
GroupWise® Software Developer
Kit
Web Services Events
March 2016

Legal Notices

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.novell.com/company/legal/.

Copyright © 2016 Novell, Inc., a Micro Focus company. All Rights Reserved.

https://www.novell.com/company/legal/
https://www.novell.com/company/legal/

Contents
About This Guide 5

1 Overview 7
1.1 Resources . 7
1.2 WSDL and Schema Files . 8

1.2.1 WSDL and Schema Location. 8
1.3 Event Life Cycle . 8

1.3.1 Application Perspective . 9
1.3.2 Post Office Agent Perspective . 9
1.3.3 Other POA Duties . 10

1.4 Event Records . 11
1.5 Event Types and Fields . 12
1.6 Event Notifications . 15

2 Methods 17
cleanEventConfigurationRequest . 18
configureEventsRequest. 19
getEventConfigurationRequest . 23
getEventsRequest. 26
getItemsRequest. 29
removeEventConfigurationRequest . 30
removeEventsRequest . 31

3 Event Examples 33
3.1 Folders . 33

3.1.1 Creating a Folder . 33
3.1.2 Deleting a Folder . 34
3.1.3 Modifying a Folder . 34
3.1.4 Moving a Folder . 34
3.1.5 Shared Folders . 34

3.2 Items . 38
3.2.1 Accepting an Item . 38
3.2.2 Archiving an Item . 39
3.2.3 Completing an Item . 40
3.2.4 Declining an Item . 40
3.2.5 Deleting an Item. 40
3.2.6 Adding an Item To a Folder . 40
3.2.7 Moving an Item . 41
3.2.8 Marking an Item Private. 41
3.2.9 Marking an Item Read . 41
3.2.10 Marking an Item Unprivate. 42
3.2.11 Marking an Item Unread . 42
3.2.12 Modifying an Item . 42
3.2.13 Purging an Item . 43
3.2.14 Declining an Item . 43
3.2.15 Unarchiving an Item. 43
3.2.16 Marking an Item Not Complete . 44
3.2.17 Undeleting an Item. 44
Contents 3

3.3 Personal Address Books . 44
3.3.1 Personal Address Book Management . 45
3.3.2 Personal Address Book Items . 45
3.3.3 Shared Address Books . 48

3.4 GroupWise Address Book . 49

A Revision History 51
4 GroupWise SDK: Web Services Events

About This Guide

GroupWise Web Services Events is an extension of GroupWise Web Services (SOAP) and provides
access to events or actions that occur on a GroupWise user's mailbox.

IMPORTANT: Unless otherwise marked, the features in GroupWise Web Services Events work with
GroupWise 8 and later versions.

This guide contains the following sections:

 Chapter 1, “Overview,” on page 7
 Chapter 2, “Methods,” on page 17
 Chapter 3, “Event Examples,” on page 33
 Appendix A, “Revision History,” on page 51

Audience
This guide is intended for GroupWise developers.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation, or go to Novell Documentation Feedback (http://www.novell.com/
documentation/feedback.html) and enter your comments there.

Additional Documentation
For additional GroupWise SDK documentation, see the Novell Developer Web site (http://
www.novell.com/developer).
About This Guide 5

http://www.novell.com/documentation/feedback.html
http://www.novell.com/developer

6 GroupWise SDK: Web Services Events

1 1Overview

GroupWise Web Services Events is an extension of GroupWise Web Services that provides access
to events or actions that occur on a GroupWise user's mailbox. Using events, developers can be
notified in real time when a specific event occurs on a mailbox. In other words, GroupWise Web
Services Events is a Web Service (similar to GroupWise Web Services) that allows you to
programmatically configure and retrieve specific GroupWise events that have occurred on a user's
mailbox.

For example, if you want to track when an item is deleted in a GroupWise user's mailbox, you create
an Event Configuration that tracks deleted items. During the configuration, you can provide an IP
address and a port on which to be notified when the specific event occurs. After you’re notified, you
can then take the appropriate action.

It is important to note that the events are only tracked on the user’s mailbox. A user can have shared
folders and shared personal address books that are shared from another user. When an item is
changed in one of these folders or personal address books, the change is happening on the other
user's mailbox. The event will be recorded in that user’s mailbox. There will not be an event for the
user that has the shared folder or personal address book shared with them. For example, User A has
a folder (FolderX) shared to him from User B. An item (ItemY) is deleted from that folder. User A will
not get an event. User B will get an event saying that ItemY was deleted.

GroupWise Web Services Events uses industry standards such as XML, SOAP, and HTTP for
requests and responses from the GroupWise POA. The GroupWise Events schema defines the
methods and objects that are used with the GroupWise POA. The GroupWise Web Services Events
schema definition file (WSDL) provides the tools you need to hook into IDE frameworks that support
Web Services.

GroupWise Web Services provides access to read and modify user’s mailbox data through the same
industry standards that are used in GroupWise Web Services Events. GroupWise Web Services
Events and GroupWise Web Services can and should be used together. To learn more about
GroupWise Web Services, see GroupWise SDK: Web Services.

 Section 1.1, “Resources,” on page 7
 Section 1.2, “WSDL and Schema Files,” on page 8
 Section 1.3, “Event Life Cycle,” on page 8
 Section 1.4, “Event Records,” on page 11
 Section 1.5, “Event Types and Fields,” on page 12
 Section 1.6, “Event Notifications,” on page 15

1.1 Resources
Before using GroupWise Web Services Events, you should be familiar with XML, SOAP, and HTTP
concepts. You can find more information at the following links:

 GroupWise Documentation (http://www.novell.com/documentation/groupwise.html)
 HTTP (http://www.w3.org/Protocols/Specs.html)
 SOAP Part 0 (http://www.w3.org/TR/soap12-part0/)
Overview 7

http://www.novell.com/documentation/groupwise.html
http://www.w3.org/Protocols/Specs.html
http://www.w3.org/TR/soap12-part0/
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle

 SOAP Part 1 (http://www.w3.org/TR/soap12-part1/)
 SOAP Part 2 (http://www.w3.org/TR/soap12-part2/)
 XML Schema Specification (http://www.w3.org/XML/Schema)
 XML Schema Specification Part 0 (http://www.w3.org/TR/xmlschema-0)
 XML Schema Specification Part 1 (http://www.w3.org/TR/xmlschema-1)
 XML Schema Specification Part 2 (http://www.w3.org/TR/xmlschema-2)
 XML (http://www.w3.org/XML/)
 WSDL (http://www.w3.org/TR/wsdl)

1.2 WSDL and Schema Files
GroupWise Web Services are defined in the following XML schema files:

 types.xsd defines Web Services.
 methods.xsd defines Web Services.
 events.xsd defines events and references types.xsd also.

The WSDL file (groupwise.wsdl) imports all of the above schema files and can be imported into a
development framework that supports Web Services. The framework parses the WSDL and schema
files and creates a code library that can be used to access Web Services and GroupWise Web
Services Events.

Frameworks simplify your work as a developer because the generated library abstracts the
complexities of HTTP, SOAP, and XML. You can then concentrate on programming without worrying
about the complexities of transport and XML parsing.

However, if you want complete control, you can handle HTTP, SOAP, and XML directly. GroupWise
Web Services handles valid requests, no matter how each request is generated.

1.2.1 WSDL and Schema Location
After you have unzipped the files in the documentation, look for the GroupWise WSDL and schemas
directory. In the directory structure, you’ll find the different WSDL and schemas for GroupWise 8 and
later versions.

The GroupWise WSDL and schemas are not available with the GroupWise install distribution. They
are available only in the GroupWise Web Services documentation.

The .Net version of the schemas can be found in the subdirectory named MS.NET.

1.3 Event Life Cycle
This section helps you learn GroupWise Web Services Events from the perspective of an event
listener application and the GroupWise POA. It covers the following topics:

 Section 1.3.1, “Application Perspective,” on page 9
 Section 1.3.2, “Post Office Agent Perspective,” on page 9
 Section 1.3.3, “Other POA Duties,” on page 10
8 GroupWise SDK: Web Services Events

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/XML/
http://www.w3.org/TR/wsdl

1.3.1 Application Perspective
Applications can track events for one or many GroupWise users. In order to call any of the event
methods, you first need to call loginRequest on a specific user. The event methods will apply to that
user.

To track events, an application should perform the following basic steps:

1. Call the configureEventsRequest (page 19) method to set up event configurations for each
GroupWise user.

In this step, applications tell the POA which event types they want to track. The
configureEventsRequest method also tells the POA if the application should be notified when an
event takes place.

Applications should listen for notifications. Listening reduces network traffic and reduces the
workload on the POA. If notifications are not used, the POA might need to handle dredging
requests from applications for many users (which increases the work load on the POA).

However, applications are not required to listen for notifications. An application can periodically
call the getEventsRequest method to get a list of changes for a user.

2. If notifications are enabled, the application listens for notifications from the POA.
A notification provides a userid and configuration key. A notification looks like the following:

<notify>
 <userid>username</userid>
 <key>Key Name</key>
</notify>\r\n

Each notification ends with the \r\n characters.
3. When the application receives a notification from the POA, the application can spin off a worker

thread to call getEventsRequest.
The response from the getEventsRequest (page 26) method provides additional information
such as the event type, item ID, and time the item changed.

4. If the application requires more information, it calls getItemsRequest to retrieve the details for
each item.
The getItemsRequest (page 29) method is part of GroupWise Web Services and allows you to
retrieve a list of items, no matter where the item is located in a mailbox. For an example, see the
getItemsRequest method.
You should limit the number of items that you retrieve in a single iteration of getItemsRequest.
We recommend that you retrieve no more than 250 items.

1.3.2 Post Office Agent Perspective
The GroupWise Post Office Agent (POA) handles the delivery and other events for each user on the
post office. When an event occurs on a user's mailbox, the POA performs the following basic steps:

1. Checks to see if there are event configurations for the user.
2. If there are event configurations, it determines if any of the event configurations match the

triggered event.
3. If there is a match, it creates an event record in the GroupWise user's store that describes the

event.
4. If notifications are enabled, the POA notifies the application an event has occurred.
Overview 9

After the notification, the application is removed from the notification list. However, the
application can re-insert itself into the notification list by calling getEventsRequest (page 26) and
passing True for the notify element. Prior to GroupWise 8.0.2, the user was dropped from the
notification list whether or not the notification is sent. Now, the user is not removed from the
notification list, but is inactive. That is, the user will not be notified if a new event happens, until
the application calls getEventsRequest and passes True for the notify element.

5. The POA does not wait for an ACK from the application because the notification was patterned
after UDP.

To help reduce the load on the POA, we recommend that applications throttle the number of
getEventsRequest methods that occur per user. A good idea is to have only one getEventsRequest
method in progress per user at any single time.

1.3.3 Other POA Duties
The POA has other management responsibilities for GroupWise Web Services Events. The POA also
accepts SOAP requests from applications to handle the following methods:

Method Description

configureEventsRequest (page 19) Creates a new event configuration record for a specific user. It
defines what type of events are stored in an event record in the
user's store. It also defines the notification address.

getEventConfigurationRequest
(page 23)

Returns the selected configuration or all configurations for a specific
user.

getEventsRequest (page 26) Returns the list of events that have occurred for a specific user.

getItemsRequest (page 29) Returns the specified items. This method is usually called after the
application has been notified. The application then calls
getEventsRequest and gets a list of items that have changed. The
getItemsRequest method is used to retrieve the changed items.

removeEventConfigurationRequest
(page 30)

Removes an event configuration for a specific user.

removeEventsRequest (page 31) Removes event records stored in a user's store.

cleanEventConfigurationRequest
(page 18)

Deletes event records in a user's database, based on how long the
item has been in the store. It is used for nightly maintenance to
reduce the size of user's stores.
10 GroupWise SDK: Web Services Events

1.4 Event Records
GroupWise stores event records in the user's database. Each record stores relevant data about the
occurring event. For example, suppose an application creates an event configuration to track deleted
items in a user's mailbox and a user deletes an item. The POA deletes the item and creates an event
record that has the following fields:

<Event>
 <event type=”EventType"/>
 <id type="uid">
 <sid type="unsignedInt">
 <timeStamp type="xs:dateTime" minOccurs="0"/>
 <field type="string"/>
 <container type="uid"/>
 <from type="uid"/>
 <key type="string"/>
 <uid" type="unsignedInt"/>
 <type type="ItemType"/>
</Event>

event
Describes the event.

id
Uniquely identifies the item.

sid
Short identifier of the item.
--For GroupWise 8.0 HP1 and later.

timestamp
Identifies the time the event occurred.

field
List of fields interested in being notified when they change on the item.

container
Identifies the folder or address book for which the event record was created.

from
Identifies the source folder or address book (used with FolderItemMove). For proxies, this field is
the UserID of the user logging in as a proxy.

key
Identifies the application for which the event record was created.

uid
Uniquely identifies the event record.

type
Item type of the item affected.
Overview 11

An event record is not created unless you specifically add the event type in the
configureEventsRequest (page 19) method. For example, if you want to track when new folders are
created, you must add the FolderAdd event type when you configure events by calling
configureEventsRequest. If you don't add the FolderAdd event type, a configuration record is not
created and your application is not notified when a folder is added.

Event records can require large amounts of disk space and significantly impede the performance of
processing events on the POA. Therefore, event records need to be periodically removed from user's
databases. By default, event records persist in a user's database for seven days, but this persistence
value has a range of 0-20 days. You can modify this value by calling the configureEventsRequest
method.

Old event records also need to be removed. Event records can be removed in two ways:

 You can clean up your own event records. We recommend that you clean up your event records
as soon as possible. Events can be removed by calling getEventsRequest (page 26) ,
removeEventsRequest (page 31), or removeItemsRequest.

An application can remove a list of event UIDs by calling removeItemsRequest and passing
events in the container element and the UIDs in the itemRefList element. This is a good way for
an application to remove only the events it has processed.

 The GroupWise POA removes old event records during its nightly maintenance and also
disables unused event configurations. The logic for removal and event configuration disabling
during nightly maintenance is as follows:
 Event records older than the persistence date are removed.
 If an event record is older than the persistence date, the event configuration is disabled.
 If the event configuration has not been enabled for 21 days, it is deleted.

There can be more than one event record for each event. For example, suppose application A and
application B both register to receive event notifications for deleted items for user1. Two separate
event records are created in user1’s database, one event record for each registered application. Each
application would need to remove its own event records.

1.5 Event Types and Fields
When a certain event takes place, an event record is created to track the change in the user's
database. Event types fall into six categories: address book, address book items, folder, items, login,
and proxy access.

All six event categories create events record when a user's database changes. All address book and
address book item events apply only to personal address books. System address book changes can
be tracked outside of GroupWise events.

Most of the event types are self-descriptive. For example, AddressBookAdd is an event type. An
event record with an event type of AddressBookAdd is created when a personal address book is
created. There are also event types that are created when an existing item is changed. For example,
AddressBookModify is an event type that is created when specific GroupWise fields (such as an
email address) are changed in the user's database.

When a user sends an item to a list of users, it is a distributed item to recipients. Recipients of a
distributed item can modify only a small subset of that item’s fields. For example, the personal subject
and categories are the only fields that can be changed by a recipient on a received message. An
event type of ItemModify is triggered on a distributed item when the personal subject or category is
modified.
12 GroupWise SDK: Web Services Events

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i7p

GroupWise personal or posted items have a larger set of fields that can be modified by the recipient.
On personal or posted items, the only recipient is the sender of the item. The message body, subject,
and other fields can create an ItemModify event record.

The following table lists the event categories, event names, and when a specific event occurs.

Event Category Event Name Event Occurs When...

Address Book AddressBookAdd

AddressBookDelete

AddressBookModify

Personal Address Book is created

Personal Address Book is deleted

Personal Address Book is modified

Address Book Item AddressBookItemAdd

AddressBookItemDelete

AddressBookItemModify

PersonalGroupItemAdd

PersonalGroupItemDelete

Address book item is created

Address book item is deleted

Address book item is modified

Item is added to a personal group.

Item is deleted from a personal group

Folder FolderAccept

FolderAdd

FolderDeleted

FolderItemAdd

FolderItemDelete

FolderItemMove

FolderModify

Shared folder is accepted

Folder is added

Folder is deleted

Item is added to a folder

Deprecated.

Item is moved from one folder to another

Folder is modified
Overview 13

Item ItemAccept

ItemArchive

ItemComplete

ItemDecline

ItemDelete

ItemForward

ItemMarkPrivate

ItemMarkUnprivate

ItemMarkRead

ItemMarkUnread

ItemModify

ItemPurge

ItemReply

ItemUnaccept

ItemUnarchive

ItemUncomplete

ItemUndelete

Calendar item is accepted

Item is archived

Item is marked complete

Calendar item is declined

Item is deleted

Item is forwarded

Item is marked private

Item is marked as not private

Item is marked read

Item is marked unread

Item is modified

Item is purged

A reply is made to the item

Item is not accepted

Item is unarchived

Item is marked uncomplete

Item is undeleted

Login Login

ProxyLogin

TrustedApplicationLogin

Logout

SessionTimedOut

User logs in to GroupWise

Proxy user logs in to GroupWise

Trusted Application logs in to GroupWise

User logs out of GroupWise

User session times out

Proxy Access ProxyAccessAdd

ProxyAccessDelete

ProxyAccessModify

Proxy rights granted to a user

Proxy rights deleted for a user

Existing proxy rights are modified

Rule RuleAdd

RuleDelete

RuleModify

RuleExecute

A rule is created

A rule is deleted

A rule is modified

A rule is executed

Event Category Event Name Event Occurs When...
14 GroupWise SDK: Web Services Events

1.6 Event Notifications
Event notifications are used to notify listening applications that an event they are interested in has
occurred. The POA keeps a notification list in memory, which contains a list of registered applications.
(Applications add themselves to the notification list by calling the getEventsRequest (page 26)
method with the notify element set to True.) Each application in the notification list can be listening for
events for many users.

Be aware of the following when using event notifications:

 Because there could be network problems or applications might not be listening when a
notification is sent, we cannot guarantee that you’ll receive every notification. However, an event
record is created in the user's store that describes the event. Your application can periodically
read the events and determine if the local store is current.

 By default, the getEventsResponse method returns 256 event items. This default number can be
changed by setting the count element to the desired count. However, we recommend using the
default setting.
For example, if you were processing 500 event items in a user's event queue, your application is
notified that events are available. It would then call getEventsRequest and receive 256 items.
However, the POA does not notify the application that there are more events in the queue. The
first notification was for all 500 event items. You would need to call getEventsRequest one more
time to retrieve the remaining 244 events.
Notifications resume if a new event is added to the event queue (in addition to the original 500),
and if the application is in the notification list

 The POA maintains a notification list in memory. If the notification list has five users associated
with one application, the notification process on the POA opens and closes one connection for
all the users in the list.

 Each event has a UID element. The UID is a unique identifier for the corresponding event record
in the database. The UIDs are sequentially numbered in the database. For example, a database
can have events 1086, 1087, 1088, 1089, and 1090 in ascending order. However, calling
getEventsResponse might not return the event items in ascending order.
UIDs that are created in a one-second duration are returned in descending order. For example,
UID 1086 is created between seconds one and two. UIDs 1087, 1088, 1089 are created
between seconds two and three. UID 1090 is created between seconds three and four. The
getEventResponse method returns the event UIDs in the following order: 1086, 1089, 1088,
1087, and 1090, with the items created between seconds two and three in descending order.

 There might be a small time period where all events are not returned by calling
getEventsRequest. The is a timing issue based on retrieving events using the from and until
dateTime elements.
For example, there are five separate events written to a user's store in one second and only
three of the five events are in the database when the application retrieves the events. The other
two events are written to the database after the retrieval. The application might assume that it
retrieved all the event s in the database for that one second, but that might not be the case.
We recommend using the following algorithm when retrieving events to ensure that events are
not missed. (There might be other methods to achieve the same results.)

1. An application calls getEventsRequest and finds the newest event record returned by
selecting the newest timeStamp in the returned list.

2. When the application calls getEventsRequest again, it uses the newest timeStamp and
subtracts one second from it. Any duplicates can be removed by the application by tracking
the UIDs of items that it has already processed.
Overview 15

 If a POA goes down, the notification list that is stored in memory is lost. Before GroupWise 8.0
SP2, the application needed to call getEventsRequest with the notify element set to True to add
itself to the notification list again. Now, when the POA comes back up, it will automatically put the
event configuration in the notification list and send a notification on the first event that triggers
from the event configuration.

 GroupWise Event notifications do not work correctly when more than one POA runs against a
Post Office because the notification list stored in a POA’s memory is created and updated when
an application calls the getEventsRequest with the notify element set to true.
For example, we have POA1 and POA2 running against PO1, but our application knows only
about POA1. The application calls getEventsRequest with the notify element set to True for
POA1. POA1 is now building a notification list to tell the application when a specific event occurs.
If a GroupWise client now connects to POA2, POA2 processes the action and creates the event
in the user's database. However, POA2 does not have the notification list in memory to notify the
application of events. Thus, notifications do not work as expected.
If your application is interested only in retrieving event records outside of notifications, having
two POAs running against one post office is acceptable.
16 GroupWise SDK: Web Services Events

2 2Methods

This section describes the GroupWise Web Services Events methods, which include the following:

 “cleanEventConfigurationRequest” on page 18
 “configureEventsRequest” on page 19
 “getEventConfigurationRequest” on page 23
 “getEventsRequest” on page 26
 “getItemsRequest” on page 29
 “removeEventConfigurationRequest” on page 30
 “removeEventsRequest” on page 31
Methods 17

cleanEventConfigurationRequest
Deletes event records in a user’s database based on how long the item has been in the database.

Definitions
all

Specifies whether all events and configurations are removed from a user’s account.

status
Specifies whether the request was successful.

code
Provides the error number related to the event. 0 means that the request was successful.

Remarks
The POA calls cleanEventConfigurationRequest during nightly maintenance to reduce the size of
user databases.

For a better understanding of nightly maintenance, see “Event Records” on page 11.

Example
<cleanEventConfigurationRequest>
 <all>1</all>
</cleanEventConfigurationRequest>

<cleanEventConfigurationResponse>
 <status>
 <code>0</code>
 </status>
</cleanEventConfigurationResponse>
18 GroupWise SDK: Web Services Events

configureEventsRequest
Defines the configuration name, what events should be tracked, event persistence, notifications, etc.

Request
<configureEventsRequest>
 <events type="Events"/>
</configureEventsRequest>

<Events enabled=””>
 <key/>
 <persistence/>
 <ipAddress/>
 <port/>
 <http/>
 <ignoreAfter/>
 <definition type="EventDefinition"/>
</Events>

<EventDefinition>
 <events>
 <type>
 <field>
 <containers>
 <subType>
</EventDefinition>

Response
<configureEventsResponse>
 <status>
 <code>0</code>
 </status>
</configureEventsResponse>

Definitions
enabled

Boolean. Enables or disables event processing. True (1) creates event records. False (0)
disables event processing for that event configuration. Other event configurations are not
affected.

key
String. Uniquely identifies the event configuration in a user's database. It is up to the application
to control the uniqueness of the application key. GroupWise Web Services Events uses any key
that it is passed. If two applications or two instances of an application pass the same key,
GroupWise Web Services Events maps both to one event configuration structure in the user’s
database.

persistence
A duration, from 0-20 days, that specifies how long old event records remain in a user’s
database. If not defined, the default is seven days. For more information on how the persistence
value is used to remove event records, see “Event Records” on page 11.
Methods 19

ipAddress
Identifies the IP address, DNS name, or the HTTP URL that should be used for event
notification.

port
Identifies the IP port on which the application is listening for event notifications.

http
Specifies whether event notification should occur through TCP/IP or HTTP. If False (0), the value
in ipAddress is treated as an IP address, and a TCP/IP stream is used for the notification. If True
(1), the value in the ipAddress element is treated as an HTTP URL, such as
http://www.acme.com/events.

ignoreAfter
Some applications are only concerned for events on items in a certain range of days. You can
specify a number of days. If an event happens on an item that was created before the day limit,
no event will be recorded.
--For GroupWise 8.0 SP2 and later.

events
Identifies the specific events that an application wants to track. For example, if an application
wants to create event records when items are added and deleted from a folder, the event
element contains FolderItemAdd ItemDelete. The list of event types is space-delimited. For a
complete list of event types, see EventType in the events.xsd schema.

type
Identifies the specific item types that an application wants to track. For example, if an application
wants to create event records only when a specific action occurs to appointments and tasks, the
type element contains Appointment Task. The list of item types is space-delimited. For a
complete list of item types, see itemType in the events.xsd schema.

field
Identifies the specific item fields that an application wants to track. The field element applies only
to items that are modified. For example, if an application wants to create event records only
when the PersonalSubject and Category fields are modified, the field element contains
PersonalSubject Category. The list of fields is space-delimited. For a complete list of fields, see
FieldList in the events.xsd schema.

containers
Identifies specific containers where an application wants to track folder events. If no container is
specified, events are reported for all containers in the user's account, except folders shared with
the user.

subType
Identifies a custom item type. Applications can create custom item types by adding the subType
element when creating an item. The subType element is defined in the GroupWise types.xsd
schema.
During the creation of the item, an application could provide a unique string in the subType
element. For example, the application could provide Acme as the subType element and any
items that are created have an Acme subType. Applications can search and filter items based on
the subType element.
20 GroupWise SDK: Web Services Events

This is GroupWise Web Services implemention of className in the GroupWise Object API.
The GroupWise Web Services Events subType element can be used to track events only on the
items that have a subType field that matches the subType. For example, if an application creates
an item with a subType of Acme and wants to track all items with an Acme subType, the
application provides Acme in the subType element while calling configureEventsRequest.

status
Specifies whether getEventsRequest (page 26) was successful.

code
Provides the error number related to the event. 0 means that the request was successful.

Remarks
Applications call the configureEventsRequest method to create an event configuration for a
GroupWise user. Event records are not created for a user unless this method is called.

Each configureEventsRequest takes a key as a parameter. The key is the name of the event
configuration record. You can update an existing event configuration record by using the same key as
an existing configuration record. Event definitions can be added at any time.

Event records will not be created unless the <enabled> element is set to True.

Users can have more than one event configuration. If an event applies to more than one configuration
record, two separate event records are created, one for each event configuration.

In some cases, an event will not specify what container an item is in, such as an ItemModify event. It
can be quite time consuming to retrieve the item because we need to validate that the application has
rights to read the item. To speed up the validation, we put in a special format for an id when getting
the item using getItemsRequest. The format is id@Event:uid, where id and uid are from the event.
For example, here is an event:

<event>ItemModify</event>
 <id>4D51518E.domain.PO1.100.1776172.1.25DEE.1</id>
 <sid>155118</sid>
 <timeStamp>2011-02-08T21:26:02Z</timeStamp>
 <field>MessageBody</field>
 <key>test</key>
 <uid>585352</uid>
 <type>Mail</type>
</event>

The call to getItemsRequest would then be:

<getItemsRequest>
 <container>folders</container>
 <items>
 <item>4D51518E.domain.PO1.100.1776172.1.25DEE.1@Event:585352</item>
 </items>
</getItemsRequest>

We use the event record to validate that the user has access to the item. Thus, for this to work, the
event record cannot be deleted before you try to read the item. To save one database read, the id can
be formatted with the <sid> value instead of the <id> value. So the id for the above item could have
been:

<item>155118@Event:585352</item>
Methods 21

Example
<configureEventsRequest>
 <events enabled="1">
 <key>AcmeEvents</key>
 <persistence>7</persistence>
 <ipAddress>app1.widgets.com</ipAddress>
 <port>5221</port>
 <event>
 <event>FolderItemAdd</event>
 <event>FolderItemMove</event>
 <event>FolderItemRemove</event>
 <event>ItemAccept</event>
 <event>ItemComplete</event>
 <event>ItemDecline</event>
 <event>ItemDelete</event>
 <event>ItemMarkRead</event>
 <event>ItemMarkUnread</event>
 <event>ItemPurge</event>
 <event>ItemUndelete</event>
 <type>Appointment Mail Note Task</type>
 </event>
 <containers>
 <container>7.AutoDomain.AutoPO1.100.0.1.0.1@16</container>
 <container>A.AutoDomain.AutoPO1.100.0.1.0.1@19</container>
 </containers>
 </events>
</configureEventsRequest>
22 GroupWise SDK: Web Services Events

getEventConfigurationRequest
Returns one or all event configuration definitions for a GroupWise user.

Request
<getEventConfigurationRequest>
 <key/>
</getEventConfigurationRequest>

Response
<getEventConfigurationResponse>
 <events enabled="">
 <key/>
 <persistence/>
 <ipAddress/>
 <port/>
 <http/>
 <event>
 <event>
 . . .
 <type/>
 <field/>
 <containers/>
 <subType/>

 </events>
 <status>
 <code/>
 </status>
</getEventConfigurationResponse>

Definitions
enabled

Boolean. Enables or disables event processing. True (1) creates event records. False (0),
disables event processing for that event configuration. Other event configurations are not
affected.

key
String. Uniquely identifies the event configuration in a user's database. It is up to the application
to control the uniqueness of the application key. GroupWise Web Services Events uses any key
that it is passed. If two applications or two instances of an application pass the same key,
GroupWise Web Services Events maps both to one event configuration structure in the user’s
database. If a key is not provided, all event definitions for the user are returned.

persistence
A duration, from 0-20 days, that specifies how long old event records remain in a user’s
database. If not defined, the default is seven days. For more information on how the persistence
value is used to remove event records, see Section 1.4, “Event Records,” on page 11.

ipAddress
Identifies the IP address, DNS name, or the HTTP URL that should be used for event
notification.
Methods 23

port
Identifies the IP port on which the application is listening for event notifications.

http
Specifies whether event notification should occur through TCP/IP or HTTP. False (0) indicates
that the value in ipAddress is treated as an IP address and a TCP/IP stream is used for the
notification. True (1) indicates that the value in ipAddress is treated as an HTTP URL, such as
http://www.acme.com/events.

event
Identifies the specific events that an application wants to track. For example, if an application
wants to create event records when items are added and deleted from a folder, the event
element contains FolderItemAdd ItemDelete. The list of event types is space-delimited. For a
complete list of event types, see EventType in the events.xsd schema.

type
Identifies the specific item types that an application wants to track. For example, if an application
wants to create event records only when a specific action occurs to appointments and tasks, the
type element contains Appointment Task. The list of item types is space delimited. For a
complete list of item types, see itemType in the events.xsd schema.

field
Identifies the specific item fields that an application wants to track. The field element applies only
to items that are modified. For example, if an application wants to create event records only
when the PersonalSubject and Category fields are modified, the field element contains
PersonalSubject Category. The list of fields is space-delimited. For a complete list of fields, see
FieldList in the events.xsd schema.

containers
Identifies specific containers where an application wants to track folder events. If no container is
specified, events are reported for all containers in the user's account, except folders shared with
the user.

subType
Identifies a custom item type. Applications can create custom item types by adding the subType
element when creating an item. The subType element is defined in the GroupWise types.xsd
schema.
During the creation of the item, an application could provide a unique string in the subType
element. For example, the application could provide Acme as the subType element and any
items that are created have an Acme subType. Applications can search and filter items based on
the subType element. This is GroupWise Web Services implementation of className in the
GroupWise Object API.
The GroupWise Web Services Events subType element can be used to track events only on the
items that have a subType field that matches the subType. For example, if an application creates
an item with a subType of Acme and wants to track all items with an Acme subType, the
application provides Acme in the subType element while calling configureEventsRequest.

status
Specifies whether the getEventConfigurationRequest (page 23) method was successful.

code
Provides the error number related to the event. 0 means that the request was successful.
24 GroupWise SDK: Web Services Events

Remarks
If the key element is provided in the call to getEventConfigurationRequest, only that specific event
definition is returned. If the key element is not provided, all event definitions for the user are returned.

Example
<getEventConfigurationResponse>
 <events>
 <event enabled="1">
 <key>Acme</key>
 <persistence>8</persistence>
 <ipAddress>app1.widgets.com</ipAddress>
 <port>5221</port>
 <http>0</http>
 <event>
 <event>ItemAccept</event>
 <event>ItemComplete</event>
 <event>ItemDecline</event>
 <event>ItemDelete</event>
 <event>ItemPurge</event>
 <event>ItemMarkRead</event>
 <event>ItemUndelete</event>
 <event>ItemMarkUnread</event>
 <event>FolderItemAdd</event>
 <event>FolderItemMove</event>
 <event>FolderItemRemove</event>
 </event>
 <type>Appointment Mail Note Task</type>
 </event>
 <event enabled="1">
 <key>AB</key>
 <persistence>0</persistence>
 <ipAddress>http://prestons/</ipAddress>
 <port>5221</port>
 <http>1</http>
 <event>
 <event>AddressBookDelete</event>
 <event>AddressBookAdd</event>
 <event>AddressBookItemDelete</event>
 <event>AddressBookItemAdd</event>
 </event>
 </event>
 <containers>
 <container>7.AutoDomain.AutoPO1.100.0.1.0.1@16</container>
 <container>A.AutoDomain.AutoPO1.100.0.1.0.1@19</container>
 </containers>
 </events>
 <status>
 <code>0</code>
 </status>
</getEventConfigurationResponse>
Methods 25

getEventsRequest
Returns the list of events that are accumulating in the user's account.

Request
<getEventsRequest>
 <key/>
 <from/>
 <until/>
 <uid/>
 <count/>
 <remove/>
 <notify/>
 <view/>
</getEventsRequest>

Response
<getEventsResponse>
 <events>
 <event>
 <event>
 <id/>
 <timeStamp/>
 <container/>
 <key/>
 </event>
 . . .
 </events>
 <status>
 <code/>
 </status>
</getEventsResponse>

Definitions
key

String. Uniquely identifies the event configuration in a user's database. It is up to the application
to control the uniqueness of the application key. GroupWise Web Services Events uses any key
that it is passed. If two applications or two instances of an application pass the same key,
GroupWise Web Services Events maps both to one event configuration structure in the user’s
database.

from
Provides the starting date for the list of events to be returned.

until
Provides the ending date for the list of events to be returned.

count
Specifies how many events to return. If not specified, all events are returned. We recommend
providing a count of 250 or less.
26 GroupWise SDK: Web Services Events

remove
Specifies whether to remove the event. True (1) indicates to remove the event from the database
upon a successful response to getEventsRequest.

notify
Specifies whether the application wants to be notified the next time the event it is tracking
occurs. The notification process (POA) maintains a list of all applications that want to be notified
when that event occurs. Every time an application receives an event notification, it is removed
from the notification list. To be placed on the notification list again, an application must send
getEventsRequest with the notify element set to True (1). The IP address and port must be in the
event definition to be added to the notification list.

event
Identifies a GroupWise event that has occurred for a user, as defined in EventType in
events.xsd.

id
Identifies the item, as defined in types.xsd.

timeStamp
Specifies the date and time that the GroupWise event occurred.

container
Specifies the location in the GroupWise account where the event occurred.

status
Specifies whether getEventsRequest (page 26) was successful.

code
Provides the error number related to the event. 0 means that the request was successful.

view
Specifies the elements that are returned for each item. The view reduces the amount of data
returned. If a view is not specified, all elements are returned.

Remarks
After a successful call to configureEventsRequest (page 19), events are created in user's database.

The from and until date elements can be used to return a subset of events, based on dates. The from
element can be used by itself to return all events greater than the specified time. Another way to
return a subset of events is to provide the UID for a specific event and provide a count. A list of events
is returned, starting at the UID for the count specified.

Applications should emove events as soon as possible. One way to remove events is to set the
remove element to True in getEventsRequest. After the events are returned, the events are purged
from the user's store.

Example
<getEventsRequest>
 <key>Acme</key>
 <remove>1</remove>
 <notify>1</notify>
</getEventsRequest>
Methods 27

Following is a sample response to getEventsRequest:

<getEventsResponse>
 <events>
 <event>
 <event>FolderItemAdd</event>
 <id>41937EE0.AutoDomain.AutoPO1.100.1363230.1.272D.1</id>
 <timeStamp>2012-11-11T22:01:55Z</timeStamp>
 <container>7.AutoDomain.AutoPO1.100.0.1.0.1@16</container>
 <key>Acme</key>
 </event>
 <event>
 <event>FolderItemAdd</event>
 <id>41937F2C.AutoDomain.AutoPO1.100.1363230.1.272E.1</id>
 <timeStamp>2012-11-11T22:03:10Z</timeStamp>
 <container>7.AutoDomain.AutoPO1.100.0.1.0.1@16</container>
 <key>Acme</key>
 </event>
 </events>
 <status>
 <code>0</code>
 </status>
</getEventsResponse>
28 GroupWise SDK: Web Services Events

getItemsRequest
Retrieves items returned in the response to getEventsRequest (page 26).

Request
<getItemsRequest>
 <container/>
 <filter>
 <element>
 <op/>
 <field/>
 <value/>
 </element>
 </filter>
</getItemsRequest>

Definitions
container

Specifies the container the item is in. To search all containers except folders shared with me,
specify “folders.”

count
Specifies how many items to retrieve in one response. If not specified, all items are returned.

element
Identifies the item to retrieve.

Remarks
The getEventResponse method returns the ID of items that match the configureEventsRequest
(page 19) definition, but it does not return the items themselves. It is up to the application to retrieve
the items.

For more information on getItemsRequest and filtering, see the appropriate definition in the
GroupWise Web Services document.

Example
The following example shows how to retrieve event items over all folders. The container element tells
the POA to search all folders (except folders shared with me) for the item.

<getItemsRequest>
 <container>folders</container>
 <view>default peek id container @type message recipients attachments
 subject</view>
 <filter/>
 <count>-1</count>
</getItemsRequest>
Methods 29

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i5v
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle

removeEventConfigurationRequest
Removes the event configuration definition for the specified key.

Request
<removeEventConfigurationRequest>
 <key/>
</removeEventConfigurationRequest>

Definitions
key

String. Uniquely identifies the event configuration in a user's database. It is up to the application
to control the uniqueness of the application key. GroupWise Web Services Events uses any key
that it is passed. If two applications or two instances of an application pass the same key,
GroupWise Web Services Events maps both to one event configuration structure in the user’s
database.

status
Specifies whether getEventsRequest (page 26) was successful.

code
Provides the error number related to the event. 0 means that the request was successful.

Example
<removeEventConfigurationRequest>
 <key>GW1</key>
</removeEventConfigurationRequest>

<removeEventConfigurationResponse>
 <status>
 <code>0</code>
 </status>
</removeEventConfigurationResponse>
30 GroupWise SDK: Web Services Events

removeEventsRequest
Removes the events in the user's database for the specified key.

Request
<removeEventsRequest>
 <key/>
 <from/>
 <until/>
</removeEventsRequest>

Definitions
key

String. Uniquely identifies the event configuration in a user's database. It is up to the application
to control the uniqueness of the application key. GroupWise Web Services Events uses any key
that it is passed. If two applications or two instances of an application pass the same key,
GroupWise Web Services Events maps both to one event configuration structure in the user’s
database.

from
Provides the starting date for the events to be removed.

until
Provides the ending date for the events to be removed.

status
Specifies whether getEventsRequest (page 26) was successful.

code
Provides the error number related to the event. 0 means that the request was successful.

Example
<removeEventsRequest>
 <key>GWEvents</key>
</removeEventsRequest>

<removeEventsResponse>
 <status>
 <code>0</code>
 </status>
</removeEventsResponse>
Methods 31

32 GroupWise SDK: Web Services Events

3 3Event Examples

This section contains examples of events that are returned by various items in the GroupWise
system.

The examples in the following sections use the GroupWise Windows client (with default settings) to
determine what type of events are created. You might want to anticipate a different set of events
based on the customization of GroupWise clients by end users. The examples also listened for all
events except Login, Logout, and TrustedApplicationLogin.

 Section 3.1, “Folders,” on page 33
 Section 3.2, “Items,” on page 38
 Section 3.3, “Personal Address Books,” on page 44
 Section 3.4, “GroupWise Address Book,” on page 49

3.1 Folders
Folder management consists of creating, deleting, and modifying all folder types, including personal,
shared, IMAP, NNTP, and query folders. The following sections contain examples of events that are
returned for IMAP, NNTP, and Personal folders:

 Section 3.1.1, “Creating a Folder,” on page 33
 Section 3.1.2, “Deleting a Folder,” on page 34
 Section 3.1.3, “Modifying a Folder,” on page 34
 Section 3.1.4, “Moving a Folder,” on page 34
 Section 3.1.5, “Shared Folders,” on page 34

3.1.1 Creating a Folder
Creating a folder creates a FolderAdd event.

<gwe:event>
 <gwe:event>FolderAdd</gwe:event>
 <gwe:id>44E06767.domain1.po1.100.16E3837.1.EED.1</gwe:id>
 <gwe:timeStamp>2012-08-14T18:07:03Z</gwe:timeStamp>
 <gwe:container>C.domain1.po1.100.0.1.0.1@21</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10286</gwe:uid>
</gwe:event>
Event Examples 33

3.1.2 Deleting a Folder
Deleting a folder creates a FolderDelete event.

<gwe:event>
 <gwe:event>FolderDelete</gwe:event>
 <gwe:id>44E06767.domain1.po1.100.16E3837.1.EED.1</gwe:id>
 <gwe:timeStamp>2012-08-14T18:12:19Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10288</gwe:uid>
</gwe:event>

3.1.3 Modifying a Folder
Modifying a folder name creates a FolderModify event.

<gwe:event>
 <gwe:event>FolderModify</gwe:event>
 <gwe:id>44E06767.domain1.po1.100.16E3837.1.EED.1</gwe:id>
 <gwe:timeStamp>2012-08-14T18:10:48Z</gwe:timeStamp>
 <gwe:field>Name</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10287</gwe:uid>
</gwe:event>

3.1.4 Moving a Folder
When a folder is moved, a FolderModified event is triggered. On the event, the id is the folder that is
moved. The field has the keyword “Parent”.

<gwe:events>
<gwe:event>
 <gwe:event>FolderModifiy</gwe:event>
 <gwe:id>48F5F3AC.domain1.po1.100.16A6163.1.138.1</gwe:id>
 <gwe:timeStamp>2012-10-15T19:44:40Z</gwe:timeStamp>
 <gwe:field>Parent</gwe:field>
 <gwe:key>Events 1</gwe:key>
 <gwe:uid>30</gwe:uid>
</gwe:event>
</gwe:events>

3.1.5 Shared Folders
Folders can be shared with other users. The following definitions (as defined in types.xsd for shared
folders) are used in the examples in this section:

 When a user shares a folder with other users, it is referred to as isSharedByMe.
 When a user accepts a folder shared by another user, it is referred to as isSharedToMe.

The following sections contain examples of events that are returned for shared folders:

 “Creating Shared Folders” on page 35
 “Deleting Shared Folders” on page 35
 “Modifying Shared Folders” on page 35
 “Sharing Folders With Others (isSharedToMe)” on page 36
34 GroupWise SDK: Web Services Events

 “Accepting a Shared Folder (isSharedToMe)” on page 36
 “Deleting Shared Folders” on page 37
 “Modifying Shared Folders” on page 37

Creating Shared Folders
When a user shares a folder with other users, you can expect the following events:

 FolderAdd: Created for the new folder.
 FolderItemAdd: Created for the sent item shared folder notification.

<gwe:event>
 <gwe:event>FolderAdd</gwe:event>
 <gwe:id>44E05582.domain1.po1.100.16E3837.1.EE2.1</gwe:id>
 <gwe:timeStamp>2012-08-14T16:50:42Z</gwe:timeStamp>
 <gwe:containerC.domain1.po1.100.0.1.0.1@21/gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10261</gwe:uid>
</gwe:event>

<gwe:event>
 <gwe:event>FolderItemAdd</gwe:event>
 <gwe:id>44E05584.domain1.po1.100.16E3837.1.EE3.1</gwe:id>
 <gwe:timeStamp>2012-08-14T16:50:44Z</gwe:timeStamp>
 <gwe:container>7.domain1.po1.100.0.1.0.1@16</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10262</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

Deleting Shared Folders
When a folder that was shared to others (isSharedByMe) is deleted, you can expect the following
event:

<gwe:event>
 <gwe:event>FolderDelete</gwe:event>
 <gwe:id>44E05582.domain1.po1.100.16E3837.1.EE2.1</gwe:id>
 <gwe:timeStamp>2012-08-14T17:22:18Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10263</gwe:uid>
</gwe:event>

Modifying Shared Folders
When a folder is renamed, you can expect a FolderModify event.

<gwe:event>
 <gwe:event>FolderModify</gwe:event>
 <gwe:id>44E05D7B.domain1.po1.100.16E3837.1.EE4.1</gwe:id>
 <gwe:timeStamp>2012-08-14T17:24:59Z</gwe:timeStamp>
 <gwe:field>Name</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10266</gwe:uid>
</gwe:event>
Event Examples 35

When users are added or removed from folder sharing, a folderItemAdd event is returned for the
notifications.

Sharing Folders With Others (isSharedToMe)
When a folder is shared with other users (isSharedByMe), a shared folder notification is sent to all the
users that the folder was shared with (isSharedToMe). This notification appears in the mailbox folder.
If your application is listening for the FolderItemAdd event types on the mailbox folder, you can expect
the following event:

<gwe:event>
 <gwe:event>FolderItemAdd</gwe:event>
 <gwe:id>44E040CA.domain1.po1.100.16E3837.1.EE0.1</gwe:id>
 <gwe:timeStamp>2012-08-14T15:22:18Z</gwe:timeStamp>
 <gwe:container>7.domain1.po1.100.0.1.0.1@16</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10253</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

Accepting a Shared Folder (isSharedToMe)
When a user accepts a shared folder notification, you can expect the following events:

 FolderAccept: Created when the user accepts the shared folder notification.
 FolderAdd: Created when the folder is added to the folder tree.
 FolderItemMove: Created when the original shared folder notification is marked hidden and

moved to the newly created folder.

<gwe:event>
 <gwe:event>FolderAccept</gwe:event>
 <gwe:id>44E040CA.domain1.po1.100.16E3837.1.EE0.1</gwe:id>
 <gwe:timeStamp>2012-08-14T15:41:40Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10255</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwe:event>

 <gwe:event>FolderAdd</gwe:event>
 <gwe:id>44E04554.domain1.po1.100.16E3837.1.EE1.1</gwe:id>
 <gwe:timeStamp>2012-08-14T15:41:40Z</gwe:timeStamp>
 <gwe:containerC.domain1.po1.100.0.1.0.1@21/gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10256</gwe:uid>
</gwe:event>
36 GroupWise SDK: Web Services Events

<gwe:event>
 <gwe:event>FolderItemMove</gwe:event>
 <gwe:id>44E040CA.domain1.po1.100.16E3837.1.EE0.1</gwe:id>
 <gwe:timeStamp>2012-08-14T15:41:41Z</gwe:timeStamp>
 <gwe:field>Hidden</gwe:field>
 <gwe:container>44E04554.domain1.po1.100.16E3837.1.EE1.1@13<
 gwe:container>
 <gwe:from>7.domain1.po1.100.0.1.0.1@16</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10257</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

Deleting Shared Folders
When a user deletes an isSharedToMe folder, you can expect the following events:

 ItemPurge: The original shared folder notification that was moved to the shared folder and
marked hidden.

 FolderDelete: The folder being deleted.

<gwe:event>
 <gwe:event>ItemPurge</gwe:event>
 <gwe:id>44E040CA.domain1.po1.100.16E3837.1.EE0.1</gwe:id>
 <gwe:timeStamp>2012-08-14T16:31:06Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10259</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>FolderDelete</gwe:event>
 <gwe:id>44E04554.domain1.po1.100.16E3837.1.EE1.1</gwe:id>
 <gwe:timeStamp>2012-08-14T16:31:06Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10260</gwe:uid>
</gwe:event>

Modifying Shared Folders
When a folder is renamed, you can expect a FolderModify event.

<gwe:event>
 <gwe:event>FolderModify</gwe:event>
 <gwe:id>44E05D7B.domain1.po1.100.16E3837.1.EE4.1</gwe:id>
 <gwe:timeStamp>2012-08-14T17:24:59Z</gwe:timeStamp>
 <gwe:field>Name</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10266</gwe:uid>
</gwe:event>
Event Examples 37

3.2 Items
Users can act on items. For example, a user can accept an item. Accepting an item can create an
event record with an event type of ItemAccept. The following sections explain different actions on
items and the resulting event records that are created.

FolderItemDelete is obsolete. Do not use it because it will be removed from the schemas in a future
release.

PersonalGroupItemAdd and PersonalGroupItemDelete are defined in the GroupWise 7.0.1 schemas.
However, they are not used at this time but are reserved for future use.

 Section 3.2.1, “Accepting an Item,” on page 38
 Section 3.2.2, “Archiving an Item,” on page 39
 Section 3.2.3, “Completing an Item,” on page 40
 Section 3.2.4, “Declining an Item,” on page 40
 Section 3.2.5, “Deleting an Item,” on page 40
 Section 3.2.6, “Adding an Item To a Folder,” on page 40
 Section 3.2.7, “Moving an Item,” on page 41
 Section 3.2.8, “Marking an Item Private,” on page 41
 Section 3.2.9, “Marking an Item Read,” on page 41
 Section 3.2.10, “Marking an Item Unprivate,” on page 42
 Section 3.2.11, “Marking an Item Unread,” on page 42
 Section 3.2.12, “Modifying an Item,” on page 42
 Section 3.2.13, “Purging an Item,” on page 43
 Section 3.2.14, “Declining an Item,” on page 43
 Section 3.2.15, “Unarchiving an Item,” on page 43
 Section 3.2.16, “Marking an Item Not Complete,” on page 44
 Section 3.2.17, “Undeleting an Item,” on page 44

3.2.1 Accepting an Item
When a user accepts a distributed appointment, note, or task, you can expect the following events:

 ItemAccept: Created when the distributed item is accepted.
 ItemModify: The item has been modified.
 FolderItemMove: Reports the moving of the item from the mailbox folder to the calendar.

The first ItemModify event example shows changes to the status of the item, such as the item being
opened and read. The second ItemModify example reports the change to the recipient status on the
sent item record for the appointment. This ItemModify appears only if the sender is the recipient.

<gwe:event>
 <gwe:event>ItemAccept</gwe:event>
 <gwe:id>44E18F4D.domain1.po1.100.16E3837.1.F05.1</gwe:id>
 <gwe:timeStamp>2012-08-15T15:09:43Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10366</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>
38 GroupWise SDK: Web Services Events

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44E18F4D.domain1.po1.100.16E3837.1.F05.1</gwe:id>
 <gwe:timeStamp>2012-08-15T15:09:43Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10368</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44E18F4C.domain1.po1.100.16E3837.1.F04.1</gwe:id>
 <gwe:timeStamp>2012-08-15T15:09:43Z</gwe:timeStamp>
 <gwe:field>RecipientStatus</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10367</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>FolderItemMove</gwe:event>
 <gwe:id>44E18F4D.domain1.po1.100.16E3837.1.F05.1</gwe:id>
 <gwe:timeStamp>2012-08-15T15:09:43Z</gwe:timeStamp>
 <gwe:container>A.domain1.po1.100.0.1.0.1@19</gwe:container>
 <gwe:from>7.domain1.po1.100.0.1.0.1@16</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10369</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

3.2.2 Archiving an Item
When a user archives an item, you can expect the following events:

 ItemArchive: Created when the item is archived. The item is then deleted and purged from the
on-line account.

 ItemPurge: Created when an item is purged from the online account.

<gwe:event>
 <gwe:event>ItemArchive</gwe:event>
 <gwe:id>44E1A331.domain1.po1.100.16E3837.1.F1B.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:34:47Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10438</gwe:uid>
</gwe:event>

<gwe:event>
 <gwe:event>ItemPurge</gwe:event>
 <gwe:id>44E1A331.domain1.po1.100.16E3837.1.F1B.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:34:47Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10439</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>
Event Examples 39

3.2.3 Completing an Item
When a user completes a task, you can expect the following events:

 ItemComplete: Created when the item is completed.
 ItemModify: Created when the recipient status of the sent item is changed to completed.

<gwe:event>
 <gwe:event>ItemComplete</gwe:event>
 <gwe:id>44E1A571.domain1.po1.100.16E3837.1.F1E.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:52:35Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10502</gwe:uid>
 <gwe:type>Task</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44E1A571.domain1.po1.100.16E3837.1.F1D.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:52:35Z</gwe:timeStamp>
 <gwe:field>RecipientStatus</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10503</gwe:uid>
 <gwe:type>Task</gwe:type>
</gwe:event>

3.2.4 Declining an Item
Deleting a calendar item (appointment, note, or task) creates an ItemDecline event.

<gwe:event>
 <gwe:event>ItemDecline</gwe:event>
 <gwe:id>44E0A919.domain1.po1.100.16E3837.1.F00.1</gwe:id>
 <gwe:timeStamp>2012-08-15T19:49:25Z</gwe:timeStamp>
 <gwe:from>A.domain1.po1.100.0.1.0.1@19</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10544</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

3.2.5 Deleting an Item
Deleting a mail or phone item creates an ItemDelete event.

<gwe:event>
 <gwe:event>ItemDelete</gwe:event>
 <gwe:id>44E0A919.domain1.po1.100.16E3837.1.F00.1</gwe:id>
 <gwe:timeStamp>2012-08-15T19:49:25Z</gwe:timeStamp>
 <gwe:from>A.domain1.po1.100.0.1.0.1@19</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10544</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

3.2.6 Adding an Item To a Folder
When items are created in a folder, a FolderItemAdd event is created.
40 GroupWise SDK: Web Services Events

<gwe:event>
 <gwe:event>FolderItemAdd</gwe:event>
 <gwe:id>44E34395.domain1.po1.100.16E3837.1.F3D.1</gwe:id>
 <gwe:timeStamp>2012-08-16T22:11:01Z</gwe:timeStamp>
 <gwe:container>7.domain1.po1.100.0.1.0.1@16</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10633</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.7 Moving an Item
When an item is moved from one folder to another folder, a FolderItemMove event is created. The
from container is the source folder and the container is the destination folder.

<gwe:event>
 <gwe:event>FolderItemMove</gwe:event>
 <gwe:id>44E34395.domain1.po1.100.16E3837.1.F3D.1</gwe:id>
 <gwe:timeStamp>2012-08-16T22:13:04Z</gwe:timeStamp>
 <gwe:container>C.domain1.po1.100.0.1.0.1@21</gwe:container>
 <gwe:from>7.domain1.po1.100.0.1.0.1@16</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10634</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.8 Marking an Item Private
Private items cannot be viewed by proxy users. Marking an item private creates an ItemMarkPrivate
event.

<gwe:event>
 <gwe:event>ItemMarkPrivate</gwe:event>
 <gwe:id>44E1F6FE.domain1.po1.100.16E3837.1.F2A.1</gwe:id>
 <gwe:timeStamp>2012-08-15T22:34:59Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10577</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.9 Marking an Item Read
When an item is opened, the opened and read status flags on an item record are set.

Marking an item read creates an ItemMarkRead event.

<gwe:event>
 <gwe:event>ItemMarkRead</gwe:event>
 <gwe:id>44E1F6FE.domain1.po1.100.16E3837.1.F2A.1</gwe:id>
 <gwe:timeStamp>2012-08-15T22:39:01Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10580</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>
Event Examples 41

3.2.10 Marking an Item Unprivate
By default, items are not private and can be seen by proxy users. Marking an item as not private
creates an ItemMarkUnprivate event.

<gwe:event>
 <gwe:event>ItemMarkUnprivate</gwe:event>
 <gwe:id>44E1F6FE.domain1.po1.100.16E3837.1.F2A.1</gwe:id>
 <gwe:timeStamp>2012-08-15T22:35:35Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10578</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.11 Marking an Item Unread
In order for an item to be marked unread, it needs to have been opened first. When an item is
opened, the opened and read status flags on an item record are set. When an item is marked unread,
the read status flag is reset to not read and the opened flag is not changed.

Marking an item unread creates an ItemMarkRead event.

<gwe:event>
 <gwe:event>ItemMarkUnread</gwe:event>
 <gwe:id>44E1F6FE.domain1.po1.100.16E3837.1.F2A.1</gwe:id>
 <gwe:timeStamp>2012-08-15T22:38:41Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10579</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.12 Modifying an Item
ItemModify modifies an existing item.

A distributed item is sent to many users. A personal item is a posted or personal item. The number of
fields that can be changed on a item depends on whether it is a distributed or a personal item. On a
distributed item, only the category and personal subject can be modified.

Modifying a distributed item creates an ItemModify event. The field element defines the field that was
changed on the item. In the following example, the Category and PersonalSubject were both
changed.

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44E1FB97.domain1.po1.100.16E3837.1.F2C.1</gwe:id>
 <gwe:timeStamp>2012-08-16T21:17:19Z</gwe:timeStamp>
 <gwe:field>Category PersonalSubject</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10589</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

If an item is personal, most fields can be changed on the item after its sent. In the example below, the
Alarm, Category, Classification, and other fields were modified.
42 GroupWise SDK: Web Services Events

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44E339DD.domain1.po1.100.16E3837.1.F30.1</gwe:id>
 <gwe:timeStamp>2012-08-16T21:30:19Z</gwe:timeStamp>
 <gwe:field>Alarm Category Classification Duration Place Security
 SendPriority StartDate Subject Alarm</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10592</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

3.2.13 Purging an Item
Items that are deleted are moved to the Trash folder. Items can then be purged by deleting them from
the Trash. Items can also be purged without sending the item to the Trash. In a client, select Delete
and Empty, and the item is removed from the user's account without storing the item in the Trash
folder.

Purging an item creates an ItemPurge event.

<gwe:event>
 <gwe:event>ItemDelete</gwe:event>
 <gwe:id>44E1FB97.domain1.po1.100.16E3837.1.F2C.1</gwe:id>
 <gwe:timeStamp>2012-08-16T21:34:16Z</gwe:timeStamp>
 <gwe:from>7.domain1.po1.100.0.1.0.1@16</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10594</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>ItemPurge</gwe:event>
 <gwe:id>44E1FB97.domain1.po1.100.16E3837.1.F2C.1</gwe:id>
 <gwe:timeStamp>2012-08-16T21:34:17Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10595</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.14 Declining an Item
When an application uses the unacceptRequest method defined in GroupWise Web Services, the
ItemUnaccept event is created.

<gwe:event>
 <gwe:event>ItemUnaccept</gwe:event>
 <gwe:id>44EAE897.domain1.po1.100.16E3837.1.F6A.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:24:26Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10747</gwe:uid>
 <gwe:type>Appointment</gwe:type>
</gwe:event>

3.2.15 Unarchiving an Item
When a user unarchives an item, the following events can be expected:

 ItemUnarchive: Created when the item is unarchived.
Event Examples 43

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i8b
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle

 FolderItemAdd: Created when the item is re-created in the online account

<gwe:event>
 <gwe:event>ItemUnarchive</gwe:event>
 <gwe:id>44E1A461.domain1.po1.100.16E3837.1.F1C.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:39:29Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10441</gwe:uid>
</gwe:event>

<gwe:event>
 <gwe:event>FolderItemAdd</gwe:event>
 <gwe:id>44E1A461.domain1.po1.100.16E3837.1.F1C.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:39:29Z</gwe:timeStamp>
 <gwe:container>7.domain1.po1.100.0.1.0.1@16</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10440</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.2.16 Marking an Item Not Complete
When a user marks a task as not being complete, a ItemUncomplete event is created.

<gwe:event>
 <gwe:event>ItemUncomplete</gwe:event>
 <gwe:id>44E1A571.domain1.po1.100.16E3837.1.F1E.1</gwe:id>
 <gwe:timeStamp>2012-08-15T16:51:50Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10492</gwe:uid>
 <gwe:type>Task</gwe:type>
</gwe:event>

3.2.17 Undeleting an Item
Items that are in the trash folder can be undeleted or moved back to the original folder. Undeleting an
item creates an ItemUndelete event.

<gwe:event>
 <gwe:event>ItemUndelete</gwe:event>
 <gwe:id>44E1F6FE.domain1.po1.100.16E3837.1.F2A.1</gwe:id>
 <gwe:timeStamp>2012-08-16T21:42:14Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10596</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.3 Personal Address Books
Managing personal address books containers and manipulating items within the personal address
book containers is different, as shown in the following sections:

 Section 3.3.1, “Personal Address Book Management,” on page 45
 Section 3.3.2, “Personal Address Book Items,” on page 45
 Section 3.3.3, “Shared Address Books,” on page 48
44 GroupWise SDK: Web Services Events

3.3.1 Personal Address Book Management
Personal Address Book management event types include the following:

 AddressBookAdd: Used when a new Personal Address Book is created.
 AddressBookDelete: Used when an existing Personal Address Book is deleted.
 AddressBookModify: Used when an existing Personal Address Book is modified.

3.3.2 Personal Address Book Items
Additions, modifications, and deletions to Personal Address Book items can produce more event
records than expected. The reason for the extra events is because of the way the Personal Address
Book code was written.

First, the Personal Address Book code creates the item. Next, it modifies the item. Thus, two event
records are created for each Personal Address Book addition. For example, when adding a contact to
a Personal Address Book, two different event records are created. The first record is
AddressBookItemAdd. The second event is AddressBookItemModify (because the created item is
now modified).

The following sections explain the various events associated with Personal Address Book actions:

 “Adding Personal Address Book Items” on page 45
 “Deleting Personal Address Book Items” on page 46
 “Modifying Personal Address Book Items” on page 46

Adding Personal Address Book Items
When adding a contact, group, resource, or organization to a Personal Address Book, you might get
more events than just AddressBookItemAdd. For example, if you add a resource that specifies an
owner that currently does not exist in the Personal Address Book, you receive the following three
events:

 AddressBookItemAdd: Created for the owner that is not in the Personal Address Book.
 AddressBookItemAdd: Created for the resource itself.
 AddressBookItemModify: Created for the resource for the owner.

When a contact, group, resource, or organization is added and it references another contact, group,
resource, or organization that does not exist in the current PAB, the referenced address book object
is created first. This produces an extra AddressBookItemAdd event.

<gwe:getEventsResponse>
 <gwe:events>
 <gwe:event>
 <gwe:event>AddressBookItemAdd</gwe:event>
 <gwe:id>44D0AAA2.domain1.po1.104.16E3837.1.DF.1</gwe:id>
 <gwe:timeStamp>2012-08-02T19:37:38Z</gwe:timeStamp>
 <gwe:container>42C510EA.domain1.po1.104.16E3837.1.3.1@53
 </gwe:container>
 <gwe:key>GWEvents</gwe:key>

 <gwe:uid>10086</gwe:uid>
 <gwe:type>Contact</gwe:type>
 </gwe:event>
Event Examples 45

 <gwe:event>
 <gwe:event>AddressBookItemModify</gwe:event>
 <gwe:id>44D0AAA2.domain1.po1.104.16E3837.1.E0.1</gwe:id>
 <gwe:timeStamp>2012-08-02T19:37:39Z</gwe:timeStamp>
 <gwe:field>Owner</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10088</gwe:uid>
 <gwe:type>Resource</gwe:type>
 </gwe:event>

 <gwe:event>
 <gwe:event>AddressBookItemAdd</gwe:event>
 <gwe:id>44D0AAA2.domain1.po1.104.16E3837.1.E0.1</gwe:id>
 <gwe:timeStamp>2012-08-02T19:37:39Z</gwe:timeStamp>
 <gwe:container>42C510EA.domain1.po1.104.16E3837.1.3.1@53
 </gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10087</gwe:uid>
 <gwe:type>Resource</gwe:type>
 </gwe:event>
 </gwe:events>
 <gwe:status>
 <gwt:code>0</gwt:code>
 </gwe:status>
</gwe:getEventsResponse>

When creating a Personal Address Book group, you also create an AddressBookItemAdd event for
each member of the group. For example, if a group is created with two contacts, the following four
events are created:

 AddressBookItemAdd: Created for the group.
 AddressBookItemModify: Created for the group modification.
 AddressBookItemAdd: Created for the first contact in the group.
 AddressBookItemAdd: Created for the second contact in the group.

Deleting Personal Address Book Items
When you delete a Personal Address Book item, you can expect to receive the following events:

 AddressBookItemDelete: Created when deleting a contact, organization, or resource.
 AddressBookItemDelete: Created when deleting a Personal Address Book group itself and

when deleting each member of the group.

Modifying Personal Address Book Items
When a Personal Address Book item is modified, an event record is created. By default, the event
record does not include a field element because the event record is generic. It tells the listening
application that a field on an address book item has changed, but it does not tell the application
listener what specific fields have changed.

The following is an example of a generic event record that does not include a field element:
46 GroupWise SDK: Web Services Events

<gwe:event>
 <gwe:event>AddressBookItemModify</gwe:event>
 <gwe:id>438B0F64.domain1.po1.104.16E3837.1.90.1</gwe:id>
 <gwe:timeStamp>2012-11-28T21:25:39Z</gwe:timeStamp>
 <gwe:container>434E22A5.domain1.po1.104.16E3837.1.5D.1@53
 </gwe:container>
 <gwe:key>GWABEvents</gwe:key>
 <gwe:uid>2284</gwe:uid>
</gwe:event>

Generic events are returned when the following Personal Address Book fields change:

 Title
 Department
 Web site
 Birthday
 Comment
 Type

However, if the following fields are changed, a field element is created that contains the type of field
that was changed:

 Category
 Contact
 E-mail address
 IM address
 Name
 Phone number
 Postal address

For example, if the name on a contact is changed, the following event record is created:

<gwe:event>
 <gwe:event>AddressBookItemModify</gwe:event>
 <gwe:id>438B0F64.domain1.po1.104.16E3837.1.90.1</gwe:id>
 <gwe:timeStamp>2012-11-28T21:39:05Z</gwe:timeStamp>
 <gwe:field>Name</gwe:field>
 <gwe:container>434E22A5.domain1.po1.104.16E3837.1.5D.1@53
 </gwe:container>
 <gwe:key>GWABEvents</gwe:key>
 <gwe:uid>2285</gwe:uid>
</gwe:event>

In this example, the field element contains the Name key word, which tells the listening application
that some part of the name in a contact has changed. The listening application now has more
information about the particular Personal Address Book change and can act accordingly.
Event Examples 47

3.3.3 Shared Address Books
Shared address books within a Personal Address Book container are similar to shared folders. When
user1 shares an address book with user2, user2 receives a mail item in the In box. User2 can then
accept the shared address book.

Applications receive the following events for shared address books:

 FolderItemAdd: Created for the new mail item in user2’s In box.

Your application can call GetItemsRequest to retrieve the details of the shared address book item.
The GetItemsResponse has a SharedNotification attribute, which states that the item is a
SharedAddressBook.

<gwe:event>
 <gwe:event>FolderItemAdd</gwe:event>
 <gwe:id>44EC2654.domain1.po1.100.16E3837.1.F76.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:56:36Z</gwe:timeStamp>
 <gwe:container>7.domain1.po1.100.0.1.0.1@16</gwe:container>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10755</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwt:item xsi:type="gwt:SharedNotification">
 ...
 <gwt:subject>Sharing of Address Book 'New U2 Book'.</gwt:subject>
 ...
 <gwt:notification>SharedAddressBook</gwt:notification>
 <gwt:description>You have been granted shared access to my address
 book named 'New U2 Book'.</gwt:description>
 <gwt:rights>
 <gwt:edit>1</gwt:edit>
 </gwt:rights>
</gwt:item>

When a user accepts the address book, the ItemAccept, ItemModify, and FolderItemMove events are
created. These events mark the accepted item as hidden and as moved to the calendar folder, so that
your application does not need to track the notification item any more.

<gwe:event>
 <gwe:event>ItemAccept</gwe:event>
 <gwe:id>44EC2654.domain1.po1.100.16E3837.1.F76.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:58:08Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10758</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44EC2654.domain1.po1.100.16E3837.1.F76.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:58:09Z</gwe:timeStamp>
 <gwe:field>Hidden</gwe:field>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10759</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>
48 GroupWise SDK: Web Services Events

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i5v

<gwe:event>
 <gwe:event>ItemModify</gwe:event>
 <gwe:id>44EC2654.domain1.po1.100.16E3837.1.F76.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:58:09Z</gwe:timeStamp>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10760</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

<gwe:event>
 <gwe:event>FolderItemMove</gwe:event>
 <gwe:id>44EC2654.domain1.po1.100.16E3837.1.F76.1</gwe:id>
 <gwe:timeStamp>2012-08-23T15:58:09Z</gwe:timeStamp>
 <gwe:container>A.domain1.po1.100.0.1.0.1@19</gwe:container>
 <gwe:from>7.domain1.po1.100.0.1.0.1@16</gwe:from>
 <gwe:key>GWEvents</gwe:key>
 <gwe:uid>10761</gwe:uid>
 <gwe:type>Mail</gwe:type>
</gwe:event>

3.4 GroupWise Address Book
Because the GroupWise Address Book is not tied to a user's database, no GroupWise events are
created when the GroupWise Address Book changes. Instead, it has its own database.

If you are interested in detecting when changes occur to the GroupWise Address Book, look at the
GetDeltaInfoRequest and GetDeltasRequest methods in the GroupWise Web Services
documentation.
Event Examples 49

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i5j
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i5j
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#b7m3i5h
https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle

50 GroupWise SDK: Web Services Events

A ARevision History

The following table lists changes made to the GroupWise Web Services Events documentation (in
reverse chronological order):

Release Changes

November 2012 Reviewed and updated for use with GroupWise 2012.

Made the following updates:

 Improved the definition of GroupWise Web Services Events in
“Overview” on page 7.

 Improved the explanation of how the POA notifies the application an
event has occurred in Section 1.3.2, “Post Office Agent Perspective,” on
page 9.

 Improved the example in Section 1.4, “Event Records,” on page 11.

 Improved the description of what happens when the POA goes down in
Section 1.6, “Event Notifications,” on page 15.

 Corrected the elements in configureEventsRequest (page 19), added the
ignoreAfter element, and provided additional remarks.

June 2007 Added links to referenced sections and methods and to the GroupWise Web
Services documentation.

Changed “typed” to “tied” in Section 3.4, “GroupWise Address Book,” on
page 49.

February 28, 2007 Added as an NDK component.
Revision History 51

https://www.novell.com/documentation/gwsdk/pdfdoc/gwsdk_web_services/gwsdk_web_services.pdf#Bktitle

52 GroupWise SDK: Web Services Events

	GroupWise SDK: Web Services Events
	About This Guide
	1 Overview
	1.1 Resources
	1.2 WSDL and Schema Files
	1.2.1 WSDL and Schema Location

	1.3 Event Life Cycle
	1.3.1 Application Perspective
	1.3.2 Post Office Agent Perspective
	1.3.3 Other POA Duties

	1.4 Event Records
	1.5 Event Types and Fields
	1.6 Event Notifications

	2 Methods
	cleanEventConfigurationRequestDeletes event records in a user’s database based on how long the item has been in the database.
	Definitions
	Remarks
	Example

	configureEventsRequestDefines the configuration name, what events should be tracked, event persistence, notifications, etc.
	Request
	Response
	Definitions
	Remarks
	Example

	getEventConfigurationRequestReturns one or all event configuration definitions for a GroupWise user.
	Request
	Response
	Definitions
	Remarks
	Example

	getEventsRequestReturns the list of events that are accumulating in the user's account.
	Request
	Response
	Definitions
	Remarks
	Example

	getItemsRequest
	Request
	Definitions
	Remarks
	Example

	removeEventConfigurationRequestRemoves the event configuration definition for the specified key.
	Request
	Definitions
	Example

	removeEventsRequestRemoves the events in the user's database for the specified key.
	Request
	Definitions
	Example

	3 Event Examples
	3.1 Folders
	3.1.1 Creating a Folder
	3.1.2 Deleting a Folder
	3.1.3 Modifying a Folder
	3.1.4 Moving a Folder
	3.1.5 Shared Folders

	3.2 Items
	3.2.1 Accepting an Item
	3.2.2 Archiving an Item
	3.2.3 Completing an Item
	3.2.4 Declining an Item
	3.2.5 Deleting an Item
	3.2.6 Adding an Item To a Folder
	3.2.7 Moving an Item
	3.2.8 Marking an Item Private
	3.2.9 Marking an Item Read
	3.2.10 Marking an Item Unprivate
	3.2.11 Marking an Item Unread
	3.2.12 Modifying an Item
	3.2.13 Purging an Item
	3.2.14 Declining an Item
	3.2.15 Unarchiving an Item
	3.2.16 Marking an Item Not Complete
	3.2.17 Undeleting an Item

	3.3 Personal Address Books
	3.3.1 Personal Address Book Management
	3.3.2 Personal Address Book Items
	3.3.3 Shared Address Books

	3.4 GroupWise Address Book

	A Revision History

