via variables in the body tag. In this case returnDOM is not used.

This tag wraps the getProcessDefinitions() method on the EbiWorkflowEngineDelegate interface.

Syntax <prefix:getProcessList returnDOM="returnDOM" iterate="iterate" id="id"/>

Example This example gets a process list using iterated nested variables:

 <epwf:getProcessList iterate="true" >
 ProcessID = <%=processid%>

 Name = <%=name%>

 </epwf:getProcessList>

Attribute Required?

Request-time
expression
values
supported? Description

returnDOM No Yes Boolean value (true or false) that indicates whether to
return the list as a DOM (true) or as an XML String (false)

The DOM adheres to workflow-process_4_0.dtd

NOTE: If returnDOM is set to true, the iterate attribute
must be set to false

iterate No Yes Boolean value (true or false) that indicates whether this
tag will operate as a body tag so that each row can be
processed separately; default value is false

If the iterate attribute is set to true, the following values
can be accessed from within the getProcessList tag:

processid

name

Each of these variables has a scope of NESTED

NOTE: When the iterate attribute is set to true,
returnDOM is not used

id No No Name of the variable in which to store the returned
boolean value; the default name is processList
82 exteNd Director Workflow Guide

getProperty

Description. Gets a property object of type EbiProperty for a workitem or (if docName is provided) for a document.
The value is returned on a scripting variable called property or the name provided in the id attribute.

This tag wraps the getProperty() method on the EbiWorkitemDelegate interface.

Syntax <prefix:getProperty workitemID="workitemID" propName="propName" docName="docName"

id="id"/>

Example This example gets a workitem property name and value from the returned property object:

<epwf:getProperty id="example" workitemID="<%=wid.getWorkitem().getId()%>"
propName="wiproperty" />

<%=((com.sssw.wf.api.EbiProperty)pageContext.getAttribute("example")).getPropertyN
ame()%> = name
<%=((com.sssw.wf.api.EbiProperty)pageContext.getAttribute("example")).getPropertyV
alue()%> = value

getPropertyList

Description Returns a List (java.util.List) of EbiProperty objects for a given workitem and/or related document.
Either the forWorkitem or forDocuments attribute must be set to true. If both are set to true, all properties
will be returned for the workitem and all related documents. List is returned on a scripting variable called
propertyList or the name provided in the id attribute.

This tag wraps the getAllProperties(), getWorkitemProperties, and getDocumentProperties on the
EbiWorkitemDelegate interface, depending on the attributes provided.

Syntax <prefix:getPropertyList workitemID="workitemID" forWorkitem="forWorkitem"

forDocuments="forDocuments" docName="docName" iterate="iterate" id="id"/>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

propName Yes Yes Name of the property

docName No Yes If this is a document property, the name of the document
associated with the property

id No No Name of the variable in which to store the returned
property object; the default name is property
Workflow Tag Library 83

Examples Property list using iterated nested variables:

<epwf:getPropertyList id="example1" iterate="true"
workitemID="<%=wid.getWorkitem().getId()%>" forWorkitem="true" forDocuments="true"
>
 name = <%=name%>

 value = <%=value%>

 docName = <%=docName%>

</epwf:getPropertyList>

Property list as a Java List:

<epwf:getPropertyList id="example2" iterate="false"
workitemID="<%=wid.getWorkitem().getId()%>" forWorkitem="true" forDocuments="true"
/>
<%=example2.size()%> = size

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

for
Workitem

No Yes Boolean value that specifies workitem properties; if this
attribute and the forDocuments attribute are true and no
docName is provided, all workitem properties are
returned

for
Documents

No Yes Boolean value that specifies document properties; if this
attribute is true, you can also set the docName attribute

docName No Yes Name of the document whose properties you want
returned (only the properties for the specified document
are returned); if you do not specify a docName, all
properties are returned

iterate No Yes Boolean value (true or false) that indicates whether this
tag will operate as a body tag so that each row can be
processed separately

The default is false, which returns a List object on the
scripting variable named propertyList or the name
provided in the id attribute; List contains objects of type
EbiProperty

If iterate is set to true, the following values will be
available in the body tag:

name: the property name

type: the property type

value: the property value

docName: the name of the document to which the
property is related

Each of these variables has a scope of NESTED

id No No Name of the variable in which to store the List; the
default name is propertyList
84 exteNd Director Workflow Guide

getQueueStatus

Description. Checks the status of the workflow engine. Returns the word running, shutdown, or suspended. The
value is returned on a scripting variable called queueStatus or the name provided in the id attribute.

This tag wraps getQueueStatus on the EbiQueueDelgate interface.

Syntax <prefix:getQueueStatus id="id"/>

Example <epwf:getQueueStatus id="queue" />
 <%=pageContext.getAttribute("queue") %>

getWorkitem

Description Returns an object of type EbiWorkitemDelegate for the specified workitemID. The value is returned on
a scripting variable called workitem or the name provided in the id attribute.

This tag wraps getWorkitem() on the EbiQueueDelgate interface.

Syntax <prefix:getWorkitem workitemID="workitemID" id="id"/>

Example <epwf:getWorkitem id="get" workitemID='<%=x%>' />
 <%=pageContext.getAttribute("get") %>

getWorklist

Description Retrieves a list of workitems from a specified queue. The result is returned using a default scripting
variable called workList or by a value set in the id attribute.

You can embed the workitem addressee in this tag using the addressee tag.

This tag wraps a version of getWorklist() on the EbiQueueDelegate interface. The method version used
depends on which tag attributes are provided.

Attribute Required?

Request-time
expression
values
supported? Description

id No No Name of the variable in which to store the return value; the
default name is queueStatus

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

id No No Name of the variable in which to store the return value;
the default name is workitem
Workflow Tag Library 85

Tag options Two steps are required:

The getWorklist tag wraps a version of getWorklist() on the EbiQueueDelegate interface. The method
version used depends on which tag attributes are provided.

Syntax <prefix:getWorklist activity="activity" name="name" returnDOM="returnDOM"

returnList="returnList" iterate= "iterate" priority="priority"
ignoreSuspended="ignoreSuspended" id="id"/>

Step What to do

1 First make sure one of the following is true:

The user is logged in so that the workitem list can be retrieved from the workflow context.

OR

The activity attribute is set.

OR

The addressee or name attribute is set. The ignoreSuspended attribute is used in this
instance, with default value true. To pass the addressee you can nest the addressee tag
inside the getWorklist tag.

2 Then do one of the following:

Set the returnDOM attribute to true (return as XML DOM) or false (return as XML string).
When this attribute is set, the iterate attribute must be set to false.

OR

Set iterate to true. The results are returned via variables in the body tag. In this case,
returnDOM is not used.

OR

Set returnList to true. In this case a list of EbiWorkitemDelegate objects is returned in an
object of type java.util.List.

Attribute Required?

Request-time
expression
values
supported? Description

activity No Yes Name of the activity; this corresponds to the Name
property for the activity defined in the Workflow Modeler

name No Yes Name of the workitem; this corresponds to the
WorkName property defined for the process in the
Workflow Modeler

returnDOM No Yes Boolean value (true or false) that indicates whether or
not to return the list as a DOM (true) or as an XML String
(false)

The DOM adheres to workflow-worklist_4_0.dtd

If returnDOM is set to true, the iterate attribute must be
set to false

returnList No Yes A boolean value (true or false) that when set to true
returns a list of EbiWorkitemDelegate objects as an
object of type java.util.List
86 exteNd Director Workflow Guide

Examples Worklist using iterated nested variables:

<epwf:getWorkList iterate="true" >
 Activity = <%=activity%>

 Name = <%=name%>

 Workitemid = <%=workitemid%>

 <%! String x;%>
 <% x = (String) pageContext.getAttribute("workitemid"); %>
 Message = <%=message%>

 Lockedby = <%=lockedby%>

 </epwf:getWorkList>

Worklist as a DOM:

<epwf:getWorkList id="list" iterate="false" returnDOM="true" />
// access the DOM
xml string = <%org.w3c.dom.Document doc = (org.w3c.dom.Document)
pageContext.getAttribute("list");%>

<%=doc.getFirstChild().getNodeName()%>

Worklist as a Java List object:

<epwf:getWorkList id="list2" returnList="true" />
<% for (int x=0;x<list2.size();x++){

// parse the List
com.sssw.wf.client.EbiWorkitemDelegate wid =

(com.sssw.wf.client.EbiWorkitemDelegate) list2.get(x); %>
Wid <%=x%> activity name = <%=wid.getActivityName()%>

<% } %>

Worklist as an XML string:

<epwf:getWorkList id="list3" iterate="false" returnDOM="false" />
xml string = <%=(String) pageContext.getAttribute("list3")%>

iterate No Yes A boolean value (true or false) that indicates whether
this tag will operate as a body tag so that each row can
be processed separately; the default value is false

If the iterate attribute is set to true, the following values
can be accessed from within the getWorkList tag:

activity

name

workitemid

message

lockedby

Each of these variables has a scope of NESTED

NOTE: When the iterate attribute is set to true,
returnDOM is not used

priority No Yes Provided to support user-implemented priority schemes;
not supported in the current version

ignore
Suspended

No Yes Boolean value (true or false) that indicates whether to
ignore suspended activities in the returned list

id No No Name of the variable in which to store the result; the
default name is workList

Attribute Required?

Request-time
expression
values
supported? Description
Workflow Tag Library 87

Worklist using an embedded addressee tag:

<epwf:getWorkList iterate="true" >
<epwf:addressee>sample</epwf:addressee>
 Activity = <%=activity%>

 workitemid = <%=workitemid%>

 name = <%=name%>

 lockedby = <%=lockedby%>

 message = <%=message%>

</epwf:getWorkList>

hasDocument

Description Checks whether a document exists for workitem and returns a boolean. The value is returned on a
scripting variable called hasDocument or the name provided in the id attribute.

This tag wraps hasDocument() on the EbiWorkitemDelegate interface.

Syntax <prefix:hasDocument workitemID="workitemID" docName="docName" returnDOM="returnDOM"

id="id"/>

Example <epwf:hasDocument workitemID="<%=wid.getWorkitem().getId()%>" docName="mydocument" />
<%=pageContext.getAttribute("hasDocument")%>

hasProperty

Description Checks whether a property exists for a workitem or (if docName is provided) for a document. Returns a
boolean. The value is returned on a scripting variable called hasProperty or the name provided in the id
attribute.

This tag wraps hasProperty() and hasDocument Property on the EbiWorkitemDelegate interface.

Syntax <prefix:hasProperty workitemID="workitemID" docName="docName" propName="propName"

id="id"/>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName Yes Yes Name of the document

returnDOM No Yes Boolean that returns the document as an object of type
org.w3c.dom.Document (true) or as a String (false);
default is false

id No No Name of the variable in which to store the return value;
the default name is hasDocument
88 exteNd Director Workflow Guide

Example <epwf:hasProperty id="status" workitemID="<%=wid.getWorkitem().getId()%>"

propName="wiproperty2" />
<%=pageContext.getAttribute("status")%>

isDocumentLocked

Description Checks whether a workitem document is locked—and if the userID attribute is set, also checks whether
the document is locked by a particular user. Returns a boolean. The value is returned on a scripting
variable called doc_islocked or the name provided in the id attribute.

This tag wraps isDocumentLocked() or isDocumentLockedBy() on the EbiWorkitemDelegate interface.

Syntax <prefix:isDocumentLocked workitemID="workitemID" docName="docName" userID ="userID"

id="id"/>

Example <epwf:isDocumentLocked id="doclocked" workitemID='<%=x%>' docName="doc1" />
 <%=pageContext.getAttribute("doclocked") %>

isWorkitemLocked

Description Checks whether a workitem is locked—and if the userID attribute is set, also checks whether the
workitem is locked by a particular user. Returns a boolean. The value is returned on a scripting variable
called wi_islocked or the name provided in the id attribute.

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName No Yes Name of the document whose property you want to
check; use only for document properties

propName Yes Yes Name of the property

id No No Name of the variable in which to store the return value;
the default name is hasProperty

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName Yes Yes Name of the document

userID No Yes UserID; if not set, the tag checks the document status
only

id No No Name of the variable in which to store the return value;
the default name is doc_isLocked
Workflow Tag Library 89

This tag wraps isLocked() or isLockedBy() on the EbiWorkitemDelegate interface.

Syntax <prefix:isWorkitemLocked workitemID="workitemID" userID ="userID" id="id"/>

Example <epwf:isWorkitemLocked id="worklock" workitemID='<%=x%>' />
 <%=pageContext.getAttribute("worklock") %>

setProperty

Description Stores an existing EbiProperty object for a workitem (or for a document if docName is provided) using
the specified EbiProperty object. Returns a boolean representing success or failure. Return value is stored
in a scripting variable called setProperty or the name provided in the id attribute.

If the userID attribute is not specified, the current user is used.

This tag wraps setProperty() and setDocumentProperty() on the EbiWorkitemDelegate interface.

Syntax <prefix:setProperty workitemID="workitemID" property="property"

forDocument="forDocument" userID ="userID" id="id"/>

Example This example sets a property from an attribute provided on the page:

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

userID No Yes UserID to check; if not set, the tag checks the workitem
status only

id No No Name of the variable in which to store the return value;
the default name is wi_isLocked

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

property Yes Yes Name of the property to add

for
Document

No Yes Boolean value that specifies whether the property is a
document property; the default is false

NOTE: The property must have been previously
associated with the specified document; see
“createProperty” on page 80

userID No Yes UserID

If set, the tag sets the document or workitem property for
the user; otherwise, it uses the current context

id No No Name of the variable in which to store the return value;
the default name is setProperty
90 exteNd Director Workflow Guide

<epwf:setProperty id="set" workitemID="<%=wid.getWorkitem().getId()%>"
property="<%=(com.sssw.wf.api.EbiProperty)pageContext.getAttribute("myatt")%>" / >
<%=pageContext.getAttribute("set")%>

startProcess

Description Starts a workflow process with a specified processID. Starts the process with a document if the docName
attribute is specified, as well as one of the following attributes representing the document:

document of type org.w3c.dom.Document

docstring of type String

url to the document

Returns an int representing success or failure:

The value is returned on a scripting variable called processStarted or the name provided in the id
attribute.

This tag wraps startProcess() on the EbiWorkflowEngineDelegate interface.

Syntax <prefix:startProcess processID="processID" docName="docName" document="document"

docstring="docstring" url ="url" id="id"/>

Example <epwf:startProcess id ="start" processID="c373e9ea737c902a8f7af0aa8c836fd6" />
 <%=pageContext.getAttribute("start") %>

Value Meaning

0 Success

-1 Engine not running; unable to start process

-2 Process definition not found

-3 Process suspended

Attribute Required?

Request-time
expression
values
supported? Description

processID Yes Yes Workitem ID

docName No Yes Name of the starting document

document No Yes Starting document, as a DOM

docstring No Yes Starting document, as a String

url No Yes URL to the starting document (DOM)

id No No Name of the variable in which to store the return int
value; the default name is processStarted
Workflow Tag Library 91

updateDocument

Description Updates or adds a document for the specified workitem ID and document name and returns a boolean
representing success. The return value is stored in a scripting variable called wi_document or the id you
specify.

To add a new document, set the addMode attribute to true. To update an existing document, set it to false
(default).

The document may be specified using one of these attributes:

document as an XML string or a DOM object

String identifier

url of type java.net.URL

If the userID attribute is not specified, the current user is used.

This tag wraps addDocument() and updateDocument() on the EbiWorkitemDelegate interface.

Syntax <prefix:updateDocument workitemID="workitemID" docName="docName" document="document"

identifier="identifier" url="url" userID="userID" addMode="addMode" id="id"/>

Examples Adding a document with identifier:

<epwf:updateDocument id="doc1" workitemID="<%=wid.getWorkitem().getId()%>"
docName="identifier" addMode="true" identifier="myidentifier" / >
<%= pageContext.getAttribute("doc1")%>

Updating a document with identifier:

// lock the document first
<epwf:workitemLock workitemID="<%=wid.getWorkitem().getId()%>"
docName="identifier" documentLock="true" action="lock"/>
// update the document
<epwf:updateDocument id="doc2" workitemID="<%=wid.getWorkitem().getId()%>"
docName="identifiertest3" identifier="newidentifier" / >
<%=pageContext.getAttribute("doc2")%>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

docName Yes Yes Name of the document

document No Yes The actual document; the document can be specified as
an XML String or an object of type org.w3c.dom

identifier No Yes The string identifier for information in the document

url No Yes The URL for the document, specified as an object of
type java.net.URL

userID No Yes The user with whom to associate the document; if not
specified, gets the user ID from the context

addMode No Yes Boolean indicating whether to add a new document
(true) or update an existing document (false); the default
is false.

id No No Name of the variable in which to store the return value;
default name is wi_document
92 exteNd Director Workflow Guide

Adding document with string XML:

<epwf:updateDocument id="doc3" workitemID="<%=wid.getWorkitem().getId()%>"
docName="string1" addMode="true" document="<main><node1>this is my
document</node1></main>" / >
<%= pageContext.getAttribute("doc3")%>

workitemLock

Description Locks or unlocks a workitem or the documents associated with a workitem. The action attribute must be
set to either lock or unlock. Returns a boolean value representing success. The value is returned on a
scripting variable called wilocked or the name provided in the id attribute.

If documentLock is set to true, a docName must be specified.

If the userID attribute is not specified, the object is locked or unlocked using the current user.

This tag wraps lock(), unlock(), lockDocument(), and unlockDocument() on the EbiWorkitemDelegate
interface.

Syntax <prefix:workitemLock workitemID="workitemID" action="action"

workitemLock="workitemLock" documentLock="documentLock" docName="docName"
userID="userID" id="id"/>

Examples workitemLock:

<epwf:workitemLock id="wilock" workitemID='<%=x%>' action="lock"
workitemLock="true" />
 <%=pageContext.getAttribute("wilock") %>

 <% get.addDocument("test", "ID" , "sample"); %>

Attribute Required?

Request-time
expression
values
supported? Description

workitemID Yes Yes Workitem ID

action Yes Yes Specify lock or unlock

workitem
Lock

No Yes Boolean indicating whether the action is for the workitem
(true); the default is false

Either this attribute or documentLock (or both) must be
set to true

document
Lock

No Yes Boolean value indicating whether the lock is for a
document associated with the workitem (true); the
default is false

Either this attribute or workitemLock (or both) must be
set to true; if documentLock is true, docName must be
specified

docName No Yes Name of the document; use if documentLock is true

userID No Yes User to execute the action on (if not specified, the user
ID from the context)

id No No Name of the variable in which to store the return value;
the default name is wilocked
Workflow Tag Library 93

documentLock:

<epwf:workitemLock id="doclock" workitemID='<%=x%>' action="lock"
workitemLock="false" documentLock="true" docName="test" />
 <%=pageContext.getAttribute("doclock") %>

workitemUnlock:

<epwf:workitemLock id="wiunlock" workitemID='<%=x%>' action="unlock"
workitemLock="true" />
 <%=pageContext.getAttribute("wiunlock") %>

 <%-- get.addDocument("test1456", "ID" , "sample"); --%>

documentUnlock:

<epwf:workitemLock id="docunlock" workitemID='<%=x%>' action="unlock"
workitemLock="false" documentLock="true" docName="test" />
 <%=pageContext.getAttribute("docunlock") %>
94 exteNd Director Workflow Guide

Index
A
activity

adding in the Workflow Modeler 45
administering in workflow 67
Composer Service 33
Java 31
Pageflow 26
Rule 31
Start 33
Synchronize Merge 32
User 28
Web Service 29

activity policy
API methods and 29
in workflow 28
XML example 28

addressee
dynamic assigning in workflow 74
workflow activity 26

addressee tag 79
attached label

in Workflow Modeler 54

B
Bird’s Eye View window

in Workflow Modeler 59

C
client, workflow

defined 17
clustering

workflow 17
Composer Service activity

defining in Workflow Modeler 33
conditional link

in workflow 37
Content Life Cycle application

application sources 75
createProperty tag 80
custom tags

addresseee 79
createProperty 80
forwardWorkitem 81
getDocument 81
getProcessList 82

getProperty 83
getPropertyList 83
getQueueStatus 85
getWorkitem 85
getWorklist 85
hasDocument 88
hasProperty 88
isDocumentLocked 89
isWorkitemLocked 89
setProperty 90
startProcess 91
updateDocument 92
workitemLock 93

E
EbiContext

workflow context defined 18
EbiQueueDelegate

defined 18
EbiWorkflowEngineDelegate

defined 18
EbiWorkitemDelegate

defined 18
engine

workflow 16
exceptions

reporting in workflow 68
expressions

link expressions in workflow 53

F
floating label

in Workflow Modeler 54
Flow scope

lock and unlock properties 23
forwardWorkitem tag 81
full layout

in Workflow Modeler 56

G
getDocument tag 81
getProcessList tag 82
getProperty tag 83
getPropertyList tag 83
95

getQueueStatus tag 85
getWorkiList tag 85
getWorkitem tag 85
graphical properties

in Workflow Modeler 55
grid feature

in Workflow Modeler 58

H
hasDocument tag 88
hasProperty tag 88

I
incremental layout

in Workflow Modeler 57
isDocumentLocked tag 89
isWorkitemLocked tag 89

J
Java activity

about 61
coding 62
creating 61
defining in Workflow Modeler 31
scoped path access 62

L
labels

in Workflow Modeler 54, 55
layout features

in Workflow Modeler 56
links

about 35
conditional link 37
creating in Workflow Modeler 47
expressions 53
simple link 35

locking and unlocking
in workflow 23

P
pageflow

workflow integration 21
Workflow Return activity 22

Pageflow activity
defining in Workflow Modeler 26

process
see workflow process

Q
queue, workflow

 see workflow queue

R
resource view

creating in the Workflow Modeler 60
Rule activity

defining in Workflow Modeler 31

S
scoped path

accessing from a Java activity 62
scoped paths

accessing in the Workflow Modeler 52
copying in the Workflow Modeler 50
Workflow Modeler and 48

segment
creating in Workflow Modeler 47

setProperty tag 90
simple link

in workflow 35
Start activity

defining in Workflow Modeler 33
startProcess tag 91
synchronize merge

in workflow 20
Synchronize Merge activity

defining in Workflow Modeler 32
in workflow 20

T
tag libraries

Workflow tag library 79

U
updateDocument tag 92
User activity

defining in Workflow Modeler 28

W
Web Service activity

defining in Workflow Modeler 29
workflow

about 13
activities 67
addressing workitems dynamically 74
API summary 18
client 17
client, administering 66
exceptions, reporting 68
getting started 19
96

pageflow comparison to 17
pageflow integration 21
process 15
process branching 19
queue function
sample application 73
subsystem architecture 16
workitem 16

Workflow Administration Client 66
workflow client

about 17
workflow engine

about 16
shutting down 65
starting in console 65
suspending 65

Workflow Engine and Queue Administration Console 65
workflow in a cluster 17
Workflow Modeler 58

Bird’s Eye View window 59
Composer service activity 33
graphical properties in 55
Java activity 31
labels 54
layout features 56
Pageflow activity 26
resource view, creating 60
Rule activity 31
scoped paths 48
Start activity 33
Synchronize Merge activity 32
User activity 28
Web Service activity 29
zoom features 58

workflow process 15
administering 66
auditing 67
defining in Workflow Modeler 42
opening in Workflow Modeler 43
property settings in Workflow Modeler 43
saving in Workflow Modeler 42
shutting down 65
validating in the Workflow modeler 54

workflow queue
about 16
process, shutting down 65
process, suspending 65
starting in console 65

Workflow Return activity
using in a pageflow 22

Workflow subsystem
architecture 16

workitem
about 16
defined 16
locking and unlocking in workflow 23

workitemLock tag 93

Z
zoom features

in Workflow Modeler 58
97

98

	About This Book
	I Concepts
	1 About Workflow in exteNd Director
	What is workflow?
	About the Workflow Modeler
	About the workflow process

	Workflow architecture
	Workflow and pageflow
	About the Workflow API

	2 Designing Workflows
	Getting started with workflow
	Process design concepts
	Single-branch flow
	Multiple-branch flows

	Pageflow in a workflow
	Using the Workflow Return activity
	Locking and unlocking workitems

	3 Working with Activities
	About workflow activities
	Pageflow activity
	User activity
	Web Service activity
	Rule activity
	Java activity
	Synchronize Merge activity
	Start activity
	Composer Service activity
	Finish activity

	4 Working with Links
	About links
	Simple link
	Condition link

	II Tools
	5 Workflow Modeler
	About the Workflow Modeler
	Starting the Workflow Modeler
	Process properties

	About the Modeler window
	Navigating, selecting, and moving objects

	Adding activities
	Workflow activity types

	Adding links
	Workflow link types
	Drawing a link segment

	Using scoped paths
	Associating a scoped path with an activity
	Copying scoped paths
	Accessing scoped paths
	Copying a scoped path to the clipboard

	Creating link expressions
	Validating a process
	Adding text labels
	Floating labels
	Attached labels

	Setting object display properties
	Using the layout features
	Full layout
	Incremental layout
	Setting preferences
	Undoing a layout

	Using the zoom features
	Using the grid features
	Using the Bird’s Eye View
	Creating a process resource view

	6 Java Activity Wizard
	About Java activities
	Using the Java Activity Wizard
	Coding the Java activity
	Accessing a scoped path
	Performing a JNDI lookup

	7 Workflow Administration
	Using the workflow administration portlets
	Engine and Queue Administration Console
	Workflow Administration Client

	Auditing runtime processes
	Generating runtime exception reports
	Configuring workflow to run in a cluster
	What you need to do
	What happens at server restart

	III Applications
	8 Content Life Cycle Application
	About the Content Life Cycle application
	Running the application
	Dynamic addressing of workitems

	Content life Cycle application sources

	IV Reference
	9 Workflow Tag Library
	addressee
	createProperty
	forwardWorkitem
	getDocument
	getProcessList
	getProperty
	getPropertyList
	getQueueStatus
	getWorkitem
	getWorklist
	hasDocument
	hasProperty
	isDocumentLocked
	isWorkitemLocked
	setProperty
	startProcess
	updateDocument
	workitemLock

	Index

