

Novell®
Sentinel™

www.nove l l . c om
6.0.2

October 2008

Vo l ume I V – S ENT INEL REFERENCE GU IDE

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to any and all parts of Novell software, to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or
changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and
the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to http://www.novell.com/info/exports/ for more information on exporting Novell software. Novell
assumes no responsibility for your failure to obtain any necessary export approvals.

Copyright © 1999-2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the
U.S. patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending
patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products and to get
updates, see www.novell.com/documentation.

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/
http://www.novell.com/documentation

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list
(http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials
All third-party trademarks are the property of their respective owners.

Third Party Legal Notices
This product may include the following open source programs that are available under the LGPL license. The text
for this license can be found in the Licenses directory.

 edtFTPj-1.2.3 is licensed under the Lesser GNU Public License. For more information, disclaimers and

restrictions see http://www.enterprisedt.com/products/edtftpj/purchase.html.

 Enhydra Shark, licensed under the Lesser General Public License available at:
http://shark.objectweb.org/license.html.

 Esper. Copyright © 2005-2006, Codehaus.
 FESI is licensed under the Lesser GNU Public License. For more information, disclaimers and restrictions, see

http://www.lugrin.ch/fesi/index.html.

 jTDS-1.2.2.jar is licensed under the Lesser GNU Public License. For more information, disclaimers and
restrictions see http://jtds.sourceforge.net/.

 MDateSelector. Copyright © 2005, Martin Newstead, licensed under the Lesser General Public License. For
more information, disclaimers and restrictions see http://web.ukonline.co.uk/mseries.

 Tagish Java Authentication and Authorization Service Modules, licensed under the Lesser General Public
License. For more information, disclaimers and restrictions see http://free.tagish.net/jaas/index.jsp.

This product may include the following software developed by The Apache Software Foundation
(http://www.apache.org/) and licensed under the Apache License, Version 2.0 (the "License"); the text for this
license can be found in the Licenses directory or at http://www.apache.org/licenses/LICENSE-2.0. Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

 Apache Axis and Apache Tomcat, Copyright © 1999 to 2005, Apache Software Foundation. For more

information, disclaimers and restrictions, see http://www.apache.org/licenses/.

 Apache FOP.jar, Copyright 1999-2007, Apache Software Foundation. For more information, disclaimers and
restrictions, see http://www.apache.org/licenses/.

 Apache Lucene, Copyright © 1999 to 2005, Apache Software Foundation. For more information, disclaimers
and restrictions, see http://www.apache.org/licenses/.

 Bean Scripting Framework (BSF), licensed by the Apache Software Foundation Copyright © 1999-2004. For
more information, disclaimers and restrictions see http://xml.apache.org/dist/LICENSE.txt.

 Skin Look and Feel (SkinLF). Copyright © 2000-2006 L2FProd.com. Licensed under the Apache Software
License. For more information, disclaimers and restrictions see https://skinlf.dev.java.net/.

 Xalan and Xerces, both of which are licensed by the Apache Software Foundation Copyright © 1999-2004. For
more information, disclaimers and restrictions see http://xml.apache.org/dist/LICENSE.txt.

This product may include the following open source programs that are available under the Java license.

 JavaBeans Activation Framework (JAF). Copyright © Sun Microsystems, Inc. For more information,

disclaimers and restrictions see http://www.java.sun.com/products/javabeans/glasgow/jaf.html and click
download > license.

http://www.novell.com/company/legal/trademarks/tmlist.html
http://www.enterprisedt.com/products/edtftpj/purchase.html
http://shark.objectweb.org/license.html
http://www.lugrin.ch/fesi/index.html
http://jtds.sourceforge.net/
http://web.ukonline.co.uk/mseries
http://free.tagish.net/jaas/index.jsp
http://www.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://xml.apache.org/dist/LICENSE.txt
https://skinlf.dev.java.net/
http://xml.apache.org/dist/LICENSE.txt
http://www.java.sun.com/products/javabeans/glasgow/jaf.html

 Java 2 Platform, Standard Edition. Copyright © Sun Microsystems, Inc. For more information, disclaimers and
restrictions see http://java.sun.com/j2se/1.5.0/docs/relnotes/SMICopyright.html.

 JavaMail. Copyright © Sun Microsystems, Inc. For more information, disclaimers and restrictions see
http://www.java.sun.com/products/javamail/downloads/index.html and click download > license.

This product may include the following open source and third party programs.

 ANTLR. For more information, disclaimers and restrictions, see http://www.antlr.org.

 Boost. Copyright © 1999, Boost.org.

 Concurrent, utility package. Copyright © Doug Lea. Used without CopyOnWriteArrayList and
ConcurrentReaderHashMap classes.

 ICEsoft ICEbrowser. ICEsoft Technologies, Inc. Copyright © 2003-2004.

 ILOG, Inc. Copyright © 1999-2004.

 Java Ace, by Douglas C. Schmidt and his research group at Washington University. Copyright © 1993-2005.
For more information, disclaimers and restrictions see http://www.cs.wustl.edu/~schmidt/ACE-copying.html
and http://www.cs.wustl.edu/~schmidt/ACE.html.

 Java Service Wrapper. Portions copyrighted as follows: Copyright © 1999, 2004 Tanuki Software and
Copyright © 2001 Silver Egg Technology. For more information, disclaimers and restrictions, see
http://wrapper.tanukisoftware.org/doc/english/license.html.

 JIDE. Copyright © 2002 to 2005, JIDE Software, Inc.

 JLDAP. Copyright © 1998-2005 The OpenLDAP Foundation. All rights reserved. Portions Copyright ©
1999 - 2003 Novell, Inc. All Rights Reserved.

 Monarch Charts. Copyright © 2005, Singleton Labs.

 OpenSSL, by the OpenSSL Project. Copyright © 1998-2004. For more information, disclaimers and
restrictions, see http://www.openssl.org.

 Oracle Help for Java. Copyright © 1994-2006, Oracle Corporation.

 Rhino. Usage is subject to Mozilla Public License 1.1. For more information, see
http://www.mozilla.org/rhino/.

 SecurityNexus. Copyright © 2003 to 2006. SecurityNexus, LLC. All rights reserved.

 Sonic Software Corporation. Copyright © 2003-2004. The SSC software contains security software licensed
from RSA Security, Inc.

 Tao (with ACE wrappers) by Douglas C. Schmidt and his research group at Washington University, University
of California, Irvine and Vanderbilt University. Copyright © 1993-2005. For more information, disclaimers and
restrictions see http://www.cs.wustl.edu/~schmidt/ACE-copying.html and
http://www.cs.wustl.edu/~schmidt/ACE.html.

 Tinyxml. For more information, disclaimers and restrictions see
http://grinninglizard.com/tinyxmldocs/index.html.

 yWorks. Copyright © 2003 to 2006, yWorks.

NOTE: As of the publication of this documentation, the above links were active. In
the event you find that any of the above links are broken or the linked web pages are
inactive, please contact Novell, Inc., 404 Wyman Street, Suite 500, Waltham, MA
02451 U.S.A.

http://java.sun.com/j2se/1.5.0/docs/relnotes/SMICopyright.html
http://www.java.sun.com/products/javamail/downloads/index.html
http://www.antlr.org/
http://www.cs.wustl.edu/%7Eschmidt/ACE-copying.html
http://wrapper.tanukisoftware.org/doc/english/license.html
http://www.openssl.org/
http://www.mozilla.org/rhino/
http://www.cs.wustl.edu/%7Eschmidt/ACE-copying.html
http://grinninglizard.com/tinyxmldocs/index.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html

Preface
The Sentinel Technical documentation is general-purpose operation and reference
guide. This documentation is intended for Information Security Professionals.
The text in this documentation is designed to serve as a source of reference about
Sentinel’s Enterprise Security Management System. There is additional
documentation available on the Novell web portal
(http://www.novell.com/documentation/).

Sentinel Technical documentation is broken down into six different volumes.
They are:

 Volume I – Sentinel Install Guide
 Volume II – Sentinel User Guide
 Volume III – Sentinel Collector Builder User Guide
 Volume IV – Sentinel User Reference Guide
 Volume V – Sentinel 3rd Party Integration
 Volume VI – Sentinel Patch Installation Guide

Volume I – Sentinel Install Guide
This guide explains how to install:

 Sentinel Server
 Sentinel Console
 Sentinel Correlation Engine
 Sentinel Crystal Reports

 Collector Builder
 Collector Manager
 Advisor

Volume II – Sentinel User Guide
This guide discusses:

 Sentinel Console Operation
 Sentinel Features
 Sentinel Architecture
 Sentinel Communication
 Shutdown/Startup of Sentinel
 Vulnerability assessment
 Event monitoring
 Event filtering
 Event correlation
 Sentinel Data Manager

 Event Configuration for Business
Relevance

 Mapping Service
 Historical reporting
 Collector Host Management
 Incidents
 Cases
 User management
 Workflow

Volume III – Collector Builder User Guide
This guide discusses:

 Collector Builder Operation
 Collector Manager
 Collectors

 Collector Host Management
 Building and maintaining

Collectors

Volume IV - Sentinel User Reference Guide
This guide discusses:

 Collector scripting language
 Collector parsing commands
 Collector administrator functions
 Collector and Sentinel meta-tags

 Sentinel correlation engine
 User Permissions
 Correlation command line options
 Sentinel database schema

Volume V - Sentinel 3rd Party Integration Guide
 Remedy
 HP OpenView Operations

 HP Service Desk

Volume VI - Sentinel Patch Installation Guide
 Patching from Sentinel 4.x to 6.0 Patching from Sentinel 5.1.3 to 6.0

Feedback
We want to hear your comments and suggestions about this manual and the other
documentation included with this product. Please use the User Comments feature
at the bottom of each page of the online documentation and enter your comments
there.

Additional Documentation
The other manuals on this product are available at
http://www.novell.com/documentation. The additional documentation available
on Sentinel:

 Sentinel 6.0 Installation Guide
 Sentinel 6.0 Patch Installation Guide
 Sentinel 6.0 User Guide

Documentation Conventions
Notes and Cautions

NOTE: Notes provide additional information that may be useful.

WARNING:
Warning provides additional information that may keep you away from
performing actions that may cause damage or loss of data to your system.

Commands
Commands appear in courier font. For example:

useradd –g dba –d /export/home/oracle –m –s
/bin/csh oracle

http://www.novell.com/documentation

References:
 For more information, see “Section Name” (if in the same Chapter).
 For more information, see Chapter number, “Chapter Name” (if in the same

Guide).
 For more information, see Section Name in Chapter Name, Guide

Name (if in a different Guide).

Other References
The following manuals are available with the Sentinel install CDs.

 Sentinel User Guide
 Sentinel Collector Builder User Guide
 Sentinel User Reference Guide
 Sentinel 3rd Party Integration Guide
 Release Notes

Contacting Novell
 Website: http://www.novell.com
 Novell Technical Support:

http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup
 Self Support:

http://support.novell.com/support_options.html?sourceidint=suplnav_support
prog

 Patch Download Site: http://download.novell.com/index.jsp
 24x7 support: http://www.novell.com/company/contact.html.
 For Collectors/Connectors/Reports/Correlation/Hotfixes/TIDS:

http://support.novell.com/products/sentinel.

http://www.novell.com/
http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup%20
http://support.novell.com/support_options.html?sourceidint=suplnav_supportprog
http://support.novell.com/support_options.html?sourceidint=suplnav_supportprog
http://download.novell.com/index.jsp
http://www.novell.com/company/contact.html
http://support.novell.com/products/sentinel

Contents

1 Sentinel™ User Reference Introduction 1-1

2 Collector Scripting Language 2-1
Decide Strings 2-1

Manipulating the Rx Buffer (Receive Buffer) Pointer 2-1
Format 2-1
Parameter Names 2-2
Hierarchy of Operations in a Decide String 2-2
Receive Buffer Pointer Rules 2-2
Checking for an Empty Receive Buffer 2-3
Decide String Evaluations and Results Example 2-3

Regular Expressions 2-3
Summary of Special Characters for Regular Expressions 2-4
White space in Regular Expressions 2-4

Parsing Commands 2-5
Simple Data Types 2-5
Derived Aggregate Data Types 2-6
Special Rules for Variables 2-6

3 Collector Parsing Commands 3-1
Command Format and Using Arrays 3-3
Commands 3-4

ALERT 3-4
APPEND 3-4
BITFIELD 3-7
BREAKPOINT 3-8
BYTEFIELD 3-8
CLEAR 3-10
CLEARTAGS 3-12
COMMENT 3-12
COMPARE 3-13
CONSTANTTAGS 3-14
CONVERT 3-15
COPY 3-16
CRC 3-18
DATE 3-19
DATETIME 3-20
DATETIMETOSECONDS 3-21
DBCLOSE 3-22
DBDELETE 3-22
DBGETROW 3-22
DBINSERT 3-23
DBOPEN 3-24
DBSELECT 3-25
DEC 3-26
DECODE 3-27
DECODEMIME 3-27
DELETE 3-28
DISPLAY 3-29
ELSE 3-29
ENCODE 3-30
ENCODEMIME 3-30
ENDFOR 3-31

 Contents 1

ENDIF 3-31
ENDWHILE 3-32
EVENT 3-32
FILEA 3-35
FILEL 3-36
FILER 3-36
FILEW 3-37
FOR 3-38
GETCONFIG 3-39
GETENV 3-40
HASH 3-41
HEXTONUM 3-41
IF 3-42
INC 3-44
INDICATOR 3-44
INFO_CLEARTAGS 3-44
INFO_CLOSE 3-45
INFO_CONSTANTTAGS 3-45
INFO_CREATE 3-45
INFO_DUMP 3-46
INFO_PUSH 3-46
INFO_SEND 3-47
INFO_SETTAG 3-47
INFO_* Command Examples 3-51
IPTONUM 3-54
LENGTH or LENGTH-OPTION2 3-55
LOOKUP 3-55
NEGSEARCH 3-57
NUMTOHEX 3-58
NUMTOIP 3-58
PARSER_ATTACHVARIABLE 3-59
PARSER_CREATEBASIC 3-60
PARSER_NEXT 3-61
PARSER_PARSESTRING 3-62
PAUSE 3-62
POPUP 3-63
PRINTF 3-63
REGEXPREPLACE 3-65
REGEXPSEARCH, REGEXPSEARCH_EXPLICIT or REGEXPSEARCH_STRING 3-66
REPLACE 3-69
RESET 3-70
RXBUFF 3-70
SEARCH 3-71
SET 3-72
SETBYTES 3-73
SETCONFIG 3-74
SHELL 3-75
SKIP 3-76
SKIPWORD 3-77
SOCKETW 3-78
STONUM 3-79
STRIP or STRIP-ASCII-RANGE 3-80
TBOSSETCOMMAND 3-81
TBOSSETREQUEST 3-83
TIME 3-84
TOKENIZE 3-85
TOLOWER 3-86
TOUPPER 3-87
TRANSLATE 3-87
TRIM 3-90
UUID 3-90
WHILE 3-91

 2 Sentinel Reference Guide

4 Sentinel Meta-tags 4-1

5 Sentinel Control Center User Permissions 5-1
General 5-2

General – Public Filters 5-3
General – Manage Private Filters of Other Users 5-3
General – Integration Actions 5-3

Active Views 5-3
Active Views – Menu Items 5-3
Active Views – Active Views 5-4

iTRAC 5-4
iTRAC - Template Management 5-4
iTRAC - Process Management 5-4

Correlation 5-4
Incidents 5-5
Event Source Management 5-5
Analysis Tab 5-6
Advisor Tab 5-6
Administration 5-6

Administration – Global Filters 5-6
Administration – Server Views 5-6

Solution Pack 5-7

6 Sentinel Correlation Engine RuleLG Language 6-1
Correlation RuleLG Language Overview 6-1
Event Fields 6-1
Event Operations 6-2

Filter Operation 6-2
Window Operation 6-4
Trigger Operation 6-5

Rule Operations 6-6
Gate Operation 6-6
Sequence Operation 6-7

Operators 6-8
Flow Operator 6-8
Union Operator 6-8
Intersection Operator 6-8
Discriminator Operator 6-9

Order of Operators 6-9
Differences between Correlation in 5.x and 6.x 6-9

7 Sentinel Data Access Service 7-1
DAS Container Files 7-1

Reconfiguring Database Connection Properties 7-1
DAS Logging Properties Configuration Files 7-2
Certificate Management for DAS_Proxy 7-4

8 Sentinel Accounts and Password Changes 8-1
Sentinel Default Users 8-1

Native Database Authentication 8-1
Windows Authentication 8-1

Password Changes 8-2
Changing Password 8-2
Sentinel Updates After a Password Change 8-3

 Contents 3

9 Sentinel Database Views for Oracle 9-1

Views 9-1
ADV_ATTACK_MAP_RPT_V 9-1
ADV_ATTACK_PLUGIN_RPT_V 9-1
ADV_ATTACK_RPT_V 9-2
ADV_ATTACK_SIGNATURES 9-2
ADV_FEED_RPT_V 9-2
ADV_MASTER_RPT_V 9-3
ADV_PRODUCT_RPT_V 9-3
ADV_PRODUCT_SERVICE_PACK_RPT_V 9-4
ADV_PRODUCT_VERSION_RPT_V 9-4
ADV_VENDOR_RPT_V 9-4
ADV_VULN_KB_RPT_V 9-5
ADV_VULN_PRODUCT_RPT_V 9-5
ADV_VULN_SIGNATURES 9-6
ANNOTATIONS_RPT_V 9-6
ASSET_CATEGORY_RPT_V 9-6
ASSET_HOSTNAME_RPT_V 9-6
ASSET_IP_RPT_V 9-6
ASSET_LOCATION_RPT_V 9-7
ASSET_RPT_V 9-7
ASSET_VALUE_RPT_V 9-8
ASSET_X_ENTITY_X_ROLE_RPT_V 9-8
ASSOCIATIONS_RPT_V 9-8
ATTACHMENTS_RPT_V 9-8
CONFIGS_RPT_V 9-9
CONTACTS_RPT_V 9-9
CORRELATED_EVENTS 9-9
CORRELATED_EVENTS_RPT_V (legacy view) 9-10
CORRELATED_EVENTS_RPT_V1 9-10
CRITICALITY_RPT_V 9-10
CUST_HIERARCHY_V 9-10
CUST_RPT_V 9-11
ENTITY_TYPE_RPT_V 9-11
ENV_IDENTITY_RPT_V 9-11
ESEC_DISPLAY_RPT_V 9-11
ESEC_PORT_REFERENCE_RPT_V 9-12
ESEC_PROTOCOL_REFERENCE_RPT_V 9-12
ESEC_SEQUENCE_RPT_V 9-13
EVENTS_ALL_RPT_V (legacy view) 9-13
EVENTS_ALL_RPT_V1 (legacy view) 9-13
EVENTS_RPT_V (legacy view) 9-13
EVENTS_RPT_V1 (legacy view) 9-13
EVENTS_RPT_V2 9-13
EVT_AGENT_RPT_V 9-17
EVT_ASSET_RPT_V 9-18
EVT_DEST_EVT_NAME_SMRY_1_RPT_V 9-19
EVT_DEST_SMRY_1_RPT_V 9-19
EVT_DEST_TXNMY_SMRY_1_RPT_V 9-19
EVT_NAME_RPT_V 9-20
EVT_PORT_SMRY_1_RPT_V 9-20
EVT_PRTCL_RPT_V 9-20
EVT_RSRC_RPT_V 9-20
EVT_SEV_SMRY_1_RPT_V 9-21
EVT_SRC_SMRY_1_RPT_V 9-21
EVT_TXNMY_RPT_V 9-21
EVT_USR_RPT_V 9-22
EXTERNAL_DATA_RPT_V 9-22
HIST_CORRELATED_EVENTS_RPT_V (legacy view) 9-22
HIST_EVENTS_RPT_V (legacy view) 9-22
IMAGES_RPT_V 9-22

 4 Sentinel Reference Guide

INCIDENTS_ASSETS_RPT_V 9-22
INCIDENTS_EVENTS_RPT_V 9-23
INCIDENTS_RPT_V 9-23
INCIDENTS_VULN_RPT_V 9-24
L_STAT_RPT_V 9-24
LOGS_RPT_V 9-24
MSSP_ASSOCIATIONS_V 9-24
NETWORK_IDENTITY_RPT_V 9-25
ORGANIZATION_RPT_V 9-25
PERSON_RPT_V 9-25
PHYSICAL_ASSET_RPT_V 9-25
PRODUCT_RPT_V 9-26
ROLE_RPT_V 9-26
RPT_LABELS_RPT_V 9-26
SENSITIVITY_RPT_V 9-26
STATES_RPT_V 9-26
UNASSIGNED_INCIDENTS_RPT_V 9-27
USERS_RPT_V 9-27
VENDOR_RPT_V 9-28
VULN_CALC_SEVERITY_RPT_V 9-28
VULN_CODE_RPT_V 9-28
VULN_INFO_RPT_V 9-28
VULN_RPT_V 9-29
VULN_RSRC_RPT_V 9-29
VULN_RSRC_SCAN_RPT_V 9-30
VULN_SCAN_RPT_V 9-30
VULN_SCAN_VULN_RPT_V 9-30
VULN_SCANNER_RPT_V 9-30
WORKFLOW_DEF_RPT_V 9-31
WORKFLOW_INFO_RPT_V 9-31

Deprecated Views 9-31

10 Sentinel Database Views for Microsoft SQL Server 10-1
Views 10-1

ADV_ATTACK_MAP_RPT_V 10-1
ADV_ATTACK_PLUGIN_RPT_V 10-1
ADV_ATTACK_RPT_V 10-2
ADV_ATTACK_SIGNATURES 10-2
ADV_FEED_RPT_V 10-2
ADV_MASTER_RPT_V 10-3
ADV_PRODUCT_RPT_V 10-3
ADV_PRODUCT_SERVICE_PACK_RPT_V 10-4
ADV_PRODUCT_VERSION_RPT_V 10-4
ADV_VENDOR_RPT_V 10-5
ADV_VULN_KB_RPT_V 10-5
ADV_VULN_PRODUCT_RPT_V 10-6
ADV_VULN_SIGNATURES 10-6
ANNOTATIONS_RPT_V 10-6
ASSET_CATEGORY_RPT_V 10-6
ASSET_HOSTNAME_RPT_V 10-7
ASSET_IP_RPT_V 10-7
ASSET_LOCATION_RPT_V 10-7
ASSET_RPT_V 10-8
ASSET_VALUE_RPT_V 10-8
ASSET_X_ENTITY_X_ROLE_RPT_V 10-8
ASSOCIATIONS_RPT_V 10-8
ATTACHMENTS_RPT_V 10-9
CONFIGS_RPT_V 10-9
CONTACTS_RPT_V 10-9
CORRELATED_EVENTS 10-10
CORRELATED_EVENTS_RPT_V (legacy view) 10-10

 Contents 5

CORRELATED_EVENTS_RPT_V1 10-10
CRITICALITY_RPT_V 10-10
CUST_HIERARCHY_V 10-11
CUST_RPT_V 10-11
ENTITY_TYPE_RPT_V 10-11
ENV_IDENTITY_RPT_V 10-11
ESEC_DISPLAY_RPT_V 10-12
ESEC_PORT_REFERENCE_RPT_V 10-12
ESEC_PROTOCOL_REFERENCE_RPT_V 10-13
ESEC_SEQUENCE_RPT_V 10-13
EVENTS_ALL_RPT_V (legacy view) 10-14
EVENTS_ALL_RPT_V1 (legacy view) 10-14
EVENTS_ALL_V (legacy view) 10-14
EVENTS_RPT_V (legacy view) 10-14
EVENTS_RPT_V1 (legacy view) 10-14
EVENTS_RPT_V2 10-14
EVT_AGENT_RPT_V 10-18
EVT_ASSET_RPT_V 10-18
EVT_DEST_EVT_NAME_SMRY_1_RPT_V 10-19
EVT_DEST_SMRY_1_RPT_V 10-19
EVT_DEST_TXNMY_SMRY_1_RPT_V 10-20
EVT_NAME_RPT_V 10-20
EVT_PORT_SMRY_1_RPT_V 10-20
EVT_PRTCL_RPT_V 10-21
EVT_RSRC_RPT_V 10-21
EVT_SEV_SMRY_1_RPT_V 10-21
EVT_SRC_SMRY_1_RPT_V 10-21
EVT_TXNMY_RPT_V 10-22
EVT_USR_RPT_V 10-22
EXTERNAL_DATA_RPT_V 10-22
HIST_CORRELATED_EVENTS_RPT_V (legacy view) 10-23
HIST_EVENTS_RPT_V (legacy view) 10-23
IMAGES_RPT_V 10-23
INCIDENTS_ASSETS_RPT_V 10-23
INCIDENTS_EVENTS_RPT_V 10-23
INCIDENTS_RPT_V 10-24
INCIDENTS_VULN_RPT_V 10-24
L_STAT_RPT_V 10-24
LOGS_RPT_V 10-25
MSSP_ASSOCIATIONS_V 10-25
NETWORK_IDENTITY_RPT_V 10-25
ORGANIZATION_RPT_V 10-25
PERSON_RPT_V 10-25
PHYSICAL_ASSET_RPT_V 10-26
PRODUCT_RPT_V 10-26
ROLE_RPT_V 10-27
RPT_LABELS_RPT_V 10-27
SENSITIVITY_RPT_V 10-27
STATES_RPT_V 10-27
UNASSIGNED_INCIDENTS_RPT_V 10-27
USERS_RPT_V 10-28
VENDOR_RPT_V 10-28
VULN_CALC_SEVERITY_RPT_V 10-28
VULN_CODE_RPT_V 10-29
VULN_INFO_RPT_V 10-29
VULN_RPT_V 10-29
VULN_RSRC_RPT_V 10-30
VULN_RSRC_SCAN_RPT_V 10-30
VULN_SCAN_RPT_V 10-31
VULN_SCAN_VULN_RPT_V 10-31
VULN_SCANNER_RPT_V 10-31
WORKFLOW_DEF_RPT_V 10-32

 6 Sentinel Reference Guide

WORKFLOW_INFO_RPT_V 10-32
Deprecated Views 10-32

A Sentinel Troubleshooting Checklist A-1

B Sentinel Service Logon Account B-1
Sentinel Services B-1
Introduction to Service Logon Accounts B-1

Disadvantages of running a service in the context of a user logon B-2
To Setup NT AUTHORITY\NetworkService as the Logon Account for Sentinel Service B-3

Adding Sentinel Service as a Login Account to ESEC and ESEC_WF DB Instances B-3
Changing logon account B-6
Setting the Sentinel Service to Start Successfully B-7

C Sentinel Service Permission Tables C-1
Advisor C-1
Collector Manager C-2
Correlation Engine C-3
Data Access Server (DAS) C-3
Sentinel Communication Server C-4
Sentinel Service C-5
Reporting Server C-5

D Microsoft SQL Users, Roles & Access Permissions for Sentinel D-1
Sentinel Database Instance D-1

ESEC D-1
ESEC_WF D-1

Sentinel Database Users D-1
Summary D-1
esecadm D-1
esecapp D-2
esecdba D-2
esecrpt D-2

Sentinel Database Roles D-2
Summary D-2
ESEC_APP D-2
ESEC_ETL D-8
ESEC_USER D-12

Sentinel Server Roles D-14
Windows Domain Authentication DB users and permissions D-15

E Sentinel Log Locations E-1
Sentinel Data Manager E-1
iTRAC E-1
Advisor E-1
Event Insertion E-2
Database Queries E-2
Active Views E-2
Aggregation E-2
Wrapper E-2
Collector Manager E-3
Correlation Engine E-3
Sentinel Control Center E-3
DAS Proxy E-3
Solution Designer E-3

Multiple Instances E-4

 Contents 7

1 Sentinel™ User Reference Introduction

The Sentinel User Reference Guide is your reference for:

 Collector scripting language
 Collector parsing commands
 Collector administrator functions
 Collector and Sentinel meta tags

 Sentinel console user permissions
 Sentinel correlation engine
 Sentinel command line options
 Sentinel server database views

This guide assumes that you are familiar with Network Security, Database
Administration and UNIX operating systems.

This guide discusses about the

 Scripting Language used to develop Collectors
 Parsing Commands
 Sentinel Meta tags
 Sentinel User Permissions
 Correlation Engine RuleLG Language
 Sentinel Data Access Service
 Sentinel Accounts and Password Changes
 Sentinel Database Views for Oracle
 Sentinel Database Views for Microsoft SQL Server

 Sentinel User Reference Introduction 1-1

2 Collector Scripting Language

This section and the following section discuss how to use the Collector scripting
language to build scripts. The operators in the various strings and parsing
commands that are used in Collector building are covered. “Decide Strings”,
“Regular Expressions” and “Parsing Commands” are discussed in this section.

NOTE: Collectors and Collector Managers will only run on English
Operating Systems. For Collectors to operate on non-English Operating
Systems, they must be modified. Novell cannot guarantee proper
operation of a Collector or Collector Manager on a non-English
Operating System.

Decide Strings
Strings are case-sensitive.

As Collectors are being polled, various information is collected in the internal
receive buffer. Decide type strings specify that a decision will be made
concerning the data received and stored in the internal buffer. A decide string is
evaluated to be either true or false. If there is a syntax error or if the Decide String
box is left blank, the decision is false.

The decide string is only evaluated if the Decide Type is set to string or data.

Manipulating the Rx Buffer (Receive Buffer) Pointer
Each deployed Collector has its own Receive Buffer pointer. The Receive Buffer
pointer points to data bytes in the Receive Buffer. Prior to each evaluated decide
string, the Receive Buffer pointer is reset to its held value (normally zero, unless
it is modified by a decision that used the (:) search operator).

 0 does not point to any byte in the receive buffer
 1 points to the first data byte, 2 points to the second data byte and so on

Format
A decide string takes the form of a sequence of logical operators (LO) and regular
expressions.

Logical operators and strings operators need not be present in each sequence.
Some rules regarding their use are:

 Logical operators build boolean (true or false) expressions within the decide
string and are evaluated based on the following precedence:
~ Not
& And

 A string operator specifies a string of characters (such as end-of-line
characters) to search for in the receive buffer. The search is performed byte-
for-byte from the Receive Buffer pointer position forward.

 Collector Scripting Language 2-1

NOTE: Because the Decide String box is cut off at the last printable
character, the hex equivalent of a space must be used. The “:” Logical
operator cannot be used with the NULL operator.

Parameter Names
To specify a parameter in a decide string, the parameter name must be enclosed in
curly braces ({ }). When the script is built, the parameter name and curly braces
are replaced by the value of the parameter.

If the parameter name specified does not exist in the parameter file from which
the script is built, the parameter name expression and curly braces remain in the
decide string data.

Parameter name expressions can occur anywhere in the decide string. They
cannot, however, be nested (include another parameter name expression within
itself).

Hierarchy of Operations in a Decide String
Each operation in a decide string is evaluated as either true (1) or false (0).
Operations in a decide string are always followed in the order governed by the
logical operator syntax.

 When more than one operation is used, string evaluations are performed in
order from left to right.

 When parentheses are used, the logical operator within each set of
parentheses is evaluated first.

 The next logical operations to be evaluated are not (~), and (&).

An order of operation is also followed when using the string operator syntax:

 The reset Rx buffer pointer is evaluated first.
 All other syntax characters have equal precedence and are evaluated in order,

from left to right.

Receive Buffer Pointer Rules
The following rules govern the value of the Receive Buffer pointer:

 When the search for a string of characters is successful, the search is
considered to be true and the Receive Buffer pointer is positioned at the first
byte in the string that was found.
Decide String: DE
 A BCDE F GH
^
 A BCDE F GH
 ^

 When the search for a string of characters is unsuccessful, the search is
considered to be false and the Receive Buffer pointer is returned to the hold
value.
Decide String: DEJ
 A BCDE F GH
^
 A BCDE F GH

 2-2 Sentinel Reference Guide

^

Checking for an Empty Receive Buffer
To check for an empty receive buffer use the following decide string:

NULL

Decide String Evaluations and Results Example
Alphanumeric Decide Strings

The following are alphanumeric Decide Strings for a sample Receive Buffer:

ABCDEFGHIJKLMNO (line feed) YZ<[&

Decide String Logical Expression Result
A 1 1
P 0 0
\41\ (HEX for A) 1 1
AB 1 1
\4142\ (HEX for AB) 1 1
ABD 0 0
A&B 1 & 1 1
A&P 1 & 0 0
A+P 1 + 0 1
A\42\ (HEX for B) 1 1
A&BC 1 & 1 1
DEF&ABC 1 & 0 0
ABC&DEF 1 & 1 1
ABC&BCD 1 & 1 1
ABC&ABC 1 & 0 0
\OA\ (HEX for line feed) 1 1
NULL * 0 0

Table 2-1: Alphanumeric Decide Strings

*If no characters are found in the Receive Buffer, the result is TRUE (1).

HEX Decide Strings
The following are HEX Decide Strings for a sample Receive Buffer (HEX):

02 0A 10 FF 1F 2E 3C 03

Decide String Logical Expression Result
\020A\&\FF\ 1 & 1 1
\0A\&\02\ 1 & 0 0
\02\&\03\ 1 & 1 1
\03\&\02\ 1 & 0 0

Table 2-2: HEX Decide Strings

Regular Expressions
Special characters and sequences of characters are used in writing patterns for
regular expressions.

Sentinel uses a POSIX (Portable Operating System Interface for UNIX)-
compliant library for regular expressions. POSIX is a set of IEEE and ISO

 Collector Scripting Language 2-3

standards that help assure compatibility between POSIX-compliant operating
systems, which includes most varieties of UNIX.

Summary of Special Characters for Regular Expressions
The following table summarizes the special characters that can be used in regular
expressions for the SEARCH and REPLACE functions.

Character Usage/Example
\ Marks the next character as special. n matches the character "n." The

sequence \n matches a line feed or newline (end of line) character, but in
order to pass the "\" through the parser, you must precede it with the escape
character "/"; therefore, to pass a \n, you must use /\n.

^ Matches the start of the input or line.
$ Matches the end of the input or line.
* Matches the preceding character zero or more times. go* matches either "g"

or "goo."
+ Matches the preceding character one or more times. go+ matches "goo" but

not "g."
? Matches the preceding character zero or one time. a?te? matches the "te" in

"eater."
. Matches any single character except a newline (end

of line) character.
x|y Matches either x or y. z|good? matches "goo" or "good" or “z”.
{n} n is a nonnegative integer. Matches exactly n times. e{3} does not match the

"e" in "Ted," but matches the first three e’s in "greeeeeed."
{n,} n is a nonnegative integer. Matches at least n times. e{3,} does not match the

"e" in "Ted" and matches all the e’s in “greeeeeed." e{1,} is equivalent to e+.
{n,m} m and n are nonnegative integers. Matches at least n and at most m times.

e{1,3} matches the first three e’s in "greeeeeed."
[xyz] A character set. Matches any one of the enclosed characters. [xyz] matches

the "y" in "play."
[^xyz] A negative character set. Matches any character not enclosed. [^xyz]/

matches the "v" in "vain."
[0-9] Matches a digit character.
[^0-9] Matches a nondigit character.
[A-Za-z0-9_] Matches any word character, including an underscore.
[^A-Za-z0-9_] Matches any nonword character.
/n/ Matches n, where n is an octal, hexadecimal, or decimal escape value.

Allows embedding of ASCII codes into regular expressions.
Table 2-3: Special Characters used in Regular Expressions

White space in Regular Expressions
In regular expressions, white space consists of one or more blanks, which can be
any of the following characters:

Symbolic Name UCS Description
<tab> <U0009> CHARACTER TABULATION (HT)
<carriage-return> <U000D> CARRIAGE RETURN (CR)
<newline> <U000A> LINE FEED (LF)
<vertical-tab> <U000B> LINE TABULATION (VT)
<form-feed> <U000C> FORM FEED (FF)
<space> <U0020> SPACE

Table 2-4: White spaces in Regular Expressions

 2-4 Sentinel Reference Guide

Parsing Commands
The Collector parsing language is function-oriented. Most of the parsing
functions enable you to manipulate Collector variables and their contents. The
Collector parsing language supports four variable types:

 Integer (the variable name begins with i)
 Float (the variable name begins with f)
 Variable length strings (the variable name begins with anything other than an

i or f
 Arrays of variables (the variable name ends with []). Array variable types

can be arrays of integers, floats, or strings

These variables are local to each deployed Collector and are not shared globally
across all deployed Collector. Parsing commands enable you to copy data from
the receive buffer into string variables.

The receive buffer contains the data that was received from the event source
through its Connector (such as file or process).

The length of bytes to copy, as well as the position to copy the bytes from, can be
controlled using the following parsing commands:

 SEARCH()
 SKIP()
 SKIPWORD()
 NEGSEARCH()
 RESET()
 COPY()

Data from the receive buffer can be appended to a string variable with the
APPEND() command. The Collector parsing language also enables you to copy
or append data from string variables into other string variables.

Simple Data Types
number

Numerals can be preceded by a + or - in the case of the SKIP Command,
SKIPWORD Command, and SET Command. For example:

SKIP(-1)
SKIPWORD(+3)
SET(f_total=f_total+2.5)

ivar (Integer variables)
Integer variables are 32-bit signed numbers. The variable name must begin with
an I or i. For example:

i_count, I_severity, i, i[55], i[index]

The integer variable, i[55], is the 55th index into the integer array, i[]. Also, the
index into an array can be an integer variable.

fvar (Float variables)
Float variables are 32-bit floating point numbers. The variable name must begin
with an F or f. For example:

 Collector Scripting Language 2-5

f_rate, F_queue, f, f[1], f[index]

svar (String variables)
String variables contain variable length strings. String variable names cannot
begin with an I, i, F or f. For example:

resource, date, _message, string[1000],
string[i_sev]

array (Variable arrays)
Variable arrays can represent arrays of variables of type ivar, fvar and svar. For
example:

i_bits[], F_values[], s_resources[]

Arrays can be indexed with any numeric index with no wasted memory space.
Accessing ivar[1000] does not mean that memory is allocated for 1,000 integer
variables.

An indexed array variable is treated as any other variable (ivar, svar and fvar)

For example, the following is legal syntax:

SET(i_bits[5]=1)
COPY(s_resources[3]:”FinanceServer”)

Quoted Data
Quoted data is scanned and parsed as follows:

 /=Escape character: include byte following the / without regard to any special
meaning; to use one of the special characters in the string, / must be placed in
front of the character. For example, corp/\router is used for corp\router

 \xx x xx\=Hex data (can be one or two characters per byte): \0ad\, \0a0d\, \a
d\,\0a 0d\, and \0a d\ all mean line feed/carriage return

All other characters are specified directly.

Derived Aggregate Data Types
The following table list derived aggregate data types:

Type Description
all number, ivar, fvar, svar, quotes
numeric number, ivar, fvar, ivar[index], fvar[index]
string svar, svar[index], quotes
variable ivar, fvar, svar, ivar[index], fvar[index], svar[index]
numvar ivar, fvar, ivar[index], fvar[index]
array ivar[], fvar[], svar[]
numvar array ivar[], fvar[]
string variable array svar[]

Table 2-5: Derived Aggregate Data Types

Special Rules for Variables
The following are special rules for variables.

 Variable names are case-sensitive

 2-6 Sentinel Reference Guide

 Collector Scripting Language 2-7

 When a numvar is used for the first time, except in the cases where it is
having its value set, it is set to zero

 When an svar is used for the first time, except in the cases where it is having
its value set, it is set to null ("")

 An indexed array is treated like any other variable of its type, ivar, fvar or
svar

 To comment out one or more parsing commands, or to place comments into
the parsing text, enclose the comments in /* */

For example:

/* this is a comment */
/* these are commented-out commands
COPY(s: "test")
SET(i_counter=i_counter+1)
*/

3 Collector Parsing Commands

This section lists the Collector Parsing Commands used in Collector building in
alphabetical order. Below is a listing of the Parsing Commands by Function.

Function Parsing Command
Database Interaction
NOTE: The database
interaction commands are
they are supported only
for backward
compatibility. Most
database connections are
now made through the
JDBC Connector.

“DBCLOSE”
“DBDELETE”
“DBGETROW”
“DBINSERT”
“DBOPEN”
“DBSELECT”

Debugging “BREAKPOINT”
File Interaction “FILEA”

“FILEL”
“FILER”
“FILEW”

Logical Operations “COMPARE”
“ELSE”
“ENDFOR”
“ENDIF”
“ENDWHILE”
“FOR”
“IF”
“LOOKUP”
“WHILE”

Network Interaction “SOCKETW”
Notification “ALERT”

“CLEARTAGS”
“CONSTANTTAGS”
“EVENT”
“PAUSE”

Raw Data Manipulation “BITFIELD”
“BYTEFIELD”
“CONVERT”
“CRC”
“DECODE”
“DECODEMIME”
“ENCODE”
“ENCODEMIME”
“HASH”
“HEXTONUM”
“NUMTOHEX”
“SETBYTES”

 Collector Parsing Commands 3-1

Function Parsing Command
“STRIP”
“STRIP-ASCII-RANGE”
“UUID”

String Manipulation “APPEND”
“COPY”
“COPY-FROM-RX-BUFF-UNTIL-SEARCH”
“COPY-FROM-RX-BUFF”
“COPY-FROM-STRING-TO-STRING-UNTIL-
SEARCH”
“COPY-STRING-TO-STRING”
“LENGTH”
“LENGTH-OPTION2”
“NEGSEARCH”
“PARSER_ATTACHVARIABLE”
“PARSER_CREATEBASIC”
“PARSER_NEXT”
“PARSER_PARSESTRING”
“PRINTF”
“REGEXPREPLACE”
“REGEXPSEARCH”
“REGEXPSEARCH_EXPLICIT”
“REGEXPSEARCH_STRING”
“REPLACE”
“SEARCH”
“SKIP”
“SKIPWORD”
“STONUM”
“TOKENIZE”
“TOLOWER”
“TOUPPER”
“TOKENIZE”
“TRANSLATE”

Utility “DATE”
“DATETIME”
“DATETIMETOSECONDS”
“PAUSE”
“SHELL”
“TBOSSETCOMMAND”
“TBOSSETREQUEST”
“TIME”

Variable Handling “CLEAR”
“DELETE”
“GETCONFIG”
“GETENV”
“INC”
“RESET”
“RXBUFF”
“SET”
“SETCONFIG”

Vulnerability Scanning “INFO_CLEARTAGS”
“INFO_CLOSE”
“INFO_CONSTANTTAGS”

 3-2 Sentinel Reference Guide

Function Parsing Command
“INFO_CREATE”
“INFO_DUMP”
“INFO_PUSH”
“INFO_SEND”
“INFO_SETTAG”

Commands no longer viable in
Sentinel 6.0

“DISPLAY”
“INDICATOR”
“POPUP”
“DBCLOSE”
“DBDELETE”
“DBGETROW”
“DBINSERT”
“DBOPEN”
“DBSELECT”

Table 3-1: Parsing Commands by Function

Command Format and Using Arrays
Parsing command formats use certain symbols to convey specific meanings. The
following are examples of those symbols:

Example of Symbol in Use Example of Symbol’s Meaning
[parameter] Straight brackets indicate optional

parameters.
<parameter> Angled brackets indicate required

parameters you supply.
a a must literally be typed here
a|b use exactly either a or b, but not both
<item> ::= <definition> item can be replaced by definition
<varList>
where:
<varList> ::= var
[, <varList>]

used for recursive definitions to
describe a list of variables in which at
least one variable is required

... Repetition of the preceding
parameter(s) is allowed.

/ The forward slash is used as an
“escape” to enable the use of special
characters such as the backslash (\).

Table 3-2: Symbols used in Parsing Command Symbols

Arrays are allowed in expressions, for example:

Given The following are equivalent
SET(i_var = 2) i_arr[3]
SET(i_arr[3]=2) i_arr[i_var]

i_arr[1+2]
i_arr[1+1_var]
i_arr[i_arr[3]]

Table 3-3: Arrays allowed in expressions

 Collector Parsing Commands 3-3

Commands
ALERT

The ALERT command forwards event messages to Sentinel, but this command
has been replaced by the EVENT command. ALERT is included for backward
compatibility only. Please see the documentation for Sentinel 5.1.3 for more
information about this command.

The ALERT command does not get populated with several important new fields
available in Sentinel 6. Collector scripts that still use the ALERT command
should be updated to send these new fields:

 ConnectorID (RV23)
 EventSourceID (RV24)
 Trust Event Source Time (i_TrustDeviceTime)

Here is some sample code that could be added before calling the ALERT
command. The exact code that should be used might vary from Collector to
Collector. This code sample makes the following assumptions:

 s_MetaData is a string compiled in the Collector Script that includes the Base
Message from the Event Source, the Source IP, and the Destination IP.

 RV23, RV24, and i_TrustDeviceTime have been populated by the Collector
Script and simply need to be added to the Alert Message (s_AlertMsg)
PRINTF(s_NewFor60,"RV23='%s' RV24='%s'
i_TrustDeviceTime='%d'
",s_RV23,s_RV24,i_TrustDeviceTime)
APPEND(s_MetaData:s_NewFor60)
PRINTF(s_AlertMsg, "%s [%s]", s_BM, s_MetaData)
ALERT(s_ResSubRes, s_AlertMsg, i_Severity)

APPEND

The APPEND command adds data from the receive buffer, a string variable or a
quoted string to a string variable. The following apply:

 Every APPEND parameter is optional except the destination parameter
 The destination for the data (string variable) can be specified with the

APPEND parameters
 An offset into source can be specified to control where data is copied from

the source datax
 The number of bytes to be appended to the destination variable can be

specified with the length parameter (ilen), or the length will default to the
length of the source data

 In addition to specifying a numeric length parameter, a string can be used to
define the length

 If a string is used as the length parameter, the source parameter must either be
the receive buffer or an svar

 By using a string as the length parameter, the Collector Engine appends bytes
from the source data (starting at offset) into the destination variable up to, but

 3-4 Sentinel Reference Guide

not including, the first character of the string (if found) (if the string is not
found, no bytes are appended)

 If the offset or length parameters are specified out of the range of the source
variable, then as many bytes as possible are appended, up to the end of the
source data

 If the offset is greater than or equal to the length of the source data, no bytes
are appended into the destination variable (if an offset is not specified, the
offset defaults to zero)

Format
APPEND(<dest>: [source] [, [search] [, [ilen] [,
[ioffset]]]])
APPEND(<dest>: [source] [, [ilen] [, [ioffset]
]])
APPEND(<dest>: [ilen] [, [offset]])

Data Type
Argument Type Description

dest svar
(OUTPUT)

The data string variable to which bytes are
appended.

Source string
(INPUT)
[OPTIONAL]
or
svar

The string where source bytes are located
that will be appended to the destination
string.
(default = Receive Buffer)
If the search parameter is used.

Search string
(INPUT)
[OPTIONAL]

A string used to specify: copy up to the
bytes to search for in the source string.

Ilen numeric
(INPUT)
[OPTIONAL]

The number of bytes to append from the
source to the destination.

Ioffset numeric
(INPUT)
[OPTIONAL]

The offset into the source at which to start
appending data.

Table 3-4: APPEND-DataTypes

The following examples append bytes from the receive buffer to a destination
svar (dest). The Rx buffer pointer position is added to the offset value to specify
the first position of the data to be appended. The ^ symbol indicates the Rx buffer
pointer position.

APPEND(svar:ilen)
APPEND(svar:3)
APPEND(svar:,ioffset)
APPEND(source:ilen,ioffset)
APPEND(svar: 10, 12)

The above example was made with the following assumptions.

 Collector Parsing Commands 3-5

rxbuff="receive buffer"
^ (Rx buffer pointer position)
dest="A destination string"
source="A source string"
ilen=3
ioffset=3

Provide the following:

APPEND(dest:)

Result:

dest = "A destination stringreceive buffer"

Or if you have provided:

APPEND(dest:ilen)

Result:

dest = "A destination stringrec"

Or if you have provided:

APPEND(dest:,ioffset)

Result:

dest = "A destination stringreceive buffer"

The following examples append bytes from the receive buffer up to, but not
including, the search string to a destination svar (dest). If the search string is not
found in the receive buffer (after the Rx buffer pointer + offset position), no bytes
are appended.

Provide the following:

APPEND(dest:,"buffer")

Result:

dest = "A destination stringreceive "

Provide the following:

APPEND(dest:,"buffer", 9)

Result:

dest = "A destination string"

The following examples are to to append a substring from the receive buffer with
the assumption that:

Rx Buffer = "Minor Alarm Firewall A"

Provide the following:

 3-6 Sentinel Reference Guide

COPY(message:"Resource Name is: ")
APPEND(message:,6)

Result:

message = "Resource Name is: Alarm Firewall A"

BITFIELD

The BITFIELD command converts bytes into bits. This command converts each
byte in a string of arbitrary length into 8 bits (0 or 1) by putting them into an
integer array, float array or string.

WARNING:
The output is 8 times larger than the input, so the bitfield parsing
command could be very memory intensive if used improperly. For
example, using input strings that have a very large number of bytes in
them.

Format
BITFIELD(s_bytes, dest_var)

Data Types
Argument Type Description

s_bytes string
(INPUT)

Any number of ASCII or hex bytes in a
string.

dest_var numvar array
(OUTPUT)
Or
svar
(OUTPUT)

Array of integers (set to 0 or 1). The
number of bits equals the number of
bytes in s_bytes times 8. For each 8-bit
set, the bits are placed from Most
Significant Bit (MSB) to Least
Significant Bit (LSB).
For example:
idest_var[0] = MSB of Byte 1
idest_var[1] = Next MSB of Byte 1
idest_var[2] = Next MSB of Byte 1
idest_var[3] = Next MSB of Byte 1
idest_var[4] = Next MSB of Byte 1
idest_var[5] = Next MSB of Byte 1
idest_var[6] = Next MSB of Byte 1
idest_var[7] = LSB of Byte 1
idest_var[8] = MSB of Byte 2
idest_var[9] = Next MSB of Byte 2
idest_var[n * 8 - 1] = LSB of Byte n
A string that contains a multiple of 8
bytes where each byte represents a bit
in the input bytes. The bytes in this
string will always be set to an ASCII 0
or 1.
For each consecutive 8 bits represented
in each string, the ASCII (0s and 1s) are
placed from MSB to LSB. For example:

 Collector Parsing Commands 3-7

Argument Type Description
If s_bytes = “\5AFE\”
Then,
dest_var= "0101101011111110"

Table 3-5: BITFIELD-DataTypes

NOTE: The second parameter to bitfield (dest_var) must be a string
(For example, ivar[] or fvar[]).

For example:

BITFIELD("\00\", f_bit_array[])
BITFIELD(s_bytes, i_bit_array[])
BITFIELD(s_byte, string_out)
BITFIELD("This will work", i_bit_array[])
BITFIELD("\563F\", string_out)

In the following example, the string sbyte is set to a hex byte and sent to the
BITFIELD command twice (once for an integer array and once for a string).

COPY(sbyte:"\AE\")
BITFIELD(sbyte, ibits[])
BITFIELD(sbyte, sbits)

Current Output Variables’ Contents

ibits[0] = 1
ibits[1] = 0
ibits[2] = 1
ibits[3] = 0
ibits[4] = 1
ibits[5] = 1
ibits[6] = 1
ibits[7] = 0
sbits = "10101110"

BREAKPOINT

The BREAKPOINT command halts the execution of a parsing script. When the
Collector Script Debugger is running, the breakpoint command stops the parser
pending user intervention. For example, from Collector Builder Debugger panel,
select the Go or Step button to resume the debugging process.

Format
BREAKPOINT()

BYTEFIELD

 3-8 Sentinel Reference Guide

The BYTEFIELD command takes a bit (0 or 1) representation of byte(s) and puts
the bytes into a string variable.

The input can be a:

 string
 integer array
 float array

The output is always a string variable.

Format
WARNING:
If the first parameter is an integer or float array, do not use values greater
than 100 for i_num_bytes, because the array will be initialized to that
many entries (this could be memory intensive with large values of
i_num_bytes).
BYTEFIELD(source_var, s_bytes[, i_num_bytes])

NOTE: The first parameter to BYTEFIELD (source_var) must be
svar, ivar[], or fvar[].

Data Types
Argument Type Description

source_var numvar array
(INPUT)

Array of integers (set to 0 or 1). The
number of bits equals the number of bytes
in s_bytes times 8. For each 8-bit set, the
bits are placed from Most Significant Bit
(MSB) to Least Significant Bit (LSB) (see
examples located below this table).

 svar
(INPUT)

A string that contains a multiple of 8 bytes
where each byte represents a bit in the
input bytes. The bytes in this string should
always be set to an ASCII 0 or 1.
For each consecutive 8 bits represented in
each string, the ASCII (0s and 1s) should
be placed from MSB to LSB. For example:
If source_var = "0101101011111110",
and i_num_bytes = 2,
Then, s_bytes = “\5AFE\”

s_bytes string
(OUTPUT)

Any number of bytes of hex or ASCII data
in a string.

i_num_bytes numeric
(INPUT)
[OPTIONAL]

The number of bytes to place into the
_bytes. Because it is optional, the default is
1 unless it is used when the input is of type
STRING. If the input is of type STRING,
then the default is the size of the string
divided by 8.

Table 3-6: BYTEFIELD-DataTypes

Examples specific to source_var are:

 Collector Parsing Commands 3-9

ISOURCE_VAR[0] = MSB of Byte 1
ISOURCE_VAR[1] = Next MSB of Byte 1
ISOURCE_VAR[2] = Next MSB of Byte 1
ISOURCE_VAR[3] = Next MSB of Byte 1
ISOURCE_VAR[4] = Next MSB of Byte 1
ISOURCE_VAR[5] = Next MSB of Byte 1
ISOURCE_VAR[6] = Next MSB of Byte 1
ISOURCE_VAR[7] = LSB of Byte 1
ISOURCE_VAR[8] = MSB of Byte 2
ISOURCE_VAR[9] = Next MSB of Byte 2
ISOURCE_VAR[n * 8 - 1] = LSB of Byte n

Some BYTEFIELD examples:

BYTEFIELD(i_bit_array[], s_bytes)
BYTEFIELD(string_bits_in, s_bytes)
BYTEFIELD(f_bit_array[], string_bytes, 2)
BYTEFIELD(i_bit_array[], string_bytes,
i_num_bytes)

In the following example, the string, sbyte and the integer array ivar are set to a
bit representation of a hex byte and sent to the BYTEFIELD command twice
(once for the integer array input and once for the string input).

SET(ivar[0] = 0)
SET(ivar[1] = 0)
SET(ivar[2] = 0)
SET(ivar[3] = 0)
SET(ivar[4] = 1)
SET(ivar[5] = 1)
SET(ivar[6] = 1)
SET(ivar[7] = 1)
COPY(sbits:"11110000")
BYTEFIELD(ivar[], sbyte1)
BYTEFIELD(sbits, sbyte2, 1)

Current output variables’ contents:

sbyte1 = "\0F\"
sbyte2 = "\F0\"

CLEAR

The CLEAR command truncates string variables to zero bytes or sets integer
variables and float variables to zero. Up to 100 variables can be specified in one
CLEAR command.

 3-10 Sentinel Reference Guide

Format
CLEAR(<varlist>)

Where:

varlist ::= var [, <varlist>]
Var ::= variable to clear (fvar, ivar, or svar)

Maximum number of variables: 100

Data Types
Argument Type Description

var1 variable
(INPUT/
OUTPUT)

The variable to clear (fvar, ivar or svar).

var2 variable
(INPUT/
OUTPUT)
[OPTIONAL]

The variable to clear (fvar, ivar or svar).

var3 variable
(INPUT/
OUTPUT)
[OPTIONAL]

The variable to clear (fvar, ivar or svar).

 variable
(INPUT/
OUTPUT)
[OPTIONAL]

Other variables to clear (fvar, ivar or svar).

Table 3-7: CLEAR-DataTypes

For example:

CLEAR(var1)
CLEAR(var1,var2)
CLEAR(var1,var2,var3)
CLEAR(svar[45])
CLEAR(imatrix[5][5])
CLEAR(ivar, fvar, i_len, data_string[i_var])
CLEAR(temp)
CLEAR(sdata[index_x][index_y])
CLEAR(f_bits[3], i_var_array[2])
CLEAR(i_counter, temp)

In the following examples, values are assigned to string variables, the string
variables are then used in an event message and the string variable’s values are
cleared.

 Collector Parsing Commands 3-11

COPY(res_var: "Firewall")
COPY(msg_var: "Firewall 116 Minor Alarm")
ALERT(res_var, msg_var, 4)
CLEAR(res_var, msg_var)
RESULT:
res_var = “”
msg_var = “”

CLEARTAGS

The CLEARTAGS command performs a clear on event reserved and date/time
reserved variables.

NOTE: The CLEARTAGS command does not clear tags RV21-RV25 or
variables that are protected by the CONSTANTTAGS command.

This command should be used at the beginning of every loop before parsing the
device data and mapping it into the reserved variables.

The CLEARTAGS command operates on the event reserved variables and the
date/time reserved variables. The CLEARTAGS command takes no parameters.
The string variables are set to empty string “”; for example:

s_EVT and s_Sec.

The integer variable i_Severity is set to zero.

Format
CLEARTAGS ()

For example:

SET(i_Severity = 3)
COPY(s_BM:"Base Message")
COPY(s_Example:"Test")
CLEARTAGS()

Result:

i_Severity = 0
s_BM = ""
s_Example = "Test"

NOTE: s_Example is not an event or date/time reserved variable, so it
was not cleared.

COMMENT

This takes one optional argument, which is a string. This is a method to provide
comments into the Collector template file. This allows you to provide comments
from the visual editor without switching to the text editor.

 3-12 Sentinel Reference Guide

Format
/*[string]*/

For example:

/* COLLECTOR INFORMATION
; ---

Collector_Name: Standard Template
Collector_Description: Template to base
new Collectors on
Collector_Manufacturer: N/A
Collector_Product/Version: N/A
Collector_Version: release 4.1
Collector_Date: August 2003
; ---
----*/

COMPARE

The COMPARE command examines two arguments and sets a variable
depending on the result. The result of the comparison of type string or type
numeric can be stored into a variable. If the variable is of type ivar, fvar or string,
the variable will contain the value -1, 0 or 1.

 -1 is used if arg1 is less than arg2
 0 is used if arg1 is equal to arg2
 1 is used if arg1 is greater than arg2

Format
COMPARE(arg1, arg2, dest)

Data Types
Argument Type Description

arg1 all
(INPUT)

Compare data 1.
Must be a string or numeric.

arg2 all
(INPUT)

Compare data 2.
Must be the same type as Compare data 1.

dest variable
(OUTPUT)

The variable in which the results of the
compare will be placed:
svar = “-1”, “0” or “1”
ivar = -1, 0 or 1
fvar = -1.0, 0.0 or 1.0

Table 3-8: COMPARE-DataTypes

NOTE: The types of arg1 and arg2 must be either both a string or both
numeric.

For example:

 Collector Parsing Commands 3-13

COMPARE(i_counter, 0, temp)
COMPARE(sdata, "ALM", i_sdata_cmp_val)
COMPARE(i_counter, i_counter2, temp)
COMPARE(i_counter, i_counter2,
i_result[i_counter])

In the following example, text is compared to the contents of a string variable and
the result of the comparison is stored in an integer variable. An event generates if
the text is not the same as the value of the string variable.

COMPARE(s_data_var, "ALARM", i_compare_var)
IF(i_compare_var = 0)
ALERT(res_var, "Major ALARM", 5)
ENDIF()

NOTE: The IF(),ELSE() and ENDIF() commands perform the same
function as the COMPARE command, with the exception of comparing
negative numbers.

CONSTANTTAGS

The CONSTANTTAGS command takes a variable number of parameters of
reserved variable names (event and date/time). By declaring a reserved variable
constant it protects the variable from being cleared by a call to the
“CLEARTAGS” command.

An example of such a variable is s_PN, which holds the product name that the
Collector is processing. The s_PN variable should be declared constant and set
once in the Collector setup state.

This command should be called in the Collector setup state (state 1 in the 4.1
standard template) for reserved variables that do not change as the Collector
processes events.

The “CONSTANTTAGS” command operates on the event reserved variables and
the date/time reserved variables.

Format
CONSTANTTAGS (<reserved_variable> [, ...])

Data Types
Argument Type Description

reserved_variable The list of reserved variables that will be set
constant and not cleared by the
CLEARTAGS Command.

Table 3-9: CONSTANTTAGS-DataTypes

 3-14 Sentinel Reference Guide

For example:
COPY(s_PN:"PN")
COPY(s_ST:"ST")
COPY(s_BM:"BM")
CONSTANTTAGS(s_PN,s_ST)
CLEARTAGS()

Result:

s_PN = "PN"
s_ST = "ST"
s_BM = ""

Of the three event reserved variables, s_BM was not protected from
“CLEARTAGS” by “CONSTANTTAGS”, so it was cleared.

CONVERT

The CONVERT command transforms an input string of type binary, octal,
decimal, hex or raw into an output string variable into type binary, octal, decimal,
hex or raw.

Format
CONVERT(string_in, type_in, svar_out, type_out)

Data Types
Argument Type Description

string_in String
(INPUT)

The input string to convert.

type_in Pick List
String
String Var
(INPUT)

The type of the input string
(string_in):
Binary = “B” or “b”
Octal = “O” or “o”
Decimal = “D” or “d”
Hex = “H” or “h”
Raw = “R” or “r”

svar_out svar
(OUTPUT)

The string variable that contains the
converted string data.

type_out Pick List
String
String Var
(INPUT)

The type to convert the data to (converted
string will be placed in svar_out):
Binary = “B” or “b”
Octal = “O” or “o”
Decimal = “D” or “d”
Hex = “H” or “h”
Raw = “R” or “r”

Table 3-10: CONVERT-DataTypes

For example:

 Collector Parsing Commands 3-15

CONVERT("10101010", "b", shex, "h")
CONVERT(sdata, "B", sraw, "r")
CONVERT("2356", "d", soctal, "o")
CONVERT("\3A\", "r", sbinary, "b")
CONVERT("2A3E", "h", sraw, "r")
CONVERT(data, "r", sdecimal, "d")
CONVERT(data, "o", shex, "H")

In the following example, the CONVERT command is called to perform various
conversions.

CONVERT("\0afe\", "R", sdecimal, "D")
CONVERT("63", "d", sbinary, "b")
CONVERT("63", "d", shex, "h")
CONVERT("63", "d", soctal, "o")
CONVERT("1101010111110101", "b", sraw, "r")

Current Output Variables’ Contents are:

sdecimal = "2814"
sbinary = "00111111"
shex = "3F"
soctal = "077"
sraw = "\d5 f5\"

COPY

The COPY command duplicates data from the receive buffer or source string,
placing it into a string variable or a quoted string to a string variable. The Rx
buffer pointer does not change when using this command.

The destination for the data (svar) must be specified with the copy parameters.

NOTE: Within the Visual Editor of the Collector Builder, COPY,
COPY-FROM-RX-BUFF-UNTIL-SEARCH, COPY-FROM-RX-BUFF,
COPY-FROM-STRING-TO-STRING-UNTIL-SEARCH and COPY-
STRING-TO-STRING are listed as separate commands. They are same
command. They are provided as descriptions for different variations of
the same command. If you were to use any variation of the COPY
command in the text editor, you will provide COPY.

When using this command:

 Specify an offset into source to control where data is copied from the source
data.

 The number of bytes to be copied to the destination variable can be specified
with the length parameter (ilen), or the length can default to the length of the
source data.

 In addition to specifying a numeric length parameter, a string can be used. By
using a string, the Collector Engine copies bytes from the source data
(starting at offset) into the destination variable up to, but not including, the

 3-16 Sentinel Reference Guide

first character of the string (if found). If the string is not found, no bytes are
copied.

 If the offset (ioffset) or length (ilen) parameters are specified out of the range
of the source variable, then as many bytes as possible, up to the end of the
source data, are copied.
If the offset is greater than or equal to the length of the source data, no bytes
are copied into the destination variable.
If an offset is not specified, the offset defaults to zero.

Format
COPY(<dest>: [source] [, [search] [, [ilen] [,
[ioffset]]]])
COPY(<dest>: [source] [, [ilen] [, [ioffset]]])
COPY(<dest>: [ilen] [, [offset]])

Data Types
Argument Type Description

dest svar
(OUTPUT)

The data string variable to which bytes are
copied.

source string (INPUT)
[OPTIONAL]
or
svar

The string where bytes are copied from
(default = Receive Buffer).

If the search parameter is used.

search string
(INPUT)
[OPTIONAL]

A string used to specify: copy up to the bytes
to search for in the source string.

ilen numeric
(INPUT)
[OPTIONAL]

The number of bytes to copy from the source
to the destination.

ioffset numeric
(INPUT)
[OPTIONAL]

The offset into the source at which to start
copying data; copies all of the characters from
the receive buffer to the transmit buffer.

Table 3-11: COPY-DataTypes

The following examples copy bytes from the receive buffer to a destination svar
(dest). The Rx buffer pointer position is added to the offset value to specify the
first position of the data to be copied. The ^ symbol identifies the Rx buffer
pointer position.

The following assumptions are made:

rxbuff="receive buffer"
^ (Rx buffer pointer position)
dest=""
source="A source string"
ilen=3
ioffset=3

Command Result
COPY(dest:) dest = "receive buffer"
COPY(dest:5) dest = "recei"
COPY(dest:,5) dest = "ve buffer"

Table 3-12: Command-Result

 Collector Parsing Commands 3-17

The following examples copy bytes from a source string to a destination svar
(dest).

Command Result
COPY(dest:source) dest = "A source string"
COPY(dest:source,5) dest = "A sou"
COPY(dest:source,5,6) dest = "ce st"

Table 3-13: Command-Result

The following examples copy bytes from the receive buffer up to, but not
including, the search string to the string variable. If the search string is not found
in the receive buffer (after the Rx buffer pointer + offset position), no bytes are
copied.

NOTE: For hex substitution, \0000\ terminates a string. Therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

The following examples copy bytes from the receive buffer up to, but not
including, the search string to a destination svar (dest). If the search string is not
found in the receive buffer (after the Rx buffer pointer + offset position), no bytes
are copied.

Command Result
COPY(dest:,"buffer") dest = "receive "
COPY(dest:,"receive") dest = ""

Table 3-14: Command-Result

The following examples copy bytes from a source string (must be a string
variable) up to, but not including, the search string to a destination string variable
(dest). If the search string is not found in the receive buffer (after the Rx buffer
pointer + offset position), no bytes are copied.

Command Result
COPY(dest:source," string") dest = "a source"
COPY(dest:source," .string") dest = ""

Table 3-15: Command-Result

CRC

The CRC command computes a cyclical redundancy check on a string of bytes
(hex or ASCII).

Format
CRC(source_data, dest_crc)

Data Type
Argument Type Description

source_data string
(INPUT)

The string data to perform the crc command
on.

dest_crc svar
(OUTPUT)

The string variable in which the 2 byte crc
result is stored.

Table 3-16: CRC-DataTypes

For example:

 3-18 Sentinel Reference Guide

In the following example, the computed CRC value is compared to a saved value.
If the two CRC values are the same, an event message is generated.

CRC(svar, s_crc_var)
IF(s_crc_var = "\0A5F\")
EVENT(res, "Correct CRC generated", 0)
ENDIF()

NOTE: For hex substitution, \0000\ terminates a string; therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

DATE

The DATE command copies the current date (in the format MM-DD-YYYY) into
a string variable. Optionally, it can copy the current day of the week into a string,
integer, or float variable.

Format
DATE(date_string [, day_of_week] [,
i_day_of_week] [, f_day_of_week])

Data Type
Argument Type Description

date_string svar
(OUTPUT)

The string variable in which the date will
be stored (for example: svar = “11-18-
2002”).

day_of_week svar
(OUTPUT)
[OPTIONAL]
ivar
(OUTPUT)
[OPTIONAL]
Or
fvar
(OUTPUT)
[OPTIONAL]

(Optionally) The string variable in which
the day of the week will be stored; written
as the full Day name (for example: svar =
Saturday)
(Optionally) The integer or float variable
in which the day of the week will be
stored; written as full Day
name = number:
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6
Sunday = 7
(for example: Monday is ivar = 1)

Table 3-17: DATE-DataTypes

For example:

In the following example, the date from the system is compared to a date string. If
the two dates are the same, an event message is generated.

 Collector Parsing Commands 3-19

DATE(date_var, day_of_week)
IF(date_var = "11-18-2002")
ALERT(res, "Happy 23rd birthday!", 0)
ENDIF()
IF(day_of_week = "Saturday")
ALERT(res, "Time to go to the beach," 0)
ENDIF()

DATETIME

The DATETIME command converts an integer representation of the number of
seconds from January 1, 1970, to date and time string variables. Optionally, it can
copy the current day of the week into a string, integer, or float variable.

IMPORTANT:
The supported DATETIME format is MM-DD-YYYY HH:MM:SS.
For DATETIME, input should be positive integers only. If you input
negative value, then the output returned is 01-01-1970 00:00:00.

Format
DATETIME(itime_secs, svar_date, svar_time
[, day_of_week] [, i_day_of_week]
[, f_day_of_week])

Data Types
Argument Type Description

itime_secs numeric
(INPUT)

The integer number that contains the
number of seconds from 1970.

svar_date svar
(OUTPUT)

The string variable in which the date will
be stored (for example: 02-19-1996).

svar_time svar
(OUTPUT)

The string variable in which the time will
be stored (for example: 15:14:33).

day_of_week svar
(OUTPUT)
[OPTIONAL]
ivar
(OUTPUT)
[OPTIONAL]
Or
fvar
(OUTPUT)
[OPTIONAL]

(Optional) The string variable in which the
day of the week will be stored; written as
the full Day name (for example: svar =
Saturday)
(Optional) The integer or float variable in
which the day of the week will be stored;
written as full Day name = number:
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6
Sunday = 7
(for example: Monday is ivar = 1)

Table 3-18: DATETIME-DataTypes

For example:

 3-20 Sentinel Reference Guide

In the following example, the DATETIME command converts the number of
seconds from 1970 into date and time strings:

DATETIME(0, sdatevar, stimevar)

In the following example, the DATETIME command gives you the day of the
week, as well as the date and time:

DATETIME(946728000, sdate, stime, sday)

The resulting date and time string variables have the time at the UTC timezone
(timezone offset +0000).

Current Output Variables’ Contents:

sdatevar = "01-01-1970"
stimevar = "00:00:00"
sdate = "01-01-2000"
stime = "12:00:00"
sday = "Saturday"

DATETIMETOSECONDS

The DATETIMETOSECONDS command converts a date string and a time string
to an integer representation of the number of seconds from January 1, 1970.

IMPORTANT:
The supported Date time format is MM-DD-YYYY HH:MM:SS. If the
input does not follow this format, value “0” will be returned.
The valid date range is “January 1, 1970 00:00:00” to “January 18, 2038
11:59:59` including these values.”
The input date and time string values are assumed to be the time at the
UTC timezone (that is, timezone offset +0000).

In the following example, the DATETIMETOSECONDS command gives you the
number of seconds from January 1, 1970.

DATETIMETOSECONDS (i_timesecs, “01-01-2000”,
“12:00:00”)

Current Output Variables’ Contents:

i_timesecs = “946728000”

Format
DATETIMETOSECONDS(itime_secs, s_date, s_time)

Data Types
Argument Type Description

itime_secs numvar
(OUTPUT)

The integer number that will contain the
number of seconds from 1970.

s_date sring
(INPUT)

The string variable of the date (for example:
02-19-1996).

s_time string The string variable of the time (for

 Collector Parsing Commands 3-21

Argument Type Description
(INPUT) example: 15:14:33).

Table 3-19: DATETIMETOSECONDS-DataTypes

DBCLOSE

The DBCLOSE command closes the database connection. There are two required
parameters.

 The first required parameter is the database handle that is returned by the
“DBOPEN” command. This is either an integer or an integer variable.

 The second required parameter is the status of the close. This is either an
integer variable or a float variable. A “1” will be returned upon success.

Format
DBCLOSE(i_dbhandle, i_closestatus)

DBDELETE

The DBDELETE command deletes rows from the selected table based upon
selection criteria. There are four required parameters.

 The first required parameter is the database handle that is returned by the
“DBOPEN” command. This is either an integer or an integer variable.

 The second required parameter is the status of the delete. This is either an
integer variable or a float variable. The number of rows deleted will be
returned upon success, inclusive of 0.

 The third required parameter is the table name from which to delete rows. It
can be either a string or string variable.

 The fourth optional parameter is the where clause. It allows users to filter out
unwanted data by a selection criterion. If left blank, the delete will delete all
rows from the table.

The error codes for the DBDELETE command are as follows:

>0No error
0No rows deleted
-1DB handle is invalid

Format
DBDELETE(i_dbhandle, i_deletestatus, "tablename",
"where clause")

For Example:

DBDELETE(i_dbhandle, i_deletestatus, "tablename")
DBDELETE(i_dbhandle, i_deletestatus, s_tablename,
"where clause")

DBGETROW

 3-22 Sentinel Reference Guide

The DBGETROW command works in conjunction with the “DBSELECT”
Command. The user must obtain a selection first, using “DBSELECT”, before
retrieving rows with the DBGETROW Command. This command will retrieve
the next available row from a selection, keeping a cursor open so this command
can be called in a loop, retrieving the next row upon each call. There are four
required parameters.

 The first required parameter is the database handle that is returned by the
“DBOPEN” command. This is either can be an integer or an integer variable.

 The second required parameter is the handle for the select. This can be either
a string or string variable. This is the same handle as was assigned during the
“DBSELECT” command.

 The third required parameter is the status of the get. This is either an integer
variable or a float variable. A “1” will be returned upon success.

 The fourth required and subsequent optional parameters are the column data
returned by the command. These columns can be string variables, float
variables or integer variables. Column data of a different type than the
parameter type is converted to the appropriate parameter type, if possible.
Thus, if the table contains a float column, but the parameter is a string, the
data will be converted from a float into a string. The user can include up to 48
of these parameters.
NOTE: The command will fill the lesser of the number of parameters
defined and the number of actual columns in the database. If the database
has 4 columns but you supply 7 of these parameters, only the first 4 will
be filled.

The error codes for the DBGETROW command are as follows:

1No Error
-1Error retrieving row

Format
DBGETROW(i_dbhandle, "select1", i_selectstatus,
s_col1, s_col2, s_col3, ..., s_col48)

For example:

DBGETROW(i_dbhandle, s_selecthandle,
i_selectstatus, s_col1, s_col2)

DBINSERT

The DBINSERT command inserts a row of data into the database for a selected
table. There are four required parameters.

 The first required parameter is the database handle that is returned by the
“DBOPEN” command. This is either an integer or an integer variable.

 The second required parameter is the status of the insert. This is either an
integer variable or a float variable. A “1” will be returned upon success.

 The third parameter is the table name to insert the data into.
 The fourth required and subsequent optional parameters are the column data

to be inserted. These columns can be of any type. The user can include up to
48 of these parameters.

 Collector Parsing Commands 3-23

The command must include the exact number of parameters needed to insert one
row of data. DBINSERT will not add a new record if a unique constraint is
violated.

The error codes for the DBINSERT command are as follows:

1 No Error
-1 DB Handle is invalid / no row inserted
-2 Data request cannot be created
-7 SQL execution error
-16 SQL syntax error

Format
DBINSERT(i_dbhandle, i_insertstatus,
"theTableName", "data1", "data2", ..., "data48")

For example:

DBINSERT(i_dbhandle, i_insertstatus,
s_theTableName, "data1", I_data2, f_data3)
DBINSERT(i_dbhandle, i_insertstatus,
"theTableName", s_data1, "data2")

DBOPEN

The DBOPEN command opens a connection to a supported database.

On the Microsoft Windows NT Collector only, DBOPEN will not work when the
database name is configured to point to a "mapped drive". Because the Collector
runs as a service, it (typically) runs under the "system" account. This account
does not have permissions to access remote shares, including mapped drives. This
means any database connection (even through OBDC) on a Windows Collector
must be to a completely local database.

There are five required parameters.

 The first required parameter is the database type. This can be selected
through a pick list, or using a string or string variable. The acceptable value
for this parameter is Oracle9i.

 The second required parameter is the database name to connect to. It can be a
string or a string variable.

 The third required parameter is the user name for database. It can be a string
or string variable. This field can contain any text if users have not been
specifically setup to access the database.

 The fourth required parameter is the password for the user. It can be a string
or a string variable. This field can contain any text if users have not been
specifically setup to access the database.

 The fifth required parameter is the database handle, which is returned by this
command into the integer variable or float variable. The database handle will
be greater than 0 upon success.

 3-24 Sentinel Reference Guide

Format
DBOPEN("oracle9i", "Database name", "username",
"password", i_dbhandle)

For example:

DBOPEN(s_dbtype, s_dbname, s_username,
s_password, i_dbhandle)
DBOPEN(s_dbtype, "dbname", s_username,
"password", i_dbhandle)

DBSELECT

The DBSELECT command works in conjunction with the DBGETROW
command. The DBSELECT command opens a selection cursor into the database.
This grabs a snapshot of the current records in the database that meet the selection
criteria. Records provided after the DBSELECT command will not show up in
record retrieval until another DBSELECT command is issued to update the
selection.

There are seven required parameters.

 The first required parameter is the database handle that is returned by the
“DBOPEN” command. This is either an integer, or an integer variable.

 The second required parameter is status of the select. This is either an integer
variable or a float variable. A “1” will be returned upon success.

 The third required parameter is the select identifier. This can be either a
string or string variable. This should be unique, if you have more than one
DBSELECT command.

 The fourth required parameter is the number of rows to skip after the select
has occurred. This allows the user to position the pointer in the
“DBGETROW” command to new data, while allowing old data to be skipped
over. This can be either an integer or an integer variable.

 The fifth required parameter is the table from which to obtain the data. It can
be either a string or a string variable.

 The sixth optional parameter is the where clause. It allows users to filter out
unwanted data by a selection criterion. If left blank, the select will contain all
rows of the table. The format of the where clause is: where column-
name=’data’.

 The seventh optional parameter is the columns returned by the DBSELECT
command. If left blank, the select will contain all columns of the table.

The error codes for the DBSELECT command are as follows:

 Collector Parsing Commands 3-25

1 No Error
-1 DB_Handle is invalid
-2 Data request cannot be created
-3 Unsuccessful autocommit setting
-4 Memory allocation error
-5 SQL syntax error
-6 SQL execution error

Format
DBSELECT(i_dbhandle, i_selectstatus, "select1",
i_rows_to_skip, "f_atom"<, "where clause"><,
"col1<col2><...>">)

For example:

DBSELECT(i_dbhandle, i_selectstatus, "select1",
i_rows_to_skip, "f_atom")
DBSELECT(i_dbhandle, i_selectstatus, s_select1,
23, S_TABLENAME, s_whereclause)
DBSELECT(i_dbhandle, i_selectstatus, s_select1,
23, S_TABLENAME, "where fname=’BOB’")
DBSELECT(i_dbhandle, i_selectstatus, s_select1,
23, S_TABLENAME, "where fname=’BOB’", "FIRST,
LAST, ADDRESS")

DEC

The DEC command decrements a numeric variable by 1. When using DEC, you
must specify either an ivar or an fvar.

Format
DEC(i_numvar)

Data Types
Argument Type Description

i_numvar numvar
(INPUT/
OUTPUT)

The variable to decrement (ivar or fvar)

Table 3-20: DEC-DataTypes

For example:

SET(icounter = 2)
DEC(icounter)
DEC(icounter)

Result:

 3-26 Sentinel Reference Guide

icounter = 0

DECODE

The DECODE command reverts a string that was encoded to preserve packet
identification. This command identifies the match bytes (or characters) and the
escape byte(s) (or characters) in order to remove the escape character. It removes
each occurrence of the escape string preceding the matched bytes each time it is
found in the data.

Format
DECODE(data_decode, match, escape)

Data Types
Argument Type Description

data_decode svar
(INPUT/
OUTPUT)

The string data variable to decode. The
decoded result is placed back in this
variable.

match string
(INPUT)

The string of bytes to match in the
data_decode string variable.

escape string
(INPUT)

The escape string to remove from the
data_decode variable.

Table 3-21: DECODE-DataTypes

For example:

The following example encodes a string, copies it to save the encoded version,
then decodes it with the same parameters.

COPY(svar:"This is just a test of decode")
ENCODE(svar, " ", "\00\")
COPY(svar_encode:svar)
DECODE(svar, " ", "\00\")

Current Output Variables’ Contents:

svar = "This is just a test of decode"
svar_encode = "This\00\ is\00\ just\00\ a\00\
test\00\ of\00\ decode"

DECODEMIME

The DECODEMIME command allows the user to decode a base-64 encoded
string or string variable using base-64 decoding and store the resulting decoded
string into a string variable. If there is an error the resulting data string will be
zero length and the optional number variable success is set to 0. If decoding is
successful then the number variable success is set to 1.

 Collector Parsing Commands 3-27

Format
DECODEMIME(encoded_data, data, success)

Data Types
Argument Type Description

encoded_data String/String
Variable(INPUT)

Base-64 encoded string that needs to
be decoded.

data String
Variable(OUTPUT)

Resultant decoded data.

success Integer
variable/Float
Variable(OUTPUT)
[OPTIONAL]

Set to one if decoding is successful, in
case of an error it is set to zero.

Table 3-22: DECODEMIME-DataTypes

For example:

DECODEMIME("VGVzdGluZyBEYXRhIEVuY29kaW5n",
s_data, i_success)

In the above example, DECODEMIME command decodes the string in double
quotes using base-64 decoding and stores the resulting decoded string in s_data.
S_data gets populated with following:

test encode64 command

Because decoding is successful, 1 gets assigned to the integer variable i_success.

Also see to the “ENCODEMIME” command.

DELETE

The DELETE command removes variables from the system to free memory
allocated for their storage (this is especially useful for string variables).

It is recommended to delete svars when you are done to conserve memory. Up to
100 variables can be specified in one DELETE command.

Format
DELETE(<varlist>)

Where:

varlist ::= var [, <varlist>]
Var ::= variable to clear (fvar, ivar, or svar)

Maximum number of variables: 100

Data Types
Argument Type Description

var1 variable
(INPUT/
OUTPUT)

The variable to delete (fvar, ivar or svar).

 3-28 Sentinel Reference Guide

Argument Type Description
var2 variable

(INPUT/
OUTPUT)
[OPTIONAL]

The variable to delete (fvar, ivar or svar).

var3 variable
(INPUT/
OUTPUT)
[OPTIONAL]

The variable to delete (fvar, ivar or svar).

 variable
(INPUT/
OUTPUT)
[OPTIONAL]

Other variables to delete (fvar, ivar or
svar).

Table 3-23: DELETE-DataTypes

For example:

DELETE(ivar1)
DELETE(sdata, i_len, i_count, svar[22])
DELETE(imatrix3d[ix][iy][iz])
DELETE(f_array[i_count], svar[4], sdata)
DELETE(ichart[3][icount])

DISPLAY

The DISPLAY command was deprecated in Sentinel 6.0. The debugger in the
Sentinel Control Center provides similar functionality.

ELSE

The ELSE command marks the ending of the true portion of the previous
associated if() command. Parsing commands following the ELSE() are executed
if the result of the IF() is FALSE. Commands are executed up to the next
corresponding ENDIF()

Format
ELSE()

For example:

IF(i = 10)
ALERT("I is 10")
ELSE()
ALERT("I is not 10")
ENDIF()

You cannot directly compare against a negative number. To do this, use either of
two methods:

 Use the parsing function compare
 Indirectly compare as follows:

 Collector Parsing Commands 3-29

SET(i_compare_val=-10)
IF(ivar > i_compare_val)
ALERT("ivar is greater than -10")
endif()

ENCODE

Use the ENCODE command to preserve packet identification. This command
matches bytes (or characters) in data and escapes (or prefixes) those matched
bytes with an escape string. The escape string is placed in front of the matched
bytes everywhere those characters are found in the data.

Format
ENCODE(data_encode, match, escape)

Data Types
Argument Type Description

data_encode svar

(INPUT/
OUTPUT)

The string data variable to encode. The
encoded result is placed back in this
variable.

match string

(INPUT)

The string of bytes to match in the
data_encode string variable.

escape string

(INPUT)

The escape string to place in front of each
matched byte inside of the data_encode
variable.

Table 3-24: ENCODE-DataTypes

For example:

In the following example, two data strings are encoded to prefix all spaces with
“#” and another to prefix all ‘t’s and ‘h’s with “!!”.

COPY(data:"Preface all spaces with ‘#’")
ENCODE(data, " ", "#")
COPY(svar:"Preface ‘t‘s and ‘h’s with ‘!!’")
ENCODE(svar, "th", "!!")

Result:

data = "Preface# all# spaces# with# ‘#’"
svar = "Preface ‘!!t’s and !!h’s wi!!t!!h ‘!!’"

ENCODEMIME

The ENCODEMIME command allows the user to encode a string or string
variable using base-64 encoding and store the resulting encoded string into a
string variable.

 3-30 Sentinel Reference Guide

Format
ENCODEMIME(data, encoded_data)

Data Types
Argument Type Description

data String/string
variable
(INPUT)

Data string that needs to be encoded.

encoded_data String variable
(OUTPUT)

Resultant encoded data.

Table 3-25: ENCODEMIME-DataTypes

For Example:

COPY(s_data:"test encode64 command")
ENCODEMIME(s_data, s_encd_data)

In the above example ENCODEMIME command, encodes the string in s_data
variable using base-64 encoding and stores the resulting encoded string in
s_encd_data. S_encd_data gets populated with following:

VGVzdGluZyBEYXRhIEVuY29kaW5n

Also see to the “DECODEMIME” command.

ENDFOR

The ENDFOR command marks the end of the previous for () block.

Format
ENDFOR()
Example
FOR(i=0,i<3,i=i+1)
ALERT("Still in loop")
ENDFOR()

ENDIF

The ENDIF command marks the ending of the previous if() block.

Format
ENDIF()

For example:

 Collector Parsing Commands 3-31

IF(i = 10)
ALERT("I is 10")
ELSE()
ALERT("I is not 10")
ENDIF()

You cannot directly compare against a negative number. Use one of the following
methods to do this:

 Use the parsing function compare
 Indirectly compare as follows:

SET(i_compare_val=-10)
IF(ivar >i_compare_val)
ALERT("ivar is greater than -10")
ENDIF()

ENDWHILE

The ENDWHILE command marks the end of the previous while() block.

Format
ENDWHILE()
Example
WHILE(i<3)
SET(i=i+1)
ENDWHILE()

EVENT

The EVENT command creates and sends an alert message. It takes no parameters.
The EVENT command automatically constructs the alert message using the
contents of the reserved variables.

Most of the reserved variables map directly to the meta-tags of the v3.2 Collector
Builder template. Only those variables that are used in the script and are not set to
“” are sent. Any of the Standard Sentinel variable, Reserved variable or Custom
variable can be sent. Variables like i_Severity and s_Res are required for an alert
message to be processed by the Collector Manager.

Event Reserved Variables
NOTE: When a label is preceded with an “e.”, such as e.crt, this refers to
current events. If a label is preceded with a “w.”, such as w.crt, this
refers to historical events.

Variable Short Description Maps to meta-tag (label)
s_BM Base Message Message (msg)
i_Severity Severity Severity (sev)
s_Res Resource Resource (res)

 3-32 Sentinel Reference Guide

Variable Short Description Maps to meta-tag (label)
s_SubRes SubResource SubResource (sres)
s_ET Event Time EventTime (et)
s_P Protocol Protocol (prot)
s_DP Destination Port DestinationPort (dp)
s_SP Source Port SourcePort (sp)
s_EVT Event Name EventName (evt)
s_SN Sensor Name SensorName (sn)
s_SIP Source IP Source IP (sip)
s_DIP Destination IP DestinationIP (dip)
s_SHN Source Host Name SourceHostName (shn)
s_DHN Destination Host Name DestinationHostName

(dhn)
s_SUN Source User Name SourceUserName (sun)
s_DUN Destination User Name DestinationUserName

(dun)
s_FN File Name FileName (fn)
s_EI Extended Information ExtendedInformation (ei)
s_RN Reporter Name ReporterName (rn)
s_ST Sensor Type Sensor Type (st)
s_PN Product Name ProductName (pn)
s_CRIT Criticality Criticality (crt)
s_VULN Vulnerability Vulnerability (vul)
s_CT1 Reserved Customer 1 Ct1 (ct1)
s_CT2 Reserved Customer 2 Ct2 (ct2)
s_CT3 Reserved Customer 3 Ct3 (ct3)
s_RT1 Device Attack Name (Reserved

Sentinel 1)
Rt1 (rt1)

s_RT2 Reserved Sentinel 2 Rt2 (rt2)
s_RT3 Reserved Sentinel 3 Rt3 (rt3)
s_CV1 to
s_CV100

Customer Variable 1 to 100
NOTE:
1 to 10 is type long (number)
11 to 20 is type date
21 to 100 is type string

Cv1 to Cv100 (cv1 to
cv100)

s_RV1 to
s_RV29

Reserved Variable 1 to 29
NOTE: Reserved for Novell’s
use.

Rv1 to Rv29 (rv1 to rv29)

s_RV30 AttackId Rv30
s_RV31 DeviceName Rv31
s_RV32 DeviceCategory Rv32 (rv32)
s_RV33 EventContext Rv33 (rv33)
s_RV34 SourceThreatLevel Rv34 (rv34)
s_RV35 SourceUserContext Rv35 (rv35)
s_RV36 DataContext Rv36 (rv36)
s_RV37 SourceFunction Rv37 (rv37)
s_RV38 SourceOperationalContext Rv38 (rv38)
s_RV39 MSSPCustomerName Rv39 (rv39)

 Collector Parsing Commands 3-33

Variable Short Description Maps to meta-tag (label)
s_RV40 to
s_RV43

Reserved Value 40 to 43
NOTE: Reserved for Novell’s
use.

Rv40 to Rv43 (rv40 to
rv43)

s_RV44 DestinationThreatLevel Rv44 (rv44)
s_RV45 DestinationUserContext Rv45 (rv45)
s_RV46 VirusStatus Rv46 (rv46)
s_RV47 DestinationFunction Rv47 (rv47)
s_RV48 DestinationOperationalContext Rv48 (rv48)
s_RV49 ReservedVar49

NOTE: Reserved for Novell’s
use.

Rv49 (rv49)

s_RV50 eSecTaxonomyLevel1 Rv50 (rv50)
s_RV51 eSecTaxonomyLevel2 Rv51 (rv51)
s_RV52 eSecTaxonomyLevel3 Rv52 (rv52)
s_RV53 eSecTaxonomyLevel4 Rv53 (rv53)
s_RV54 to
s_RV100

Reserved Value 54 to 100
NOTE: Reserved for Novell’s
use.

Rv54 to Rv100 (rv54 to
rv100)

Table 3-26: Event Reserved Variables

Auto-formatting
Reserved variables s_DP, s_SP and s_P are set to lowercase before the event
message is sent. The reserved variables s_ST and s_PN are set to uppercase
before the event message is sent. The event time variable’s s_ET is set if left clear
with the standard time format as follows:

s_Year-s_Month-
s_Day~sHour:s_Min:s_Sec~s_AMPM24~s_TZ

You can override this feature by setting the s_ET variable with other information.
At a minimum, both s_Hour and s_Month must be set for the ET to be created.
All empty fields will appear in the ET field as NULL.

Date/Time Reserved Variables
The ET meta-tag s_ET variable is automatically populated if s_ET is left clear
and s_Hour and s_Month are not empty. The date/time reserved variables should
be set with values. Any empty field will show up as NULL. The s_Day field is
formatted to two-digit values 01-09. The script writer might select to convert the
month value into a two-digit number using the “TRANSLATE” command and the
months.csv file. The date/time reserved tags are as follows:

S_Year s_Min
s_Month s_Sec
s_Day s_TZ
s_Hour s_AMPM24
Table 3-27: Date/Time Reserved Variables

 3-34 Sentinel Reference Guide

Event Control Reserved Variables
Two variables, s_SendEITag and s_SendETTag are used to determine whether
the EVENT command will include the EI and ET fields, respectively, in an alert
message. To disable the sending of either field, the variables must be set to OFF.

Format
EVENT ()

For example:

COPY(s_Res:"Resource")
SET(i_Severity = 3)
COPY(s_BM:"Alert")
EVENT()

FILEA

The FILEA command appends the contents of a string to the end of a flat file on
disk. When using this command:

 Specify the filename using a string
 By default, the working directory is %ESEC_HOME%\data or

$ESEC_HOME/data.
 For Windows, the filename references the file as specified if the filename

starts with a drive letter, colon and backslash (such as c:\)
 The full path of the file should be specified
 If the file does not exist, it is created
 If the file cannot be created, the FILEA command does nothing
 The file closes after the data has been appended to it

If you are writing this command as part of a script to be executed by a Collector,
be sure to use the proper path syntax, including forward slashes (/). Remember to
escape back slash and forward slash characters when specifying the path. The
terminating zero on the end of the string is not written to the file.

Format
FILEA("filename", data)

Data Types
Argument Type Description

filename string
(INPUT)

The name of the file to which the data
should be applied.

Data string
(INPUT)

The data string to append to the file.

Table 3-28: FILEA-DataTypes

For example:

In the following example, the file \temp\mux_data is created and the contents
of s_variable are added to the file:

 Collector Parsing Commands 3-35

FILEA("c:/\temp/\mux_data", s_variable)
FILEA("mux_data", "literal")
FILEA("mux_data", s_variable)

In the following example, a string is added to the end of an audit log file:

COPY(audit_str: "Sent 20 severity 5 alerts.")
FILEA("h:/\temp/\audit.log", audit_str)

FILEL

The FILEL command gets the length (in bytes) of a flat file and places the value
into a numeric variable. When using this command:

 Specify the filename using a string
 By default, the working directory is %ESEC_HOME%\data or

$ESEC_HOME/data.
 For Windows, the filename references the file as specified if the filename

starts with a drive letter, colon and backslash (such as c:\)
 If the file does not exist, the FILEL command does nothing and the contents

of numvar are unchanged
 The file closes after the data has been read from it

If you are writing this command as part of a script to be executed by a Collector,
be sure to use the proper path syntax, including forward slashes (/). Remember to
escape back slash and forward slash characters when specifying the path.

Format
FILEL("filename", i_length)

Data Types
Argument Type Description

filename string
(INPUT)

The name of the file whose length is to be
determined.

i_length numvar
(OUTPUT)

The length of the file, in bytes.

Table 3-29: FILEL-DataTypes

For example:

FILEL("h:/\tmp/\onfotron.log", i_length)

Returns the length of the infotron.log file, in bytes, for example:

i_length = 2390

FILER

The FILER command copies the contents of a flat file on disk into a string
variable. When using this command:

 Specify the filename using a string.

 3-36 Sentinel Reference Guide

 By default, the working directory is %ESEC_HOME%\data or
$ESEC_HOME/data.
 For Windows, the filename references the file as specified if the filename

starts with a drive letter, colon and backslash (such as c:\)
 If the file does not exist, the FILER command does nothing and the contents

of svar are unchanged
 The file closes after the data has been read from it
 Optionally, specify the maximum number of bytes to read. You cannot use

the max_bytes parameter unless it is paired with the i_offset parameter.

If you are writing this command as part of a script to be executed by a Collector,
be sure to use the proper path syntax, including forward slashes (/). Remember to
escape back slash and forward slash characters when specifying the path.

Format

FILER("filename", dest, [i_offset [,
i_max_bytes]])

NOTE: You cannot use the max_bytes parameter unless it is paired with
the i_offset parameter.

Data Types
Argument Type Description

filename string
(INPUT)

The name of the file to read the data string.

Data svar
(OUTPUT)

The data read from the file is placed into
this string variable.

i_offset integer
(INPUT)
[OPTIONAL]

Specifies an offset number of characters at
which to begin reading.

Max_bytes integer
(INPUT)
[OPTIONAL]

Optionally, specify the maximum number
of bytes to read.
NOTE: When using this argument, the
i_offset argument must be specified.

Table 3-30: FILER-DataTypes

For example:

CLEAR(data)
FILER("filename", data, 0, 20)
if(data = "")
ALERT(s_res_var, "Data file doesn’t exist or is
empty.", 0)
ENDIF()

FILEW

The FILEW command writes the contents of a string to a flat file on disk. When
using this command:

 The previous contents of the file are overwritten
 Specify the filename using a string

 Collector Parsing Commands 3-37

 By default, the working directory is %ESEC_HOME%\data or
$ESEC_HOME/data.
 For Windows, the filename references the file as specified if the filename

starts with a drive letter, colon and backslash (such as c:\)
 If the file does not exist, it is created
 If the file cannot be created, the FILEW command does nothing
 The file closes after the data is written to it

If you are writing this command as part of a script to be executed by a Collector,
be sure to use the proper path syntax, including forward slashes (/). Remember to
escape back slash and forward slash characters when specifying the path.

Format
FILEW("filename", data)

Data Types
Argument Type Description

filename string
(INPUT)

The name of the file to write the data string.

data svar
(OUTPUT)

The data to write to the file.

Table 3-31: FILEW-DataTypes

For example:

FILEW("filename", data)
FILEW("h:/\tmp/\infotron.stat", "SUCCESSFUL
EXEC")

FOR

The FOR command provides capability for looping control flow. When using this
command:

 The initialization statement is always executed
 If the result of the FOR() compare statement is true, the parsing commands

after the FOR(), up to the next ENDFOR() are executed. The incrementation
statement is then executed and control flow returns to the compare statement

 If the result of the FOR() compare is false, no parsing commands are
executed between the FOR() and the ENDFOR(). The incrementation
statement is not executed

 Although all data types are allowed on each side of the for() compare
statement, only numeric values can be compared with numeric and string
with string

 The operator for the FOR() compare can be <, =, >, <=, >=, <>, &, + or ^

You cannot directly compare against a negative number. Use one of the following
methods to do this:

 Use the parsing function COMPARE
 Indirectly compare as follows:

 3-38 Sentinel Reference Guide

SET(i_compare_val=-10)
FOR(ivar=0, ivar>i_compare_val, ivar=ivar-1)
ALERT("Still in loop")
ENDFOR()

Format
FOR(initialization, compare, increment)

Data Types
Argument Type Description

initialization SET()
parameter

Any valid parameter that can be passed to
the SET() command. See SET() command
definition.

conditional IF()
conditional

Any valid parameter that can be passed to
the IF() command. See IF() command
definition.

increment SET()
parameter

Any valid parameter that can be passed to
the SET() command. See SET() command
definition.

Table 3-32: FOR-DataTypes

For example:

FOR(i=0, i<3, i=i+1)

GETCONFIG

Retrieves the current setting for a system property. This command is used to
retrieve system properties set using the “SETCONFIG” command. These
commands are used to set variables and retrieve current values for system
properties that might change periodically, for example a log file that is renamed
daily using the current date.

Available system properties are:

System Property Description (Example)
System.OS.Family Operating system family (Solaris, Windows)
System.OS.Name Operating system name (Windows 2000)
System.OS.Version.Major Operating system major version (5)
System.OS.Version.Minor Operating system minor version (0)
System.Net.Hostname Collector Manager server name

(CollectorManager_LON1)
System.Net.IP_List Collector Manager IP addresses, separated by a

semicolon (10.0.0.1;10.0.0.3)
System.Agent_Dir Path to parent directory holding Collector directories

for all running Collectors
($ESEC_HOME/data/collector_mgr.cache/
collector_instances)

System.PortScript Collector instance name and UUID
(WMI_6_0_Collector_68714633-A987-1029-A520-
000C29F2D765)

 Collector Parsing Commands 3-39

System.Local_Dir Path to directory of the running Collector
This is equivalent to the combination of
System.Agent_Dir and System.PortScript

System.Data_Dir Path to a directory that is protected during
uninstallation.
%ESEC_HOME%\data

FileConnector.InputFile This option has been deprecated in Sentinel 6.0.
FileConnector.OutputFile This option has been deprecated in Sentinel 6.0.

Table 3-33: GETCONFIG-Properties

See also “SETCONFIG” command.

Format
GETCONFIG(“Config_Option”, Variable)

 Config_Option is the system property that you want to retrieve
(FileConnector.InputFile) or FileConnector.OutputFile).

 Variable is the name of a string variable that will hold the retrieved value.

Data Types
Argument Type Description

Config
Option

String
(INPUT)

Name of the system property to retrieve
(FileConnector.InputFile)

Variable String
(OUTPUT)

Variable to hold the retrieved value.

Table 3-34: GETCONFIG-DataTypes

For example:

GETCONFIG(“System.OSFamily”, s_osfamilyname)

Current Output Variable’s Contents

S_osfamilyname = “Windows”

GETENV

The GETENV command retrieves the value of an environment variable.

Format
GETENV(Environment Key, Variable to store value)

Data Type
Argument Type Description

Environment
Key

string
(INPUT)

Name of the environment variable.

Variable to store
value

string Var
(INPUT)

Destination of where the environment
variable will be placed.

Table 3-35: GETENV-DataTypes

For example:

 3-40 Sentinel Reference Guide

GETENV("ESEC_HOME", s_EsecHome)

HASH

The HASH command allows the user to perform a hash on a string or string
variable. The user can specify what kind of hash (dss1, sha1, md2, md4, md5,
ripemd) needs to be performed. In case an incorrect hash name is specified then
Unsupported Algorithm is returned. The resulting hash value is stored in a string
variable. An error message will be stored in the output string variable for
unsupported algorithms.

Format
HASH(hash_algorithm, data, hash_data)

 Data Types
Argument Type Description

hash_algorithm String/String
Variable(INPUT)

Type of hash that needs to be
performed.

data String/String
Variable(INPUT)

Data on which hash needs to be
performed.

hash_data String
Variable(OUTPUT)

Resultant hash string.

Table 3-36: HASH-DataTypes

For example:

COPY(s_data: "test hash data")
HASH("ripemd", s_data, s_ripemd_data)

In the above example, HASH command performs a ripemd hash on s_data and
stores the resulting ripemd hashed data in s_ripemd_data. s_ripemd_data contains
following hash value, as viewed in the Sentinel Debugger:

"\d6a0d5e2d0a09dfba5\MH\10b7\V\fc\#\b9\f6\ff\"

Although the Sentinel Debugger shows this string, the actual value is binary. To
prevent storage problems, Novell recommends that the hash_data be converted to
HEX using the CONVERT command before the data is inserted into the database.

HEXTONUM

The HEXTONUM command converts a hex string with up to 4 bytes of hex data
into a decimal number and places the decimal number in an integer or a float
variable. More than 4 bytes results in invalid data.

Format
HEXTONUM(bytes_data, i_val [,[-]i_4] [, ioffset])

Data Types
Argument Type Description

 Collector Parsing Commands 3-41

Argument Type Description
bytes_data string

(INPUT)
String of 1 to 4 bytes.
(for example: “\FF\”, “\FF FF\”, “\3C 4A
F2\”, “\43 76 F3 FF\”, or “TEST”).
The hex number represented by these bytes
will be converted into an integer value,
i_val.

i_val numvar
(OUTPUT)

Decimal equivalent of hex number is
placed in this variable, ivar or fvar.

i_len numeric
(INPUT)
[OPTIONAL]

Number of hex bytes to convert to an
integer (must have an absolute value range
of 1 - 4). If you don’t set this parameter, the
default value is the number of bytes in the
input string, bytes_data, up to 4 bytes.
If i_len is positive, then bytes are
interpreted as Left-To-Right (Most-
Significant-Byte to Least-Significant-Byte).
If i_num_bytes is negative, then bytes are
interpreted as Right-To-Left (Least-
Significant-Byte to Most-Significant-Byte).

ioffset numeric
(INPUT)
[OPTIONAL]

Offset number of bytes to skip in
bytes_data.

Table 3-37: HEXTONUM-DataTypes

For example:

In the following example, the data in the hex string “\5A32\” is converted to an
integer value, interpreted MSB to LSB and then from LSB to MSB.

COPY(data:"\5A 32\")
HEXTONUM(data, ivar1)
HEXTONUM(data, ivar2, -2)

NOTE: For hex substitution, \0000\ terminates a string; therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

Current Output Variables’ Contents:

ivar1 = 23090
ivar2 = 12890

IF

The IF command compares two values.

 If the result of the IF() statement is true, the parsing commands after the IF(),
up to the next ELSE() or ENDIF(), are executed.

 If the result of the IF() is false, the parsing commands following the ELSE()
up to ENDIF() are executed.

 If no ELSE() is used, no parsing commands are executed between the IF()
and ENDIF() when the result of the IF() statement is false.

 Although all data types are allowed on each side of the IF() statement, only
numeric values can be compared with numeric and string with string.

 3-42 Sentinel Reference Guide

 The operator for the IF() compare can be <, =, >, <=, >=, <>, &, + or ^. Do
not use the logical NOT operator (^) in conjunction with a string variable.
Doing so will generate a syntax error.

You cannot directly compare against a negative number. Use one of the following
methods to do this:

 Use the parsing function COMPARE.
 Indirectly compare as follows:

SET(i_compare_val=-10)
IF(ivar > i_compare_val)
ALERT("ivar is greater than -10")
ENDIF()

Format
IF(<expr>)
Where:
expr ::= var
 | (<expr>)
 | ^ <expr>

 where <expr> must evaluate to integer or float.

 | <expr> <|=|>|<=|>=|<>|&|+ <expr>

 where both <expr> must evaluate to same type.

Data Types
Argument Type Description

data1 variable

(INPUT)

The data to compare to data2. If data2 is
not used, then it becomes a logical (0 =
false, anything else = true).

logical
operator

<
=
>
<=
>=
<>
&
+
^

Less Than
Equal To
Greater Than
Less Than or Equal To
Greater Than or Equal To
Not Equal To
Logical AND
Logical OR
Logical NOT

data2 all
(INPUT)
[OPTIONAL]

The data to compare to data1. This must be
the same type is data1.

… same as above Use up to 200 individual parameters to
create complex logical expressions.

Table 3-38: IF-DataTypes

For example:

 Collector Parsing Commands 3-43

IF(s = "test" & i_count < 5)
script(test)
ELSE()
IF((i <= i_num) + (i_count <> 10) &
(i_page))page("111")
ENDIF()
ENDIF()

INC

The INC command increments a numeric variable by 1. When using this
command, you must specify either an integer variable or a floating variable.

Format
INC(i_counter)

Data Types
Argument Type Description

i_counter numvar
(INPUT/
OUTPUT)

The numeric variable to be incremented by 1.

Table 3-39: INC-DataTypes

For example;

SET(icounter = 0)
INC(icounter)
INC(icounter)

Result:

icounter = 2

INDICATOR

The INDICATOR command was deprecated in Sentinel 6.0. The command is
supported in Sentinel 6.0 for backward compatibility. The EVENT command
provides similar functionality.

INFO_CLEARTAGS

This function will zero out (or clear, in the case of strings) all variables that are
part of the info block set referred to by the handle. Use
“INFO_CONSTANTTAGS” to prevent this from happening to a subset of those
tags.

 3-44 Sentinel Reference Guide

Format
INFO_CLEARTAGS(<IN handle>)

Data Types
Argument Type Description

IN handle string
(INPUT)

Type of information block

Table 3-40: INFO_CLEARTAGS-DataTypes

INFO_CLOSE

This command is used to close an infoblock session. When called, it will first
send any unsent infoblocks just as the INFO_SEND command will. It will then
send an infoblock session close message by setting the EOD (End Of Data)
attribute of the infos element to “true”. After sending the close message, the
segment number (“segnum”) is incremented by one.

Format
INFO_CLOSE(<IN handle>)

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

Table 3-41: INFO_CLOSE-DataTypes

INFO_CONSTANTTAGS

Use this command to name tags that will not be cleared out when
“INFO_CLEARTAGS” has been called. Pass in zero or more tag names to create
the set of constant tags. Multiple calls to this function will reset the list of
constant tags.

Format
INFO_CONSTANTTAGS(<IN handle>, [<IN tag name>,
…])

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

IN tag name string
(INPUT)

name to refer to IN handle

Table 3-42: INFO_CONSTANTTAGS-DataTypes

INFO_CREATE

This will create a new information block set. You must pass a handle (which you
will use in every other command to affect this informational block set). You must

 Collector Parsing Commands 3-45

also pass a type. This is a string of your choosing, but it should be formalized (see
“INFO_SEND”).

If you call “INFO_CREATE” on an already existing handle, it will clear the
contents at that handle as though you had begun a new handle. You will need to
call “INFO_SETTAG” and “INFO_CONSTANTTAGS” again.

Format
INFO_CREATE(<OUT handle>,<IN type>)

Data Types
Argument Type Description

OUT handle string
(OUTPUT)

name to refer to IN type

IN type string
(INPUT)

type of information block

Table 3-43: INFO_CREATE-DataTypes

INFO_DUMP

This command will persist the current state of the info block set into a string
variable. This was included to facilitate testing, but can also be used to play back
information block sets, or save them to a text file or other type file of choice. It
also lacks the side effect the “INFO_SEND” has in that it does not clear out the
current state.

Format
INFO_DUMP(<IN handle>, <OUT string-variable>)

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

OUT string-
variable

string
(OUTPUT)

string variable to refer to IN handle

Table 3-44: INFO_DUMP-DataTypes

INFO_PUSH

This will tag the current values of all tag names (through their associated
variables) and push them onto the end of a list of info blocks referred to by a
handle. Blocks will continue to accumulate in the set until emptied by calling
“INFO_CREATE”, “INFO_SEND” or “INFO_CLOSE”. For INFO_CREATE,
no action is taken. For INFO_SEND, the info blocks are sent to
Collectormanager. For INFO_CLOSE, the info blocks are sent to
Collectormanager and an info block close (EndOfData or EOD) message is sent.

 3-46 Sentinel Reference Guide

Format
INFO_PUSH(<IN handle>)

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

Table 3-45: INFO_PUSH-DataTypes

INFO_SEND

This takes the current set of info blocks and sends them out on a communication
channel specified by the type that was used during “INFO_CREATE”, appended
to the word “infoblock.”, including the period. So if the type were “vulnerability”,
then the channel name that the message will be sent on will be named
“infoblock.vulnerability”.

In addition, this command will clear out the current set of info blocks and
increment the segment number (“segnum”) by one.

Format
INFO_SEND(<IN handle>)

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

Table 3-46: INFO_SEND-DataTypes

INFO_SETTAG

This command will bind a script variable to a name of an attribute. When
INFO_PUSH is called (see “INFO_PUSH”), all variables that were bound with
this command will be set as attributes in a block entry.

Format
INFO_SETTAG(<IN handle, IN tag name, IN variable)

Data Types
Argument Type Description

IN handle string
(INPUT)

type of information block

IN tag name string
(INPUT)

type of tag name

IN variable string
(INPUT)

type of variable

Table 3-47: INFO_SETTAG-DataTypes

Vulnerability Info Block Tags
The following are valid vulnerability Info Block tags for the INFO_SETTAG
command. The tags marked as required must be set in order for the info block to

 Collector Parsing Commands 3-47

be stored as vulnerability. Even if the info block is not stored as vulnerability, the
tags marked as constant will still be extracted from the info block. If a tag is set
that is not in the following list, the vulnerability back end will ignore the tag.

Tag Name Explanation Type Constant Required
ScannerInstance The name the user

gives to this
scanner instance.
Usually set in the
Collector
parameters.

String X

ProductName Name of the
scanner.

String X

ProductVersion Version of the
scanner

String X

ScannerType The type of
scanner.

String X

Vendor The scanner
vendor name.

String X

ScanType PARTIAL or
FULL

String X

ScanStartDate The time the scan
started

String

ScanEndDate The time the scan
ended

String

IP The IP of the
resource

String X

HostName The hostname of
the resource

String

Location The location of the
resource

String

Department The department of
the resource

String

BusinessSystem The business
system of the
resource

String

OperationalEnvironment The operation
environment of the
resource

String

Regulation The regulation of
the resource

String

RegulationRating The regulation
rating of the
resource

String

Criticality The criticality of
the resource [1 –
25]

Number

VulnModule The module used
to detect the
vulnerability

String

PortNumber The port number
of the vulnerability

Number

 3-48 Sentinel Reference Guide

Tag Name Explanation Type Constant Required
PortName The name of the

port of the
vulnerability

String

NetworkProtocol The network
protocol of the
vulnerability

Number

ApplicationProtocol The application
protocol of the
vulnerability

String

AssignedVulnSeverity The assigned
vulnerability
severity.

Number

ComputedVulnSeverity The computed
vulnerability
severity.

Number

VulnDescription The vulnerability
description.

String

VulnSolution The vulnerability
solution.

String

VulnSummary The vulnerability
solution.

String

VulnCrossRefs A list of codes for
the vulnerability.

String

DetectedOs The operating
system detected
when discovering
the vulnerability

String

DetectedOsVersion The operating
system version
detected when
discovering the
vulnerability.

String

ScannedApp The application
detected when
discovering the
vulnerability

String

ScannedAppVersion The application
version detected
when discovering
the vulnerability

String

VulnUserName The vulnerability
username.

String

VulnUserDomain The domain of the
vulnerability user.

String

VulnTaxonomy The taxonomy of
the vulnerability.

String

ScannerClassification The vulnerability
classification given
by the scanner.

String

 Collector Parsing Commands 3-49

Tag Name Explanation Type Constant Required
ExtendedInformation Extended

information to
store along with
this vulnerability

String

VulnName The name of the
vulnerability given
by the scanner.

String

Table 3-48: Vulnerability Info Block Tags

Asset Info Block Tags
The following are valid asset Info Block tags for the INFO_SETTAG command.
The tags marked as required must be set in order for the info block to be stored as
an asset record in the database (* The info block needs to have at least either a
HostName or an IpAddress or both to be stored as an asset record in the database,
if neither HostName nor IpAddres exist, the recorded will be ignored.). If a tag is
set that is not in the following list, the asset back end will ignore the tag.

Tag Name Explanation Type Constant Required
ScanStartDate String
CustomerId The Id of the

customer in
CUST table

Number X

AssetEntryType Type of asset String X
AssetCategory Asset category String
EnvironmentIdentity Environment

Identity
String

AssetValue Asset value String
Criticality Criticality String
Sensitivity Sensitivity String
AssetName Asset name String X

Note:Required
for soft asset

ProductName Product name String
ProductVersion Product

version
String

Vendor Vendor name String
OwnerFirstName Asset owner

first name
String

OwnerLastName Asset owner
last name

String

OwnerPhoneNumber Asset owner
phone number

String

OwnerEmail Asset owner
email address

String

MaintainerFirstName Asset
maintainer first
name

String

MaintainerLastName Asset
maintainer last
name

String

 3-50 Sentinel Reference Guide

Tag Name Explanation Type Constant Required
MaintainerPhoneNumber Asset

maintainer
phone number

String

MaintainerEmail Asset
maintainer
email address

String

BusinessUnit The Business
Unit name the
asset belongs
to

String

LineOfBusiness The line of
business name
the asset
belongs to

String

Division The division
name the asset
belongs to

String

Department The
department
name the asset
belongs to

String

PersonnelSeq The sequence
number for the
personnel

Number

IpAddress IP address String X* - either an
IP address or a
host name is
required

HostName Hostname String X* - either an
IP address or a
host name is
required

MacAddress Mac address String
RackNumber Rack number String
Building Building String
Room Room String
AddressLine1 Address line 1 String
AddressLine2 Address line 2 String
City City String
State State String
Country Country String
ZipCode Zip Code String
NetworkIdentity Network

Identity
String

Table 3-49: Asset Info Block Tags

INFO_* COMMAND EXAMPLES
Sentinel batches vulnerability scans into smaller chunks (info block sessions) that
can be more easily processed. An info block session contains multiple info block
sets, each with an increasing segment number (“segnum”) followed by an info
block session close message. An instance of an info block session is referred to by

 Collector Parsing Commands 3-51

its globally unique “id.” Each time INFO_SEND is called, an info block set with
the currently “pushed” values and the current segment number (“segnum”) will be
sent. Immediately after the info block set is sent, the segnum will be incremented
by one. The INFO_SEND is called for each batch of data, after which the
INFO_CLOSE command is called to close the info block session. The info block
close message consists of an info block set with the attribute EOD set to “true”.

Example 1 (for vulnerability):

INFO_CREATE(h_vuln,"vulnerability")
INFO_SETTAG(h_vuln,"ALPHA", s_alpha)
INFO_SETTAG(h_vuln,"BETA", i_beta)
INFO_SETTAG(h_vuln,"GAMMA", s_gamma)
INFO_SETTAG(h_vuln,"DELTA", i_delta)
INFO_SETTAG(h_vuln,"^1E*P$S I(L)O.N--",
f_epsilon)
INFO_CONSTANTTAGS(h_vuln,"GAMMA","DELTA","^1E*P$S
I(L)O.N--")
SET(i_beta=12345)
SET(i_delta=123456789)
SET(f_epsilon=1.234)
COPY(s_alpha:"a is for apple")
COPY(s_gamma:"c is for coffee")
INFO_PUSH(h_vuln)
INFO_CLEARTAGS(h_vuln)
INFO_PUSH(h_vuln)
INFO_DUMP(h_vuln, s_simulate)
INFO_SEND(h_vuln)
SET(i_beta=6789)
SET(i_delta=987654321)
SET(f_epsilon=3.1415926)
COPY(s_alpha:"a is for acorn")
COPY(s_gamma:"c is for carrot")
INFO_PUSH(h_vuln)
INFO_SEND(h_vuln)
INFO_CLOSE(h_vuln)

Results 1:

 3-52 Sentinel Reference Guide

<?xml version="1.0" encoding="UTF-8"?>
<infos id="B008961E00CB1026B8F000065BBD13AB"
type="vulnerability" segnum=”0” version=”4.2.0.0”
EOD=”false”>
<info ALPHA="a is for apple" BETA="12345"
DELTA="123456789" GAMMA="c is for coffee"
_1EPSILON="1.234"/>
<info ALPHA="" BETA="0" DELTA="123456789"
GAMMA="c is for coffee" _1EPSILON="1.234"/>
</infos>
<?xml version="1.0" encoding="UTF-8"?>
<infos id="B008961E00CB1026B8F000065BBD13AB"
type="vulnerability" segnum=”1” version=”4.2.0.0”
EOD=”false”>
<info ALPHA="a is for acorn" BETA="6789"
DELTA="987654321" GAMMA="c is for carrot"
_1EPSILON="3.1415926"/>
</infos>
<?xml version="1.0" encoding="UTF-8"?>
<infos id="B008961E00CB1026B8F000065BBD13AB"
type="vulnerability" segnum=”2” version=”4.2.0.0”
EOD=”true”>
</infos>

Example 2 (for assets):
INFO_CREATE(handle,"asset")
INFO_SETTAG(handle, "ScanStartDate", s_date)
INFO_SETTAG(handle, "CustomerId", i_customerid)
INFO_SETTAG(handle, "AssetEntryType",
s_entrytype)
INFO_SETTAG(handle, "IpAddress", s_ip)
INFO_SETTAG(handle, "AssetCategory", s_category)
COPY(s_date:"2004|Aug|03|09|08|03|-0500")
SET(i_customerid=1)
COPY(s_entrytype:"physical")
COPY(s_ip:"10.0.0.1")
COPY(s_category:"DESKTOP")
INFO_PUSH(handle)
INFO_DUMP(handle, s_assetinfo)
INFO_SEND(handle)
INFO_CLOSE(handle)

Results 2:

 Collector Parsing Commands 3-53

<?xml version="1.0" encoding="UTF-8"?>
<infos id="3A4A1CD0B56E10299966000D56C732D7"
type="asset" segnum="0" version="4.2.0.0"
EOD="false">
<info AssetCategory="DESKTOP"
AssetEntryType="physical" CustomerId="1"
IpAddress="10.0.0.1"
ScanStartDate="2004|Aug|03|09|08|03|-
0500"/></info>
</infos>

IPTONUM

The IPTONUM command converts a string representation of IPv4 address into an
integer number and places the integer number in an integer variable. This function
only supports IPv4 addresses. An IPv4 address that does not fall in the valid range
results in invalid data.

Format
IPTONUM(ip_address, i_integer, i_valid)

Data Types
Argument Type Description

ip_address svar(INPUT) String IPv4 address.
i_integer numeric(OUTPUT) String IPv4 address is converted into an

integer value. The integer value is
placed in this variable.

i_invalid ivar(OUTPUT)
[OPTIONAL}

Value of 0 implies the IP is invalid.
Valid of 1 implies the IP is valid.

Table 3-50: IPTONUM-DataTypes

For example:

In the following example, the IPv4 address “10.10.10.255” is converted to an
integer number. i_valid is set to 1, which implies the result is valid.

IPTONUM("10.10.10.255", i_y, i_valid)

Current Output Variable’s Contents:

i_y = 168430335
i_valid = 1

In the following example, the invalid IPv4 address “10.10.10.258” is converted to
an integer number 0. i_valid is set to 0, which implies the result is invalid.

IPTONUM("10.10.10.258", i_y, i_valid)

Current Output Variable’s Contents:

 3-54 Sentinel Reference Guide

i_y = 0
i_valid = 0

The NUMTOIP command converts a number to an IP. For more information, see
“NUMTOIP”.

LENGTH OR LENGTH-OPTION2

The LENGTH command sets a numeric variable from the length in bytes of a
string variable (not counting the terminating zero).

NOTE: Within the Visual Editor of the Collector Builder, LENGTH and
LENGTH-OPTION2 are listed as separate commands. They are same
command. They are provided as descriptions for different variations of
the same command. If you were to use LENGTH-OPTION2 in the text
editor, you need to specify LENGTH.

Format
LENGTH(i_length, s_variable)

Data Types
Argument Type Description

s_variable string
(INPUT)

The string (usually string variable) in which
the length is computed.

i_length numvar
(OUTPUT)

The length of the string variable, s_variable,
is placed in this numeric variable.

Table 3-51: LENGTH OR LENGTH-OPTION2-DataTypes

For example:

LENGTH(i_length, source)
LENGTH(i_num_bytes, "It makes no sense to do
this, as we know the string whose length we are
checking")

Results:

i_num_bytes = 80

LOOKUP

The LOOKUP command matches data found in the receive buffer or in a string
with key strings found in a specified lookup key file.

If a record is found that matches the data byte for byte, the parsing commands in
the lookup key file record are processed.

If a string is specified as the first parameter in the LOOKUP command, the
LOOKUP command uses that string when searching the lookup key file.

There are five arguments or parameters with this command.

 Collector Parsing Commands 3-55

 compare: If a numeric value is specified as this parameter, that number of
bytes (the numeric value) of data from the receive buffer, starting at the Rx
buffer pointer position, is used as the string when comparing to the lookup
key file key strings.

 lookup name: This parameter specifies the lookup key file name relative to
the WORKBENCH_HOME directory.

 imatch: An optional integer variable that can be specified that returns the
status of the LOOKUP command. (0=no match found, 1=found match).

 parameter file: An optional parameter that is the name of a parameter file to
use other than the default parameter file. The default parameter file name is
<Collector>.par. This filename should not include the .par suffix.

 column name: An optional parameter is the column with the parameter file
to use for lookup values. The default column name is the template name. If
you specify this parameter, you must also use a parameter filename.

Format
LOOKUP(compare, lookup filename [, imatch] [,
[parameter filename] [, column name]])

Data Types
Argument Type Description

compare string
(INPUT)
or
numeric
(INPUT)

The data to be used to compare against the
fields in the lookup key file. This is a byte-
by-byte comparison.
The number of bytes from the receive
buffer, using the current Rx buffer pointer
position, to use to compare against the
fields in the lookup key file. This is a byte-
by-byte comparison.
NOTE: This will only work if rxbuff
was used to set the receive buffer.

lookup
filename

string
(INPUT)

The lookup key file name

imatch numvar
(OUTPUT)
[OPTIONAL]

A match was found.
0=No
1=Yes

parameter
filename

string
(INPUT)

The parameter filename.
Default: Collector.par

column name string
(INPUT)

The column within the parameter file to
use.
Default: Collector name

Table 3-52: LOOKUP-DataTypes

For example:

LOOKUP(data, filename, imatch)

In the following example, the key_01 filename is determined from the name put
in the parameter file, not the lookup key filename.

 3-56 Sentinel Reference Guide

LOOKUP(s_variable, {key_01})
LOOKUP(s_variable, {key_01}, imatch, "Send One
Alert", "GeoElements")

If any parameter definitions are in the lookup file, look for them in the
GeoElements column of the Send One Alert parameter file.

NEGSEARCH

The NEGSEARCH command performs a backwards search for a string in the
receive buffer. There are two parameters with this command.

 search: The search begins at the current Rx buffer pointer position and
continues backwards until it finds the string or until it reaches the beginning
of the receive buffer. If the search finds the string, the Rx buffer pointer
updates to point to the first byte of the search string. If the search does not
find the string, the Rx buffer pointer is unchanged.

 ifound: An optional parameter, it is an integer variable that is set to 1 if the
search finds the string and is set to zero if the search does not find the string.

Format
NEGSEARCH(search[, ifound])

Data Types
Argument Type Description

search string
(INPUT)

The searched string in the receive buffer,
starting with the current Rx buffer pointer
position and searching backwards.

ifound numvar
(OUTPUT)
(OPTIONAL)

Returns whether or not the search string
was found.
0=not found
1=found

Table 3-53: NEGSEARCH-DataTypes

For example:

NEGSEARCH("MINOR ALARM")
NEGSEARCH(search_string)

The following examples search for a carriage-return and a line-feed:

NEGSEARCH("\0d0a\")
NEGSEARCH(data, ifound)

Another example:

The underscored letter represents the current Rx buffer pointer position in the
example.

NOTE: For hex substitution, \0000\ terminates a string; therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

 Collector Parsing Commands 3-57

Rx Buffer = "Minor Alarm Radio A"
NEGSEARCH("Ala")

Result:

Rx Buffer = "Minor Alarm Radio A"

NUMTOHEX

The NUMTOHEX command converts a numeric number to hex data and places
those hex bytes (up to 4 bytes) in a string.

Format
NUMTOHEX(i_decimal, hex_data)

Data Types
Argument Type Description

i_decimal numeric
(INPUT)

Integer value to translate into hex data.

hex_data svar
(OUTPUT)

String of 1 to 4 bytes that are the hex
byte(s) given by the numeric value,
i_decimal.

Table 3-54: NUMTOHEX-DataTypes

For example:

In the following example, the decimal number 16777215 is converted to hex data.

SET(i_decimal = 16777215)
NUMTOHEX(i_decimal, shex)

Current Output Variable’s Contents:

shex = "\ff ff ff\"

NUMTOIP

The NUMTOIP command converts a numeric number to an IPv4 address, and
places the IP address in a string.

Format
NUMTOIP(i_integer, ip_address)

Data Types
Argument Type Description

i_integer numeric(INPUT) Integer value to translate into IPv4
address.

ip_address svar(OUTPUT) String IPv4 address
Table 3-55: NUMTOIP-DataTypes

For example:

In the following example, the decimal number 16777215 is converted to IPv4
address.

 3-58 Sentinel Reference Guide

SET(i_integer = 167772161)
NUMTOIP(i_integer, s)

Current Output Variable’s Contents:

s = "10.0.0.1"

The IPTONUM command converts an IP to a number. See “IPTONUM” for more
information.

PARSER_ATTACHVARIABLE

The PARSER_ATTACHVARIABLE command allows the name of a name-value
pair to be associated with a target_variable.

In most cases, suggest that you create a parser and attach a variable in the
initialization state outside of the loop. Then you can reuse that parser by using it
in the parsing loop.

For related parsing commands, see “PARSER_CREATEBASIC” command and
“PARSER_PARSESTRING” command.

NVP (Name-value Pair) Parser
The following fragment of code demonstrates the NVP parser:

PARSER_CREATEBASIC (h_nvp, "nvp", "separator==",
"entry_separator= ", "value_quotes=/"",
value_quotes_optional=yes")
PARSER_ATTACHVARIABLE (h_nvp,"this",s_this)
PARSER_ATTACHVARIABLE (h_nvp,"me",s_me)
PARSER_ATTACHVARIABLE (h_nvp,"hello",s_hello)
PARSER_PARSESTRING (h_nvp, "this=/”that/”
me=/"you = them/" hello=/”goodbye/”")

Parameters
The following parameters are recognized when they appear in the following
format:

"<parameter>=<value>"

<parameter> is one of the items below and <value> is an appropriate value for
that parameter.

 Separator: The character you use to separate the name from the value
 entry_separator: The character you use to separate one name-value pair

from the next
 name_quotes: The character you use to enclose the name (“ or ‘, for

instance)
 value_quotes: The character you use to enclose the value
 name_quoted: Set to yes to make the NVP paser observe the name_quotes

option
 value_quoted: Set to yes to make the NVP parser observe the value_quotes

option

 Collector Parsing Commands 3-59

 name_quotes_optional: Set to yes to allow option quotes on the name. If
this is yes and quotes are omitted, then optional whitespace followed by the
separator will terminate the name.

 value_quotes_optional: Set to yes to allow option quotes on the name

If this is yes and quotes are omitted, optional whitespace followed by the
entry_separator will terminate the value.

Format
PARSER_ATTACHVARIABLE(<parser_handle>, <name>,
<target_variable>)

Data Types
Argument Type Description

parser_handle string variable
(INPUT)

The handle variable of a created parser.

name string (INPUT) The name of a name-value pair.
target_variable any variable

(OUTPUT)
The variable that will be set with the value
associated with the name of a name-value
pair.

Table 3-56: PARSER_ATTACHVARIABLE-DataTypes

The following is Checkpoint Parser example.

COLLECTOR SETUP STATE:
PARSER_CREATEBASIC(h_nvp,"nvp", "separator==",
"entry_separator= ", "value_quotes=/"",
"value_quotes_optional=yes")
PARSER_ATTACHVARIABLE(h_nvp,"action", s_EVT)
PARSER_ATTACHVARIABLE(h_nvp,"d_port", s_DP)
PARSER_ATTACHVARIABLE(h_nvp,"proto", s_P)
PARSER_ATTACHVARIABLE(h_nvp,"src", s_SIP)
PARSER_ATTACHVARIABLE(h_nvp,"dst", s_DIP
PARSE STATE:
PARSER_PARSESTRING(h_nvp,s_RXBufferString)

PARSER_CREATEBASIC

The PARSER_CREATEBASIC command defines a parser and associates it with
a parser_handle. For more information, see “NVP (Name-value Pair) Parser”
under “PARSER_ATTACHVARIABLE”.

In most cases, suggest that you create a parser and attach a variable in the
initialization state outside of the loop. Then you can reuse that parser by using it
in the parsing loop.

For another related parsing command, see “PARSER_PARSESTRING”
command.

 3-60 Sentinel Reference Guide

Format
PARSER_CREATEBASIC(<parser_handle>,
<parser_name>, [, <nvp> [, ...]])

Data Types
Argument Type Description

parser_handle string variable
(OUTPUT)

The variable with which you will refer to
this parser from this point forward.

parser_name string (INPUT) The string name of the simple parser you are
creating.
NOTE: At this time, only nvp is
recognized.

nvp string (INPUT)
(OPTIONAL)

The name-value pair. Zero or more strings
that contain a property name, followed by
an equal sign, followed by a value. The
parameters that are recognized are
determined by the parser_name that was
selected.
NOTE: When the parser name is set to
nvp, you must use the following
arguments:
"separator=="
"entry_separator= "
"value_quotes=/""
"value_quotes_optional=yes"

nvp1 string (INPUT)
(OPTIONAL)

Name-value pair 1.

nvp2 string (INPUT)
(OPTIONAL)

Name-value pair 2.

… string (INPUT)
(OPTIONAL)

Other name-value pairs.

Table 3-57: PARSER_CREATEBASIC-DataTypes

For an example, see “Checkpoint Parser example” under
“PARSER_ATTACHVARIABLE”, Data type.

PARSER_NEXT

The PARSER_NEXT command advances the parser to the next position in the
parse string filling out the variables set by the command
“PARSER_ATTACHVARIABLE”.

Format
PARSER_NEXT(<parser_handle>, <success_flag>)

Data Type
Argument Type Description

 Collector Parsing Commands 3-61

Argument Type Description
parser_handle string

variable
(INPUT)

The handle variable of a created parser.

success_flag numvar
(INPUT)

0: unsuccessful parse
1: a successful parse

Table 3-58: PARSER_NEXT-DataTypes

PARSER_PARSESTRING

The PARSER_PARSESTRING command will process the string_to_parse using
the created parser referenced by the parser_handle. This allows you to construct
any arbitrary string for parsing, rather than insist upon a stream source or the Rx
Buffer.

For more information, see “PARSER_ATTACHVARIABLE” command and
“PARSER_CREATEBASIC” command.

The reserved variable s_RXBufferString can be used as a string_to_parse after the
Receive State to parse the script input. For more information, see “NVP (Name-
value Pair) Parser” under “PARSER_ATTACHVARIABLE”.

Format
PARSER_PARSESTRING(<parser_handle>,
<string_to_parse>)

Data Types
Argument Type Description

parser_handle string
variable
(INPUT)

The handle variable of a created parser.

string_to_parse string
(INPUT)

The single string that will be run through
this parser.

Table 3-59: PARSER_PARSESTRING-DataTypes

For an example, see “Checkpoint Parser example” under
“PARSER_ATTACHVARIABLE”, Data type.

PAUSE

The PAUSE command causes the current script to immediately pause “n” number
of seconds. The PAUSE command works between instructions in a parsing state
and between states. The PAUSE command is useful in setting polling cycle times
or to ensure you don’t poll too quickly (such as in polling a database log).

You can specify several PAUSE commands during parsing.

 3-62 Sentinel Reference Guide

Format

PAUSE(iseconds)

Argument Type Description
iseconds numeric

(INPUT)
Number of seconds to pause before going to
the next state.

Table 3-60: PAUSE-DataTypes

For example:

PAUSE(10)
PAUSE(iseconds)

Or

IF(slowing=true)
pause(50)
ENDIF()

POPUP

The POPUP command was deprecated in Sentinel 6.0. The debugger in the
Sentinel Control Center provides similar functionality.

PRINTF

The PRINTF command copies formatted data into a string variable (svar). The
PRINTF command is an advanced parsing command. If you are new to the
parsing command language, consider using the “COPY” command and the
“APPEND” command until you are comfortable with the language.

When using this command:

 Specify a svar as the destination string.
 Specify a format string.
 Specify any optional additional parameters to scan based on the format string.

Format String
To use HEX data in the format string, use the following convention:

\HX HX HX\

If you want to include a line feed at the end of the format string, the format string
must look like the following string:

Format String\0a\

The format string for a carriage return is \0d0a\, for example:

PRINTF(message,"Voltage is %lf \0d0a\",f_volts)

The format string for a tab is \09\, for example:

 Collector Parsing Commands 3-63

PRINTF(message,"Voltage = \09\ %lf",f_volts)

Format
PRINTF(dest, format [, <paramList>])

where:

<paramList> ::= var [, <paramList>]

Data Types
Argument Type Description

dest svar
(OUTPUT)

The destination string variable in which to
place the formatted string.

format string
(INPUT)

The format of the string to copy into the
destination string variable. Similar to the
format of the C printf command; for
example, “Looping %d in %s” (see %
Characters for Output Format).

parm1 all
(INPUT)
[OPTIONAL]

All data types except array. Must match the
format string.

parm2 all
(INPUT)
[OPTIONAL]

All data types except array. Must match the
format string.

… all
(INPUT)
[OPTIONAL]

All data types except array. Must match the
format string.

Table 3-61: PRINTF-DataTypes

Format
% Characters for Output Format

Character Type Output Format
%d integer Signed decimal integer.
%le float Signed value having the form [-]d.dddd e

[sign]ddd
where “d” is a single decimal digit, “dddd” is one
or more decimal digits, “ddd” is exactly three
decimal digits and sign is “+” or “-“.

%lf float Signed value having the form [-]dddd.dddd
where dddd is one or more decimal digits.
The number of digits before the decimal point
depends on the magnitude of the number and the
number of digits after the decimal point depends
on the requested precision.

%lg float Signed value printed in f or e format, whichever is
more compact for the given value and precision.
The e format is used only when the exponent of
the value is less than -4 or greater than or equal to
the precision argument. Trailing zeroes are
truncated and the decimal point appears only if
one or more digits follow it.

%s string Print a string variable.
Table 3-62: PRINTF-Formats

 3-64 Sentinel Reference Guide

Displaying Digits of Precision
By default, the PRINTF command displays a floating point number to six digits
of precision. The six digits of precision default also apply to double precision
numbers.

To display additional digits of precision, specify a value for the precision field in
the PRINTF() format specification:

%[<width>][.<precision>] type>

For example:

PRINTF(dest, "%2.3lf", fvar)

will produce the output: 22.012, representing 2 positions to the left of the decimal
point and 3 positions to the right of the decimal point.

The following examples show how to pass string and integer variables.

PRINTF(dest,format_string) PRINTF(mystring,
"val of matrix[%d][%d] = %s",
index_x, index_y, matrix[index_x][index_y])
PRINTF(dest,"Looping %d in state %s",iloop,state)
PRINTF(dest,"Formatted %s Data into
%s","string","dest")

The following example shows how to pass a float variable to a string.

PRINTF(message,"Voltage is %lf",f_volts)

To print floating point numbers, use %lf or %le.

REGEXPREPLACE

The REGEXPREPLACE command searches and replaces strings, using regular
expressions. When the search finds the string, it substitutes the regexpreplace
string. The REGEXPREPLACE command does a global replace, not just a
replace of the first occurrence.

Format
REGEXPREPLACE(dest_string, search, replace)

Data Types
Argument Type Description

dest_string svar
(INPUT/
OUTPUT)

The string variable that will have bytes replaced.

search string
(INPUT)
or
svar
(INPUT/
OUTPUT)

The search string to replace.

 Collector Parsing Commands 3-65

Argument Type Description
replace string

(INPUT)
Or
svar
(INPUT/
OUTPUT)

The replacement string; can be of zero length to
indicate null string.

Table 3-63: REGEXPREPLACE-DataTypes

For example:

COPY(string:"The 1st time")
REGEXREPLACE(string, "1st", "2nd")

Result:

string = "The 2nd time"

NOTE: In this example, you can substitute a regular expression for the
“1st” string.

To replace with null string

COPY(string:"The 1st time")
REGEXPREPLACE(string, "1st", "")

Result:

string="The time"

For more information on regular expressions and the portable character set, see
Regular Expressions.

Sentinel uses a POSIX (Portable Operating System Interface for UNIX)-
compliant library for regular expressions. POSIX is a set of IEEE and ISO
standards that help assure compatibility between POSIX-compliant operating
systems, which includes most varieties of UNIX.

REGEXPSEARCH, REGEXPSEARCH_EXPLICIT OR
REGEXPSEARCH_STRING

The REGEXPSEARCH command performs a forward search in the receive
buffer (Rx Buffer) or designated input string variable for a string, using regular
expressions. It also supports expression groups.

NOTE: Within the Visual Editor of the Collector Builder,
REGEXPSEARCH, REGEXPSEARCH_EXPLICIT or
REGEXPSEARCH_STRING are listed as separate commands. They are
same command. They are provided as descriptions for different
variations of the same command. If you were to use
REGEXPSEARCH_EXPLICIT or REGEXPSEARCH_STRING in the
text editor, you must provide REGEXPSEARCH.

Receive Buffer
The search within the receive buffer goes as follows:

 3-66 Sentinel Reference Guide

 The search begins at the current Rx buffer pointer position and continues
searching forward until the search finds the string or until the search reaches
the end of the receive buffer.

 If the search finds the string, the Rx buffer pointer updates to point to the first
byte of the string for which it searched. This Rx buffer pointer position is
retained when transitioning across states unless explicitly changed using the
RESET command.

 If the search does not find the string, the Rx buffer pointer does not move.

When using this command to search the receive buffer, the optional second
parameter is an integer variable that is set to 1 if the search finds the string and
sets to 0 if the search does not find the string.

String Variable
String variables do not support the parse pointer, so dynamics when searching in
a string variable are different. The regular expression pattern will either match
some or all of the input string. If the regular express pattern is configured with
expression groups, then input string content that matches the expression groups
can be stored in output variables. There are two expression grouping output
options. One is to populate the list of variables in order of the expression groups,
and the other is to designate a string array.

If the regular expression successfully matches the input – string variable, a
designated list of variables or output array is set with the group values and the
found variable is set to one more than the number of groups or zero upon match
failure.

When the output of the group values is to be a string array, the first element
indexed with “0” will contain the match string. The match string will contain the
content that matched the entire regular expression independent of expression
groups. So, the first expression group’s content will be stored in the array position
indexed with “1”. When looping through the output array, keep in mind the
i_Found_Tokens value compensates for the first element being the match string
by always being one more than the total number of groups. In a for loop, the stop
condition of being less than the value i_Found_Tokens will still work, but you
will likely start your index at “1” instead of “0”.

When designating the group values to be stored in a list of output variables
instead of an array, the command is capable of performing type conversion.
Although the input string is of type string, components within the string can be
numerals. If the intent is to treat these numerals as integers or floating point
values, simply designating the output variables with the proper type will cause a
conversion to be performed.

Simple REGEX Matching
Expression Description

. Any character
\d Any digit
\w Any alphanumeric character
\s Any white space
+ 1 or more of the previous
* 0 or more of the previous

Table 3-64: Simple REGEX Matching

 Collector Parsing Commands 3-67

Format
As a receive buffer:

REGEXPSEARCH(search[, ifound])

As a string variable:

REGEXPSEARCH(Input_String, s_Regular_Exp_Pattern,
i_Found_Tokens[, s_Output_Results[]])
REGEXPSEARCH(s_Input_String,
s_Regular_Exp_Pattern, i_Found_Tokens, s_Match[,
var1, var2, ...)]

Data Types
Argument Type Description

s_Input_String String or String
Variable
(INPUT)
[OPTIONAL]

The string or string variable to search
for regex matches specified in regex.

s_Regular_Exp_Pattern String
(INPUT)

The string to search for in the receive
buffer (searching from the current Rx
Buffer pointer position forward) or an
input string literal or input string
variable.

i_Found_Tokens numvar
(OUTPUT)
[OPTIONAL]

Returns whether or not the search string
was found.
0: Regular expression pattern doesn’t
match
1: Regular expression pattern matches,
but not expression groups designated
2: Regular expression pattern matches
with 1 expression group designated
N+1: Regular expression pattern
matches with N expression groups
designated
NOTE: The variable
I_found_tokens can be used as a
test for match, because the value
will be non-zero when the regular
expression matches.

s_Match String
(OUTPUT)
[CONDITIONA
L]

Is only populated on pattern match, and
must be designated when a list
expression group output variables are
used. When the group values are stored
in an output array, then s_Match is
NOT a valid parameter.

 3-68 Sentinel Reference Guide

Argument Type Description
Variable List
OR
s_Output_Results[]

All are possible
(OUTPUT)
[OPTIONAL]
or
String Array
(OUTPUT)
[OPTIONAL]

The list of variables to place the group
values into. Value is assignment is in
order of group values designated when
following precedence rules.

Table 3-65: REGEXPSEARCH-DataTypes

The following examples search for a carriage-return and a line-feed in the receive
buffer:

REGEXPSEARCH("\0d0a\")

The following example searches for the word alarm in the receive buffer:

REGEXPSEARCH("alarm")

NOTE: For hex substitution, \0000\ terminates a string; therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

A detailed example of searching for a pattern within a literal string value:

REGEXPSEARCH("2003 Jan 15 13:34:20",
"(/\d+)/\s+(/\w+)/\s+(/\d+)/\s+(/\d+):(/\d+):(/\d
+)", i_Success, s_Match, s_Year, s_Month, s_Day,
s_Hour, s_Minute, s_Second)

Where,

i_Success = 7
s_Match = 2003 Jan 15 13:34:20
s_Year = 2003
s_Month = Jan
s_Day = 15
s_Hour = 13
s_Minute = 34
s_Second = 20

For more information on regular expressions and the portable character set, see
section “Regular Expressions” section.

Sentinel uses a POSIX (Portable Operating System Interface for UNIX)-
compliant library for regular expressions. POSIX is a set of IEEE and ISO
standards that help assure compatibility between POSIX-compliant operating
systems, which includes most varieties of UNIX.

REPLACE

The REPLACE command searches and replaces strings.

When the search finds the string, it substitutes the replace string. The REPLACE
command does a global replace, not just a replace of the first occurrence.

 Collector Parsing Commands 3-69

Format
REPLACE(dest_string, search, replace)

Data Types
Argument Type Description

dest_string svar
(INPUT/
OUTPUT)

The string variable that will have bytes
replaced.

search string
(INPUT)

The search string to replace.

replace string
(INPUT)

The replacement string.

Table 3-66: REPLACE-DataTypes

For example:

COPY(string:"The 1st time")
REPLACE(string, "1st", "2nd")

Result:

string = "The 2nd time"

NOTE: In this example, you can substitute a regular expression for the
“1st” string.

RESET

The RESET command resets the Rx buffer pointer to zero.

Format
RESET()

For example, the Rx buffer pointer position is shown by the ^ symbol.

rxbuff = "abcdefg"
 ^
RESET()

Result:

"abcdefg"
 ^

RXBUFF

The RXBUFF command overwrites the receive buffer with the contents of a
quoted string or string variable. The contents of the receive buffer will change
immediately and the Rx buffer pointer and held value will reset to zero.

 3-70 Sentinel Reference Guide

Format
RXBUFF(s_data)

Data Types
Argument Type Description

s_data string
(INPUT)

The data string to write to the receive
buffer. This string will immediately be the
new receive buffer string.

Table 3-67: RXBUFF-DataTypes

For example:

In the following example, the “FILER” command reads a file called alert.data and
places the contents of that file into a string variable called s_data. This example
uses the assumption that:

alert.data: "Minor Alarm Xterminal A"

Next, the RXBUFF Command places that data into the receive buffer, just as
though the data was received from a port.

FILER("alert.data", s_data)
RXBUFF(s_data)
//copies data from Rx BUFFER into
S_Alarm_Priority, stopping before the string
"Alarm")
COPY(S_Alarm_Priority:,” Alarm”)

Result:

S_Alarm_Priority= "Minor"

SEARCH

The SEARCH command performs a forward search in the receive buffer (Rx
Buffer) for a string.

The search goes as follows:

 The search begins at the current Rx buffer pointer position and continues
searching forward until the search finds the string or until the search reaches
the end of the receive buffer.

 If the search finds the string, the Rx buffer pointer updates to point to the first
byte of the string for which it searched. This Rx Buffer pointer position is
retained when transitioning across states unless explicitly changed using the
RESET Command.

 If the search does not find the string, the Rx Buffer pointer does not move.

When using this command, the optional second parameter is an integer variable
that is set to 1 if the search finds the string and set to 0 if the search does not find
the string.

 Collector Parsing Commands 3-71

Format
SEARCH(search[, ifound])

Data Types
Argument Type Description

search string
(INPUT)

The string to search for in the receive
buffer (searching from the current Rx
buffer pointer position forward).

ifound numvar
(OUTPUT)
[OPTIONAL]

Returns whether or not the search string
was found.
0 = not found
1 = found

Table 3-68: SEARCH-DataTypes

For example:

The following examples search for a carriage-return and a line-feed.

SEARCH("\0d0a\")
SEARCH(data, ifound)

The following example searches for the word alarm:

SEARCH("alarm")

NOTE: For hex substitution, \0000\ terminates a string; therefore,
“xxxx\0000\yyyy” becomes “xxxx”.

SET

The SET command processes a mathematical expression and updates a numeric
value (numvar) with the result of the evaluation.

When using this command:

 Specify a destination numvar, followed by an equal sign, followed by any
combination of () - + * /, numerals and numeric variables.

 You must specify at least one numeric to the right of the equal sign.
 There is no restriction on the number of embedded parenthesis.
 All arguments are converted to a float; the result is converted to the type

(integer or float) of the destination numvar.
 Up to 198 entries can be provided after the equal sign; these entries include:

(,), *, /, +, -, any numeric and numeric variables.
 When operations have the same order of operation level, they are handled

from left to right; the order of operation is described in the following table.
Level 1 : () for example: parenthesis
Level 2 : */ for example: multiplication, division
Level 3 : + - for example: addition, subtraction

Table 3-69: Order of Operation

Format
SET(idest = <expr>) or SET(fdest = <expr>)

Where:

 3-72 Sentinel Reference Guide

set_command ::= SET(<idest>=<expr>) |
SET(<fdest>=<expr>)
expr ::= (<expr>)
 | expr ('+' | '-' | '*' | '/') expr
 | ivar | fvar | number

Data Type
Argument Type Description

idest numvar
(OUTPUT)

The numeric variable (fvar or ivar) in
which the value will be saved.

inum1 numeric
(INPUT)

An fvar, ivar or number.

inum2 numeric
(INPUT)
[OPTIONAL]

An fvar, ivar or number.

inum3 numeric
(INPUT)
[OPTIONAL]

An fvar, ivar or number.

… numeric
(INPUT)
[OPTIONAL]

An fvar, ivar or number.

Table 3-70: SET-DataTypes

For example:

SET(idest=inum1)
SET(i_loop=10)
SET(idest=inum1+inum2)
SET(idest=(inum1+inum2) * inum3)
SET(i_counter=i_counter+1)
SET(i_val = (ivar)*(ivar/3) + 15/fvar - (5 +
20/iloop))

SETBYTES

The SETBYTES command allows you to set bytes within a string variable to a
particular value, either passed as an integer or a string. If passed as an integer,
valid ranges are 0 to 255. If a string is used as the replace parameter, then the
string is placed starting at the index position in the destination string variable.

Format
SETBYTES(dest_string, index, replace)

Data Types
Argument Type Description

dest_string svar
(INPUT/
OUTPUT)

The string variable that will have bytes
replaced.

 Collector Parsing Commands 3-73

Argument Type Description
index numeric

(INPUT)
The index (counting bytes starting with 0
for the first byte) into dest_string in which
the bytes will be used to replace.

replace string
(INPUT)
Or
integer
(INPUT)

The string bytes that will be written into the
dest_string. The value to set for the index
#n byte in the destination string.

Table 3-71: SETBYTES-DataTypes

For example:

COPY(string:"Bandwidth Util. = 22%")
SETBYTES(string, 18, "44")

Current Output Variables’ Contents:

string = "Bandwidth Util. = 44%"

SETCONFIG

This command sets a system property. The current setting for the system property
might then be retrieved using the “GETCONFIG” command. These commands
are used to set system properties and retrieve current values for system properties
that might change periodically, for example, a log file that is renamed daily using
the current date.

Available system properties are:

System Property Description (Example)
System.OS.Family Operating system family (Solaris, Windows)
System.OS.Name Operating system name (Windows 2000)
System.OS.Version.Major Operating system major version (5)
System.OS.Version.Minor Operating system minor version (0)
System.Net.Hostname Collector Manager server name (CollectorManager_LON1)
System.Net.IP_List Collector Manager IP addresses, separated by a semicolon

(10.0.0.1;10.0.0.3)
System.Agent_Dir Path to parent directory holdng Collector directories for all running

Collectors
($ESEC_HOME/data/collector_mgr.cache/collector_instances)

System.PortScript Collector instance name and UUID (WMI_6_0_Collector_68714633-
A987-1029-A520-000C29F2D765)

System.Local_Dir Path to directory of the running Collector
This is equivalent to the combination of System.Agent_Dir and
System.PortScript

System.Data_Dir Path to a directory that is protected during uninstallation.
%ESEC_HOME%\data

FileConnector.InputFile This option has been deprecated in Sentinel 6.0.
FileConnector.OutputFile This option has been deprecated in Sentinel 6.0.

Table 3-72: SETCONFIG-Properties

See also the “GETCONFIG” command.

 3-74 Sentinel Reference Guide

There are two parameters with this command.

 The first required parameter defines the configuration option
(FileConnector.InputFile or FileConnector.OutputFile)
to set.

 The second required parameter defines the configuration value to set.

Format
SETCONFIG(Config Option, Value)

Data Types
Argument Type Description

Config Option string (INPUT) Name of the configuration variable to set.
Input file =
“FileConnector.InputFile”
Output file =
“FileConnector.OutputFile”

Value string
svar
(INPUT)

Configuration setting.

Table 3-73: SETCONFIG-DataTypes

For example:

SETCONFIG(“System.Net.Hostname”, s_CMhostname)
SETCONFIG(“System.Net.Hostname”,
“CollectorManager_LON1”)

SHELL

The SHELL command runs a shell script or command.

Format
SHELL(command [, wait_parameter][,
wait_return_status])

Data Types
Argument Type Description
command string

(INPUT)
The path and filename of the command to
run. By default, the PATH environment
variable is used.

wait/no_wait numvar
[OPTIONAL]

Allows the SHELL command to wait (or
not wait) for the launched program to
complete execution before continuing
processing.
0 = no_wait
1 = wait for program to complete

return_status numvar
[OPTIONAL]

Numeric value when the wait/no_wait
option is used.
SUCCESS = 1
FAIL = 0

Table 3-74: SHELL-DataTypes

 Collector Parsing Commands 3-75

The following example initiates a PC batch file or a UNIX shell script:

SHELL("device_poll")

The following example launches Notepad:

SHELL("c:/\winnt/\system32/\notepad.exe")

The following example waits for the clock command to complete execution:

SHELL("clock",1)

The following example waits for a PC batch file or a UNIX shell script to
complete execution then gets its return status:

SHELL("device_poll",1,i_ret)

The following example executes the clock process and does not wait for its
completion:

SHELL("clock",0)

SKIP

The SKIP command adds a number to the Rx buffer pointer value.

The number can be positive or negative. If the resultant Rx buffer pointer position
is less than zero, the Rx buffer pointer is set to zero. If the resultant Rx buffer
pointer position is past the end of the receive buffer, the Rx buffer pointer is set to
point to the last byte in the receive buffer.

Format
SKIP([+ | -] iskip_amount)

Data Types
Argument Type Description

iskip_amount numeric
(INPUT)

The number of bytes to move the Rx

Table 3-75: SKIP-DataTypes

For example:

SKIP(iskip_amount)
SKIP(+iskip_amount)
SKIP(-iskip_amount)
SKIP(5)
SKIP(-1)

Following are examples demonstrating the Rx buffer pointer position after a skip
command, for the data:

 3-76 Sentinel Reference Guide

aaaaaa bbbbb c d ee
 ^
SKIP(-2)
aaaaaa bbbbb c d ee
 ^
SKIP(-1)
aaaaaa bbbbb c d ee
 ^
SKIP(0)
aaaaaa bbbbb c d ee
 ^
SKIP(1)
aaaaaa bbbbb c d ee
 ^
SKIP(4)
aaaaaa bbbbb c d ee
 ^
SKIP(8)
aaaaaa bbbbb c d ee
 ^

SKIPWORD

The SKIPWORD command modifies the Rx buffer pointer so that it points to the
beginning of a word.

This command considers a word to be each sequence of continuous printable
bytes separated by at least one non-printable byte. Printable bytes are defined as
ASCII and extended ASCII-0-255 (per ISO 8859-1).

By using positive and negative skip values, the Rx buffer pointer skips forward or
backward through the receive buffer to the first or next printable byte in the
receive buffer.

The Rx buffer pointer will not move past the end of the receive buffer or before
the beginning of the receive buffer, even if the SKIPWORD command will cause
it to do so.

A value of zero does not cause the Rx buffer pointer to change. The SKIPWORD
command treats all characters less than 33 and between 126 and 161 as white
space.

 Collector Parsing Commands 3-77

Format

SKIPWORD([+ | -] iwords)

Data Types
Argument Type Description

iwords numeric
(INPUT)

The number of words to move the Rx buffer
pointer in the receive buffer.

Table 3-76: SKIPWORD-DataTypes

For example:

SKIPWORD(iwords)
SKIPWORD(3)
SKIPWORD(+iwords)
SKIPWORD(-iwords)
SKIPWORD(-4)

Following are examples demonstrating the Rx buffer pointer position after a
SKIPWORD command, for the data:

aaaaaa bbbbb c d ee
 ^
SKIPWORD(-2)
aaaaaa bbbbb c d ee
^
SKIPWORD(-1)
aaaaaa bbbbb c d ee
^
SKIPWORD(0)
aaaaaa bbbbb c d ee
 ^
SKIPWORD(1)
aaaaaa bbbbb c d ee
 ^
SKIPWORD(4)
aaaaaa bbbbb c d ee
 ^
SKIPWORD(5)
aaaaaa bbbbb c d ee
 ^

SOCKETW

The SOCKETW command performs a NON-BLOCKING (network byte
STREAM socket) open, connect, write of data to a socket (IP and TCP Port) and
closes the socket. Optionally, it returns the status of the socket write attempt.

 3-78 Sentinel Reference Guide

Format
SOCKETW(address, i_port, data [, istat])

Data Types
Argument Type Description

address string
(INPUT)

IP address of the socket.

i_port numeric
(INPUT)

TCP port number of the socket.

data string
(INPUT)

Data string to write to the socket.

istat numvar
(OUTPUT)

Optional returned status.
istat = Number of bytes written; > 0
(SUCCESS)
istat = 0 (FAILURE)

Table 3-77: SOCKETW-DataTypes

Examples:

SOCKETW("10.0.0.1", 5051, "Data Write Socket")
SOCKETW("10.0.0.1", i_port, "Data to Socket\0d\")
SOCKETW(s_ip_address, i_port, "\54AF0D0B91\",
i_status)
SOCKETW(s_ip_address, i_port, "\54AF0D0B91\",
f_status)
SOCKETW(s_ip_address, 6004, "\54AF0D0B91\",
f_status)
SOCKETW(s_ip_address, 6004,sdata, f_status)

STONUM

The STONUM (string to number) command converts a string variable (svar) into
a numeric variable (numvar).

WARNING:
String variables consisting of something other than the string
representation of an integer or a float value might produce unpredictable
results. All integer values are limited to 2147483647; values greater than
this are truncated to 2147483647.

Format
STONUM(string, ivar)

Data Types
Argument Type Description

inum numvar
(OUTPUT)

The numeric variable in which the number
is stored (ivar or fvar).

string string
(INPUT)

The string representation of a number (for
example: “306”).

Table 3-78: STONUM -DataTypes

 Collector Parsing Commands 3-79

For example:

STONUM(source, idest)
STONUM(string_number, ivar)
STONUM("6512", ivar)

STRIP OR STRIP-ASCII-RANGE

The STRIP command removes all occurrences of the strip string or ASCII range
from the svar. The STRIP command always performs multiple-pass strips until
the strip string or ASCII range is no longer found in the destination string
variable.

When using this command, specify the string variable from which characters can
be stripped. The remaining parameters can be either a string or numeric range
start and end value.

NOTE: Within the Visual Editor of the Collector Builder, STRIP and
STRIP-ASCII-RANGE are listed as separate commands. They are same
command. They are provided as descriptions for different variations of
the same command. If you were to use STRIP-ASCII-RANGE in the text
editor, you must provide STRIP.

Format
STRIP(dest, strip)
STRIP(dest, start ASCII range, stop ASCII range)

Data Types
Argument Type Description

dest svar
(INPUT/
OUTPUT)

The string variable that contains the string data
that will be stripped of bytes depending on the
second argument.

strip or start
ASCII range

string or
numeric
(INPUT)

The string or start ASCII value to strip from the
dest string.

stop ASCII
range

numeric
(INPUT
[optional])

stop ASCII value
NOTE: If start ASCII range is specified,
this parameter is required.

Table 3-79: STRIP-DataTypes

The following examples are multiple-pass strips.

COPY(test:"THHELLOE")
STRIP(test, "HELLO")

After the STRIP() command, the variable test has the value of THE.

COPY(test2:"ABCDDEDDDFGDDH")
STRIP(test2, "D")

After the STRIP() command, the variable test2 has value of ABCEFGH.

 3-80 Sentinel Reference Guide

COPY(test3:"ABCDDEDDDFGDDH")
STRIP(test3, 68, 69)

After the STRIP() command, the variable test3 has value of ABCFGH.

TBOSSETCOMMAND

The TBOSSETCOMMAND command builds a 3-byte TBOS command packet
that can be transmitted to a device using the TBOS protocol.

The TBOS display number, command number, and command type are all used to
put the correct TBOS command packet (3-bytes) into the output string variable.
The format of the TBOS packet created using this parsing command is described
in the following Remote Command Request tables.

Character 1
Bit Numbers(s) Value Meaning

8
7

0
1

Operation Code:
01 = Remote Command Request
(character 1)

6
5
4

MSB
LSB

Display Number:
000 = No. 1
001 = No. 2
...
111 = No. 7

3 0 No Meaning
2
1

MSB
LSB

Type:
00 = momentary
01 = latch
10 = unlatch

Table 3-80: TBOSSETCOMMAND-Character 1

Character 2
Bit Numbers(s) Value Meaning

8
7

1
0

Operation Code:

10 = Remote Command Request
(character 2)

6
5
4
3
2
1

MSB
LSB

Remote Command Number:
000000 = No. 1
000001 = No. 2
...
111111 = No. 63

Table 3-81: TBOSSETCOMMAND-Character 2

 Collector Parsing Commands 3-81

Character 3
Bit Numbers(s) Value Meaning

8
7
6
5
4
3
2
1

1
1
0
0
1
1
0
0

Echo of Character:
The remote command response is the echo
of this byte back to the port.

Table 3-82: TBOSSETCOMMAND-Character 3

Format
TBOSSETCOMMAND(cmd_bytes, idisp_num, icmd_num,
type)

Data Types
Argument Type Description

cmd_bytes svar
(OUTPUT)

The hex data bytes (3 bytes total) that will
be placed into this string variable and that
can be used to transmit to a TBOS device in
the Next State Transmit box.

idisp_num numeric
(INPUT)

The TBOS display number (or address) of
the device (1 - 8).
NOTE: Valid ranges for idisp_num are
only 1 through 8; using any other value,
the output (cmd_bytes), is set to
all zeros, “\00 00 00\”.

i_cmd_num numeric
(INPUT)

The TBOS command number (1 - 64).
NOTE: Valid ranges for i_cmd_num
are only 1 through 64; using any other
value, the output (cmd_bytes) is set to
all zeros, “\00 00 00\”.

type numeric
(INPUT)
Or
string
(INPUT)

The TBOS command type (0 - 2):
0 = momentary
1 = latch
2 = unlatch
NOTE: Valid ranges for type are only
0 through 2; using any other value, type
is set to 0 = “momentary” by default.
The TBOS command type in string format.
“momentary” or “m” = momentary
“latch” or “l” = latch
“unlatch” or “u” = unlatch
This string is case-insensitive.

Table 3-83: TBOSSETCOMMAND-DataTypes

For example:

 3-82 Sentinel Reference Guide

TBOSSETCOMMAND(string_cmd_bytes, 1, 1, 0)
TBOSSETCOMMAND(s_bytes, 1, 1, "latch")
TBOSSETCOMMAND(s_bytes, i_display, i_cmd_num,
"U")
TBOSSETCOMMAND(s_bytes, i_display, i_cmd_num, 2)
TBOSSETCOMMAND(s_bytes, 1, 1, "momentary")
TBOSSETCOMMAND(s_bytes, 1, 1, "latch")

Remember to verify that the output cmd_bytes is set to "\00 00 00\" in order to
check for any errors on inputs out of range. For example:

TBOSSETCOMMAND(cmd_bytes, i_display, i_cmd_num,
"M")
IF(cmd_bytes = "\00 00 00\") /* INPUTS OUT OF
RANGE */
...
ENDIF()

The following example builds a tbos command for display number 5, command
number 33, and unlatched type.

TBOSSETCOMMAND(sbytes, 5, 33, 2)

Current Output Variables’ Contents:

sbytes = "\ba0 cc\"

TBOSSETREQUEST

The TBOSSETREQUEST command builds a 1-byte TBOS request packet that
can be transmitted to a device using the TBOS protocol. The TBOS display
number and request number is used to place the correct TBOS scan request byte
into the output string variable. The format of the TBOS packet created using this
parsing command is described in the following Character Scan Request and
Response tables.

Character 1 – Character Scan Request
Bit Numbers(s) Value Meaning

8
7

0
0

Operation Code:
00 = Character Scan Request

6
5
4

MSB

LSB

Display No.:
000 = No. 1
001 = No. 2
...
111 = No. 3

3
2
1

MSB

LSB

Type:
000 = No. 1
001 = No. 2
...
111 = No. 8

 Collector Parsing Commands 3-83

Character 1 – Character Scan Response
Bit Numbers(s) Value Meaning

8
7
6
5
4
3
2
1

MSB
LSB

Each bit in this response byte has a special
meaning based on the character number
sent (1-8) and the protocol of the device of
the display number sent (1-8).

Table 3-84: TBOSSETREQUEST-CharacterScan Response

Format

TBOSSETREQUEST(cmd_bytes, idisp_num,
irequest_num)

Data Types
Argument Type Description

cmd_bytes svar
(OUTPUT)

The hex data byte is placed into this string
variable and can be used to transmit to a
TBOS device in the Next
State Transmit box.

idisp_num numeric
(INPUT)

The TBOS display number (or address) of
the device (1 - 8).
NOTE: Valid ranges for idisp_num are
only 1 through 8; with any other value,
the output, cmd_bytes, will be set to all
zero, "\00\."

irequest_num numeric
(INPUT)

The TBOS scan character number (1 - 8).
NOTE: Valid ranges for irequest_num
are only 1 through 8; with any other
value, the output, cmd_bytes, will be
set to zero, "\00\."

Table 3-85: TBOSSETREQUEST-DataTypes

For example:

TBOSSETREQUEST(string_request_byte, 1, 1)
TBOSSETREQUEST(s_byte, idisp_num, i_scan_number)

The following example builds a TBOS scan request character for display number
2 and request number 1.

TBOSSETREQUEST(sbytes, 2, 1)

Current Output Variables’ Contents:

sbytes = "\08\"

TIME

 3-84 Sentinel Reference Guide

The TIME command copies the current time (in the format HH-MM-SS) into a
string variable, ivar or fvar.

Format
TIME(dest)

Data Types
Argument Type Description

dest svar
(OUTPUT)
numvar
(OUTPUT)

The string representation of the time is
placed in this string variable (for example:
“23-11-55”).
The number of seconds from 00:00:00
UTC, January 1, 1970, is placed into this
numeric variable (can be an fvar).

Table 3-86: TIME-DataTypes

For example:

TIME(time_of_day)
TIME(i_num_seconds)
TIME(f_num_seconds)

NOTE: If you use an fvar, the time returned will be accurate to the
microsecond.

TOKENIZE

The TOKENIZE command copies each component of a string between the
delimiters into a string array. This can be useful when you are reading delimited
data from a file and passing data to a script to be run on demand.

Every character in the string is treated as a potential token separator. For example,
using the token separator "THE END" will not use the entire string as the
separator. Rather, individual characters must be used as potential separators:

"T"
"H"
"E"
" "
"N"
"D"

Format
TOKENIZE(data, delimiter, tokens[], itokens)

Data Types
Argument Type Description

data svar
(INPUT)

The data to be tokenized (for example:
“xterm|subres|33|50”).

delimiter string
(INPUT)

The delimiter(s) to separate the tokens.

 Collector Parsing Commands 3-85

Argument Type Description
token array

(OUTPUT)
The array of tokens as found from the
delimiterized string input data.

itokens numvar
(OUTPUT)

The number of tokens placed in the token
string array.

Table 3-87: TOKENIZE-DataTypes

For example:

COPY(data:"This|Data|Is|Tokenized")
TOKENIZE(data, "|",tokens[], inumtokens)

Current Output Variables’ Contents:

inumtokens = 4
tokens[0]= "This"
tokens[1]= "Data"
tokens[2]= "Is"
tokens[3]= "Tokenized"

In the following example, the data passed to the script is:

"There#are|several*fields|in*this#string".

There are three different token separators we want to use: #, | and *.

Current Output Variables' Contents:

i_tokens = 7
messages[0] = "There"
messages[1] = "are"
messages[2] = "several"
messages[3] = "fields"
messages[4] = "in"
messages[5] = "this"
messages[6] = "string"

In the following example, the data in the receive buffer is:

"Firewall Alarm - Major;Denial of Service Alarm -
Major;"
COPY(rxbuff:)
TOKENIZE(rxbuff,";",msgs[],i_msgs)

Current Output Variables' Contents:

i_msgs = 2
msgs[0] = "Firewall Alarm - Major"
msgs[1] = "Denial of Service Alarm - Major"

TOLOWER

 3-86 Sentinel Reference Guide

The TOLOWER command converts the contents of a string variable to all
lowercase characters. The contents of the string variable that is passed through
this command becomes all lowercase.

Format
TOLOWER(stringvar)

Data Types
Argument Type Description

stringvar string
(INPUT/
OUTPUT)

The string variable that contains the string
to be converted to all lowercase.

Table 3-88: TOLOWER-DataTypes

For example:

s_var = "This Is Lower Case"
TOLOWER(s_var)

Result:

s_var = "this is lower case"

TOUPPER

The TOUPPER command converts the contents of a string variable to all
uppercase characters. The contents of the string variable that is passed through
this command becomes all uppercase.

Format
TOUPPER(stringvar)

Data Types
Argument Type Description

stringvar string
(INPUT/
OUTPUT)

The string variable that contains the string
to be converted to all uppercase.

Table 3-89: TOUPPER-DataTypes

For example:

s_var = "This Is Upper Case"
toupper(s_var)

Result:

s_var = "THIS IS UPPER CASE"

TRANSLATE

The TRANSLATE command loads a comma-separated value (csv) file in
memory, allowing for a fast lookup of whether or not the key entry is contained in
the file and allowing retrieval of other data associated with the key.

 Collector Parsing Commands 3-87

The following are related to the TRANSLATE command.

 Comma-separated Value (CSV)
 Case-insensitive Key Searches
 Found Status
 Data Variables

Comma-separated Value (CSV) File
The csv file is a relative path from a Collector’s script directory. Collector
Builder does not support edting of these files; therefore, Novell suggests
generating them through Microsoft Excel. The filename can be a string or a
variable.

The csv file format is shown in the following example of a file named
friends.csv:

key1,data1,data2,data3
Bob,blue,25,210
Alice,green,19,110
Pat,purple,36,145

To find if a particular friend is in your friend.csv file, the TRANSLATE
command will be:

TRANSLATE("Bob","friends.csv",i_found)

Or

COPY(s_Name:"Bob")
TRANSLATE(s_Name,"friends.csv",i_found)

Case-insensitive Key Searches
The key parameter can be either a string or a string variable. Additionally, an
integer number or variable is supported. As the csv file is loaded into memory,
the key of each entry is set to lowercase. The key in the TRANSLATE command
is also set internally to lowercase to enable case-insensitive key searches.

Continuing the example of a csv file:

TRANSLATE("boB", "friends.csv",i_found)

This must have also found Bob in the csv file.

Found Status
The found status is set to 1 if the key is contained in the csv file and zero if the
key is not contained in the csv file. A csv file with just key entries can be used
with the TRANSLATE command just to determine if the key is a member of that
file. For security purposes, a csv file might contain a list of known hostile IP
addresses or valid usernames with other policy information like permissions and
allowable access times.

NOTE: Keys expressing ranges are not supported: IP addresses and
numeric ranges.

 3-88 Sentinel Reference Guide

Data Variables
Along with determining whether or not a key entry is in the csv file, associated
data can be retrieved for that key. A variable number of script variables can be
used to indicate into which variables to store the data. String, integer and float
variables are supported. All data entries are stored as strings and will be
converted to the type of variable supplied in the TRANSLATE command.

Continuing the example of friends.csv:

Bob,blue,25,210
Alice,green,19,110
Pat,purple,36,145

You can get the associated data with:

TRANSLATE(s_friend, "friends.csv", i_found,
s_color, i_age, i_weight)

Where:

 If s_friend contains Alice, then i_found will equal 1, s_color will equal green,
i_age will equal 19 and i_weight will equal 110.

 If the key entry is not found, then the variables are not modified (s_color,
i_age, i_weight).

 If the entry for Alice was:
Alice,green,19,

Using the same TRANSLATE, the variable i_weight will be cleared (0 for
integers, 0.0 for floats and "" strings). s_color will be green and i_age will be
19.

 If the entry for Alice was:
Alice,green,,thin,Ford

Using the same TRANSLATE, the variable i_age will be cleared, and thin
will be converted into an integer(0) and put into i_weight. s_color will be
green and Ford will be ignored.

 If the entry for Alice was:
Alice,25,19,110

Using the same TRANSLATE, the variable s_color will contain 25. i_age
will be 19 and i_weight will be 110.

Format
TRANSLATE(<key>, <csv_file>, <found_status> [,
<variable>, ...])

Data Types
Argument Type Description

key The key to search for in the csv file.
csv_file The filename of the csv file.
found_status the integer variable set to 1 if the key is

round in the csv file or zero if the key is not
found in the csv file.

 Collector Parsing Commands 3-89

Argument Type Description
variable the list of variables to place the data

associated with the key into.

Table 3-90: TRANSLATE-DataTypes

TRIM

Removes all white space (blanks) from both ends of a string, and replaces
multiple white spaces within a string with single spaces. Blanks include the
following characters:

 <tab>
 <carriage-return>
 <newline>
 <vertical-tab>
 <form-feed>
 <space>

Format
TRIM(svar)

Data Types
Argument Type Description

string svar
(INPUT)

String to trim white space from. The
resulting string is stored in the input
variable.

Table 3-91: TRIM-DataTypes

For example:

COPY(s_var:" Hello World "
TRIM(s_var)

Current Output Variables’ Contents:

s_var = " Hello World "

UUID

The UUID command allows the user to assign UUIDs to a list of one or more
string variables. Up to fifty variable names can be assigned UUID’s in one UUID
command.

Format
UUID(uuid_var1, uuid_var2, uuid_var3,
…uuid_var50)

Data Types
Argument Type Description

Uuid_var1 String
variable(OUTPUT)

String variable that will be assigned a
uuid.

 3-90 Sentinel Reference Guide

Argument Type Description
Uuid_var2 String

variable(OUTPUT)
[OPTIONAL]

String variable that will be assigned a
uuid.

Uuid_var3 String
variable(OUTPUT)
[OPTIONAL]

String variable that will be assigned a
uuid.

Table 3-92: UUID-DataTypes

For example:

UUID(s_uuid1, s_uuid2)

In the above example, UUID command assigns uuid’s to following variables:
s_uuid1, s_uuid2.

WHILE

The WHILE command provides capability for looping control flow.

The While command goes as follows:

 If the result of the WHILE() statement is true, the parsing commands after the
WHILE(), up to the next ENDWHILE() are executed.

 If the result of the WHILE() is false, no parsing commands are executed
between the WHILE() and the ENDWHILE().

Although all data types are allowed on each side of the operator for the WHILE()
statement, only numeric values can be compared with numeric and string with
string.

The operator for the WHILE() compare can be <, =, >, <=, >=, <>, &, +, or ^.

WARNING:
Do not use the logical NOT operator (^) in conjunction with a string
variable. Doing so will generate a syntax error.

You cannot directly compare against a negative number. Use one of the following
methods:

 Use the parsing function COMPARE
 Indirectly compare as follows:

SET(i_compare_val=-10)
WHILE(ivar >i_compare_val)
SET(ivar=ivar-1)
ENDWHILE()

Format
WHILE(<expr>)

Where:

 Collector Parsing Commands 3-91

 3-92 Sentinel Reference Guide

expr ::= var
 | (<expr>)
 | ^ <expr>

 Where <expr> must evaluate to integer or float.

 | <expr> <|=|>|<=|>=|<>|&|+ <expr>

Where both <expr> must evaluate to same type.

Data Types
Argument Type Description

Data1 all
(INPUT)

The data to compare to data2. If data2 is
not used, then it becomes a logical (0 =
false, anything else = true).

logical
operator

<
=
>
<=
>=
<>
&
+
^

Less Than
Equal To
Greater Than
Less Than or Equal To
Greater Than or Equal To
Not Equal To
Logical AND
Logical OR
Logical NOT

Data2 all
(INPUT)
[OPTIONAL]

The data to compare to data1. This must be
the same type as data1.

… same as above Use up to 200 individual parameters to
create complex logical expressions.

Table 3-93: WHILE-DataTypes

For example:

WHILE(i<3)
SET(i=i+1)
ALERT("Still in loop")
ENDWHILE()
ALERT("Exited loop")

4 Sentinel Meta-tags

Meta-tags store meta-data. Meta-data is information about data and pre-defined
variable names. For Example, the Source IP of an attack is mapped to SIP meta-
tag and Product names are mapped to PN meta-tag. Data into meta-tags can be
populated either from device log data or is set as part of the Collector processing.

For information on the Event Configuration and mapping feature in the Sentinel
Control Center, see “Admin” Tab section.

The value in the Collector Variable column is the name of the Collector variable
to set in order to populate the corresponding Meta-tag. For more information
about parsing commands, see Collector Parsing Commands and the
documentation for specific Collectors.

The types specified in the Type column have the following properties:

 string: limited to 255 characters (unless otherwise specified)
 integer: 32 bit signed integer
 UUID: 36 character (with hyphens) or 32 character (without hyphens)

hexadecimal string in the format XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX (For example, - 6A5349DA-7CBF-1028-9795-
000BCDFFF482)

 date: Collector Variable must be set with date as number of milliseconds
from January 1, 1970 00:00:00 GMT. When displayed in Sentinel Control
Center, meta-tags of type date are displayed in a regular date format.

 IPv4: IP address in dotted decimal notation (that is – xxx.xxx.xxx.xxx)

NOTE: In the table below, Labels and Meta-tags are used in the Sentinel
Control Center. Collector Variables are used in the Collector parsing
language. Not all meta-tags have a corresponding Collector Variable.

Label Meta-
tag Type Description Collector

Variable
Severity sev integer The normalized severity of the

event (0-5).
i_Severity

Vulnerability vul integer The vulnerability of the asset
identified in this event.

s_VULN

Criticality crt integer The criticality of the asset
identified in this event.

s_CRIT

EventTime dt date The normalized date and time of
the event, as given by the Collector.

SourceIP sip IPv4 The source IP address from which
the event originated.

s_SIP

DestinationIP dip IPv4 The destination IP address to which
the event was targeted.

s_DIP

EventID id UUID Unique identifier for this event.
SourceID src UUID Unique identifier for the Sentinel

service which generated this event.

 Sentinel Meta Tag 4-1

http://www.novell.com/documentation/sentinel6/

Label Meta-
tag Type Description Collector

Variable
Collector port string Name of the Collector that

generated this event.
Not
Applicabl
e

CollectorScri
pt

agent string The name of the Collector Script
used by the Collector to generate
this event.

Not
Applicabl
e

Resource res string Compliance monitoring hierarchy
level 1

s_Res

SubResource sres string Compliance monitoring hierarchy
level 2

s_SubRes

EventName evt string The descriptive name of the event
as reported (or given) by the
sensor. Example Port Scan.

s_EVT

SensorName sn string The name of the ultimate detector
of the event when received in raw
data. Example FW1 for a firewall.

s_SN

SensorType st string The single character designator for
the sensor type (N, H, O, V, C, A,
I).

s_ST

DeviceEventT
ime

det date The normalized date and time of
the event, as reported by the sensor.

Protocol prot string The network protocol of the event. s_P
SourceHostN
ame

shn string The source host name from which
the event originated.

s_SHN

SourcePort spint integer The source port from which the
event originated.

s_SPINT

DestinationH
ostName

dhn string The destination host name to which
the event was targeted.

s_DHN

DestinationPo
rt

dpint integer The destination port to which the
event was targeted.

s_DPINT

SourceUserN
ame

sun string The source user name used to
initiate an event. Example jdoe
during an attempt to su.

s_SUN

DestinationUs
erName

dun string The destination user name on
which an action was attempted.
Example root during a password
reset.

s_DUN

FileName fn string The name of the program executed
or the file accessed, modified or
affected.

s_FN

ExtendedInfor
mation

ei string Stores additional Collector
processed information. Values
within this variable are separated
by semi-colons ().

s_EI

ReporterNam
e

rn string The host name or IP address of the
device to which an event was
logged or from which notification
of the event is sent.

s_RN

 4-2 Sentinel Reference Guide

Label Meta-
tag Type Description Collector

Variable
ProductName pn string Indicates the type, vendor and

product code name of the sensor
from which the event was
generated.

s_PN

Message msg string Free-form message text for the
event.

s_BM

DeviceAttack
Name

rt1 string Device specific attack name that
matches attack name known by
Advisor. (String)

s_RT1

Rt2 rt2 string Reserved by Novell for expansion.
(String)

s_RT2

Ct1 thru Ct2 ct1 thru
ct2

string Reserved for use by customers for
customer-specific data. (String)

s_CT1
and
s_CT2

Rt3 rt3 integer Reserved by Novell for expansion.
(Number)

Ct3 ct3 integer Reserved for use by customers for
customer-specific data. (Number)

s_CT3

CorrelatedEve
ntUuids

ceu string List of event UUIDs associated
with this correlated event. Only
relevant for correlated events.

s_RT3

CustomerHier
archyId

rv1 integer Customer Hierarchy Id s_RV1

ReservedVar2
thru
ReservedVar1
0

rv2 thru
rv10

integer Reserved by Novell for expansion.
(Number)

s_RV2
thru
s_RV10

ReservedVar1
1 thru
ReservedVar2
0

rv11
thru
rv20

date Reserved by Novell for expansion.
(Date)

s_RV11
thru
s_RV20

CollectorMan
agerId

rv21 UUID Unique identifier for the Collector
Manager which generated this
event.

s_RV21

CollectorId rv22 UUID Unique identifier for the Collector
which generated this event.

s_RV22

ConnectorId rv23 UUID Unique identifier for the Connector
which generated this event.

s_RV23

EventSourceI
d

rv24 UUID Unique identifier for the Event
Source which generated this event.

s_RV24

RawDataReco
rdId

rv25 UUID Unique identifier for the Raw Data
Record associated with this event.

s_RV25

ControlPack rv26 string Not currently in use s_RV26
ControlMonit
or

rv27 string Not currently in use s_RV27

ReservedVar2
8

rv28 string Reserved by Novell for expansion.
(String)

s_RV28

SourceIPCou
ntry

rv29 string Country of source IP address. s_RV29

 Sentinel Meta Tag 4-3

Label Meta-
tag Type Description Collector

Variable
AttackId rv30 string Normalized Attack Id. This is taken

from Advisor data. (String)
s_RV30

DeviceName rv31 string The name of the device generating
the event. If this device is
supported by Advisor, the name
should match the name known by
Advisor. (String)

s_RV31

DeviceCatego
ry

rv32 string Device category (FW, IDS, AV,
OS, DB).

s_RV32

EventContext rv33 string Event context (threat level). s_RV33

SourceThreat
Level

rv34 string Source threat level. s_RV34

SourceUserC
ontext

rv35 string Source user context. s_RV35

DataContext rv36 string Data context. s_RV36

SourceFuncti
on

rv37 string Source function. s_RV37

SourceOperati
onalContext

rv38 string Source operational context. s_RV38

MSSPCustom
erName

rv39 string MSSP customer name. s_RV39

VendorEvent
Code

rv40 string Event code reported by device
vendor. (String)

s_RV40

DestinationD
omain

rv41 string Destination Domain. (String) s_RV41

SourceDomai
n

rv42 string Source Domain. (String) s_RV42

ReservedVar4
3

rv43 string Reserved by Novell for expansion.
(String)

s_RV43

DestinationTh
reatLevel

rv44 string Destination threat level. s_RV44

DestinationUs
erContext

rv45 string Destination user context. s_RV45

VirusStatus rv46 string Virus status. s_RV46

DestinationFu
nction

rv47 string Destination function. s_RV47

DestinationO
perationalCon
text

rv48 string Destination operational context. s_RV48

CustomerHier
archyLevel1

rv49 string Customer Hierarchy Level 1 (used
by MSSPs)

s_RV49

eSecTaxonom
yLevel1

rv50 string Sentinel event code categorization -
level 1.

s_RV50

eSecTaxonom
yLevel2

rv51 string Sentinel event code categorization -
level 2.

s_RV51

eSecTaxonom
yLevel3

rv52 string Sentinel event code categorization -
level 3.

s_RV52

 4-4 Sentinel Reference Guide

Label Meta-
tag Type Description Collector

Variable
eSecTaxonom
yLevel4

rv53 string Sentinel event code categorization -
level 4.

s_RV53

CustomerHier
archyLevel2

rv54 string Customer Hierarchy Level 2 (used
by MSSPs)

s_RV54

CustomerHier
archyLevel3

rv55 string Customer Hierarchy Level 3 (used
by MSSPs)

s_RV55

SourceAssetN
ame

rv56 string Source Asset Name. Part of source
host asset data. (String)

s_RV56

SourceMacAd
dress

rv57 string Source Mac Address. Part of source
host asset data. (String)

s_RV57

SourceNetwor
kIdentity

rv58 string Source Network Identity. Part of
source host asset data. (String)

s_RV58

SourceAssetC
ategory

rv59 string Source Asset Category. Part of
source host asset data. (String)

s_RV59

SourceEnviro
nmentIdentity

rv60 string Source Environment Identity. Part
of source host asset data. (String)

s_RV60

SourceAssetV
alue

rv61 string Source Asset Value. Part of source
host asset data. (String)

s_RV61

SourceCritical
ity

rv62 string Source Criticality. Part of source
host asset data. (String)

s_RV62

SourceSensiti
vity

rv63 string Source Sensitivity. Part of source
host asset data. (String)

s_RV63

SourceBuildin
g

rv64 string Source Building. Part of source
host asset data. (String)

s_RV64

SourceRoom rv65 string Source Room. Part of source host
asset data. (String)

s_RV65

SourceRackN
umber

rv66 string Source Rack Number. Part of
source host asset data. (String)

s_RV66

SourceCity rv67 string Source City. Part of source host
asset data. (String)

s_RV67

SourceState rv68 string Source State. Part of source host
asset data. (String)

s_RV68

SourceCountr
y

rv69 string Source Country. Part of source host
asset data. (String)

s_RV69

SourceZipCo
de

rv70 string Source Zip Code. Part of source
host asset data. (String)

s_RV70

SourceAssetO
wner

rv71 string Source Asset Owner. Part of source
host asset data. (String)

s_RV71

SourceAsset
Maintainer

rv72 string Source Asset Maintainer. Part of
source host asset data. (String)

s_RV72

SourceBusine
ssUnit

rv73 string Source Business Unit. Part of
source host asset data. (String)

s_RV73

SourceLineOf
Business

rv74 string Source Line Of Business. Part of
source host asset data. (String)

s_RV74

SourceDivisio
n

rv75 string Source Division. Part of source
host asset data. (String)

s_RV75

SourceDepart
ment

rv76 string Source Department. Part of source
host asset data. (String)

s_RV76

SourceAssetI
d

rv77 string Source Asset Id. Part of source host
asset data. (String)

s_RV77

 Sentinel Meta Tag 4-5

Label Meta-
tag Type Description Collector

Variable
DestinationAs
setName

rv78 string Destination Asset Name. Part of
destination host asset data. (String)

s_RV78

DestinationM
acAddress

rv79 string Destination Mac Address. Part of
destination host asset data. (String)

s_RV79

DestinationNe
tworkIdentity

rv80 string Destination Network Identity. Part
of destination host asset data.
(String)

s_RV80

DestinationAs
setCategory

rv81 string Destination Asset Category. Part of
destination host asset data. (String)

s_RV81

DestinationEn
vironmentIde
ntity

rv82 string Destination Environment Identity.
Part of destination host asset data.
(String)

s_RV82

DestinationAs
setValue

rv83 string Destination Asset Value. Part of
destination host asset data. (String)

s_RV83

DestinationCr
iticality

rv84 string Destination Criticality. Part of
destination host asset data. (String)

s_RV84

DestinationSe
nsitivity

rv85 string Destination Sensitivity. Part of
destination host asset data. (String)

s_RV85

DestinationBu
ilding

rv86 string Destination Building. Part of
destination host asset data. (String)

s_RV86

DestinationRo
om

rv87 string Destination Room. Part of
destination host asset data. (String)

s_RV87

DestinationRa
ckNumber

rv88 string Destination Rack Number. Part of
destination host asset data. (String)

s_RV88

DestinationCi
ty

rv89 string Destination City. Part of
destination host asset data. (String)

s_RV89

DestinationSt
ate

rv90 string Destination State. Part of
destination host asset data. (String)

s_RV90

DestinationCo
untry

rv91 string Destination Country. Part of
destination host asset data. (String)

s_RV91

DestinationZi
pCode

rv92 string Destination Zip Code. Part of
destination host asset data. (String)

s_RV92

DestinationAs
setOwner

rv93 string Destination Asset Owner. Part of
destination host asset data. (String)

s_RV93

DestinationAs
setMaintainer

rv94 string Destination Asset Maintainer. Part
of destination host asset data.
(String)

s_RV94

DestinationBu
sinessUnit

rv95 string Destination Business Unit. Part of
destination host asset data. (String)

s_RV95

DestinationLi
neOfBusiness

rv96 string Destination Line Of Business. Part
of destination host asset data.
(String)

s_RV96

DestinationDi
vision

rv97 string Destination Division. Part of
destination host asset data. (String)

s_RV97

DestinationDe
partment

rv98 string Destination Department. Part of
destination host asset data. (String)

s_RV98

DestinationAs
setId

rv99 string Destination Asset Id. Part of
destination host asset data. (String)

s_RV99

CustomerHier
archyLevel4

rv100 string Customer Hierarchy Level 4 (used
by MSSPs)

s_RV100

 4-6 Sentinel Reference Guide

Label Meta-
tag Type Description Collector

Variable
CustomerVar
1
thru
CustomerVar
10

cv1
thru
cv10

integer Reserved for use by customers for
customer-specific data. (Number)

s_CV1
thru
s_CV10

CustomerVar
11 thru
CustomerVar
20

cv11
thru
cv20

date Reserved for use by customers for
customer-specific data. (Date)

s_CV11
thru
s_CV20

CustomerVar
21 thru
CustomerVar
89

cv21
thru
cv89

string Reserved for use by customers for
customer-specific data. (String)

s_CV21
thru
s_CV29

SARBOX cv90 string Set to 1 if the asset is governed by
Sarbanes-Oxley through an asset
map. (String)

s_CV90

HIPAA cv91 string Set to 1 if the asset is governed by
the Health Insurance Portability
and Accountability Act regulation
through an asset map. (String)

s_CV91

GLBA cv92 string Set to 1 if the asset is governed by
the Gramm-Leach Bliley Act
regulation through an asset map.
(String)

s_CV92

FISMA cv93 string Set to 1 if the asset is governed by
the Federal Information Security
Management Act (FISMA)
regulation through an asset map.
(String)

s_CV93

NISPOM cv94 string Set to 1 if the asset is governed by
National Industrial Security
Program Operating Manual
(NISPOM) regulation through an
asset map. (String)

s_CV94

SIPCountry cv95 string Source Country based on Source
Ip. (String)

s_CV95

DIPCountry cv96 string Destination Country based on
Destination Ip. (String)

s_CV96

CustomerVar
97 thru
CustomerVar
100

cv97
thru
cv100

string Reserved for use by customers for
customer-specific data. (String)

s_CV97
thru
s_CV100

DeviceEventT
imeString

et string The normalized date and time of
the event, as reported by the sensor.

s_ET

SentinelProce
ssTime

spt date The date and time Sentinel received
the event.

Not
Applicabl
e

BeginTime bgnt date The date and time the event started
occurring.

s_BGNT

 Sentinel Meta Tag 4-7

 4-8 Sentinel Reference Guide

Label Meta-
tag Type Description Collector

Variable
EndTime endt date The date and time the event

stopped occurring.
s_ENDT

RepeatCount rc integer The number of times the same
event occurred if multiple
occurrences were consolidated.

s_RC

SourcePortNa
me

sp string The source port from which the
event originated.

s_SP

DestinationPo
rtName

dp string The destination port to which the
event was targeted.

s_DP

Table 4-1: Labels and Meta-tags used in Sentinel Control Center

5 Sentinel Control Center User
Permissions

Sentinel allows administrators to set user permissions in the Sentinel Control
Center at a granular level. The only user created by default is the esecadm, or
Sentinel Administrator. All other users are created by the Sentinel Administrator,
or someone with similar permissions.

To change user permissions:

1. Log into the Sentinel Control Center as a user with “User Management”
permissions.

2. Click the Admin tab.
3. Select User Configuration from Admin tab. Alternatively, Select User

Manager from User Configuration in the Navigator.

Figure 5-1: User Manager window
4. Right click user and select User Details.

Figure 5-2: User Details selection
5. Select the Permissions tab.

 Sentinel Control Center User Permissions 5-1

Figure 5-3: Permission Tab
6. Uncheck the checkboxes for which you want to restrict user.
7. Click OK.

The permissions in the User Manager are grouped into several major categories:

 “General”
 “Active Views”
 “Correlation”
 “iTRAC”
 “Incidents”
 “Event Source Management”
 “Analysis”
 “Advisor”
 “Administration”
 “Solution Pack”

Each of these groups of setting is described in more detail below.

General
Permission Name Description

Save Workspace Allows user to save preferences. If this permission is
unavailable, user will never be prompted to save
changes to preferences when logging out or exiting the
Sentinel Control Center.

Column Management Allows user to manage the columns in the Active View
tables.

Snapshot Allows user to take a snapshot of Active View tables.
Table 5-1: Permissions-General

 5-2 Sentinel Reference Guide

General – Public Filters
Permission Name Description

Create Public Filters Allows user to create a filter with an owner ID of
PUBLIC. If user does not have this permission, then
the value PUBLIC will not be listed as one of the
owner IDs that user can create a filter for.

Modify Public Filters Allows user to modify a public filter.
Delete Public Filters Allows user to delete a public filter.

Table 5-2: Permissions-General-Public Filters

General – Manage Private Filters of Other Users
Permission Name Description

Create Private Filters
for Other Users

Allows user to create private filters for themselves or
for other users.

Modify Private Filters
of Other Users

Allows user to modify their own private filters and
private filters created by other users.

Delete Private Filters of
Other Users

Allows user to delete their own private filters and
private filters created by other users.

View/Use Private
Filters of Other Users

Allows user to view/use their own private filters and
private filters crated by other users.

Table 5-3: Permissions-General-Manage Private Filters of Other Users

General – Integration Actions
Permission Name Description

Send to HP Service
Desk

Allows user to send events, incident and associated
objects to HP Service Desk. (requires the optional HP
integration component)

Send to Remedy Help
Desk

Allows user to send events, incident and associated
objects to Remedy. (requires the optional Remedy
integration component)

Table 5-4: Permissions-General-Integration Actions

Active Views
Permission Name Description

View Active Views
Tab

Allows user to see and use the Active Views tab, menu
and other related functions associated with the Active
Views tab.

Table 5-5: Permissions-Active Views

Active Views – Menu Items
Permission Name Description

Use Assigned Menu
Items

Allows user to use assigned menu items in the Active
Views Events table (the right-click menu).

Add to Existing
Incident

Allows user to add events to existing incidents using
the Active Views Events table (the right-click menu).

Remove from Incident Allows user to remove events from an existing incident
using the Events tab Events table (the right-click
menu).

Email Events Allows user to e-mail events using the Active Views
Events table (the right-click menu).

 Sentinel Control Center User Permissions 5-3

Permission Name Description
View Advisor Attack
Data

Allows user to view the Advisor Attack Data stream.

View Vulnerability Allows user to view the vulnerabilities present in the
Sentinel database

Table 5-6: Permissions-Active Views-Menu Items

Active Views – Active Views
Permission Name Description

Use/View Active
Views

Allows user to access the Active Views charts.

Table 5-7: Permissions-Active Views-Active Views

iTRAC
Permission Name Description

View iTRAC Tab Allows user to see and use the iTRAC tab, menu and
other related functions associated with the iTRAC tab.

Activity Management Allows user to access the Activity Manager.
Manage Work Items Of
Users

Gives user administrative control over all workitems,
including those assigned to other users

Table 5-8: Permissions-iTRAC

iTRAC - Template Management
Permission Name Description

View/Use Template
Manager

Allows user to access the Template Manager.

Create/Modify
Templates

Allows user to create and modify templates.

iTRAC - Process Management
Permission Name Description

View/Use Process
Manager

Allows user to access the Process View Manager.

Start/Stop Processes Allows user to use the Process View Manager.
Table 5-9: Permissions-iTRAC-Process Management

Correlation
Permission Name Description

View Correlation Tab Allows user to use the Correlation functions.
View/Use Correlation
Rule Manager

Allows user to start or stop the Correlation Rules.

View/Use Correlation
Engine Manager

Allows user to deploy/undeploy the Correlation Rules.

View/Use Correlation
Action Manager

Allows user to create/associate Actions to the
Correlation Rules.

View/Use Dynamic
Lists

Allows user to Create, use, view, modify the Dynamic
Lists.

Table 5-10: Permissions-Correlation

 5-4 Sentinel Reference Guide

Incidents
Permission Name Description

View Incidents Tab Allows user to see and use the Incidents tab, menu and
other related functions associated with the View
Incidents tab.

Incident
Administration

Allows user to modify an incident.

View Incident(s) Allows user to view/modify the details of an incident.
If the user does not have this permission, then the
Incident Details window will not be displayed when
the user either double-clicks an Incident in the Incident
View window or right-clicks the incident or selects the
Modify option.

Create Incident(s) Allows user to create Incidents in the in the Incident
View window or by right clicking on the incident and
select Modify option. Alternatively you can select
Create Incident menu item in the Incidents menu bar
and clicking Create Incident option in the tool bar.

Modify Incident(s) Allows user to modify an incident in the Incident
Details window.

Delete Incident(s) Allows user to delete incidents.
Assign Incident(s) Allows user to assign an incident in the Modify and

Create Incident window.
Email Incidents Allows user to e-mail Incidents of interest.
Incident Actions Allows user to enable/disable the Incident Action

Configuration/Execution.
Add Notes Allows user to add any number notes to an incident.

Table 5-11: Permissions-Incidents

Event Source Management
Permission Name Description

View Status Allows user to view the status of ESM components.
View Scratchpad Allows user to design and configure ESM components.
Configure ESM
Components

Allows you to configure ESM components.

Control ESM
Components

Allows you to control and manage ESM components.

Manage Plugins Allows you to manage Collector and Connector
Plugins.

View Raw Data Allows you to view/parse raw data.
Debug Collector Allows you to debug Collector.

Table 5-12: Permissions-Event Source Management

Command and Control consists of:

 start/stop individual ports
 start/stop all ports
 restart hosts
 rename hosts

 Sentinel Control Center User Permissions 5-5

 5-6 Sentinel Reference Guide

Analysis Tab
Permission Name Description

View Analysis Tab Allows user to see and use the View Analysis tab, menu
and other related functions associated with the View
System Overview tab.

Table 5-13: Permissions-Analysis Tab

Advisor Tab
Permission Name Description

View Advisor Tab Allows user to see and use the View Advisor tab, menu
and other related functions associated with the View
Advisor tab.

Table 5-14: Permissions-Advisor Tab

Administration
Permission Name Description

View Administration
Tab

Allows user to see and use the View Administration
tab, menu and other related functions associated with
the View Administration tab.

Archive Configuration Allows user to set database archive parameters.
DAS Statistics Allows user to view DAS activity (DAS binary and

query).
Event Configuration Allows user to rename columns, set mappings from

mapping files. This function is associated with
Mapping Configuration.

Mapping Configuration Allows user to add, edit and delete mapping files.
Menu Configuration Allows user to access the Menu Configuration window

and add new options that display on the Event menu
when you right-click an event.

Reporting Data
Configuration

Allows user to enable or disable summary tables used
in aggregation.

User Management Allows user to add, modify and delete user details
User Session
Management

Allows user to view, lock and terminate active users
(logins to Sentinel Control Center).

iTRAC Role
Management

Allows user to view and use the role manager in the
Admin Tab.

Table 5-15: Permissions-Administration

Administration – Global Filters
Permission Name Description

View/Use Global
Filters

Allows user to access the Global Filter Configuration
window.

Modify Global Filters Allows user to modify the global filters configuration.
NOTE: To access this function, View Global
Filters permission must also be assigned.

Table 5-16: Permissions-Administration-Global Filters

Administration – Server Views
Permission Name Description

 Sentinel Control Center User Permissions 5-7

Permission Name Description
View Servers Allows user to monitor the status of all processes.
Control Servers Allows user to start, restart and stop processes.

Table 5-17: Permissions-Administration-Server Views

Solution Pack
Permission Name Description

Solution Designer Allows user to access Solution Designer.
Solution Manager Allows user to access Solution Manager.

Table 5-18: Permissions-Solution Pack

6 Sentinel Correlation Engine RuleLG
Language

Correlation RuleLG Language Overview
The Sentinel Correlation Engine runs rules that are written in the Correlation
RuleLg language. Rules are created in the Sentinel Control Center. Users can
create rules using a wizard for the following rule types:

 Simple Rule
 Composite Rule
 Aggregate Rule
 Sequence Rule

These rules are converted to the Correlation RuleLg language when the rules are
saved. The same rule types, plus even more complex rules, can be created in the
Sentinel Control Center using the Custom/Freeform option. To use the
Custom/Freeform option, the user must have a good understanding of the
Correlation RuleLg language.

RuleLg uses several operations, operators, and event field metatags to define a
rule. The Correlation Engine loads the rule definition and uses the rules to
evaluate, filter, and store in memory events that meet the criteria specified by the
rule. Depending on the rule definition, a correlation rule might fire based on

 the value of one field or multiple fields
 the comparison of an incoming event to past events
 the number of occurrences of similar events within a defined time period
 one or more subrules firing
 one or more subrules firing in a particular order

Each of these constructs is represented by an operation in RuleLg.

Event Fields
All operations function on event fields, which can be referred to by their labels or
by their metatags within the correlation rule language. For a full list of labels and
metatags, see “Sentinel Metatags” section. The label or metatag must also be
combined with a prefix to designate whether the event field is part of the
incoming event or a past event that is stored in memory.

Examples:

e.DestinationIP (Destination IP for the current
event)
e.dip (Destination IP for the current event)
w.dip (Destination IP for any stored event)

 Sentinel Correlation Engine 6-1

WARNING:
If you rename the label of a metatag, do not use the original label name
when creating a correlation rule.

Event Operations
Event operations evaluate, compare, and count events. They include the following
operations:

 Filter: Evaluates the current to determine whether they could potentially
trigger a rule to fire

 Window: Compares the current event to past events that have been stored in
memory

 Trigger: Counts events to determine whether enough events have occurred to
trigger a rule

Each operation works on a set of events, receiving a set of events as input and
returning a set of events as output. The current event processed by a rule often has
a special meaning for the semantic of the language. The current event is always
part of the set of events in and out of an operation unless the set is empty. If an
input set of an operation is empty, then the operation is not evaluated.

Filter Operation
Filter consists of a Boolean expression that evaluates the current event from the
real-time event stream. It compares event attributes to user-specified values using
a wide set of operators

The Boolean expression is a composite of comparison and match instructions.

The syntax for filter is:

Filter <Boolean expression 1> [NOT|AND|OR
<Boolean expression 2] […] [NOT|AND|OR <Boolean
expression n>]

Where

<Boolean expressions 1…n> are expressions using
one or more event field names and filter
operators

For example, this rule detects whether the current event has a severity of 4 and
the resource event field contains either “FW” or “Comm.”

filter(e.sev = 4 and (e.res match regex ("FW") or
e.res match regex ("Comm")))

Boolean Operators
Filter expressions can be combined using the Boolean operators AND, OR and
NOT. The filter boolean operator precedence (from highest [top] to lowest
[bottom] precedence) is:

Operator Meaning Operator Type Associativity
Not logical not unary None
And logical and binary left to right

 6-2 Sentinel Reference Guide

Operator Meaning Operator Type Associativity
Or logical or binary left to right

Table 6-1: Boolean Operators

In addition to Boolean operators, filter supports the following operators.

Standard Arithmetic Operators
Standard arithmetic operators can be used to build a condition that compares the
value of a Sentinel metatag and a user-specified value (either a numeric value or a
string field). The standard arithmetic operators in Sentinel are =, <, >, !=, <=,
and >=.

Examples:

filter(e.Severity > 3)
filter(e.BeginTime < 1179217665)
filter(e.SourceUserName != “Administrator”)

Match Regex Operators
The match regex operator can be used to build a condition where the value of a
metatag matches a user-specified regular expression value specified in the rule.
This operator is used only for string metatags, and the user-specified values for
this operator are case-sensitive.

Examples:

filter(e.Collector match regex ("IBM"))
filter(e.EventName match regex ("Attack"))

Match Subnet Operators
The match subnet operator can be used to build a condition where the value of a
metatag maches a user-specified subnet specified in the rule in CIDR notation.
This operator is used only for IP address metatags.

Example:

filter(e.DestinationIP match subnet
(10.0.0.1/22))

Inlist Operator
The inlist operator is used to perform a lookup on an existing dynamic list of
string values, returning true if the value is present in the list. For more
information on Dynamic Lists, see “Correlation Tab” in Sentinel User Guide.

For example, this filter expression is used to evaluate whether the Source IP of
the current event is present on a dynamic list called MailServerList. If the Source
IP is present in this list, the expression evaluates to TRUE.

filter(e.sip inlist MailServerList)

As another example, this filter expression combines the NOT and the INLIST
operator. This expression evaluates to TRUE if the Source IP is not present in the
dynamic list called MailServerList.

filter(not (e.sip inlist MailServerList))

 Sentinel Correlation Engine 6-3

http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/

This filter expression is used to evaluate whether the event name of the current
event equals “File Access” and the Source User Name is also not present on a
dynamic list called AuthorizedUsers. If both conditions are true for the current
event, the expression evaluates to TRUE.

filter(e.evt="File Access" and not(e.sun inlist
AuthorizedUsers))

ISNULL Operator
The isnull operator returns true if the metatag value is equal to NULL.

Example:

Filter(isnull(e.SIP))

Output Sets
 The output of a filter is either the empty set (if the Boolean expression

evaluates to false) or a set containing the current event and all of the other
events from the incoming set (if the Boolean expression evaluates to true).

 If filter is the last or only operation of a correlation rule, then the output set of
the filter is used to construct a correlated event. The trigger events are the
filter operation output set of events with the current event first.

 If filter is not the last operation of a correlation rule (that is, filter is followed
by a flow operatior), then the output set of a filter is used as the input set to
other operations (through the flow operator).

Additional Information
 The filter operator can be used to compare metatag values with other metatag

values, for example:
e.SourceIP=e.DestinationIP

Window Operation
Window compares the current event to a set of past events that are stored in a
“window.” The events in the window can be all past events for a certain time
period, or they can be filtered.

The Boolean expression is a composite of comparison instructions and match
instructions with the Boolean operators AND, OR and NOT.

The syntax for window is:

Window (<Boolean expression>[, <filter
expression>, <evaluation period>)

Where

<Boolean expression> is an expression comparing a
metatag value from the current event to a metatag
value from a past event (or a user-specified
constant)
<filter expression> is optional and specifies
filter criteria for the past events
<evaluation period> specifies the duration for
which past events matching the filter expression

 6-4 Sentinel Reference Guide

are maintained, specified in seconds (s), minutes
(m), or hours (h). If no letter is specified,
seconds are assumed.

For example, this rule detects whether the current event has a source IP address in
the specified subnet (10.0.0.10/22) and matches an event(s) that happened within
the past 60 seconds.

window(e.sip = w.sip, filter(e.sip match subnet
(10.0.0.10/22),60)

As another example, this rule is a domino type of rule. An attacker exploits a
vulnerable system and uses it as an attack platform.

window((e.sip = w.dip AND e.dp = w.dp AND e.evt =
w.evt), 1h)

This rule identifies a potential security breach after a denial of service attack. The
rule fires if the destination of a denial of service attack has a service stopped
within 60 seconds of the attack.

filter(e.rv51="Service" and e.rv52="Stop" and
e.st = "H") flow window (e.sip = w.dip,
filter(e.rv52="Dos"), 60s) flow trigger(1,0))

Output Sets
 If any past event evaluates to true with the current event for the simple

boolean expression, the output set is the incoming event plus all matching
past events.

 If no events in the window match the current event for the simple boolean
expression, the output set is empty.

 If a window is the last or only operation of a correlation rule, then the output
set of the window is used to construct a correlated event (the correlated
events being the window operation output set of events with the current event
first).

Additional Information
 You must prepend a metatag name with "e." to specify the current event or

with "w." to specify the past events
 All window simple Boolean expressions must include a metatag in the form

w.[metatag].
 For more information about valid filter expressions, see “Filter Operation”.
 Every event coming in to the Correlation Engine that passes this filter is put

into the window of past events
 If no filter expression exists, then all events coming into the Correlation

Engine are maintained by the window. With extremely high event rates or
long durations, this might require a large amount of memory.

 The current event is not placed into the window until after the current event
window evaluation is complete

 To minimize memory usage, only the relevant parts of the past events, not all
metatag values, are maintained in memory.

Trigger Operation
Trigger is used to specify a number of events for a user-specified duration.

 Sentinel Correlation Engine 6-5

The syntax for trigger is:

Trigger (<number of events>, <evaluation
period>[, discriminator (<list of metatags>))

Where

<number of events> is an integer value specifying
the number of matching events that are necessary
for the rule to fire
<evaluation period> specifies the duration for
which past events matching the filter expression
are maintained, specified in seconds (s), minutes
(m), or hours (h). If no letter is specified,
seconds are assumed.
discriminator is a field to group by

For example, this rule detects if 5 events with the same source IP address happen
within 10 seconds.

trigger(5,10,discriminator(e.sip))

Output Sets
 If the specified count is reached within the specified duration, then a set of

events containing all of the events maintained by the trigger is output; if not,
the empty set is output.

 When receiving a new input set of events, a trigger first discards the outdated
events (events that have been maintained for more than the duration) and then
inserts the current event. If the number of resulting events is greater than or
equal to the specified count, then the trigger outputs a set containing all of the
events.

 If a trigger is the last operation (or the only operation) of a correlation rule,
then the output set of the trigger is used to construct a correlated event (the
correlated events being the trigger operation output set of events with the
current event first).

 If a trigger is not the last operation of a correlation rule (that is, it is followed
by a flow operator), then the output set of a trigger is used as the input set to
other operations (through the flow operator).

 The discriminator (meta-tag list) is a comma-delimited list of meta-tags. A
trigger operation keeps different counts for each distinct combination of the
discriminator meta-tags.

Rule Operations
Rule operations work on subrules that have been combined into a compound rule.
They include:

 Gate
 Sequence

Gate Operation
The gate operation is used to create a composite rule which is used in identifying
complex situations from the occurrence of simple situations.

 6-6 Sentinel Reference Guide

The composite rule is made up of one or more nested subrules and can be
configured to fire if some, any or all of the subrules fire within a specified time
window. The subrules can be a simple rule or another composite rule. For more
information on Composite Rule, see “Correlation Tab” in Sentinel User's Guide.

The syntax for gate is:

Gate(<subrule 1 rulelg>, <subrule 2
rulelg>…<subrule n ruleLg>, <mode>, <evaluation
period>, discriminator(<list of metatags>))

Where

Subrule Rulelgs are the rulelg definitions for 1
to n subrules
mode = all | any | 1 | 2 | … | n, which is the
number of subrules that must be triggered in
order for the gate rule to trigger
<evaluation period> specifies the duration for
which past events matching the filter expression
are maintained, specified in seconds (s), minutes
(m), or hours (h). If no letter is specified,
seconds are assumed.
discriminator is a field to group by

For example, this rule is a typical perimeter security IDS inside/outside rule

filter(e.sev > 3) flow gate(filter(e.sn = "in"),
filter(e.sn = "out"), all, 60s,
discriminator(e.dip, e.evt))

Sequence Operation
Sequence rules are similar to gate rules, except that all child rules must fire in
time order for the sequenced rule to evaluate to true.

The subrules can be a simple rule or another composite rule.

The syntax for sequence is:

Sequence(<subrule 1 rulelg>, <subrule 2
rulelg>…<subrule n ruleLg>, <evaluation period>,
discriminator(<list of metatags>))

Where

Subrule Rulelgs are the rulelg definitions for 1
to n subrules
<evaluation period> is a time period expressed in
seconds (s), minutes (m), or hours (h)
discriminator is a field to group by

For example, this rule detects three failed logins by a particular user in 10 minutes
followed by a successful login by same user.

 Sentinel Correlation Engine 6-7

http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/

sequence (filter(e.evt="failed logins") flow
trigger(3, 600, discriminator(e.sun,e.dip)),
filter(e.evt="goodlogin"), 600,
discriminator(e.sun, e.dip))

Operators
Operators are used to transition between operations or expressions. The
fundamental operators used between operations are:

 Flow operator
 Union operator
 Intersection operator

Flow Operator
The output set of events of the left-hand side operation is the input set of events
for the right-hand side operation. Flow is typically used to transition from one
correlation operation to the next.

For example:

filter(e.sev = 5) flow trigger(3, 60)

The output of the filter operation is the input of the trigger operation. The trigger
only counts events with severity equal to 5.

Union Operator
The union of the left side operation output set and the right side operation output
set. The resulting output set contains events from either the left-hand side
operation output set or the right-hand side operation output set without duplicates.

For example:

filter(e.sev = 5) union filter(e.sip = 10.0.0.1)

is equivalent to

filter(e.sev = 5 or e.sip = 10.0.0.1)

Intersection Operator
The intersection of the left side operation output set and the right side operation
output set. The resulting output set contains events that are common in both the
left-hand side operation output set and the right-hand side operation output set
without duplicates.

For example:

filter(e.sev = 5) intersection filter(e.sip =
10.0.0.1)

is equivalent to

filter(e.sev = 5 and e.sip = 10.0.0.1)

 6-8 Sentinel Reference Guide

Discriminator Operator
The discriminator operator allows users to group by event fields within other
event operations. Discriminator can be used within the trigger, gate, or sequence
operations. This is the last operation when executing a condition. The input for
this operator will generally be the output of other operations, if any.

For example, this filter expression is used to identify five severity 5 events within
60s that all have the same Source IP. Note that the attribute (SIP in this example)
can be any value, even a NULL, but it must be the same for all five events in
order for the rule to fire.

filter(e.sev=5) flow trigger(5, 60s,
discriminator(e.sip)

Order of Operators
The operator precedence (from highest (top) to lowest (bottom)) are:

Operator Meaning Operator Type Associativity
flow Output set becomes input

set
binary left to right

intersection Set intersection (remove
duplicates)

binary left to right

union Set union (remove
duplicates)

binary left to right

Table 6-2: Operator Precedence

Differences between Correlation in 5.x and 6.x
There are several new functionalities updated / included in 6.0 to widen the usage
of Correlation to meet user’s requirements and for the ease-of-use.

 Gate Operation: This is new in 6.0.
 Sequence Operation: This is new in 6.0.
 Inlist Operator and Dynamic Lists: These are new in 6.0.
 Isnull Operator: This is new in 6.0. For metatag values equal to null,

Sentinel 5.x supported the following syntax which is replaced by the ISNull
operator in Sentinel 6.0

e.SIP= “ ”

 Update Window: This is new in Sentinel 6.0
 Sentinel 6.0 merges the “C” (Correlated Events) and “W” (watchlist events)

SensorTypes. All events generated by the Correlation Engine are now
labeled “C” in the SensorType field.

 Correlation Actions and Correlation Rules: Correlation Actions and
Correlation Rules are decoupled in Sentinel 6.0

 Although the filter operation supported AND and OR Boolean expressions in
Sentinel 5.x, the window operation supports Boolean expressions for the first
time in Sentinel 6.0. For example:

OR: window(e.dip=w.dip OR e.sip=w.sip,
filter(e.sev>2),60)

AND: window(e.evt=w.evt AND e.sun=w.sun,
filter(e.sev>2),60)

 Sentinel Correlation Engine 6-9

 6-10 Sentinel Reference Guide

 Sentinel 6.0 no longer has the GUI option to create a rule from a PUBLIC
filter. The filter criteria must be defined in the correlation wizard or language.

 The update functionality for a rule that is triggered more than once is
configurable in Sentinel 6.0. In Sentinel 5.1.3, updates to a rule were based
on a sliding window based on the trigger time period. In Sentinel 6.0, the
update functionality can be set when the rule is deployed; the rule actions
might happen every time the rule is triggered, or they can be set to occur once
and then wait for some period of time before the action occurs again. This
prevents multiple notifications on a single, ongoing event.

 The in, not in, and difference operators are deprecated in Sentinel 6.0.
Correlation rules using these operators must be modified before running them
in Sentinel 6.0.

 The e.all metatag has been deprecated. Correlation rules using this operator
should be updated to use specific metatags before running them in Sentinel
6.0.

7 Sentinel Data Access Service

The Data Access Service (DAS) process is Sentinel Server's persistence service
and provides a message bus interface to the database. Some of the services it
provides are event storage, Historical Query, event drill down, vulnerability and
Advisor data retrieval, and configuration manipulation.

DAS Container Files
DAS is a collection of services provided by five different processes. Each process
is a container responsible for different types of database operations. These
processes are:

 DAS Query: Performs general Sentinel Service operations including
Login and Historical Query.

 DAS Binary: Performs event database insertion.
 DAS RT: Provides the server-side functionality for Active Views.
 DAS Aggregation: Calculates event data summaries that are used in

reports.
 DAS iTRAC: Provides the server-side functionality for the Sentinel

iTRAC functionality.
 DAS CMD: Provides a command line interface to certain DAS services.

Used primarily for third-party integration.
 DAS Proxy: Provides the server-side of the SSL proxy connection to

Sentinel Server.

DAS Proxy is not directly part of the DAS collection of services. It is part of the
Communication Server and does not directly connect to the database.

Reconfiguring Database Connection Properties
The primary settings in these configuration files that can be configured using the
dbconfig utility are related to the database connection, including:

 username
 password
 hostname
 port number
 database (database name)
 server (oracle, oracle10g, or mssql)

If any of these database connection settings need to be changed, they must be
changed in every das_*.xml file using the dbconfig utility. Using the –a
argument, this utility can update all files at the same time (For example, update
all files in the %ESEC_HOME%\config or $ESEC_HOME/config directory).
Alternately, using the –n argument, this utility can update a single file’s contents

 Sentinel Data Access Service 7-1

if only one file need to be updated. Typically, all files should be updated at the
same time.

WARNING:
Do not manually edit the database connection properties. Use the
dbconfig utility to change any database connection values within
these files.

To Reconfigure Database Connection Properties:

1. Login to the machine where DAS is installed as the esecadm user on
UNIX or a user with administrative rights on Windows.

2. Go to:
For Windows:

%ESEC_HOME%\bin

For UNIX:

$ESEC_HOME/bin

3. Provide the following command:
For Windows:

dbconfig –a %ESEC_HOME%\config [[-u username]
[-p password] | [-winAuth]] [-h hostname]
[-t portnum] [-d database] [-s server] [-
help] [-version]

For UNIX:

dbconfig –a $ESEC_HOME/config [-u username] [-
p password] [-h hostname] [-t portnum] [-d
database] [-s server] [-help] [-version]

NOTE: The -winAuth argument is available only on Windows and
should be used instead of the –u and –p arguments if the Sentinel
Application User is a Windows Authentication user.

Other settings in the files can be adjusted manually (without using dbconfig):

 maxConnections
 batchSize
 loadSize

Changing these settings might affect database performance and should be done
with caution

DAS Logging Properties Configuration Files
The following files are used to configure logging of the DAS process. These files
are typically changed when troubleshooting the DAS process.

 das_query_log.prop
 das_binary_log.prop
 das_rt_log.prop
 das_itrac_log.prop
 das_aggregation_log.prop

 7-2 Sentinel Reference Guide

 das_cmd_log.prop
 das_proxy_log.prop

They are located in the following locations:

For Windows:
%ESEC_HOME%\config

For UNIX:

$ESEC_HOME/config

These files contain the configuration that determines how the DAS processes will
log messages. The most important part of the configuration is the logging levels,
which indicate how verbose the log messages should be. The section of the file to
configure these settings is:

Configure the logging levels
Logging level rules are read from the top down.
Start with the most general, then get more
specific.

Defaults all loggers to INFO (enabled by
default)
.level=INFO

< Set level of specific loggers here >

Turns off all logging (disabled by default)
#.level=OFF

NOTE: The logger .level is a wildcard logger name that refers to all
loggers. Setting this logger’s level will affect all loggers.

The available logging levels are:

 OFF: disables all logging
 SEVERE (highest value): indication that a component has malfunctioned or

there is a loss/corruption of critical data
 WARNING: if an action can cause a component to malfunction in the future

or if there is non-critical data loss/corruption
 INFO: audit information
 CONFIG: for debugging
 FINE: for debugging
 FINER: for debugging
 FINEST: (lowest value) – for debugging
 ALL: will log all levels

When one specifies a logging level, all log messages of that level and higher (in
the above list) will actually be logged. For example, if one specifies the INFO
level, then all INFO, WARNING and SEVERE message will be logged.

 Sentinel Data Access Service 7-3

NOTE: At 10 second intervals, the logging properties file will be
checked to see if any changes have occurred since it was last read. If the
file has changed, the LogManagerRefreshService will re-read the logging
properties file. Therefore, it is not necessary to restart the processes to
begin using the updated logging levels.

Log messages are written to ESEC_HOME%\log (for Windows) or
$ESEC_HOME/log (for UNIX), in the following files:

das_query_0.*.log
das_binary_0.*.log
das_itrac_0.*.log
das_aggregation0.*.log
das_rt0.*.log
das_cmd0.*.log
das_proxy0.*.log

The 0 indicates the unique number to resolve conflicts and the * indicates a
generation number to distinguish rotated logs. For example,
das_query0.0.log is the log with index 0 (latest) file in a rotated set of log
files for the DAS Query process.

Log messages are also written to the process’s console (standard output).
Because the processes are running as services, users do not have access to the
console output. It is possible, however, to capture the console output in the
sentinel0.*.log file. This is useful, for example, if the process is
producing an error that is not printed to the process’s own log file. This can be
enabled by adding the following line to the sentinel_log.prop file:

esecurity.base.process.MonitorableProcess.level=F
INEST

Certificate Management for DAS_Proxy
The DAS_Proxy SSL Server uses an asymmetric key pair, consisting of a
certificate (or public key) and a private key, to encrypt communications. When
the Sentinel Communication Server is started for the first time, it automatically
creates a self-signed certificate which is used by the DAS_Proxy SSL Server.

You can replace the self-signed certificate with a certificate signed by a major
Certificate Authority (CA), such as Verisign, Thawte, or Entrust. You can also
replace the self-signed certificate with a certificate signed by a less common CA,
such as a CA within your company or organization.

This section describes several certificate management tasks that you can perform
in Sentinel:

 Replace the default certificate with a certificate signed by a Certificate
Authority (CA)

 Change default keystore and keyEntry passwords. This is recommended on
all Sentinel systems.

 Change the location of the .proxyServerKeystore file
 Change the default keyEntry alias to avoid potential conflicts with other keys

in the keystore or for simplicity

 7-4 Sentinel Reference Guide

http://www.thawte.com/
http://www.entrust.com/

Replacing the default certificate with a CA-signed certificate
Novell provides a self-signed certificate for the DAS_Proxy SSL Server to use.
To improve security, you can replace the default, self-signed certificate that gets
installed with a certificate signed by a Certificate Authority (CA). The CA may
be a major CA, such as Verisign, Thawte, or Entrust, or it may be a less
commonly-known CA, such as one that is within your organization.

The basic steps are to get a CA to sign your certificate and then import that
certificate into the keystore for DAS_Proxy to use. To import the certificate, the
CA that signed the certificate must be “known” to the keytool utility. Keytool
usually recognizes the major certificate authorities, but for other CA’s you may
need to import a certificate or chain of certificates for the certificate authority
before you can import the certificate that DAS_Proxy uses.

NOTE: These instructions are based on the user guide for keytool. For
more information, see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

To use a CA-signed certificate:

1. Execute the following command in the console:

$ESEC_HOME/jre/bin/keytool -list -keystore
$ESEC_HOME/config/.proxyServerKeystore

2. Provide the keystore password (star1111 by default). The contents of the
keystore file display:

Keystore type: jks
Keystore provider: SUN
Your keystore contains 1 entry
10.0.0.1, Jan 8, 2008, keyEntry,
Certificate fingerprint (MD5):
22:B4:19:63:AC:2D:F9:C0:66:7F:7C:64:85:68:8
9:AB

The keyEntry alias, which is used in the following step, is the IP address in
the example above. By default, the keyEntry alias is set to the IP address of
the local machine.

3. Execute the following command in the console using the keyEntry alias
from .proxyServerKeystore:

$ESEC_HOME/jre/bin/keytool -certreq -alias
<keyEntry alias> -keystore
$ESEC_HOME/config/.proxyServerKeystore -
file <csr_filename.csr>

The .csr file is saved in the specified location.
4. Provide the .csr file to the CA. The CA will return a signed .cer file.

(These exact steps will vary based on the Certificate Authority.)
5. Import the .cer file into keystore file by executing the following

command:

$ESEC_HOME/jre/bin/keytool -import -
trustcacerts -alias <keyEntry alias> -
keystore

 Sentinel Data Access Service 7-5

http://www.thawte.com/
http://www.entrust.com/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

$ESEC_HOME/config/.proxyServerKeystore -
file <cer_filename.cer>

This will replace the self-signed certificate installed with Sentinel.
NOTE: If the CA is unknown to the keytool utility, you will receive the
following error “keytool error: java .lang.Exception: Failed to establish
chain from reply.” For more information on resolving this issue, see
“Importing a Certificate for the CA” section at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html. You
must use the following command: $ESEC_HOME/jre/bin/keytool -
import -trustcacerts -alias <CA_cert_alias_of_your_choice> -keystore
$ESEC_HOME/config/.proxyServerKeystore -file <CA_cert_filename>
.After you import the certificate or chain of certificates for the CA, rerun
the command in this step.

6. Restart Sentinel Server.

Novell also recommends that you change the keystore and keyEntry passwords
after replacing the certificate.

Changing default keystore and keyEntry passwords
By default, the passwords used for keystore and the keyEntry are both set to
star1111. It is a good practice to change these to something new.

NOTE: DAS_Proxy requires that the keystore and keyEntry passwords
to be identical.

To change the keystore and the keyEntry password:

1. Execute the following command in the console to change the keystore
password:

$ESEC_HOME/jre/bin/keytool -storepasswd -
keystore
$ESEC_HOME/config/.proxyServerKeystore

2. Enter the old keystore password (star1111 by default) and a new keystore
password. The following example depicts this:

Enter keystore password: <old_pass>
New keystore password: <new_pass>
Re-enter new keystore password: <new_pass>

3. Verify the keyEntry alias using the following command:

$ESEC_HOME/jre/bin/keytool -list -keystore
$ESEC_HOME/config/.proxyServerKeystore

Provide the current keystore password. The contents of the keystore file
display:

Keystore type: jks

Keystore provider: SUN
Your keystore contains 1 entry
10.0.0.1, Jan 8, 2008, keyEntry,
Certificate fingerprint (MD5):
22:B4:19:63:AC:2D:F9:C0:66:7F:7C:64:85:68:8
9:AB

 7-6 Sentinel Reference Guide

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

The keyEntry alias is the IP address in the example above. By default, the
keyEntry alias is either set to the IP address or the hostname of the local
machine.

4. Execute the following command in the console to change the keyEntry
password to the same password as the new keystore password:

$ESEC_HOME/jre/bin/keytool -keypasswd -
alias <keyEntry alias> -keystore
$ESEC_HOME/config/.proxyServerKeystore

5. Enter the existing password and the new password. The following
example depicts this:

Enter keystore password: <new_pass>
Enter key password for <keyEntry alias>
<old_pass>
New key password for <keyEntry alias>:
<new_pass>
Re-enter new key password for <keyEntry
alias>: <new_pass>

NOTE: Remember that the keyEntry password and keystore password
must be identical.

6. Get the encrypted, Base 64 value of the new password using the
following steps:

 Copy ESEC_HOME/config/das_rt.xml to a file named temp.xml:
 Execute the following command to add an encrypted, Base 64 form of

the password to temp.xml file:

$ESEC_HOME/bin/dbconfig -n
$ESEC_HOME/config/temp.xml -p <new password
for keystore and keyEntry>

 Open temp.xml file.
 Copy the value of “password” from the following section of the file:

<property
name="password">BSEU8ew2JYsxtOt4hYcYNA==</propert
y>

 Delete the temp.xml file when you are confident that you have
successfully copied the encrypted password.

7. Open the das_proxy.xml file.
8. Paste the copied value of the new password to the “keystorePassword”

property in the “ProxyService” component property as shown below:

<obj-component id="ProxyService">

<class>esecurity.ccs.comp.clientproxy.ClientPr
oxyService</class>

 <property
name="clientports">ssl:10013</property>

 <property
name="certclientports">ssl:10014</property>

 <property name="keystore">
../config/.proxyServerKeystore</property>

 Sentinel Data Access Service 7-7

 7-8 Sentinel Reference Guide

 <property name="keystorePassword">
BSEU8ew2JYsxtOt4hYcYNA==</property>

 </obj-component>

9. Save the das_proxy.xml file.
10. Restart Sentinel Server.

Using a new .proxyServerKeystore location
By default the certificate and private key are stored in the file
.proxyServerKeystore located at $ESEC_HOME/config. To change the
location of .proxyServerKeystore file, you can edit the value of the
property “keystore” in the file $/ESEC_HOME/config/das_proxy.xml.

You must restart Sentinel Server after making changes.

Using a new keyEntry alias
The default keyEntry alias is either the IP address or the hostname of the local
machine. To use a different keyEntry alias, open the das_proxy.xml file and set
the value of “certificateAlias” in the component “ProxyService” to the new value.

You must restart Sentinel Server after making changes.

8 Sentinel Accounts and Password
Changes

This section discusses users that are created or used during Sentinel installation
and normal Sentinel operations. Unless you create domain users in advance in
order to use Windows Authentication, these users are created by the Sentinel
installer. These user accounts are used for Sentinel’s normal operations, such as
event inserts into the Sentinel database.

The administrator might select to occasionally change the passwords for these
accounts. To ensure continued normal Sentinel operations, there are special
procedures necessary to update the passwords in all necessary locations.

Sentinel Default Users
Native Database Authentication

Installer creates several users during installation if you use native database
authentication (Oracle or Microsoft SQL Server). These users are all created as
database users in the Oracle or SQL Server database, and the passwords are
configurable at install time. The installer will create the users with the following
default names:

 esecdba: Schema owner
 esecadm: Sentinel administrator
 esecrpt: Reporter user, same password as the admin user
 esecapp: Sentinel application user. Used by Sentinel Server to connect to the

database

In addition to creating a database user for the Sentinel administrator, the installer
also creates a Sentinel user with the same username and password for the Sentinel
Control Center. For UNIX only, the installer creates an operating system user
with no password set. To log in as this user, the UNIX administrator must set a
password or su to the user as root.

Windows Authentication
If you use Windows authentication, the Windows administrator must create
several domain accounts before the installation is started. The credentials for
these accounts must be given during the Sentinel installation:

 Sentinel DB Administrator: Schema owner
 Sentinel Administrator: Sentinel administrator
 Sentinel Report User: Reporter user, same password as the admin user.
 Sentinel Application User: Sentinel application username for connecting to

the database.

Windows Authentication users are supported only when SQL Server is being used
and DAS is running on Windows.

 Sentinel Accounts and Password Changes 8-1

Password Changes
Corporate policy might require that passwords be changed on a regular schedule.
Sentinel user passwords can be changed using database utilities. After changing a
password, some Sentinel components need to be updated to use the new
password.

Changing Password
SQL Server Accounts

On Windows, this procedure can be used to change the password for the Sentinel
Application User, the Sentinel Database User, or the Sentinel Report User. To
change the password for the Sentinel Administrator or other Sentinel Control
Center user, see “Changing Password” section.

To change password in MS SQL Server Management Studio:

1. Open the MS SQL Enterprise Manager/ MS SQL and select Security >
Logins.

2. Right-click a username from the right pane and select properties.
3. Change the password. Click OK.

Follow the procedures in Sentinel updates after a password change.

Oracle Accounts
This procedure can be used to change the password for the Sentinel Application
User, the Sentinel Database User, or the Sentinel Report User. To change the
password for the Sentinel Administrator or other Sentinel Control Center user, see
“Changing Password” section.

To change password in Oracle:

1. Connect to Oracle Enterprise Manager with user having sysdba privilege.
2. Select your specific database from the left pane.
3. In Database > Security > Users, select a user for which you want to

change the password.
4. Provide new password and confirm the password. Click Apply.

Follow the procedures in Sentinel updates after a password Change.

Windows Domain Accounts
If the Sentinel system uses domain user accounts and Windows Authentication,
use the following password change procedures. These procedures can be used for
the Sentinel Administrator, the Sentinel Database User, the Sentinel Report User,
and the Sentinel Application User. It can also be used for any Sentinel Control
Center account that uses Windows Authentication.

To change the password for Windows domain accounts:

1. Log into a machine using the account and use standard Windows
password change procedures
or
Request a password change from a Windows administrator.

2. Follow the procedures in Sentinel updates after a password change.

 8-2 Sentinel Reference Guide

Sentinel Control Center Accounts (Native DB Authentication)
This procedure can be used to change the password for the Sentinel Administrator
account or any other Sentinel Control Center user.

To change the Sentinel Administrator password:

1. Login to the Sentinel Control Center as the Sentinel Administrator or
another user with User Management permissions.

2. Click Admin > User Configuration. The User Manager window displays.
3. Double-click esecadm user account or right-click User Details.
4. Modify the account password and confirm password. Click OK.

No additional updates are needed in the Sentinel system.

Sentinel Control Center Accounts (Windows Authentication)
Use standard procedures for changing the password for Windows domain
accounts.

Sentinel Updates After a Password Change
The passwords for certain Sentinel users, such as the Sentinel Database User and
the Sentinel Application User, are encrypted and stored in configuration files and
used in normal Sentinel operations. These configuration files must be updated
after the passwords are changed.

Updating Sentinel Application User Password
The Sentinel Application User credentials are stored encrypted in the container
xml files. After a password change, these files must be updated for Sentinel to
continue working.

The procedures are different depending on whether the Sentinel Application User
uses Native Database Authentication or Windows Authentication.

To update the Sentinel Application User password (Native DB
Authentication):

1. Change the password for the Sentinel Application User (esecapp by
default) using database utilities as described in “Changing Password”.

2. Using the dbconfig utility, update all container xml files. This is required
because these xml files store the (encrypted) esecapp password to allow
DAS and Advisor to connect to the database.
The container xml files are located in the following locations:
For Windows:

%ESEC_HOME%\config

For Oracle:

$ESEC_HOME/config

For more information on usage of the dbconfig utility, see “Sentinel Data
Access Service” section.

dbconfig –a {$ESEC_HOME/config |
%ESEC_HOME%\config} -p <password>

 Sentinel Accounts and Password Changes 8-3

To update the Sentinel Application User password (Windows
Authentication):

1. Change the password for the Sentinel Application User domain account
as described in “Changing Password”.

2. On your DAS machine, open Windows Services (Control Panel >
Administrative Tools > Services).

3. Right-click Sentinel > Properties. Click the Log On tab and update Log
on as password. Click Apply and click OK.

Figure 8-1: Log On tab

4. If you have Advisor installed, you will need to update the Run as
property (Control Panel > Scheduled Tasks > right-click Properties) of
the Advisor Scheduled task(s).

Figure 8-2: Sentinel Advisor window

 8-4 Sentinel Reference Guide

5. Click Set password. Provide the new password twice and click OK. Click
Apply and click OK.

Updating Sentinel Database User Password
These password change procedures are only necessary if extra Sentinel Data
Manager jobs have been created and scheduled or the Sentinel Data Manager
command line interface is being used.

To change Sentinel DB Administrator password (Windows Authentication):

1. Use the Windows Operating System to change the password as described
in “Changing Password”.

2. If you are running any SDM command line scheduled tasks in your
environment, you will need to update the Run as property (Control Panel
> Scheduled Tasks > right-click Properties).

3. Click Set password. Provide the new password twice and click OK. Click
Apply and click OK.

To update the Sentinel DB Administrator password (Native DB
Authentication):

1. Change the password for the Sentinel DB Administrator User (esec by
default) using database utilities password as described in “Changing
Password”.

2. In order for automated SDM command line tasks to continue to work (if
applicable in your environment), update the dbPass in the sdm.connect
file with the new esecdba password using the SDM GUI or command
line. For more information, see Sentinel Data Manager in Sentinel User
Guide.

sdm -action saveConnection -server
<oracle/mssql> -host <hostIp/hostName> -
port <portnum> -database <databaseName/SID>
[-driverProps <propertiesFile>] {-user
<dbUser> -password <dbPass>} -connectFile
<filenameToSaveConnection>

Updating Sentinel Report User Password
This procedure is only necessary for Crystal on Windows. For Crystal on Linux,
no changes are necessary.

To update the Sentinel Report User password for Crystal on Windows:

1. Change the password for the Sentinel Report User (esecrpt by default)
using database utilities as described in “Changing Password”.

2. Log into the Crystal Server machine.
3. Go to Control Panel > Administrative Tools >Data Sources (ODBC) to

update the ODBC Data Source Name (DSN).
4. Under the System DSN tab, highlight sentineldb and click Configure.
5. Click Next. Update the password.

 Sentinel Accounts and Password Changes 8-5

http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/
http://www.novell.com/documentation/sentinel6/

 8-6 Sentinel Reference Guide

Figure 8-3: Microsoft SQL Server DSN Configuration

6. Click Next until you get a Finish button. Click Finish.

9 Sentinel Database Views for Oracle

This section lists the Sentinel Schema Views for Oracle. The views provide
information for developing your own reports (Crystal Reports).

Views
ADV_ATTACK_MAP_RPT_V

View references ADV_ATTACK_MAP table that stores Advisor map
information.

Column Name Datatype Comment
ATTACK_KEY number ID used to reference the attack

entry
SERVICE_PACK_ID number Name of the Attack
ATTACK_NAME varchar2(256) Attack code
ATTACK_CODE varchar2(256) Date the attack has been published
DATE_PUBLISHED date Date the attack has been updated
DATE_UPDATED date ID used to reference the attack

entry
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_ATTACK_PLUGIN_RPT_V
View references ADV_ATTACK_PLUGIN table that stores Advisor plug-in
information.

Column Name Datatype Comment
PLUGIN_KEY number ID used to reference the

vulnerability entry
SERVICE_PACK_ID number ID of the vulnerability
PLUGIN_ID varchar2(256) Name of the vulnerability
PLUGIN_NAME varchar2(256) Date the vulnerability has been

published
DATE_PUBLISHED date Date the vulnerability has been

updated
DATE_UPDATED date ID used to reference the

vulnerability entry
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

 Sentinel Database Views for Oracle 9-1

ADV_ATTACK_RPT_V
View references ADV_ATTACK table that stores Advisor attack information.

Column Name Datatype Comment
ATTACK_ID number ID to identify the attack
TRUSECURE_ATTACK_NAME varchar2(512) Name of the attack
FEED_DATE_CREATED date Date when the feed first have the

information on this attack
FEED_DATE_UPDATED date Last date when the information on

this attack has been updated
ATTACK_CATEGORY varchar2(256) Category of the attack
URGENCY_ID number The urgency associated with this

attack
SEVERITY_ID number Severity associated with this

attack
LOCAL number Indicates if this attack was

executed locally
REMOTE number Indicates if this attack was

executed from remote
DESCRIPTION clob Impact of the attack
SCENARIO clob Safeguards that could be followed

to avert the attack
IMPACT clob Patches for the product to fix the

vulnerability exploited by the
attack

SAFEGUARDS clob False Positives associated with
this attack

PATCHES clob Date the information on this
attack was published

FALSE_POSITIVES clob Date the information on this
attack was updated

DATE_PUBLISHED date ID to identify the attack
DATE_UPDATED date Name of the attack
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number By user ID
MODIFIED_BY number By user ID

ADV_ATTACK_SIGNATURES
Column Name Datatype Comment

ATTACK_KEY integer Attack ID
ATTACK_SCANNER_NAME varchar2(128) Name of the attack scanner or

intrusion detection system
ATTACK_NAME varchar2(256) Name of the attack
ATTACK_ID varchar2(256) ID of the attack

ADV_FEED_RPT_V
View references ADV_FEED table that stores Advisor feed information, such as
feed name and date.

Column Name Datatype Comment
FEED_NAME varchar2(128) Name of feed

 9-2 Sentinel Reference Guide

Column Name Datatype Comment
FEED_FILE varchar2(256) File name that contains the feed

data
BEGIN_DATE date The date from which this feed file

carries the advisor information
END_DATE date The date until which this feed file

carries the advisor information
FEED_INSERT number Number of rows inserted into the

advisor schema by this feed file
FEED_UPDATE number Number of rows updated into the

advisor schema by this feed file
FEED_EXPIRE number Number of rows deleted into the

advisor schema by this feed file

ADV_MASTER_RPT_V
Column Name Datatype Comment

MASTER_ID number ID that associates PLUGIN_KEY,
ATTACK_KEY and
VULN_KB_ID

PLUGIN_KEY number ID to reference the
ADV_ATTACK_PLUGIN_V

ATTACK_KEY number ID to reference the
ADV_ATTACK_MAP_V

VULN_KB_ID number ID to reference the
VULN_KB_ID_V

DATE_PUBLISHED date Date the entry was published
DATE_UPDATED date Date the entry was updated
BEGIN_EFFECTIVE_DATE date Date from which the entry is valid
END_EFFECTIVE_DATE date Date until which the entry is valid
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_PRODUCT_RPT_V
View references ADV_PRODUCT table that stores Advisor product information
such as vendor and product ID.

Column Name Datatype Comment
PRODUCT_ID number ID of the product
VENDOR_ID number ID of the vendor
PRODUCT_CATEGORY_ID number ID of the Product Category
PRODUCT_CATEGORY_NAM
E

varchar2(128) Product Category Name

PRODUCT_TYPE_ID integer ID of the product type
PRODUCT_TYPE_NAME varchar2(256) Name of the Product Type
PRODUCT_NAME varchar2(128) Product Name
PRODUCT_DESCRIPTION varchar2(512) Product Descritpion
FEED_DATE_CREATED date Date of the Feed that carried

information on this product
FEED_DATE_UPDATED date Date of the Feed that updated

information on this product
ACTIVE_FLAG number Reserved for future use

 Sentinel Database Views for Oracle 9-3

Column Name Datatype Comment
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_PRODUCT_SERVICE_PACK_RPT_V
View references ADV_PRODUCT_SERVICE _PACK table that stores Advisor
service pack information, such as service pack name, version ID and date.

Column Name Datatype Comment
SERVICE_PACK_ID number Service Pack ID
VERSION_ID number Version ID
SERVICE_PACK_NAME varchar2(32) Name of the Service Pack
FEED_DATE_CREATED date Date of the Feed that carried

information on this product
FEED_DATE_UPDATED date Date of the Feed that updated

information on this product
ACTIVE_FLAG number Reserved for future use
BEGIN_EFFECTIVE_DATE date Date from which the entry is valid
END_EFFECTIVE_DATE date Date until which the entry is valid
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_PRODUCT_VERSION_RPT_V
View references ADV_PRODUCT_VERSION table that stores Advisor product
version information, such as version name, product and version ID.

Column Name Datatype Comment
VERSION_ID number Version ID
PRODUCT_ID number Product ID
VERSION_NAME varchar2(128) Version Name of the product
FEED_DATE_CREATED date Date of the feed that carried the

information on the entry
FEED_DATE_UPDATED date Date of the feed that carried the

update on the entry
ACTIVE_FLAG number Reserved for future use
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_VENDOR_RPT_V
View references ADV_VENDOR table that stores Advisor address information.

Column Name Datatype Comment
VENDOR_ID number ID of the vendor
VENDOR_NAME varchar2(128) Name of the vendor
CONTACT_PERSON varchar2(128) Contains the contact person name

for the vendor
ADDRESS_LINE_1 varchar2(128) Address of the vendor

 9-4 Sentinel Reference Guide

Column Name Datatype Comment
ADDRESS_LINE_2 varchar2(128) Address of the vendor
ADDRESS_LINE_3 varchar2(128) Address of the vendor
ADDRESS_LINE_4 varchar2(128) Address of the vendor
CITY varchar2(128) City of the vendor
STATE varchar2(128) State of the vendor
COUNTRY varchar2(128) Country of the vendor
ZIP_CODE varchar2(128) Zip code of the vendor
URL varchar2(256) Web URL of the vendor
PHONE varchar2(32) Contact number of the vendor
FAX varchar2(32) Fax number of the vendor
EMAIL varchar2(128) Email of the vendor
PAGER varchar2(32) Pager of the vendor
FEED_DATE_CREATED date Date of the feed that carried the

information on the entry
FEED_DATE_UPDATED date Date of the feed that carried the

update on the entry
ACTIVE_FLAG number Reserved for future use
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_VULN_KB_RPT_V
Column Name Datatype Comment

VULN_KB_ID number Knowledge base ID mapping
CVE_ID, OSVDB_ID,
BUGTRAQ_ID

CVE_ID varchar2(10) CVE ID for the related
vulnerability

OSVDB_ID number OSVDB ID for the related
vulnerability

BUGTRAQ_ID number Bugtraq id for the related
vulnerability

DATE_PUBLISHED date Date the entry was published
DATE_UPDATED date Date the entry was updated
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ADV_VULN_PRODUCT_RPT_V
View references ADV_VULN_PRODUCT table that stores Advisor vulnerability
attack ID and service pack ID.

Column Name Datatype Comment
SERVICE_PACK_ID number Contains the service pack id
ATTACK_ID number Contains the attack id
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

 Sentinel Database Views for Oracle 9-5

ADV_VULN_SIGNATURES
Column Name Datatype Comment

VULN_KEY number Vulnerability key
VULN_SCANNER_NAME varchar2(128) Vulnerability scanner name
VULN_NAME varchar2(256) Vulnerability name
VULN_ID varchar2(256) Vulnerability ID

ANNOTATIONS_RPT_V
View references ANNOTATIONS table that stores documentation or notes that
can be associated with objects in the Sentinel system such as cases and incidents.

Column Name Datatype Comment
ANN_ID number Annotation identfier - sequence

number.
TEXT varchar2(4000) Documentation or notes.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
MODIFIED_BY number User who last modified object
CREATED_BY number User who created object
ACTION varchar2(255) Action

ASSET_CATEGORY_RPT_V
View references ASSET_CTGRY table that stores information about asset
categories

Column Name Datatype Comment
ASSET_CATEGORY_ID number(38) Asset category identifier
ASSET_CATEGORY_NAME varchar2(100) Asset category name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSET_HOSTNAME_RPT_V
View references ASSET_HOSTNAME table that stores information about
alternate host names for assets.

Column Name Datatype Comment
ASSET_HOSTNAME_ID varchar2(36) Asset alternate hostname

identifier
PHYSICAL_ASSET_ID varchar2(36) Physical asset identifier
HOST_NAME varchar2(255) Host name
CUST_ID number(38) Customer identifier
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSET_IP_RPT_V
View references ASSET_IP table that stores information about alternate IP
addresses for assets.

 9-6 Sentinel Reference Guide

Column Name Datatype Comment
ASSET_IP_ID varchar2(36) Asset alternate IP identifier
PHYSICAL_ASSET_ID varchar2(36) Physical asset identifier
IP_ADDRESS number(38) Asset IP address
CUST_ID number(38) Customer identifier
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSET_LOCATION_RPT_V
View references ASSET_LOC table that stores information about asset locations.

Column Name Datatype Comment
LOCATION_ID number(38) Location identifier
CUST_ID number(38) Customer identifier
BUILDING_NAME varchar2(255) Building name
ADDRESS_LINE_1 varchar2(255) Address line 1
ADDRESS_LINE_2 varchar2(255) Address line 2
CITY varchar2(100) City
STATE varchar2(100) State
COUNTRY varchar2(100) Country
ZIP_CODE varchar2(50) Zip code
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSET_RPT_V
View references ASSET table that stores information about the physical and soft
assets.

Column Name Datatype Comment
ASSET_ID varchar2(36) Asset identifier
CUST_ID number(38) Customer identifier
ASSET_NAME varchar2(255) Asset name
PHYSICAL_ASSET_ID varchar2(36) Physical asset identifier
PRODUCT_ID number(38) Product identifier
ASSET_CATEGORY_ID number(38) Asset category identifier
ENVIRONMENT_IDENTITY_I
D

number(38) Environment identify code

PHYSICAL_ASSET_IND number(1) Physical asset indicator
ASSET_VALUE_ID number(38) Asset value code
CRITICALITY_ID number(38) Asset criticality code
SENSITIVITY_ID number(38) Asset sensitivity code
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

 Sentinel Database Views for Oracle 9-7

ASSET_VALUE_RPT_V
View references ASSET_VAL_LKUP table that stores information about the
asset value.

Column Name Datatype Comment
ASSET_VALUE_ID number(38) Asset value code
ASSET_VALUE_NAME varchar2(50) Asset value name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSET_X_ENTITY_X_ROLE_RPT_V
View references ASSET_X_ENTITY_X_ROLE table that associates a person or
an organization to an asset.

Column Name Datatype Comment
PERSON_ID varchar2(36) Person identifier
ORGANIZATION_ID varchar2(36) Organization identifier
ROLE_CODE varchar2(5) Role code
ASSET_ID varchar2(36) Asset identifier
ENTITY_TYPE_CODE varchar2(5) Entity type code
PERSON_ROLE_SEQUENCE number(38) Order of persons under a

particular role
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ASSOCIATIONS_RPT_V
View references ASSOCIATIONS table that associates users to incidents,
incidents to annotations and so on.

Column Name Datatype Comment
TABLE1 varchar2(64) Table name 1. For example,

incidents
ID1 varchar2(36) ID1. For example, incident ID.
TABLE2 varchar2(64) Table name 2. For example, users.
ID2 varchar2(36) ID2. For example, user ID.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ATTACHMENTS_RPT_V
View references ATTACHMENTS table that stores attachment data.

Column Name Datatype Comment
ATTACHMENT_ID number Attachment identifier
NAME varchar2(255) Attachment name
SOURCE_REFERENCE varchar2(64) Source reference
TYPE varchar2(32) Attachment type
SUB_TYPE varchar2(32) Attachment subtype

 9-8 Sentinel Reference Guide

Column Name Datatype Comment
FILE_EXTENSION varchar2(32) File extension
ATTACHMENT_DESCRIPTION varchar2(255) Attachment description
DATA clob Attachment data
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

CONFIGS_RPT_V
View references CONFIGS table that stores general configuration information of
the application.

Column Name Datatype Comment
USR_ID varchar2(32) User name.
APPLICATION varchar2(255) Application identifier
UNIT varchar2(64) Application unit
VALUE varchar2(255) Text value if any
DATA clob XML data
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

CONTACTS_RPT_V
View references CONTACTS table that stores contact information.

Column Name Datatype Comment
CNT_ID number Contact ID - Sequence number
FIRST_NAME varchar2(20) Contact first name.
LAST_NAME varchar2(30) Contact last name.
TITLE varchar2(128) Contact title
DEPARTMENT varchar2(128) Department
PHONE varchar2(64) Contact phone
EMAIL varchar2(255) Contact email
PAGER varchar2(64) Contact pager
CELL varchar2(64) Contact cell phone
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

CORRELATED_EVENTS
View references CORRELATED_EVENTS_* tables that store correlated event
information.

Column Name Datatype Comment
PARENT_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of parent event
CHILD_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of child event
PARENT_EVT_TIME datetime Parent event created date
CHILD_EVT_TIME datetime Child event created date

 Sentinel Database Views for Oracle 9-9

Column Name Datatype Comment
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CORRELATED_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
CORRELATED_EVENTS_RPT_V1.

CORRELATED_EVENTS_RPT_V1
View contains current and historical correlated events (correlated events imported
from archives).

Column Name Datatype Comment
PARENT_EVT_ID varchar2(36) Event Universal Unique Identifier

(UUID) of parent event
CHILD_EVT_ID varchar2(36) Event Universal Unique Identifier

(UUID) of child event
PARENT_EVT_TIME date Parent event time
CHILD_EVT_TIME date Child event time
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

CRITICALITY_RPT_V
View references CRIT_LKUP table that contains information about asset
criticality.

Column Name Datatype Comment
CRITICALITY_ID number(38) Asset criticality code
CRITICALITY_NAME varchar2(50) Asset criticality name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

CUST_HIERARCHY_V
View references CUST_HIERARCHY table that stores information about MSSP
customer hierarchy.

Column Name Datatype Comment
CUST_HIERARCHY_ID number(38) Customer hierarchy ID
CUST_NAME varchar2(255) Customer
CUST_HIERARCHY_LVL1 varchar2(255) Customer hierarchy level 1
CUST_HIERARCHY_LVL2 varchar2(255) Customer hierarchy level 2
CUST_HIERARCHY_LVL3 varchar2(255) Customer hierarchy level 3
CUST_HIERARCHY_LVL4 varchar2(255) Customer hierarchy level 4
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object

 9-10 Sentinel Reference Guide

Column Name Datatype Comment
MODIFIED_BY number User who last modified object

CUST_RPT_V
View references CUST table that stores customer information for MSSPs.

Column Name Datatype Comment
CUST_ID number(38) Customer identifier
CUSTOMER_NAME varchar2(255) Customer name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ENTITY_TYPE_RPT_V
View references ENTITY_TYP table that stores information about entity types
(person, organization).

Column Name Datatype Comment
ENTITY_TYPE_CODE varchar2(5) Entity type code
ENTITY_TYPE_NAME varchar2(50) Entity type name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ENV_IDENTITY_RPT_V
View references ENV_IDENTITY_LKUP table that stores information about
asset environment identity.

Column Name Datatype Comment
ENVIRONMENT_IDENTITY_I
D

number(38) Environment identity code

ENVIRONMENT_IDENTITY_N
AME

varchar2(255) Environment identity name

DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ESEC_DISPLAY_RPT_V
View references ESEC_DISPLAY table that stores displayable properties of
objects. Currently used in renaming meta-tags. Used with Event Configuration
(Business Relevance).

Column Name Datatype Comment
DISPLAY_OBJECT varchar2(32) The parent object of the

property
TAG varchar2(32) The native tag name of the

property
LABEL varchar2(32) The display string of tag.
POSITION number Position of tag within display.
WIDTH number The column width

 Sentinel Database Views for Oracle 9-11

Column Name Datatype Comment
ALIGNMENT number The horizontal alignment
FORMAT number The enumerated formatter for

displaying the property
ENABLED varchar2(1) Indicates if the tag is shown.
TYPE number Indicates datatype of tag.

1 = string
2 = ulong
3 = date
4 = uuid
5 = ipv4

DESCRIPTION varchar2(255) Textual description of the tag
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object
REF_CONFIG varchar2(4000) Referential data configuration

ESEC_PORT_REFERENCE_RPT_V
View references ESEC_PORT_REFERENCE table that stores industry standard
assigned port numbers.

Column Name Datatype Comment
PORT_NUMBER number Per

http://www.iana.org/assignme
nts/port-numbers, the
numerical representation of
the port. This port number is
typically associated with the
Transport Protocol level in
the TCP/IP stack.

PROTOCOL_NUMBER number Per
http://www.iana.org/assignme
nts/protocol-numbers, the
numerical identifiers used to
represent protocols that are
encapsulated in an IP packet.

PORT_KEYWORD varchar2(64) Per
http://www.iana.org/assignme
nts/port-numbers, the
keyword representation of the
port.

PORT_DESCRIPTION varchar2(512) Port description.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ESEC_PROTOCOL_REFERENCE_RPT_V
View references ESEC_PROTOCOL_REFERENCE table that stores industry
standard assigned protocol numbers.

 9-12 Sentinel Reference Guide

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Column Name Datatype Comment
PROTOCOL_NUMBER number Per

http://www.iana.org/assignments/
protocol-numbers, the numerical
identifiers used to represent
protocols that are encapsulated in
an IP packet.

PROTOCOL_KEYWORD varchar2(64) Per
http://www.iana.org/assignments/
protocol-numbers, the keyword
used to represent protocols that
are encapsulated in an IP packet.

PROTOCOL_DESCRIPTION varchar2(512) IP packet protocol description.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

ESEC_SEQUENCE_RPT_V
View references ESEC_SEQUENCE table that’s used to generate primary key
sequence numbers for Sentinel tables.

Column Name Datatype Comment
TABLE_NAME varchar2(32) Name of the table.
COLUMN_NAME varchar2(255) Name of the column
SEED number Current value of primary key

field.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

EVENTS_ALL_RPT_V (legacy view)
This view is provided for backward compatibility. View contains current and
historical events (events imported from archives).

EVENTS_ALL_RPT_V1 (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2. View contains current events.

EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2. View contains current and historical events.

EVENTS_RPT_V1 (legacy view)
This view is provided for backward compatibility. New reports should use
EVENT_ALL_RPT_V. View contains current events.

EVENTS_RPT_V2
This is the primary reporting view. View contains current event and historical
events.

 Sentinel Database Views for Oracle 9-13

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

Column Name Datatype Comment
EVENT_ID varchar2(36) Event identifier
RESOURCE_NAME varchar2(255) Resource name
SUB_RESOURCE varchar2(255) Subresource name
SEVERITY integer Event severity
EVENT_PARSE_TIME date Event time
EVENT_DATETIME date Event time
EVENT_DEVICE_TIME date Event device time
SENTINEL_PROCESS_TIME date Sentinel process time
BEGIN_TIME date Events begin time
END_TIME date Events end time
REPEAT_COUNT integer Events repeat count
DESTINATION_PORT_INT integer Destination port (integer)
SOURCE_PORT_INT integer Source port (integer)
BASE_MESSAGE varchar2(4000) Base message
EVENT_NAME varchar2(255) Name of the event as reported by

the sensor
EVENT_TIME varchar2(255) Event time as reported by the

sensor
CUST_ID integer Customer identifier
SOURCE_ASSET_ID integer Source asset identifier
DESTINATION_ASSET_ID integer Destination asset identifier
AGENT_ID integer Collector identifier
PROTOCOL_ID integer Protocol identifier
ARCHIVE_ID integer Archive identifier
SOURCE_IP integer Source IP address in numeric

format
SOURCE_IP_DOTTED varchar2(16) Source IP in dotted format
SOURCE_HOST_NAME varchar2(255) Source host name
SOURCE_PORT varchar2(32) Source port
DESTINATION_IP integer Destination IP address in numeric

format
DESTINATION_IP_DOTTED varchar2(16) Destination in dotted format
DESTINATION_HOST_NAME varchar2(255) Destination host name
DESTINATION_PORT varchar2(32) Destination port
SOURCE_USER_NAME varchar2(255) Source user name
DESTINATION_USER_NAME varchar2(255) Destination user name
FILE_NAME varchar2(1000) File name
EXTENDED_INFO varchar2(1000) Extened information
CUSTOM_TAG_1 varchar2(255) Customer Tag 1
CUSTOM_TAG 2 varchar2(255) Customer Tag 2
CUSTOM_TAG 3 integer Customer Tag 3
RESERVED_TAG_1 varchar2(255) Reserved Tag 1

Reserved for future use by Novell.
This field is used for Advisor
information concerning attack
descriptions.

RESERVED_TAG_2 varchar2(255) Reserved for future use by Novell.
Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

 9-14 Sentinel Reference Guide

Column Name Datatype Comment
RESERVED_TAG_3 integer Reserved for future use by Novell.

Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

VULNERABILITY_RATING integer Vulnerability rating
CRITICALITY_RATING integer Criticality rating
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY integer User who created object
MODIFIED_BY integer User who last modified object
RV01 - 10 integer Reserved Value 1 - 10

Reserved for future use by Novell.
Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

RV11 - 20 date Reserved Value 1 - 31
Reserved for future use by Novell.
Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

RV21 - 25 varchar2(36) Reserved Value 21 - 25
Reserved for future use by Novell
to store UUIDs. Use of this field
for any other purpose might result
in data being overwritten by
future functionality.

RV26 - 31 varchar2(255) Reserved Value 26 - 31
Reserved for future use by Novell.
Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

RV33 varchar2(255) Reserved Value 33
Reserved for EventContex
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV34 varchar2(255) Reserved Value 34
Reserved for SourceThreatLevel
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

 Sentinel Database Views for Oracle 9-15

Column Name Datatype Comment
RV35 varchar2(255) Reserved Value 35

Reserved for SourceUserContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV36 varchar2(255) Reserved Value 36
Reserved for DataContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV37 varchar2(255) Reserved Value 37
Reserved for SourceFunction.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV38 varchar2(255) Reserved Value 38
Reserved for
SourceOperationalContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV40 - 43 varchar2(255) Reserved Value 40 - 43
Reserved for future use by
Novell. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RV44 varchar2(255) Reserved Value 44
Reserved for
DestinationThreatLevel.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV45 varchar2(255) Reserved Value 45
Reserved for
DestinationUserContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV46 varchar2(255) Reserved Value 46
Reserved for VirusStatus.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

 9-16 Sentinel Reference Guide

Column Name Datatype Comment
RV47 varchar2(255) Reserved Value 47

Reserved for future use by
Novell. Use of this field for any
other purpose might result in
data being overwritten by future
functionality.

RV48 varchar2(255) Reserved Value 48
Reserved for
DestinationOperationalContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV49 varchar2(255) Reserved Value 49
Reserved for future use by
Novell. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

TAXONOMY_ID integer
REFERENCE_ID_01 - 20 integer Reserved for future use by

Novell. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

CV01 - 10 integer Custom Value 1 - 10
Reserved for use by Customer,
typically for association of
Business relevant data

CV11 - 20 date Custom Value 11 - 20
Reserved for use by Customer,
typically for association of
Business relevant data

CV21 - 29 varchar2(255) Custom Value 21 - 100Reserved
for use by Customer, typically for
association of Business relevant
data

CV30 - 34 varchar2(4000)
CV35 – 100 varchar2(255)

EVT_AGENT_RPT_V
View references EVT_AGENT table that stores information about Collectors.

Column Name Datatype Comment
AGENT_ID number(38) Collector identifier
CUST_ID number(38)
AGENT varchar2(64) Collector name
PORT varchar2(64) Collector port
REPORT_NAME varchar2(255) Reporter name
PRODUCT_NAME varchar2(255) Product name
SENSOR_NAME varchar2(255) Sensor name

 Sentinel Database Views for Oracle 9-17

Column Name Datatype Comment
SENSOR_TYPE varchar2(5) Sensor type:

H - host-based
N - network-based
V - virus
O - other

DEVICE_CATEGORY varchar2(255) Device category
SOURCE_UUID varchar2(36) Source component Universal

Unique Identifier (UUID)
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_ASSET_RPT_V
View references EVT_ASSET table that stores asset information.

Column Name Datatype Comment
EVENT_ASSET_ID number(38) Event asset identifier
CUST_ID number(38) Customer identifier
ASSET_NAME varchar2(255) Asset name
PHYSICAL_ASSET_NAME varchar2(255) Physical asset name
REFERENCE_ASSET_ID varchar2(100) Reference asset identifier, links to

source asset management system.
MAC_ADDRESS varchar2(100) MAC address
RACK_NUMBER varchar2(50) Rack number
ROOM_NAME varchar2(100) Room name
BUILDING_NAME varchar2(255) Building name
CITY varchar2(100) City
STATE varchar2(100) State
COUNTRY varchar2(100) Country
ZIP_CODE varchar2(50) Zip code
ASSET_CATEGORY_NAME varchar2(100) Asset category name
NETWORK_IDENTITY_NAME varchar2(255) Asset network identity name
ENVIRONMENT_IDENTITY_N
AME

varchar2(255) Environment name

ASSET_VALUE_NAME varchar2(50) Asset value name
CRITICALITY_NAME varchar2(50) Asset criticality name
SENSITIVITY_NAME varchar2(50) Asset sensitivity name
CONTACT_NAME_1 varchar2(255) Name of contact

person/organization 1
CONTACT_NAME_2 varchar2(255) Name of contact

person/organization 2
ORGANIZATION_NAME_1 varchar2(100) Asset owner organization level 1
ORGANIZATION_NAME_2 varchar2(100) Asset owner organization level 2
ORGANIZATION_NAME_3 varchar2(100) Asset owner organization level 3
ORGANIZATION_NAME_4 varchar2(100) Asset owner organization level 4
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

 9-18 Sentinel Reference Guide

EVT_DEST_EVT_NAME_SMRY_1_RPT_V
View summarizes event count by destination, taxonomy, event name, severity and
event time.

Column Name Datatype Comment
DESTINATION_IP number(38) Destination IP address
DESTINATION_EVENT_ASSE
T_ID

number(38) Event asset identifier

TAXONOMY_ID number(38) Taxonomy identifier
EVENT_NAME_ID number(38) Event name identifier
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_DEST_SMRY_1_RPT_V
View contains event destination summary information.

Column Name Datatype Comment
DESTINATION_IP number(38) Destination IP address
DESTINATION_EVENT_ASSE
T_ID

number(38) Event asset identifier

DESTINATION_PORT varchar2(32) Destination port
DESTINATION_USER_ID number(38) Destination user identifier
TAXONOMY_ID number(38) Taxonomy identifier
EVENT_NAME_ID number(38) Event name identifier
RESOURCE_ID number(38) Resource identifier
AGENT_ID number(38) Collector identifier
PROTOCOL_ID number(38) Protocol identifier
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_DEST_TXNMY_SMRY_1_RPT_V
View summarizes event count by destination, taxonomy, severity and event time.

Column Name Datatype Comment
DESTINATION_IP number(38) Destination IP address
DESTINATION_EVENT_ASSE
T_ID

number(38) Event asset identifier

TAXONOMY_ID number(38) Taxonomy identifier
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time

 Sentinel Database Views for Oracle 9-19

Column Name Datatype Comment
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_NAME_RPT_V
View references EVT_NAME table that stores event name information.

Column Name Datatype Comment
EVENT_NAME_ID number(38) Event name identifier
EVENT_NAME varchar2(255) Event name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_PORT_SMRY_1_RPT_V
View summarizes event count by destination port, severity and event time.

Column Name Datatype Comment
DESTINATION_PORT varchar2(32) Destination port
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_PRTCL_RPT_V
View references EVT_PRTCL table that stores event protocol information.

Column Name Datatype Comment
PROTOCOL_ID number(38) Protocol identifier
PROTOCOL_NAME varchar2(255) Protocol name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_RSRC_RPT_V
View references EVT_RSRC table that stores event resource information.

Column Name Datatype Comment
RESOURCE_ID number(38) Resource identifier
CUST_ID number(38) Customer Identifier
RESOURCE_NAME varchar2(255) Resource name
SUB_RESOURCE_NAME varchar2(255) Subresource name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified

 9-20 Sentinel Reference Guide

Column Name Datatype Comment
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_SEV_SMRY_1_RPT_V
View summarizes event count by severity and event time.

Column Name Datatype Comment
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_SRC_SMRY_1_RPT_V
View contains event source and destination summary information.

Column Name Datatype Comment
SOURCE_IP number(38) Source IP address
SOURCE_EVENT_ASSET_ID number(38) Source event asset identifier
SOURCE_PORT varchar2(32) Source port
SOURCE_USER_ID number(38) Source user identifier
TAXONOMY_ID number(38) Taxonomy identifier
EVENT_NAME_ID number(38) Event name identifier
RESOURCE_ID number(38) Resource identifier
AGENT_ID number(38) Collector identifier
PROTOCOL_ID number(38) Protocol identifier
SEVERITY number(38) Event severity
CUST_ID number(38) Customer identifier
EVENT_TIME date Event time
EVENT_COUNT number(38) Event count
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EVT_TXNMY_RPT_V
View references EVT_TXNMY table that stores event taxonomy information.

Column Name Datatype Comment
TAXONOMY_ID number(38) Taxonomy identifier
TAXONOMY_LEVEL_1 varchar2(100) Taxonomy level 1
TAXONOMY_LEVEL_2 varchar2(100) Taxonomy level 2
TAXONOMY_LEVEL_3 varchar2(100) Taxonomy level 3
TAXONOMY_LEVEL_4 varchar2(100) Taxonomy level 4
DEVICE_CATEGORY varchar2(255)
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

 Sentinel Database Views for Oracle 9-21

EVT_USR_RPT_V
View references EVT_USR table that stores event user information.

Column Name Datatype Comment
USER_ID number(38) User identifier
USER_NAME varchar2(255) User name
CUST_ID number(38) Customer identifier
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

EXTERNAL_DATA_RPT_V
View references EXTERNAL_DATA table that stores external data.

Column Name Datatype Comment
EXTERNAL_DATA_ID number External data identifier
SOURCE_NAME varchar2(50) Source name
SOURCE_DATA_ID varchar2(255) Source data identifier
EXTERNAL_DATA clob External data
EXTERNAL_DATA_TYPE varchar2(10) External data type
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

HIST_CORRELATED_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
CORRELATED_EVENTS_RPT_V1.

HIST_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2.

IMAGES_RPT_V
View references IMAGES table that stores system overview image information.

Column Name Datatype Comment
NAME varchar2(128) Image name
TYPE varchar2(64) Image type
DATA clob Image data
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

INCIDENTS_ASSETS_RPT_V
View references INCIDENTS_ASSETS table that stores information about the
assets that makeup incidents created in the Sentinel Console.

Column Name Datatype Comment

 9-22 Sentinel Reference Guide

Column Name Datatype Comment
INC_ID number Incident identifier – sequence

number
ASSET_ID varchar2(36) Asset Universal Unique Identifier

(UUID)
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

INCIDENTS_EVENTS_RPT_V
View references INCIDENTS_EVENTS table that stores information about the
events that makeup incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID number Incident identifier – sequence

number
EVT_ID varchar2(36) Event Universal Unique Identifier

(UUID)
EVT_TIME date Event time
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

INCIDENTS_RPT_V
View references INCIDENTS table that stores information describing the details
of incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID number Incident identifier – sequence

number
NAME varchar2(255) Incident name
SEVERITY number Incident severity
STT_ID number Incident State ID
SEVERITY_RATING varchar2(32) Average of all the event severities

that comprise an incident.
VULNERABILITY_RATING varchar2(32) Reserved for future use by Novell.

Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

CRITICALITY_RATING varchar2(32) Reserved for future use by Novell.
Use of this field for any other
purpose might result in data being
overwritten by future
functionality.

DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object
INC_DESC varchar2(4000) Incident description
INC_CAT varchar2(255) Incident category

 Sentinel Database Views for Oracle 9-23

Column Name Datatype Comment
INC_PRIORITY number Incident priority
INC_RES varchar2(4000) Incident resolution

INCIDENTS_VULN_RPT_V
View references INCIDENTS_VULN table that stores information about the
vulnerabilities that makeup incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID number Incident identifier – sequence

number
VULN_ID varchar2(36) Vulnerability Universal Unique

Identifier (UUID)
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

L_STAT_RPT_V
View references L_STAT table that stores statistical information.

Column Name Datatype Comment
RES_NAME varchar2(32) Resource name
STATS_NAME varchar2(32) Statistic name
STATS_VALUE varchar2(32) Value of the statistic
OPEN_TOT_SECS number(38) Number of seconds since 1970.

LOGS_RPT_V
View references LOGS_RPT table that stores logging information.

Column Name Datatype Comment
LOG_ID number Sequence number
TIME date Date of Log
MODULE varchar2(64) Module log is for
TEXT varchar2(4000) Log text

MSSP_ASSOCIATIONS_V
View references MSSP_ASSOCIATIONS table that associates an number key in
one table to a UUID in another table.

Column Name Datatype Comment
TABLE1 varchar2(64) Table name 1
ID1 number(38) ID1
TABLE2 varchar2(64) Table name 2
ID2 varchar2(36) ID2
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object

 9-24 Sentinel Reference Guide

NETWORK_IDENTITY_RPT_V
View references NETWORK_IDENTITY_LKUP table that stores asset network
identity information.

Column Name Datatype Comment
NETWORK_IDENTITY_ID number(38) Network identity code
NETWORK_IDENTITY_NAME varchar2(255) Network identify name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ORGANIZATION_RPT_V
View references ORGANIZATION table that stores organization (asset)
information.

Column Name Datatype Comment
ORGANIZATION_ID varchar2(36) Organization identifier
ORGANIZATION_NAME varchar2(100) Organization name
CUST_ID number(38) Customer identifier
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

PERSON_RPT_V
View references PERSION table that stores personal (asset) information.

Column Name Datatype Comment
PERSON_ID varchar2(36) Person identifier
FIRST_NAME varchar2(255) First name
LAST_NAME varchar2(255) Last name
CUST_ID number(38) Customer identifier
PHONE_NUMBER varchar2(50) Phone number
EMAIL_ADDRESS varchar2(255) Email address
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

PHYSICAL_ASSET_RPT_V
View references PHYSICAL_ASSET table that stores physical asset information.

Column Name Datatype Comment
PHYSICAL_ASSET_ID varchar2(36) Physical asset identifier
CUST_ID number(38) Customer identifier
HOST_NAME varchar2(255) Host name
IP_ADDRESS number(38) IP address
LOCATION_ID number(38) Location identifier
NETWORK_IDENTITY_ID number(38) Network identity code
MAC_ADDRESS varchar2(100) MAC address
RACK_NUMBER varchar2(50) Rack number
ROOM_NAME varchar2(100) Room name

 Sentinel Database Views for Oracle 9-25

Column Name Datatype Comment
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

PRODUCT_RPT_V
View references PRDT table that stores asset product information.

Column Name Datatype Comment
PRODUCT_ID number(38) Product identifier
PRODUCT_NAME varchar2(255) Product name
PRODUCT_VERSION varchar2(100) Product version
VENDOR_ID number(38) Vendor identifier
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

ROLE_RPT_V
View references ROLE_LKUP table that stores user role (asset) information.

Column Name Datatype Comment
ROLE_CODE varchar2(5) Role code
ROLE_NAME varchar2(255) Role name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

RPT_LABELS_RPT_V
View contains report label translations.

Column Name Datatype Comment
RPT_NAME varchar2(100) Report name
LABEL_1 - 35 varchar2(2000) Translated report labels

SENSITIVITY_RPT_V
View references SENSITIVITY_LKUP table that stores asset sensitivity
information.

Column Name Datatype Comment
SENSITIVITY_ID number(38) Asset sensitivity code
SENSITIVITY_NAME varchar2(50) Asset sensitivity name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

STATES_RPT_V
View references STATES table that stores definitions of states defined by
applications or context.

 9-26 Sentinel Reference Guide

Column Name Datatype Comment
STT_ID number(38) State ID – sequence number
CONTEXT varchar2(64) Context of the state. That is case,

incident, user.
NAME varchar2(64) Name of the state.
TERMINAL_FLAG varchar2(1) Indicates if state of incident is

resolved.
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
MODIFIED_BY number(38) User who last modified object
CREATED_BY number(38) User who created object

UNASSIGNED_INCIDENTS_RPT_V
View references CASES and INCIDENTS tables to report on unassigned cases.

Name Datatype
INC_ID number
NAME varchar2(255)
SEVERITY number
STT_ID number
SEVERITY_RATING varchar2(32)
VULNERABILITY_RATING varchar2(32)
CRITICALITY_RATING varchar2(32)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number
INC_DESC varchar2(4000)
INC_CAT varchar2(255)
INC_PRIORITY number
INC_RES varchar2(4000)

USERS_RPT_V
View references USERS table that lists all users of the application. The users will
also be created as database users to accommodate 3rd party reporting tools.

Column Name Datatype Comment
USR_ID number User identifier – Sequence

number
NAME varchar2(64) Short, unique user name used as a

login
CNT_ID number Contact ID – Sequence number
STT_ID number State ID. Status is either active or

inactive.
DESCRIPTION varchar2(512) Comments
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number User who created object
MODIFIED_BY number User who last modified object
PERMISSIONS varchar2(4000) Permissions currently assigned to

the Sentinel user
FILTER varchar2(128) Current security filter assigned to

the Sentinel user

 Sentinel Database Views for Oracle 9-27

Column Name Datatype Comment
UPPER_NAME varchar2(64) User name in upper case
DOMAIN_AUTH_IND number (1) Domain authentication indication

VENDOR_RPT_V
View references VNDR table that stores information about asset product vendors.

Column Name Datatype Comment
VENDOR_ID number(38) Vendor identifier
VENDOR_NAME varchar2(255) Vendor name
DATE_CREATED date Date the entry was created
DATE_MODIFIED date Date the entry was modified
CREATED_BY number(38) User who created object
MODIFIED_BY number(38) User who last modified object

VULN_CALC_SEVERITY_RPT_V
View references VULN_RSRC and VULN to calculate eSecurity vulnerability
severity rating base on current vulnerabilities.

Column Name Datatype
RSRC_ID varchar2(36)
IP varchar2(32)
HOST_NAME varchar2(255)
CRITICALITY number
ASSIGNED_VULN_SEVERITY number
VULN_COUNT number
CALC_SEVERITY number

VULN_CODE_RPT_V
View references VULN_CODE table that stores industry assigned vulnerability
codes such as Mitre’s CVEs and CANs.

Column Name Datatype
VULN_CODE_ID varchar2(36)
VULN_ID varchar2(36)
VULN_CODE_TYPE varchar2(64)
VULN_CODE_VALUE varchar2(255)
URL varchar2(512)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_INFO_RPT_V
View references VULN_INFO table that stores additional information reported
during a scan.

Column Name Datatype
VULN_INFO_ID varchar2(36)
VULN_ID varchar2(36)
VULN_INFO_TYPE varchar2(36)
VULN_INFO_VALUE varchar2(2000)
DATE_CREATED date

 9-28 Sentinel Reference Guide

Column Name Datatype
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_RPT_V
View references VULN table that stores information of scanned system. Each
scanner will have its own entry for each system.

Column Name Datatype
VULN_ID varchar2(36)
RSRC_ID varchar2(36)
PORT_NAME varchar2(64)
PORT_NUMBER number
NETWORK_PROTOCOL number
APPLICATION_PROTOCOL varchar2(64)
ASSIGNED_VULN_SEVERITY number
COMPUTED_VULN_SEVERITY number
VULN_DESCRIPTION clob
VULN_SOLUTION clob
VULN_SUMMARY varchar2(1000)
BEGIN_EFFECTIVE_DATE date
END_EFFECTIVE_DATE date
DETECTED_OS varchar2(64)
DETECTED_OS_VERSION varchar2(64)
SCANNED_APP varchar2(64)
SCANNED_APP_VERSION varchar2(64)
VULN_USER_NAME varchar2(64)
VULN_USER_DOMAIN varchar2(64)
VULN_TAXONOMY varchar2(1000)
SCANNER_CLASSIFICATION varchar2(255)
VULN_NAME varchar2(300)
VULN_MODULE varchar2(64)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_RSRC_RPT_V
View references VULN_RSRC table that stores each resource scanned for a
particular scan.

Column Name Datatype
RSRC_ID varchar2(36)
SCANNER_ID varchar2(36)
IP varchar2(32)
HOST_NAME varchar2(255)
LOCATION varchar2(128)
DEPARTMENT varchar2(128)
BUSINESS_SYSTEM varchar2(128)
OPERATIONAL_ENVIRONMENT varchar2(64)
CRITICALITY number
REGULATION varchar2(128)

 Sentinel Database Views for Oracle 9-29

Column Name Datatype
REGULATION_RATING varchar2(64)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_RSRC_SCAN_RPT_V
View references VULN_RSRC_SCAN table that stores each resource scanned for
a particular scan.

Column Name Datatype
RSRC_ID varchar2(36)
SCAN_ID varchar2(36)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_SCAN_RPT_V
View references table that stores information pertaining to scans.

Column Name Datatype
SCAN_ID varchar2(36)
SCANNER_ID varchar2(36)
SCAN_TYPE varchar2(10)
SCAN_START_DATE date
SCAN_END_DATE date
CONSOLIDATION_SERVER varchar2(64)
LOAD_STATUS varchar2(64)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_SCAN_VULN_RPT_V
View references VULN_SCAN_VULN table that stores vulnerabilities detected
during scans.

Column Name Datatype
SCAN_ID varchar2(36)
VULN_ID varchar2(36)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

VULN_SCANNER_RPT_V
View references VULN_SCANNER table that stores information about
vulnerability scanners.

Column Name Datatype
SCANNER_ID varchar2(36)

 9-30 Sentinel Reference Guide

Column Name Datatype
PRODUCT_NAME varchar2(100)
PRODUCT_VERSION varchar2(64)
SCANNER_TYPE varchar2(64)
VENDOR varchar2(100)
SCANNER_INSTANCE varchar2(64)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number
MODIFIED_BY number

WORKFLOW_DEF_RPT_V
View references WORKFLOW_DEF table that stores workflow definitions.

For this view hotfix 1 has to be applied.

Column Name Datatype
PKG_NAME varchar2(255)
PKG_DATA clob
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number(38,0)
MODIFIED_BY number(38,0)

WORKFLOW_INFO_RPT_V
View references WORKFLOW_INFO table that stores information about
workflow processes.

For this view hotfix 1 has to be applied.

Column Name Datatype
INFO_ID number(38,0)
PROCESS_DEF_ID varchar2(100)
PROCESS_INSTANCE_ID varchar2(150)
DATE_CREATED date
DATE_MODIFIED date
CREATED_BY number(38,0)
MODIFIED_BY number(38,0)

Deprecated Views
The following legacy views are no longer created in the Sentinel 6 database:

 ADV_ALERT_CVE_RPT_V
 ADV_ALERT_PRODUCT_RPT_V
 ADV_ALERT_RPT_V
 ADV_ATTACK_ALERT_RPT_V
 ADV_ATTACK_CVE_RPT_V
 ADV_CREDIBILITY_RPT_V
 ADV_SEVERITY_RPT_V

 Sentinel Database Views for Oracle 9-31

 9-32 Sentinel Reference Guide

 ADV_SUBALERT_RPT_V
 ADV_URGENCY_RPT_V

10 Sentinel Database Views for
Microsoft SQL Server

This section lists the Sentinel Schema Views for Microsoft SQL Server. The views
provide information for developing your own reports (Crystal Reports).

Views
ADV_ATTACK_MAP_RPT_V

View references ADV_ATTACK_MAP table that stores Advisor map information.

Column Name Datatype Comment
ATTACK_KEY int ID used to reference the attack

entry
SERVICE_PACK_ID int The Service Pack ID of the

product that is effected by this
attack

ATTACK_NAME varchar/nvarchar(256) Name of the Attack
ATTACK_CODE varchar/nvarchar(256) Attack code
DATE_PUBLISHED date Date the attack has been

published
DATE_UPDATED date Date the attack has been updated
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_by int User who last modified object

ADV_ATTACK_PLUGIN_RPT_V
View references ADV_ATTACK_PLUGIN table that stores Advisor plug-in information.

Column Name Datatype Comment
PLUGIN_KEY int ID used to reference the

vulnerability entry
SERVICE_PACK_ID int Service Pack ID of the product

that is identified this
vulnerability

PLUGIN_ID varchar/nvarchar(256) ID of the vulnerability
PLUGIN_NAME varchar/nvarchar(256) Name of the vulnerability
DATE_PUBLISHED datetime Date the vulnerability has been

published
DATE_UPDATED datetime Date the vulnerability has been

updated
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

 Sentinel Database Views for Microsoft SQL Server 10-1

ADV_ATTACK_RPT_V
View references ADV_ATTACK table that stores Advisor attack information.

Column Name Datatype Comment
ALERT_ID int ID to identify the attack
TRUSECURE_ATTACK_NAME varchar/nvarchar(512) Name of the attack
FEED_DATE_CREATED datetime Date when the feed first have the

information on this attack
FEED_DATE_UPDATED datetime Last date when the information

on this attack has been updated
ATTACK_CATEGORY varchar/nvarchar(256) Category of the attack
URGENCY_ID int The urgency associated with this

attack
SEVERITY_ID int Severity associated with this

attack
LOCAL int Indicates if this attack was

executed locally
REMOTE int Indicates if this attack was

executed from remote
DESCRIPTION ntext Description of the attack
SCENARIO ntext Scenario how the attack could be

made
IMPACT ntext Impact of the attack
SAFEGUARDS ntext Safeguards that could be

followed to avert the attack
PATCHES ntext Patches for the product to fix the

vulnerability exploited by the
attack

FALSE_POSITIVES ntext False Positives associated with
this attack

DATE_PUBLISHED datetime Date the information on this
attack was published

DATE_UPDATED datetime Date the information on this
attack was updated

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_ATTACK_SIGNATURES
Column Name Datatype Comment

ATTACK_KEY integer Attack ID
ATTACK_SCANNER_NAME varchar/nvarchar2(128) Name of the attack scanner or

intrusion detection system
ATTACK_NAME varchar/nvarchar2(256) Name of the attack
ATTACK_ID varchar/nvarchar2(256) ID of the attack

ADV_FEED_RPT_V
View references ADV_FEED table that stores Advisor feed information, such as feed
name and date.

 10-2 Sentinel Reference Guide

Column Name Datatype Comment
FEED_NAME varchar/nvarchar(128) Name of feed
FEED_FILE varchar/nvarchar(256) File name that contains the feed

data
BEGIN_DATE datetime The date from which this feed

file carries the advisor
information

END_DATE datetime The date until which this feed
file carries the advisor
information

FEED_INSERT int Number of rows inserted into the
advisor schema by this feed file

FEED_UPDATE int Number of rows updated into the
advisor schema by this feed file

FEED_EXPIRE int Number of rows deleted into the
advisor schema by this feed file

ADV_MASTER_RPT_V
Column Name Datatype Comment

MASTER_ID int ID that associates PLUGIN_KEY,
ATTACK_KEY and VULN_KB_ID

PLUGIN_KEY int ID to reference the
ADV_ATTACK_PLUGIN_V

ATTACK_KEY int ID to reference the
ADV_ATTACK_MAP_V

VULN_KB_ID int ID to reference the
VULN_KB_ID_V

DATE_PUBLISHED datetime Date the entry was published
DATE_UPDATED datetime Date the entry was updated
BEGIN_EFFECTIVE_DATE datetime Date from which the entry is valid
END_EFFECTIVE_DATE datetime Date until which the entry is valid
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_PRODUCT_RPT_V
View references ADV_PRODUCT table that stores Advisor product information such as
vendor and product ID.

Column Name Datatype Comment
PRODUCT_ID int ID of the product
VENDOR_ID int ID of the vendor
PRODUCT_CATEGORY_ID int ID of the Product Category
PRODUCT_CATEGORY_NAME varchar/nvarchar

(128)
Product Category Name

PRODUCT_TYPE_ID int ID of the product type
PRODUCT_TYPE_NAME varchar/nvarchar

(256)
Name of the Product Type

PRODUCT_NAME varchar/nvarchar
(128)

Product Name

PRODUCT_DESCRIPTION varchar/nvarchar
(512)

Product Descritpion

 Sentinel Database Views for Microsoft SQL Server 10-3

Column Name Datatype Comment
FEED_DATE_CREATED datetime Date of the Feed that carried

information on this product
FEED_DATE_UPDATED datetime Date of the Feed that updated

information on this product
ACTIVE_FLAG int Reserved for future use
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_PRODUCT_SERVICE_PACK_RPT_V
View references ADV_PRODUCT_SERVICE _PACK table that stores Advisor service
pack information, such as service pack name, version ID and date.

Column Name Datatype Comment
SERVICE_PACK_ID int Service Pack ID
VERSION_ID int Version ID
SERVICE_PACK_NAME varchar/nvarchar

(32)
Name of the Service Pack

FEED_DATE_CREATED datetime Date of the Feed that carried
information on this product

FEED_DATE_UPDATED datetime Date of the Feed that updated
information on this product

ACTIVE_FLAG int Reserved for future use
BEGIN_EFFECTIVE_DATE datetime Date from which the entry is valid
END_EFFECTIVE_DATE datetime Date until which the entry is valid
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_PRODUCT_VERSION_RPT_V
View references ADV_PRODUCT_VERSION table that stores Advisor product version
information, such as version name, product and version ID.

Column Name Datatype Comment
VERSION_ID int Version ID
PRODUCT_ID int Product ID
VERSION_NAME varchar/nvarchar

(128)
Version Name of the product

FEED_DATE_CREATED datetime Date of the feed that carried the
information on the entry

FEED_DATE_UPDATED datetime Date of the feed that carried the
update on the entry

ACTIVE_FLAG int Reserved for future use
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

 10-4 Sentinel Reference Guide

ADV_VENDOR_RPT_V
Column Name Datatype Comment

VENDOR_ID integer ID of the vendor
VENDOR_NAME varchar/nvarch

ar2(128)
Name of the vendor

CONTACT_PERSON varchar/nvarch
ar2(128)

Contains the contact person name for
the vendor

ADDRESS_LINE_1 varchar/nvarch
ar2(128)

Address of the vendor

ADDRESS_LINE_2 varchar/nvarch
ar2(128)

Address of the vendor

ADDRESS_LINE_3 varchar/nvarch
ar2(128)

Address of the vendor

ADDRESS_LINE_4 varchar/nvarch
ar2(128)

Address of the vendor

CITY varchar/nvarch
ar2(128)

City of the vendor

STATE varchar/nvarch
ar2(128)

State of the vendor

COUNTRY varchar/nvarch
ar2(128)

Country of the vendor

ZIP_CODE varchar/nvarch
ar2(128)

Zip code of the vendor

URL varchar/nvarch
ar2(256)

Web URL of the vendor

PHONE varchar/nvarch
ar2(32)

Contact number of the vendor

FAX varchar/nvarch
ar2(32)

Fax number of the vendor

EMAIL varchar/nvarch
ar2(128)

Email of the vendor

PAGER varchar/nvarch
ar2(32)

Pager of the vendor

FEED_DATE_CREATED datetime Date of the feed that carried the
information on the entry

FEED_DATE_UPDATED datetime Date of the feed that carried the update
on the entry

ACTIVE_FLAG int Reserved for future use
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_VULN_KB_RPT_V
Column Name Datatype Comment

VULN_KB_ID int

Knowledge base ID mapping
CVE_ID, OSVDB_ID,
BUGTRAQ_ID

CVE_ID int CVE ID for the related vulnerability
OSVDB_ID int OSVDB ID for the related

vulnerability
BUGTRAQ_ID int Bugtraq id for the related vulnerability

 Sentinel Database Views for Microsoft SQL Server 10-5

Column Name Datatype Comment
DATE_PUBLISHED datetime Date the entry was published
DATE_UPDATED datetime Date the entry was updated
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_VULN_PRODUCT_RPT_V
View references ADV_VULN_PRODUCT table that stores Advisor vulnerability attack
ID and service pack ID.

Column Name Datatype Comment
SERVICE_PACK_ID int Contains the service pack id
ATTACK_ID int Contains the attack id
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ADV_VULN_SIGNATURES
Column Name Datatype Comment

VULN_KEY integer Vulnerability key
VULN_SCANNER_NAME varchar/nvarch

ar2(128)
Vulnerability scanner name

VULN_NAME varchar/nvarch
ar2(256)

Vulnerability name

VULN_ID varchar/nvarch
ar2(256)

Vulnerability ID

ANNOTATIONS_RPT_V
View references ANNOTATIONS table that stores documentation or notes that can be
associated with objects in the Sentinel system such as cases and incidents.

Column Name Datatype Comment
ANN_ID int Annotation identfier - sequence number.
TEXT varchar/nvarchar(4000) Documentation or notes.
ACTION varchar/nvarchar(255) Action
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
MODIFIED_BY int User who last modified object
CREATED_BY int User who created object

ASSET_CATEGORY_RPT_V
View references ASSET_CTGRY table that stores information about asset categories.

Column Name Datatype Comment
ASSET_CATEGORY_ID integer Asset category identifier
ASSET_CATEGORY_NA
ME

varchar/nvarchar2(100) Asset category name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified

 10-6 Sentinel Reference Guide

Column Name Datatype Comment
ASSET_CATEGORY_ID integer Asset category identifier
ASSET_CATEGORY_NA
ME

varchar/nvarchar2(100) Asset category name

CREATED_BY integer User who created object
MODIFIED_BY integer User who last modified object

ASSET_HOSTNAME_RPT_V
View references ASSET_HOSTNAME table that stores information about alternate host
names for assets.

Column Name Datatype Comment
ASSET_HOSTNAME_ID Uniqueidentifier Asset alternate hostname identifier
PHYSICAL_ASSET_ID uniqueidentifier Physical asset identifier
HOST_NAME varchar/nvarchar(255

)
Host name

CUST_ID bigint Customer identifier
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ASSET_IP_RPT_V
View references ASSET_IP table that stores information about alternate IP addresses for
assets.

Column Name Datatype Comment
ASSET_IP_ID uniqueidentifier Asset alternate IP identifier
PHYSICAL_ASSET_ID uniqueidentifier Physical asset identifier
IP_ADDRESS int Asset IP address
CUST_ID bigint Customer identifier
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ASSET_LOCATION_RPT_V
View references ASSET_LOC table that stores information about asset locations.

Column Name Datatype Comment
LOCATION_ID bigint Location identifier
CUST_ID bigint Customer identifier
BUILDING_NAME varchar/nvarchar(255) Building name
ADDRESS_LINE_1 varchar/nvarchar(255) Address line 1
ADDRESS_LINE_2 varchar/nvarchar(255) Address line 2
CITY varchar/nvarchar(100) City
STATE varchar/nvarchar(100) State
COUNTRY varchar/nvarchar(100) Country
ZIP_CODE varchar/nvarchar(50) Zip code
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

 Sentinel Database Views for Microsoft SQL Server 10-7

ASSET_RPT_V
View references ASSET table that stores information about the physical and soft assets.

Column Name Datatype Comment
ASSET_ID uniqueidentifier Asset identifier
CUST_ID bigint Customer identifier
ASSET_NAME varchar/nvarchar(255) Asset name
PHYSICAL_ASSET_ID uniqueidentifier Physical asset identifier
PRODUCT_ID bigint Product identifier
ASSET_CATEGORY_ID bigint Asset category identifier
ENVIRONMENT_IDENTI
TY_CD

bigint Environment identify code

PHYSICAL_ASSET_IND bit Physical asset indicator
ASSET_VALUE_CODE bigint Asset value code
CRITICALITY_ID bigint Asset criticality code
SENSITIVITY_ID bigint Asset sensitivity code
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ASSET_VALUE_RPT_V
View references ASSET_VAL_LKUP table that stores information about the asset value.

Column Name Datatype Comment
ASSET_VALUE_ID bigint Asset value code
ASSET_VALUE_NAME varchar/nvarchar(50) Asset value name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ASSET_X_ENTITY_X_ROLE_RPT_V
View references ASSET_X_ENTITY_X_ROLE table that associates a person or an
organization to an asset.

Column Name Datatype Comment
PERSON_ID uniqueidentifier Person identifier
ORGANIZATION_ID uniqueidentifier Organization identifier
ROLE_CODE varchar/nvarchar(5) Role code
ASSET_ID uniqueidentifier Asset identifier
ENTITY_TYPE_CODE varchar/nvarchar(5) Entity type code
PERSON_ROLE_SEQUENCE int Order of persons under a particular

role
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ASSOCIATIONS_RPT_V
View references ASSOCIATIONS table that associates users to incidents, incidents to
annotations and so on.

 10-8 Sentinel Reference Guide

Column Name Datatype Comment
TABLE1 varchar/nvarchar(64) Table name 1. For example, incidents
ID1 int ID1. For example, incident ID.
TABLE2 varchar/nvarchar(64) Table name 2. For example, users.
ID2 int ID2. For example, user ID.
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ATTACHMENTS_RPT_V
View references ATTACHMENTS table that stores attachment data.

Column Name Datatype Comment
ATTACHMENT_ID int Attachment identifier
NAME varchar/nvarchar(25

5)
Attachment name

SOURCE_REFERENCE varchar/nvarchar(64) Source reference
TYPE varchar/nvarchar(32) Attachment type
SUB_TYPE varchar/nvarchar(32) Attachment subtype
FILE_EXTENSION varchar/nvarchar(32) File extension
ATTACHMENT_DESCRIPTION varchar/nvarchar(25

5)
Attachment description

DATA ntext Attachment data
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CONFIGS_RPT_V
View references CONFIGS table that stores general configuration information of the
application.

Column Name Datatype Comment
USR_ID varchar/nvarchar(32) User name.
APPLICATION varchar/nvarchar(255) Application identifier
UNIT varchar/nvarchar(64) Application unit
VALUE varchar/nvarchar(255) Text value if any
DATA ntext XML data
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CONTACTS_RPT_V
View references CONTACTS table that stores contact information.

Column Name Datatype Comment
CNT_ID int Contact ID - Sequence number
FIRST_NAME varchar/nvarchar(20) Contact first name.
LAST_NAME varchar/nvarchar(30) Contact last name.
TITLE varchar/nvarchar(128) Contact title
DEPARTMENT varchar/nvarchar(128) Department

 Sentinel Database Views for Microsoft SQL Server 10-9

Column Name Datatype Comment
PHONE varchar/nvarchar(64) Contact phone
EMAIL varchar/nvarchar(255) Contact email
PAGER varchar/nvarchar(64) Contact pager
CELL varchar/nvarchar(64) Contact cell phone
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CORRELATED_EVENTS
View references CORRELATED_EVENTS_* tables that store correlated event
information.

Column Name Datatype Comment
PARENT_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of parent event
CHILD_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of child event
PARENT_EVT_TIME datetime Parent event created date
CHILD_EVT_TIME datetime Child event created date
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CORRELATED_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
CORRELATED_EVENTS_RPT_V1.

CORRELATED_EVENTS_RPT_V1
View contains current and historical correlated events (correlated events imported from
archives).

Column Name Datatype Comment
PARENT_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of parent event
CHILD_EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID) of child event
PARENT_EVT_TIME datetime Parent event time
CHILD_EVT_TIME datetime Child event time
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CRITICALITY_RPT_V
View references CRIT_LKUP table that contains information about asset criticality.

Column Name Datatype Comment
CRITICALITY_ID bigint Asset criticality code
CRITICALITY_NAME varchar/nvarchar(50) Asset criticality name

 10-10 Sentinel Reference Guide

Column Name Datatype Comment
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CUST_HIERARCHY_V
View references CUST_HIERARCHY table that stores information about MSSP
customer hierarchy.

Column Name Datatype Comment
CUST_HIERARCHY_ID bigint Customer hierarchy ID
CUST_NAME varchar/nvarchar (255) Customer
CUST_HIERARCHY_LVL1 varchar/nvarchar (255) Customer hierarchy level 1
CUST_HIERARCHY_LVL2 varchar/nvarchar (255) Customer hierarchy level 2
CUST_HIERARCHY_LVL3 varchar/nvarchar (255) Customer hierarchy level 3
CUST_HIERARCHY_LVL4 varchar/nvarchar (255) Customer hierarchy level 4
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

CUST_RPT_V
View references CUST table that stores customer information for MSSPs.

Column Name Datatype Comment
CUST_ID bigint Customer identifier
CUSTOMER_NAME varchar/nvarchar(255

)
Customer name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ENTITY_TYPE_RPT_V
View references ENTITY_TYP table that stores information about entity types (person,
organization).

Column Name Datatype Comment
ENTITY_TYPE_CODE varchar/nvarchar(5) Entity type code
ENTITY_TYPE_NAME varchar/nvarchar(50) Entity type name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ENV_IDENTITY_RPT_V
View references ENV_IDENTITY_LKUP table that stores information about asset
environment identity.

Column Name Datatype Comment
ENVIRONMENT_IDENTITY_ID int Environment identity code

 Sentinel Database Views for Microsoft SQL Server 10-11

Column Name Datatype Comment
ENVIRONMENT_IDENTITY_NAME varchar/nvarch

ar(255)
Environment identity name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ESEC_DISPLAY_RPT_V
View references ESEC_DISPLAY table that stores displayable properties of objects.
Currently used in renaming meta-tags. Used with Event Configuration (Business
Relevance).

Column Name Datatype Comment
DISPLAY_OBJECT varchar/nvarchar(32) The parent object of the property
TAG varchar/nvarchar(32) The native tag name of the property
LABEL varchar/nvarchar(32) The display string of tag.
POSITION int Position of tag within display.
WIDTH int The column width
ALIGNMENT int The horizontal alignment
FORMAT int The enumerated formatter for displaying

the property
ENABLED bit Indicates if the tag is shown.
TYPE int Indicates datatype of tag.

1 = string
2 = ulong
3 = date
4 = uuid
5 = ipv4

DESCRIPTION varchar/nvarchar(255) Textual description of the tag
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object
REF_CONFIG varchar/nvarchar(4000) Referential data configuration

ESEC_PORT_REFERENCE_RPT_V
View references ESEC_PORT_REFERENCE table that stores industry standard assigned
port numbers.

Column Name Datatype Comment
PORT_NUMBER int Per

http://www.iana.org/assignments/po
rt-numbers, the numerical
representation of the port. This port
number is typically associated with
the Transport Protocol level in the
TCP/IP stack.

 10-12 Sentinel Reference Guide

Column Name Datatype Comment
PROTOCOL_NUMBER int Per

http://www.iana.org/assignments/pr
otocol-numbers, the numerical
identifiers used to represent
protocols that are encapsulated in an
IP packet.

PORT_KEYWORD varchar/nvarchar(64) Per
http://www.iana.org/assignments/po
rt-numbers, the keyword
representation of the port.

PORT_DESCRIPTION varchar/nvarchar(512) Port description.
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ESEC_PROTOCOL_REFERENCE_RPT_V
View references ESEC_PROTOCOL_REFERENCE table that stores industry standard
assigned protocol numbers.

Column Name Datatype Comment
PROTOCOL_NUMBER int Per

http://www.iana.org/assignments/protoc
ol-numbers, the numerical identifiers
used to represent protocols that are
encapsulated in an IP packet.

PROTOCOL_KEYWORD varchar/nvarchar(64) Per
http://www.iana.org/assignments/protoc
ol-numbers, the keyword used to
represent protocols that are encapsulated
in an IP packet.

PROTOCOL_DESCRIPTI
ON

varchar/nvarchar(512) IP packet protocol description.

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ESEC_SEQUENCE_RPT_V
View references ESEC_SEQUENCE table that’s used to generate primary key sequence
numbers for Sentinel tables.

Column Name Datatype Comment
TABLE_NAME varchar/nvarchar(32) Name of the table.
COLUMN_NAME varchar/nvarchar(255) Name of the column
SEED int Current value of primary key field.
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

 Sentinel Database Views for Microsoft SQL Server 10-13

EVENTS_ALL_RPT_V (legacy view)
This view is provided for backward compatibility. View contains current and historical
events (events imported from archives).

EVENTS_ALL_RPT_V1 (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2. View contains current events.

EVENTS_ALL_V (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2.

EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2. View contains current and historical events.

EVENTS_RPT_V1 (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2. View contains current events.

EVENTS_RPT_V2
This is the primary reporting view. View contains current event and historical events.

Column Name Datatype Comment
EVENT_ID uniqueidentifier Event identifier
RESOURCE_NAME varchar/nvarchar(255) Resource name
SUB_RESOURCE varchar/nvarchar(255) Subresource name
SEVERITY int Event severity
EVENT_PARSE_TIME datetime Event time
EVENT_DATETIME datetime Event time
EVENT_DEVICE_TIME datetime Event device time
SENTINEL_PROCESS_TIME datetime Sentinel process time
BEGIN_TIME datetime Events begin time
END_TIME datetime Events end time
REPEAT_COUNT int Events repeat count
DESTINATION_PORT_INT int Destination port (integer)
SOURCE_PORT_INT int Source port (integer)
BASE_MESSAGE varchar/nvarchar(4000) Base message
EVENT_NAME varchar/nvarchar(255) Name of the event as reported by

the sensor
EVENT_TIME varchar/nvarchar(255) Event time as reported by the

sensor
AGENT_ID bigint Collector identifier
SOURCE_IP int Source IP address in numeric

format
SOURCE_IP_DOTTED varchar/nvarchar (16) Source IP in dotted format
SOURCE_HOST_NAME varchar/nvarchar(255) Source host name
SOURCE_PORT varchar/nvarchar(32) Source port
DESTINATION_IP int Destination IP address in numeric

format

 10-14 Sentinel Reference Guide

Column Name Datatype Comment
DESTINATION_IP_DOTTED varchar/nvarchar (16) Destination IP in dotted format
DESTINATION_HOST_NAME varchar/nvarchar(255) Destination host name
DESTINATION_PORT varchar/nvarchar(32) Destination port
SOURCE_USER_NAME varchar/nvarchar(255) Source user name
DESTINATION_USER_NAME varchar/nvarchar(255) Destination user name
FILE_NAME varchar/nvarchar(1000) File name
EXTENDED_INFO varchar/nvarchar(1000) Extened information
CUSTOM_TAG_1 varchar/nvarchar(255) Customer Tag 1
CUSTOM_TAG 2 varchar/nvarchar(255) Customer Tag 2
CUSTOM_TAG 3 int Customer Tag 3
RESERVED_TAG_1 varchar/nvarchar(255) Reserved Tag 1

Reserved for future use by
Sentinel. This field is used for
Advisor information concerning
attack descriptions.

RESERVED_TAG_2 varchar/nvarchar(255) Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RESERVED_TAG_3 int Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

VULNERABILITY_RATING int Vulnerability rating
CRITICALITY_RATING int Criticality rating
RV01 - 10 INT Reserved Value 1 - 10

Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RV11 - 20 DATETIME Reserved Value 1 - 31
Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RV21 - 25 uniqueidentifier Reserved Value 21 - 25
Reserved for future use by
Sentinel to store UUIDs. Use of
this field for any other purpose
might result in data being
overwritten by future
functionality.

RV26 - 31 varchar/nvarchar(255) Reserved Value 26 - 31
Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

 Sentinel Database Views for Microsoft SQL Server 10-15

Column Name Datatype Comment
RV33 varchar/nvarchar(255) Reserved Value 33

Reserved for EventContex
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV34 varchar/nvarchar(255) Reserved Value 34
Reserved for SourceThreatLevel
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV35 varchar/nvarchar(255) Reserved Value 35
Reserved for SourceUserContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV36 varchar/nvarchar(255) Reserved Value 36
Reserved for DataContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV37 varchar/nvarchar(255) Reserved Value 37
Reserved for SourceFunction.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV38 varchar/nvarchar(255) Reserved Value 38
Reserved for
SourceOperationalContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV40 - 43 varchar/nvarchar(255) Reserved Value 40 - 43
Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RV44 varchar/nvarchar(255) Reserved Value 44
Reserved for
DestinationThreatLevel.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

 10-16 Sentinel Reference Guide

Column Name Datatype Comment
RV45 varchar/nvarchar(255) Reserved Value 45

Reserved for
DestinationUserContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV46 varchar/nvarchar(255) Reserved Value 46
Reserved for VirusStatus.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV47 varchar/nvarchar(255) Reserved Value 47
Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

RV48 varchar/nvarchar(255) Reserved Value 48
Reserved for
DestinationOperationalContext.
Use of this field for any other
purpose might result in data
being overwritten by future
functionality.

RV49 varchar/nvarchar(255) Reserved Value 49
Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

REFERENCE_ID 01 - 20 bigint Reserved for future use by
Sentinel. Use of this field for any
other purpose might result in data
being overwritten by future
functionality.

CV01 - 10 int Custom Value 1 - 10
Reserved for use by Customer,
typically for association of
Business relevant data

CV11 - 20 datetime Custom Value 11 - 20
Reserved for use by Customer,
typically for association of
Business relevant data

CV21 - 100 varchar/nvarchar(255) Custom Value 21 – 100
Reserved for use by Customer,
typically for association of
Business relevant data

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object

 Sentinel Database Views for Microsoft SQL Server 10-17

Column Name Datatype Comment
MODIFIED_BY int User who last modified object

EVT_AGENT_RPT_V
View references EVT_AGENT table that stores information about Collectors.

Column Name Datatype Comment
AGENT_ID bigint Collector identifier
CUST_ID Bigint Customer identifier
AGENT varchar/nvarchar(64) Collector name
PORT varchar/nvarchar(64) Collector port
REPORT_NAME varchar/nvarchar(255

)
Reporter name

PRODUCT_NAME varchar/nvarchar(255
)

Product name

SENSOR_NAME varchar/nvarchar(255
)

Sensor name

SENSOR_TYPE varchar/nvarchar(5) Sensor type:
H - host-based
N - network-based
V - virus
O - other

DEVICE_CATEGORY varchar/nvarchar(255
)

Device category

SOURCE_UUID uniqueidentifier Source component Universal
Unique Identifier (UUID)

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_ASSET_RPT_V
View references EVT_ASSET table that stores asset information.

Column Name Datatype Comment
EVENT_ASSET_ID bigint Event asset identifier
CUST_ID bigint Customer identifier
ASSET_NAME varchar/nvarchar(255

)
Asset name

PHYSICAL_ASSET_NAME varchar/nvarchar(255
)

Physical asset name

REFERENCE_ASSET_ID varchar/nvarchar(100
)

Reference asset identifier, links to
source asset management system.

MAC_ADDRESS varchar/nvarchar(100
)

MAC address

RACK_NUMBER varchar/nvarchar(50) Rack number
ROOM_NAME varchar/nvarchar(100

)
Room name

BUILDING_NAME varchar/nvarchar(255
)

Building name

CITY varchar/nvarchar(100
)

City

 10-18 Sentinel Reference Guide

Column Name Datatype Comment
STATE varchar/nvarchar(100

)
State

COUNTRY varchar/nvarchar(100
)

Country

ZIP_CODE varchar/nvarchar(50) Zip code
ASSET_CATEGORY_NAME varchar/nvarchar(100

)
Asset category name

NETWORK_IDENTITY_NAME varchar/nvarchar(255
)

Asset network identity name

ENVIRONMENT_IDENTITY_NA
ME

varchar/nvarchar(255
)

Environment name

ASSET_VALUE_NAME varchar/nvarchar(50) Asset value name
CRITICALITY_NAME varchar/nvarchar(50) Asset criticality name
SENSITIVITY_NAME varchar/nvarchar(50) Asset sensitivity name
CONTACT_NAME_1 varchar/nvarchar(255

)
Name of contact
person/organization 1

CONTACT_NAME_2 varchar/nvarchar(255
)

Name of contact
person/organization 2

ORGANIZATION_NAME_1 varchar/nvarchar(100
)

Asset owner organization level 1

ORGANIZATION_NAME_2 varchar/nvarchar(100
)

Asset owner organization level 2

ORGANIZATION_NAME_3 varchar/nvarchar(100
)

Asset owner organization level 3

ORGANIZATION_NAME_4 varchar/nvarchar(100
)

Asset owner organization level 4

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_DEST_EVT_NAME_SMRY_1_RPT_V
View summarizes event count by destination, taxonomy, event name, severity and event
time.

Column Name Datatype Comment
DESTINATION_IP int Destination IP address
DESTINATION_EVENT_ASSET_ID bigint Event asset identifier
TAXONOMY_ID bigint Taxonomy identifier
EVENT_NAME_ID bigint Event name identifier
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVT_TIME datetime Event time
EVT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_DEST_SMRY_1_RPT_V
View contains event destination summary information.

 Sentinel Database Views for Microsoft SQL Server 10-19

Column Name Datatype Comment
DESTINATION_IP int Destination IP address
DESTINATION_EVENT_ASSE
T_ID

bigint Event asset identifier

DESTINATION_PORT varchar/nvarchar(32) Destination port
DESTINATION_USR_ID bigint Destination user identifier
TAXONOMY_ID bigint Taxonomy identifier
EVENT_NAME_ID bigint Event name identifier
RESOURCE_ID bigint Resource identifier
AGENT_ID bigint Collector identifier
PROTOCOL_ID bigint Protocol identifier
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVENT_TIME datetime Event time
EVENT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_DEST_TXNMY_SMRY_1_RPT_V
View summarizes event count by destination, taxonomy, severity and event time.

Column Name Datatype Comment
DESTINATION_IP int Destination IP address
DESTINATION_EVENT_ASSE
T_ID

bigint Event asset identifier

TAXONOMY_ID bigint Taxonomy identifier
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVENT_TIME datetime Event time
EVENT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_NAME_RPT_V
View references EVT_NAME table that stores event name information.

Column Name Datatype Comment
EVENT_NAME_ID bigint Event name identifier
EVENT_NAME varchar/nvarchar(255

)
Event name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_PORT_SMRY_1_RPT_V
View summarizes event count by destination port, severity and event time.

 10-20 Sentinel Reference Guide

Column Name Datatype Comment
DESTINATION_PORT varchar/nvarchar(32) Destination port
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVENT_TIME datetime Event time
EVENT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_PRTCL_RPT_V
View references EVT_PRTCL table that stores event protocol information.

Column Name Datatype Comment
PROTOCOL_ID bigint Protocol identifier
PROTOCOL_NAME varchar/nvarchar(255) Protocol name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_RSRC_RPT_V
View references EVT_RSRC table that stores event resource information.

Column Name Datatype Comment
RESOURCE_ID bigint Resource identifier
CUST_ID bigint Customer identifier
RESOURCE_NAME varchar/nvarchar(255) Resource name
SUB_RESOURCE_NAME varchar/nvarchar(255) Subresource name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_SEV_SMRY_1_RPT_V
View summarizes event count by severity and event time.

Column Name Datatype Comment
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVENT_TIME datetime Event time
EVENT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_SRC_SMRY_1_RPT_V
View contains event source and destination summary information.

Column Name Datatype Comment
SOURCE_IP int Source IP address

 Sentinel Database Views for Microsoft SQL Server 10-21

Column Name Datatype Comment
SOURCE_EVENT_ASSET_ID bigint Event asset identifier
SOURCE_PORT varchar/nvarchar(32) Source port
SOURCE_USER_ID bigint User identifier
TAXONOMY _ID bigint Taxonomy identifier
EVENT_NAME_ID bigint Event name identifier
RESOURCE_ID bigint Resource identifier
AGENT_ID bigint Collector identifier
PROTOCOL _ID bigint Protocol identifier
SEVERITY int Event severity
CUST_ID bigint Customer identifier
EVENT_TIME datetime Event time
EVENT_COUNT int Event count
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_TXNMY_RPT_V
View references EVT_TXNMY table that stores event taxonomy information.

Column Name Datatype Comment
TAXONOMY _ID bigint Taxonomy identifier
TAXONOMY _ LEVEL _1 varchar/nvarchar(100) Taxonomy level 1
TAXONOMY _ LEVEL _2 varchar/nvarchar(100) Taxonomy level 2
TAXONOMY _ LEVEL _3 varchar/nvarchar(100) Taxonomy level 3
TAXONOMY _ LEVEL _4 varchar/nvarchar(100) Taxonomy level 4
DEVICE_CATEGORY Varchar/nvarchar(255)
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EVT_USR_RPT_V
View references EVT_USR table that stores event user information.

Column Name Datatype Comment
USER_ID bigint User identifier
USER_NAME varchar/nvarchar(255) User name
CUST_ID bigint Customer identifier
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

EXTERNAL_DATA_RPT_V
View references EXTERNAL_DATA table that stores external data.

Column Name Datatype Comment
EXTERNAL_DATA_ID int External data identifier
SOURCE_NAME varchar/nvarchar(50) Source name
SOURCE_DATA_ID varchar/nvarchar(255) Source data identifier
EXTERNAL_DATA ntext External data

 10-22 Sentinel Reference Guide

Column Name Datatype Comment
EXTERNAL_DATA_TYPE varchar/nvarchar(10) External data type
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

HIST_CORRELATED_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
CORRELATED_EVENTS_RPT_V1.

HIST_EVENTS_RPT_V (legacy view)
This view is provided for backward compatibility. New reports should use
EVENTS_RPT_V2.

IMAGES_RPT_V
View references IMAGES table that stores system overview image information.

Column Name Datatype Comment
NAME varchar/nvarchar(128) Image name
TYPE varchar/nvarchar(64) Image type
DATA text Image data
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

INCIDENTS_ASSETS_RPT_V
View references INCIDENTS_ASSETS table that stores information about the assets that
makeup incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID int Incident identifier – sequence number
ASSET_ID uniqueidentifier Asset Universal Unique Identifier

(UUID)
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

INCIDENTS_EVENTS_RPT_V
View references INCIDENTS_EVENTS table that stores information about the events
that makeup incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID int Incident identifier – sequence number
EVT_ID uniqueidentifier Event Universal Unique Identifier

(UUID)
EVT_TIME datetime Event time
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object

 Sentinel Database Views for Microsoft SQL Server 10-23

Column Name Datatype Comment
MODIFIED_BY int User who last modified object

INCIDENTS_RPT_V
View references INCIDENTS table that stores information describing the details of
incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID int Incident identifier – sequence

number
NAME varchar/nvarchar(255) Incident name
INC_CAT varchar/nvarchar(255) Incident category
INC_DESC varchar/nvarchar(4000) Incident description
INC_PRIORITY int Incident priority
INC_RES varchar/nvarchar(4000) Incident resolution
SEVERITY int Incident severity
STT_ID int Incident State ID
SEVERITY_RATING varchar/nvarchar(32) Average of all the event severities

that comprise an incident.
VULNERABILITY_RATING varchar/nvarchar(32) Reserved for future use by Sentinel.

Use of this field for any other
purpose might result in data being
overwritten by future functionality.

CRITICALITY_RATING varchar/nvarchar(32) Reserved for future use by Sentinel.
Use of this field for any other
purpose might result in data being
overwritten by future functionality.

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

INCIDENTS_VULN_RPT_V
View references INCIDENTS_VULN table that stores information about the
vulnerabilities that makeup incidents created in the Sentinel Console.

Column Name Datatype Comment
INC_ID int Incident identifier – sequence number
VULN_ID uniqueidentifier Vulnerability Universal Unique

Identifier (UUID)
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

L_STAT_RPT_V
View references L_STAT table that stores statistical information.

Column Name Datatype Comment
RES_NAME varchar/nvarchar(32) Resource name
STATS_NAME varchar/nvarchar(32) Statistic name
STATS_VALUE varchar/nvarchar(32) Value of the statistic
OPEN_TOT_SECS numeric Number of seconds since 1970.

 10-24 Sentinel Reference Guide

LOGS_RPT_V
View references LOGS_RPT table that stores logging information.

Column Name Datatype Comment
LOG_ID int Sequence number
TIME datetime Date of Log
MODULE varchar/nvarchar(64) Module log is for
TEXT varchar/nvarchar(4000) Log ntext

MSSP_ASSOCIATIONS_V
View references MSSP_ASSOCIATIONS table that associates an integer key in one table
to a uuid in another table.

Column Name Datatype Comment
TABLE1 varchar/nvarchar (64) Table name 1
ID1 bigint ID1
TABLE2 varchar/nvarchar (64) Table name 2
ID2 uniqueidentifier ID2
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

NETWORK_IDENTITY_RPT_V
View references NETWORK_IDENTITY_LKUP table that stores asset network identity
information.

Column Name Datatype Comment
NETWORK_IDENTITY_ID bigint Network identity code
NETWORK_IDENTITY_NAME varchar/nvarch

ar(255)
Network identify name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

ORGANIZATION_RPT_V
View references ORGANIZATION table that stores organization (asset) information.

Column Name Datatype Comment
ORGANIZATION_ID uniqueidentifier Organization identifier
ORGANIZATION_NAME varchar/nvarchar(1

00)
Organization name

CUST_ID bigint Customer identifier
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

PERSON_RPT_V
View references PERSION table that stores personal (asset) information.

 Sentinel Database Views for Microsoft SQL Server 10-25

Column Name Datatype Comment
PERSON_ID uniqueidentifier Person identifier
FIRST_NAME varchar/nvarchar(2

55)
First name

LAST_NAME varchar/nvarchar(2
55)

Last name

CUST_ID bigint Customer identifier
PHONE_NUMBER varchar/nvarchar(5

0)
Phone number

EMAIL_ADDRESS varchar/nvarchar(2
55)

Email address

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

PHYSICAL_ASSET_RPT_V
View references PHYSICAL_ASSET table that stores physical asset information.

Column Name Datatype Comment
PHYSICAL_ASSET_ID uniqueidentifier Physical asset identifier
CUST_ID bigint Customer identifier
LOCATION_ID bigint Location identifier
HOST_NAME varchar/nvarchar(2

55)
Host name

IP_ADDRESS int IP address
NETWORK_IDENTITY_ID varchar/nvarchar(5

)
Network identity code

MAC_ADDRESS varchar/nvarchar(1
00)

MAC address

RACK_NUMBER varchar/nvarchar(5
0)

Rack number

ROOM_NAME varchar/nvarchar(1
00)

Room name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

PRODUCT_RPT_V
View references PRDT table that stores asset product information.

Column Name Datatype Comment
PRODUCT _ID bigint Product identifier
PRODUCT _NAME varchar/nvarchar(2

55)
Product name

PRODUCT _VERSION varchar/nvarchar(1
00)

Product version

VENDOR _ID bigint Vendor identifier
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

 10-26 Sentinel Reference Guide

ROLE_RPT_V
View references ROLE_LKUP table that stores user role (asset) information.

Column Name Datatype Comment
ROLE_CODE varchar/nvarchar(5) Role code
ROLE_NAME varchar/nvarchar(255) Role name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

RPT_LABELS_RPT_V
This view contains localized report labels for reports in non-English languages.

Column Name Datatype Comment
RPT_NAME varchar/nvarchar2(100) Report name
LABEL_1 – LABEL_35 varchar/nvarchar2(500) Translated report labels

SENSITIVITY_RPT_V
View references SENSITIVITY_LKUP table that stores asset sensitivity information.

Column Name Datatype Comment
SENSITIVITY_ID bigint Asset sensitivity code
SENSITIVITY_NAME varchar/nvarchar(5

0)
Asset sensitivity name

DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

STATES_RPT_V
View references STATES table that stores definitions of states defined by applications or
context.

Column Name Datatype Comment
STT_ID int State ID – sequence number
CONTEXT varchar/nvarchar(64) Context of the state. That is case,

incident, user.
NAME varchar/nvarchar(64) Name of the state.
TERMINAL_FLAG varchar/nvarchar(1) Indicates if state of incident is resolved.
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
MODIFIED_BY int User who last modified object
CREATED_BY int User who created object

UNASSIGNED_INCIDENTS_RPT_V
View references CASES and INCIDENTS tables to report on unassigned cases.

Name Datatype
INC_ID int
NAME varchar/nvarchar(255)
SEVERITY int

 Sentinel Database Views for Microsoft SQL Server 10-27

Name Datatype
STT_ID int
SEVERITY_RATING varchar/nvarchar(32)
VULNERABILITY_RATING varchar/nvarchar(32)
CRITICALITY_RATING varchar/nvarchar(32)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int
INC_DESC varchar/nvarchar(4000)
INC_CAT varchar/nvarchar(255)
INC_PRIORITY int
INC_RES varchar/nvarchar(4000)

USERS_RPT_V
View references USERS table that lists all users of the application. The users will also be
created as database users to accommodate 3rd party reporting tools.

Column Name Datatype Comment
USR_ID int User identifier – Sequence number
NAME varchar/nvarchar(64) Short, unique user name used as a login
CNT_ID int Contact ID – Sequence number
STT_ID int State ID. Status is either active or

inactive.
DESCRIPTION varchar/nvarchar(512) Comments
PERMISSIONS varchar/nvarchar(4000) Permissions currently assigned to the

Sentinel user
FILTER varchar/nvarchar(128) Current security filter assigned to the

Sentinel user
UPPER_NAME varchar/nvarchar(64) User name in upper case
DOMAIN_AUTH_IND bit Domain authentication indication
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

VENDOR_RPT_V
View references VNDR table that stores information about asset product vendors.

Column Name Datatype Comment
VENDOR_ID bigint Vendor identifier
VENDOR_NAME varchar/nvarchar(255) Vendor name
DATE_CREATED datetime Date the entry was created
DATE_MODIFIED datetime Date the entry was modified
CREATED_BY int User who created object
MODIFIED_BY int User who last modified object

VULN_CALC_SEVERITY_RPT_V
View references VULN_RSRC and VULN to calculate eSecurity vulnerability severity
rating base on current vulnerabilities.

Column Name Datatype
RSRC_ID uniqueidentifier

 10-28 Sentinel Reference Guide

Column Name Datatype
IP varchar/nvarchar(32)
HOST_NAME varchar/nvarchar(255)
CRITICALITY int
ASSIGNED_VULN_SEVERITY int
VULN_COUNT int
CALC_SEVERITY numeric

VULN_CODE_RPT_V
View references VULN_CODE table that stores industry assigned vulnerability codes
such as Mitre's CVEs and CANs.

Column Name Datatype
VULN_CODE_ID uniqueidentifier
VULN_ID uniqueidentifier
VULN_CODE_TYPE varchar/nvarchar(64)
VULN_CODE_VALUE varchar/nvarchar(255)
URL varchar/nvarchar(512)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_INFO_RPT_V
View references VULN_INFO table that stores additional information reported during a
scan.

Column Name Datatype
VULN_INFO_ID uniqueidentifier
VULN_ID uniqueidentifier
VULN_INFO_TYPE varchar/nvarchar(36)
VULN_INFO_VALUE varchar/nvarchar(2000)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_RPT_V
View references VULN table that stores information of scanned system. Each scanner will
have its own entry for each system.

Column Name Datatype
VULN_ID uniqueidentifier
RSRC_ID uniqueidentifier
PORT_NAME varchar/nvarchar(64)
PORT_NUMBER int
NETWORK_PROTOCOL int
APPLICATION_PROTOCOL varchar/nvarchar(64)
ASSIGNED_VULN_SEVERITY int
COMPUTED_VULN_SEVERITY int
VULN_DESCRIPTION ntext
VULN_SOLUTION ntext
VULN_SUMMARY varchar/nvarchar(1000)

 Sentinel Database Views for Microsoft SQL Server 10-29

Column Name Datatype
BEGIN_EFFECTIVE_DATE datetime
END_EFFECTIVE_DATE datetime
DETECTED_OS varchar/nvarchar(64)
DETECTED_OS_VERSION varchar/nvarchar(64)
SCANNED_APP varchar/nvarchar(64)
SCANNED_APP_VERSION varchar/nvarchar(64)
VULN_USER_NAME varchar/nvarchar(64)
VULN_USER_DOMAIN varchar/nvarchar(64)
VULN_TAXONOMY varchar/nvarchar(1000)
SCANNER_CLASSIFICATION varchar/nvarchar(255)
VULN_NAME varchar/nvarchar(300)
VULN_MODULE varchar/nvarchar(64)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_RSRC_RPT_V
View references VULN_RSRC table that stores each resource scanned for a particular
scan.

Column Name Datatype
RSRC_ID uniqueidentifier
SCANNER_ID uniqueidentifier
IP varchar/nvarchar(32)
HOST_NAME varchar/nvarchar(255)
LOCATION varchar/nvarchar(128)
DEPARTMENT varchar/nvarchar(128)
BUSINESS_SYSTEM varchar/nvarchar(128)
OPERATIONAL_ENVIRONMENT varchar/nvarchar(64)
CRITICALITY int
REGULATION varchar/nvarchar(128)
REGULATION_RATING varchar/nvarchar(64)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_RSRC_SCAN_RPT_V
View references VULN_RSRC_SCAN table that stores each resource scanned for a
particular scan.

Column Name Datatype
RSRC_ID uniqueidentifier
SCAN_ID uniqueidentifier
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

 10-30 Sentinel Reference Guide

VULN_SCAN_RPT_V
View references table that stores information pertaining to scans.

Column Name Datatype
SCAN_ID uniqueidentifier
SCANNER_ID uniqueidentifier
SCAN_TYPE varchar/nvarchar(10)
SCAN_START_DATE datetime
SCAN_END_DATE datetime
CONSOLIDATION_SERVER varchar/nvarchar(64)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_SCAN_VULN_RPT_V
View references VULN_SCAN_VULN table that stores vulnerabilities detected during
scans.

Column Name Datatype
SCAN_ID uniqueidentifier
VULN_ID uniqueidentifier
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

VULN_SCANNER_RPT_V
View references VULN_SCANNER table that stores information about vulnerability
scanners.

Column Name Datatype
SCANNER_ID uniqueidentifier
PRODUCT_NAME varchar/nvarchar(100)
PRODUCT_VERSION varchar/nvarchar(64)
SCANNER_TYPE varchar/nvarchar(64)
VENDOR varchar/nvarchar(100)
SCANNER_INSTANCE varchar/nvarchar(64)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

 Sentinel Database Views for Microsoft SQL Server 10-31

 10-32 Sentinel Reference Guide

 WORKFLOW_DEF_RPT_V
 View references WORKFLOW_DEF table that stores workflow definitions.

 For this view hotfix 1 has to be applied.

Column Name Datatype
PKG_NAME varchar/nvarchar(255)
PKG_DATA ntext
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

 WORKFLOW_INFO_RPT_V
View references WORKFLOW_DEF table that stores workflow definitions.

For this view hotfix 1 has to be applied.

 Column Name Datatype
INFO_ID bigint
PROCESS_DEF_ID varchar/nvarchar(100)
PROCESS_INSTANCE_ID varchar/nvarchar(150)
DATE_CREATED datetime
DATE_MODIFIED datetime
CREATED_BY int
MODIFIED_BY int

Deprecated Views
The following legacy views are no longer created in the Sentinel 6 database:

 ADV_ALERT_CVE_RPT_V
 ADV_ALERT_PRODUCT_RPT_V
 ADV_ALERT_RPT_V
 ADV_ATTACK_ALERT_RPT_V
 ADV_ATTACK_CVE_RPT_V
 ADV_CREDIBILITY_RPT_V
 ADV_SEVERITY_RPT_V
 ADV_SUBALERT_RPT_V
 ADV_URGENCY_RPT_V
 HIST_INCIDENTS_RPT_V

A Sentinel Troubleshooting Checklist

This checklist is provided to aid in diagnosing a problem. By filling in this
checklist, you can solve common issues or reduce the amount of time needed to
solve more complex issues.

Checklist Item Information Example
Novell Version: V6.0
Novell Platform and OS
Version:

 SuSE Linux Enterprise
Server 10

Database Platform and OS
Version:

 Oracle 10.2.0.3 with critical
patch #5881721

Sentinel Server Hardware
Configuration

 Processor
 Memory
 Other

 4 CPU @ 3 GHz
5 GB RAM

Database Server Hardware
Configuration

 Processor
 Memory
 Other (if separate Box)

 4 CPU @ 3.0 GHz
8 GB RAM

Database Storage
Configuration (NAS, SAN,
Local and so on.)

 Local with offsite backup

Reporting Server OS and
Configuration
(Crystal Server)

 Crystal XI
SuSE Linux Enterprise
Server 10 with MySQL

Table A-1: Checklist

NOTE: Depending upon how your Sentinel system is configured
(distributed), you might need to expand the above table. For instance
additional information might be needed for DAS, Advisor, Sentinel
Control Center, Collector Builder and communication layer.

1. Check the Novell Customer Center
(http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup)f
or your particular issue:
 Is this a known issue with a work-around?
 Is this issue fixed in the latest patch release or hot-fix?
 Is this issue currently scheduled to be fixed in a future release?

2. Determine the nature of the problem.
 Can it be reproduced? Can the steps to reproduce the problem be

enumerated?
 What user action, if any, will cause the problem?
 Is the issue periodic in nature?

3. Determine the severity of this problem.

 Sentinel Troubleshooting Checklist A-1

http://support.novell.com/phone.html?sourceidint=suplnav4_phonesup

 Is the system still useable?
4. Understand the environment and systems involved.

 What platforms and product versions are involved?
 Are there any non-standard or custom components involved?
 Is it a high event rate environment?
 What is the rate of events being collected?
 What is the event rate of insertion into the database?
 How many concurrent users are there?
 Is Crystal reporting used? When are reports run?
 Is correlation used? How many rules are deployed?

Collect configuration files, log files and system information from appropriate
subdirectories in $ESEC_HOME or %ESEC_HOME%. Assemble this
information for possible future knowledge transfer.

5. Check the health of the system.
 Can you log into the Sentinel Control Center?
 Are events being generated and inserted into the database?
 Can events be seen on the Sentinel Control Center?
 Can events be retrieved from the database using quick query?
 Check the RAM usage, disk space, process activity, CPU usage and

network connectivity of the hosts involved.
 Verify all expected Sentinel processes are running. Microsoft Task

Manager can be used in a Windows environment. In UNIX, the
command ps –ef|grep esecadm can be used.

 Check for any core dumps in any of the sub-directories of
ESEC_HOME. Find out which process core dumped. (cd
$ESEC_HOME, find . –name core –print)

 Check for the sqlplus net access. Check for the tablespaces.
 Make sure the Sonic broker is running. Connectivity can be verified

using the Sonic management console. Check that the various
connections are active from Novell processes. Make sure that a lock
file is not preventing Sonic from starting. Optionally telnet to that
server on the sonic port (that is telnet sentinel.company.com 10012)

 Check whether the wrapper service is running on the server. (ps –
ef | grep wrapper)

 Are any errors visible in the Servers View of the Sentinel Control
Center? Are any errors visible in the Event Source Management Live
View in the Sentinel Control Center? What is the OS resource
consumption on the Collector Managers?

6. Is there a problem with the Database?
 Using sqlplus, can you log into the database?
 Does the database allow a sqlplus login using the Novell dba account

into the ESEC schema?
 Does querying on one of the table succeed?
 Does a select statement on a database table succeed?
 Check the JDBC drivers, their locations and class path settings.

 A-2 Sentinel Reference Guide

 Sentinel Troubleshooting Checklist A-3

 If Oracle, do they have Partitioning installed (provide “select *
from v$version;”) and used?

 Is the database being maintained by an administrator? By anyone?
 Has the database been modified by that administrator?
 Is SDM being used to maintain the partitions and archive/delete the

partitions to make more room in the database?
 Using SDM what is the current partition? Is it P_MAX?

7. Inspect whether the product environment settings are correct.
 Verify the sanity of User login shell scripts, environment variables,

configurations, java home settings.
 Are the environment variable set to run the correct jvm?
 Verify the proper permissions on the folders for the installed

product.
 Check if any cron jobs are setup causing interference with our

product’s functionality.
 If the product is installed on NFS mounts, check the sanity of NFS

mounts & NFS/NIS services.
8. Is there a possible memory leak?

 Obtain the statistics on how fast the memory is being consumed and
by which process.

 Gather the metrics of the events throughput per Collector.
 Run the prstat command on Solaris. This will give the process

runtime statistics.
 In Windows you can check the process size and handle count in task

manager.
This issue, if not resolved, is now ready for escalation. Possible results of
escalation are:
 Configuration file changes
 Hot fixes or patches to your system
 Enhancement request
 Temporary workaround.

B Sentinel Service Logon Account

The purpose of this document is to describe in detail of how to set up Sentinel
service logon account as NT AUTHORITY\NetworkService instead of Domain
user account. This has been tested on the Windows 2003 platform only.

Sentinel Services
Sentinel Services should be set to run in order to use Sentinel application. To run
a service you need to login to the machine where Sentinel is installed using a
logon Account. The different logon accounts and advantages of using a logon
account are discussed in this document.

Introduction to Service Logon Accounts
A service must log on to an account to access resources and objects on the
operating system. If you select an account that does not have permission to log on
as a service, the Services snap-in automatically grants that account the user rights
that are required to log on as a service on the computer that you are managing.
However, this does not guarantee that the service will start. For example, it is
recommended that the user accounts that are used to log on as a service have the
Password never expires check box selected in their properties dialog box and that
they have strong passwords. If account lockout policy is enabled and the account
is locked out, the service will malfunction.

The following table describes the service logon accounts and how they are used.

Logon Account Description

Local System
Account

The Local System account is a powerful account that has
full access to the system, including the directory service on
domain controllers. If a service logs onto the Local System
account on a domain controller, that service has access to
the entire domain. Some services are configured by default
to log on to the Local System account. Do not change the
default service setting.

Local System account is a predefined local account that is
used to start a service and provide the security context for
that service. The name of the account is NT
AUTHORITY\System. This account does not have a
password and any password information that you supply is
ignored. The Local System account has full access to the
system, including the directory service on domain
controllers. Because the Local System account acts as a
computer on the network, it has access to network
resources.

Local Service
Account

The Local Service account is a special built-in account that
is similar to an authenticated user account. The Local

 Sentinel Service Logon Account B-1

Logon Account Description
Service account has the same level of access to resources
and objects as members of the Users group. This limited
access helps safeguard your system if individual services or
processes are compromised. Services that run as the Local
Service account access network resources as a null session
with no credentials.

Local Service account is a predefined local account that is
used to start a service and provide the security context for
that service. The name of the account is
NT AUTHORITY\LocalService. The Local Service account
has limited access to the local computer and Anonymous
access to network resources.

Network Service
Account

The Network Service account is a special, built-in account
that is similar to an authenticated user account. The
Network Service account has the same level of access to
resources and objects as members of the Users group. This
limited access helps safeguard your system if individual
services or processes are compromised. Services that run as
the Network Service account access network resources
using the credentials of the computer account.

Network Service account is a predefined local account that
is used to start a service and provide the security context for
that service. The name of the account is
NT AUTHORITY\NetworkService. The Network Service
account has limited access to the local computer and
authenticated access (as the computer account) to network
resources.

Table B-1: Usage of Service Logon Accounts

Disadvantages of running a service in the context of a user
logon

1. The account must be created before the service can run. If the setup
program for the service creates the account, Setup must run from an
account that has sufficient administrative credentials to create accounts in
the directory service.

2. Service account names and passwords are stored on each computer on
which the service is installed. If the password for a service account on a
computer is changed or expires, the service cannot start on that computer
until the password is set to the new password for that service. The
recommendation is to use LocalService and Network Service instead of
using an account that requires a password: this simplifies password
management.

3. If a service account is renamed, locked out, disabled, or deleted, the
service cannot start on that computer until the account is reset.

Because of the above disadvantages, Novell has tested out running Sentinel
service under NT AUTHORITY\NetworkService account. NT
AUTHORITY\LocalService account does not have enough privilege for this
purpose, because DAS processes need to communicate to database server on the
network.

 B-2 Sentinel Reference Guide

NOTE: Novell has tested and recommends choosing Network Service
account option.

To Setup NT AUTHORITY\NetworkService as the
Logon Account for Sentinel Service

To setup NT AUTHORITY\NetworkService as the logon account for Sentinel
service, you need to perform the following:

 Add the machine that runs Sentinel Service as a login account to ESEC and
ESEC_WF database instances (performed on the database machine)

 Change the logon account for Sentinel service to NT
AUTHORITY\NetworkService (performed on your remote machine)

 Setting the Sentinel startup (performed on your remote machine)

Adding Sentinel Service as a Login Account to ESEC and
ESEC_WF DB Instances

To add a login of a remote machine to the database server:

NOTE: As an example, the following are steps to add secnet\case1 as a
login to the database server.

1. On your database machine, open up SQL Server Management Studio.
Specify the user credentials in the Login window.

Figure B-1: SQL Server Management Studio
Click Connect

2. In the Object Explorer pane, under SQL Server Group, expand Security
folder and highlight Logins folder.

3. Right-click Logins > New login.

 Sentinel Service Logon Account B-3

Figure B-2: Creation of New Login

4. In the Login-New window, provide the Login name.

Figure B-3: Login-New window
Alternatively, you can click the Search button next to the Login name field.
The following screen displays:

 B-4 Sentinel Reference Guide

Figure B-4: Select User or Group window

5. In the Enter the object name to select field, provide a domain name and
user name (secnet\case1$ is provided as an example). This is the machine
<domain name>\<name of machine>$ you are adding as a login to the
database server. Click OK.

6. Click Server Roles in the Select a page navigation pane. Select
sysadmin and serveradmin as Server Roles as shown below:

Figure B-5: Login-New- Selection of Server Roles

7. Click User Mapping in the Select a page navigation pane. Select access
to ESEC and ESEC_WF as “public” and “db_owner” as shown below:

 Sentinel Service Logon Account B-5

Figure B-6: Login-New- User Mapping
Click OK.

Changing logon account
To change the logon for Sentinel Service to NT
AUTHORITY\NetworkService:

1. On your remote machine you are connecting to the database, click Start
> Programs > Administrative Tools > Services.

Figure B-7: Services window

2. Stop the Sentinel service, right-click > Properties > Log On tab.

 B-6 Sentinel Reference Guide

3. Click This account and in the field provide NT
AUTHORITY\NetworkService. Clear the Password and Confirm
password fields.

Figure B-8: Authentication Details

4. Click OK. The Services window for the Sentinel Service should indicate
Network Service under the Log On As column.

Figure B-9: Sentinel Service

Setting the Sentinel Service to Start Successfully
In order for the Sentinel Service to start successfully,
NT AUTHORITY\NetworkService account should have write permission to
%ESEC_HOME%. According to Microsoft documentation, the NetworkService
account has the following privileges:

 SE_ASSIGNPRIMARYTOKEN_NAME (disabled)
 SE_AUDIT_NAME (disabled)
 SE_CHANGE_NOTIFY_NAME (enabled)
 SE_CREATE_GLOBAL_NAME (enabled)
 SE_IMPERSONATE_NAME (enabled)
 SE_INCREASE_QUOTA_NAME (disabled)
 SE_SHUTDOWN_NAME (disabled)

 Sentinel Service Logon Account B-7

 SE_UNDOCK_NAME (disabled)
 Any privileges assigned to users and authenticated users

You must grant write access to %ESEC_HOME% to the Users group.

To set the Sentinel Service to start successfully:

1. Open Window’s Explorer and navigate to %ESEC_HOME%.
2. Right-click the Sentinel parent folder (Typically named sentinel6) >

Properties > Security tab.

Figure B-10: Sentinel Folder

3. Highlight Users group. Grant Read & Execute, List Folder Contents,
Read, Write permissions.

Figure B-11: Security Tab
Click OK.

4. In the Services window, restart the Sentinel service.

 B-8 Sentinel Reference Guide

C Sentinel Service Permission Tables

The purpose of this document is to describe in detail various Sentinel Services and the Permissions they require for their functioning.

Advisor
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permission's required Permission Explanation

Advisor Sentinel java Download (optional) and processes Advisor attack data. Network access
Internet access over port 443
(optional)
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/data
 ESEC_HOME/log

It connects to the database to read and
insert data.
It communicates over the network with
iSCALE to notify other processes it is
down processing a feed.
It reads local configuration files and
uses the java executable.
It writes log files as well as caches
data in the local file system.

Table C-1: Advisor

 Sentinel Service Permission Tables C-1

Collector Manager
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permissions required Permission Explanation

Collector
Manager

Sentinel java
agentengine (child
process)

Manages Connectors and Collectors. It spawns
off an agentengine process for each Collector it
manages. Collector Manager also publishes
system status messages, performs global filtering
of events, and performs referential mappings. The
agentengine process runs as an interpreter for
Collector scripts, which normalize unprocessed
(raw) events from security devices and systems
producing event, vulnerability, and asset data that
Sentinel can analyze and store in its database.

Network access (both outgoing access
and local access to bind to ports
greater than 1024)
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/data
 ESEC_HOME/log
NOTE: Additionally, will need
access to other resources
depending which Connectors it is
configured to run and which
Event Sources it connecting to.
Please refer to the individual
Connector documentation for any
additional permission
requirements.

It communicates with iSCALE for
configuration, event processing, and
mapping data.
It reads local configuration files and uses
the java executable.
It writes log files as well as caches data
in the local file system.

Table C-2: Collector Manager

 C-2 Sentinel Reference Guide

Correlation Engine
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permission's required Permission Explanation

Correlation
Engine

Sentinel java Receives events from the Collector Manager and publishes
correlated events based on user-defined correlation rules.

Network access
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/data
 ESEC_HOME/log

It communicates over the network with
iSCALE for configuration, event
processing, and correlated event
generation.
It reads local configuration files and uses
the java executable.
It writes log files as well as caches data
in the local file system.

Table C-3: Correlation Engine

Data Access Server (DAS)
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permission's required Permission Explanation

java (das_binary) Responsible for event insertion.

java (das_query) Provides general database access services, map data
server, exploit detection data generation, Sentinel user
login, and other general services.

java (das_rt) Provides data that drives the Active View charts.

java (das_itrac) Provides services to use and manage iTRAC workflow
processes.

DAS Sentinel

java
(das_aggregation)

Summaries event data into summary database tables,
primarily for use by reports.

Network access
Database Access
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/data
 ESEC_HOME/log

It connects to the database to read
and insert data.
It communicates over the network
with iSCALE for configuration and
event processing and other general
data processing.
It reads local configuration files and
uses the java executable.
It writes log files as well as caches
data in the local file system.

Table C-4: DATA Access Server (DAS)

 Sentinel Service Permission Tables C-3

Sentinel Communication Server
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permission's required Permission Explanation

java (Sonic) iSCALE: A Message Oriented Middleware (MOM). The
iSCALE component provides a Java Message Service
(JMS) framework for inter-process communication.
Processes communicate through a broker, which is
responsible for routing and buffering messages.

Network access (binds to port
greater than 1024)
File read access to:
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/3rdparty/Sonic

MQ/MQ7.0

It binds to local ports to accept TCP
connections in order to perform its
duties as a communication server.
It reads local configuration files and
uses the java executable.
It writes to Sonic’s internal database
on the local file system.

Communicatio
n Server
(iSCALE /
MOM)

Sentinel

java (das_proxy) iSCALE also has an SSL proxy that acts as an SSL bridge
between the message bus and a client connecting through
SSL.

Network access (binds to ports
greater than 1024)
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/3rdparty/Sonic

MQ/MQ7.0
 ESEC_HOME/data
 ESEC_HOME/log
 ESEC_HOME/config

It binds to local ports to accept SSL
connections in order to perform its
duties as a communication server.
It reads local configuration files and
uses the java executable.
It writes log files, caches data, and
writes to Sonic’s internal database
on the local file system.
It also will write certificates to
config directory when required.

Table C-5: Sentinel Communication Server

 C-4 Sentinel Reference Guide

 Sentinel Service Permission Tables C-5

Sentinel Service
Sentinel
Component

Sentinel
Service

Sentinel Process Function summary Permission's required Permission Explanation

wrapper Registers as a service with the operating system and, when
executed, launches the java Sentinel Service.

Sentinel
Service

Sentinel

java (sentinel) The java Sentinel Service process that is responsible for
launching, restarting, and reporting status on the other
Sentinel Server processes.

Network access
File read access to:
 ESEC_HOME/config
 ESEC_HOME/lib
 ESEC_HOME/jre

File write access to:
 ESEC_HOME/log

It communicates over the network with
iSCALE for configuration and status
reporting.
It reads local configuration files and
uses the java executable.
It writes log files to the local file
system.

Table C-6: Sentinel Service

Reporting Server
Sentinel
Component

Sentinel
Application

Sentinel Service Sentinel Process Function summary Permission's
required

Permission Explanation

Reports - - - Crystal Reports XI or Crystal Enterprise 9
Standard is one of the reporting tools with
Sentinel.

- Needs to have the odbc driver or
oracle driver pointing to the
sentinel db

Table C-7: Reporting Server

D Microsoft SQL Users, Roles & Access
Permissions for Sentinel

The purpose of this document is to provide a detailed breakdown of Sentinel
database users, roles and their access permissions.

Sentinel Database Instance
ESEC

Users:
 esecadm
 esecapp
 esecdba

 esecrpt
 Other users

NOTE: Other users are created through User Manager. For detailed
access permissions, see “Sentinel Database Roles”.

Roles:
 ESEC_APP: The same permission as db_owner
 ESEC_ETL
 ESEC_USER

ESEC_WF
 Users: esecapp: For detailed access permissions see the “Sentinel Database

Users” section.
 Roles: ESEC_APP: For detailed access permissions see the “Sentinel

Database Roles” section.

Sentinel Database Users
Summary

User Name Group Name Login Name Default DB Name
Esecadm ESEC_USER esecadm ESEC
Esecapp ESEC_APP esecapp ESEC
Esecapp ESEC_ETL esecapp ESEC
Esecapp db_owner esecapp ESEC
Esecdba db_owner esecdba ESEC
Esecrpt ESEC_USER esecrpt ESEC

Table D-1: Sentinel Database Users-Summary

esecadm
Login Name DB Name User Name User of Alias
Esecadm ESEC ESEC_USER MemberOf
Esecadm ESEC esecadm User

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-1

Table D-2: Sentinel Database Users-esecadm

esecapp
Login Name DB Name User Name User of Alias
Esecapp ESEC ESEC_APP MemberOf
Esecapp ESEC ESEC_ETL MemberOf
Esecapp ESEC esecapp User
Esecapp ESEC db_owner MemberOf
Esecapp ESEC_WF ESEC_APP MemberOf
Esecapp ESEC_WF esecapp User

Table D-3: Sentinel Database Users-esecapp

esecdba
Login Name DB Name User Name User of Alias
Esecdba ESEC db_owner MemberOf
Esecdba ESEC esecdba User

Table D-4: Sentinel Database Users-esecdba

esecrpt
Login Name DB Name User Name User of Alias
Esecrpt ESEC ESEC_USER MemberOf
Esecrpt ESEC esecrpt User

Table D-5: Sentinel Database Users-esecrpt

Sentinel Database Roles
Summary

 ESEC_APP: It is a database role for ESEC and ESEC_WF. It has the same
permission as db_owner for ESEC instance.

 ESEC_ETL: It is a database role for ESEC instance.
 ESEC_USER: A role for ESEC instance.

ESEC_APP
For ESEC instance, ESEC_APP has the same permission as db_owner.
ESEC_APP performs the activities of all database roles, as well as other
maintenance and configuration activities in the database. The permissions of this
role span all of the other fixed database roles.

For ESEC_WF instance, these are the permission for ESEC_APP role:

Role Name Object Name Action Type
ESEC_APP Activities 193 SELECT U User table
ESEC_APP Activities 195 INSERT U User table
ESEC_APP Activities 196 DELETE U User table
ESEC_APP Activities 197 UPDATE U User table
ESEC_APP ActivityData 193 SELECT U User table
ESEC_APP ActivityData 195 INSERT U User table
ESEC_APP ActivityData 196 DELETE U User table
ESEC_APP ActivityData 197 UPDATE U User table
ESEC_APP ActivityDataBLOBs 193 SELECT U User table
ESEC_APP ActivityDataBLOBs 195 INSERT U User table

 D-2 Sentinel Reference Guide

Role Name Object Name Action Type
ESEC_APP ActivityDataBLOBs 196 DELETE U User table
ESEC_APP ActivityDataBLOBs 197 UPDATE U User table
ESEC_APP ActivityDataWOB 193 SELECT U User table
ESEC_APP ActivityDataWOB 195 INSERT U User table
ESEC_APP ActivityDataWOB 196 DELETE U User table
ESEC_APP ActivityDataWOB 197 UPDATE U User table
ESEC_APP ActivityStateEventAudits 193 SELECT U User table
ESEC_APP ActivityStateEventAudits 195 INSERT U User table
ESEC_APP ActivityStateEventAudits 196 DELETE U User table
ESEC_APP ActivityStateEventAudits 197 UPDATE U User table
ESEC_APP ActivityStates 193 SELECT U User table
ESEC_APP ActivityStates 195 INSERT U User table
ESEC_APP ActivityStates 196 DELETE U User table
ESEC_APP ActivityStates 197 UPDATE U User table
ESEC_APP AndJoinTable 193 SELECT U User table
ESEC_APP AndJoinTable 195 INSERT U User table
ESEC_APP AndJoinTable 196 DELETE U User table
ESEC_APP AndJoinTable 197 UPDATE U User table
ESEC_APP AssignmentEventAudits 193 SELECT U User table
ESEC_APP AssignmentEventAudits 195 INSERT U User table
ESEC_APP AssignmentEventAudits 196 DELETE U User table
ESEC_APP AssignmentEventAudits 197 UPDATE U User table
ESEC_APP AssignmentsTable 193 SELECT U User table
ESEC_APP AssignmentsTable 195 INSERT U User table
ESEC_APP AssignmentsTable 196 DELETE U User table
ESEC_APP AssignmentsTable 197 UPDATE U User table
ESEC_APP Counters 193 SELECT U User table
ESEC_APP Counters 195 INSERT U User table
ESEC_APP Counters 196 DELETE U User table
ESEC_APP Counters 197 UPDATE U User table
ESEC_APP CreateProcessEventAudits 193 SELECT U User table
ESEC_APP CreateProcessEventAudits 195 INSERT U User table
ESEC_APP CreateProcessEventAudits 196 DELETE U User table
ESEC_APP CreateProcessEventAudits 197 UPDATE U User table
ESEC_APP DataEventAudits 193 SELECT U User table
ESEC_APP DataEventAudits 195 INSERT U User table
ESEC_APP DataEventAudits 196 DELETE U User table
ESEC_APP DataEventAudits 197 UPDATE U User table
ESEC_APP Deadlines 193 SELECT U User table
ESEC_APP Deadlines 195 INSERT U User table
ESEC_APP Deadlines 196 DELETE U User table
ESEC_APP Deadlines 197 UPDATE U User table
ESEC_APP EventTypes 193 SELECT U User table
ESEC_APP EventTypes 195 INSERT U User table
ESEC_APP EventTypes 196 DELETE U User table
ESEC_APP EventTypes 197 UPDATE U User table
ESEC_APP GroupGroupTable 193 SELECT U User table
ESEC_APP GroupGroupTable 195 INSERT U User table
ESEC_APP GroupGroupTable 196 DELETE U User table

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-3

Role Name Object Name Action Type
ESEC_APP GroupGroupTable 197 UPDATE U User table
ESEC_APP GroupTable 193 SELECT U User table
ESEC_APP GroupTable 195 INSERT U User table
ESEC_APP GroupTable 196 DELETE U User table
ESEC_APP GroupTable 197 UPDATE U User table
ESEC_APP GroupUser 193 SELECT U User table
ESEC_APP GroupUser 195 INSERT U User table
ESEC_APP GroupUser 196 DELETE U User table
ESEC_APP GroupUser 197 UPDATE U User table
ESEC_APP GroupUserPackLevelParticipant 193 SELECT U User table
ESEC_APP GroupUserPackLevelParticipant 195 INSERT U User table
ESEC_APP GroupUserPackLevelParticipant 196 DELETE U User table
ESEC_APP GroupUserPackLevelParticipant 197 UPDATE U User table
ESEC_APP GroupUserProcLevelParticipant 193 SELECT U User table
ESEC_APP GroupUserProcLevelParticipant 195 INSERT U User table
ESEC_APP GroupUserProcLevelParticipant 196 DELETE U User table
ESEC_APP GroupUserProcLevelParticipant 197 UPDATE U User table
ESEC_APP LockTable 193 SELECT U User table
ESEC_APP LockTable 195 INSERT U User table
ESEC_APP LockTable 196 DELETE U User table
ESEC_APP LockTable 197 UPDATE U User table
ESEC_APP NewEventAuditData 193 SELECT U User table
ESEC_APP NewEventAuditData 195 INSERT U User table
ESEC_APP NewEventAuditData 196 DELETE U User table
ESEC_APP NewEventAuditData 197 UPDATE U User table
ESEC_APP NewEventAuditDataBLOBs 193 SELECT U User table
ESEC_APP NewEventAuditDataBLOBs 195 INSERT U User table
ESEC_APP NewEventAuditDataBLOBs 196 DELETE U User table
ESEC_APP NewEventAuditDataBLOBs 197 UPDATE U User table
ESEC_APP NewEventAuditDataWOB 193 SELECT U User table
ESEC_APP NewEventAuditDataWOB 195 INSERT U User table
ESEC_APP NewEventAuditDataWOB 196 DELETE U User table
ESEC_APP NewEventAuditDataWOB 197 UPDATE U User table
ESEC_APP NextXPDLVersions 193 SELECT U User table
ESEC_APP NextXPDLVersions 195 INSERT U User table
ESEC_APP NextXPDLVersions 196 DELETE U User table
ESEC_APP NextXPDLVersions 197 UPDATE U User table
ESEC_APP NormalUser 193 SELECT U User table
ESEC_APP NormalUser 195 INSERT U User table
ESEC_APP NormalUser 196 DELETE U User table
ESEC_APP NormalUser 197 UPDATE U User table
ESEC_APP ObjectId 193 SELECT U User table
ESEC_APP ObjectId 195 INSERT U User table
ESEC_APP ObjectId 196 DELETE U User table
ESEC_APP ObjectId 197 UPDATE U User table
ESEC_APP OldEventAuditData 193 SELECT U User table
ESEC_APP OldEventAuditData 195 INSERT U User table
ESEC_APP OldEventAuditData 196 DELETE U User table
ESEC_APP OldEventAuditData 197 UPDATE U User table

 D-4 Sentinel Reference Guide

Role Name Object Name Action Type
ESEC_APP OldEventAuditDataBLOBs 193 SELECT U User table
ESEC_APP OldEventAuditDataBLOBs 195 INSERT U User table
ESEC_APP OldEventAuditDataBLOBs 196 DELETE U User table
ESEC_APP OldEventAuditDataBLOBs 197 UPDATE U User table
ESEC_APP OldEventAuditDataWOB 193 SELECT U User table
ESEC_APP OldEventAuditDataWOB 195 INSERT U User table
ESEC_APP OldEventAuditDataWOB 196 DELETE U User table
ESEC_APP OldEventAuditDataWOB 197 UPDATE U User table
ESEC_APP PackLevelParticipant 193 SELECT U User table
ESEC_APP PackLevelParticipant 195 INSERT U User table
ESEC_APP PackLevelParticipant 196 DELETE U User table
ESEC_APP PackLevelParticipant 197 UPDATE U User table
ESEC_APP PackLevelXPDLApp 193 SELECT U User table
ESEC_APP PackLevelXPDLApp 195 INSERT U User table
ESEC_APP PackLevelXPDLApp 196 DELETE U User table
ESEC_APP PackLevelXPDLApp 197 UPDATE U User table
ESEC_APP PackLevelXPDLAppTAAppDetail 193 SELECT U User table
ESEC_APP PackLevelXPDLAppTAAppDetail 195 INSERT U User table
ESEC_APP PackLevelXPDLAppTAAppDetail 196 DELETE U User table
ESEC_APP PackLevelXPDLAppTAAppDetail 197 UPDATE U User table
ESEC_APP PackLevelXPDLAppTAAppDetailUsr 193 SELECT U User table
ESEC_APP PackLevelXPDLAppTAAppDetailUsr 195 INSERT U User table
ESEC_APP PackLevelXPDLAppTAAppDetailUsr 196 DELETE U User table
ESEC_APP PackLevelXPDLAppTAAppDetailUsr 197 UPDATE U User table
ESEC_APP PackLevelXPDLAppTAAppUser 193 SELECT U User table
ESEC_APP PackLevelXPDLAppTAAppUser 195 INSERT U User table
ESEC_APP PackLevelXPDLAppTAAppUser 196 DELETE U User table
ESEC_APP PackLevelXPDLAppTAAppUser 197 UPDATE U User table
ESEC_APP PackLevelXPDLAppToolAgentApp 193 SELECT U User table
ESEC_APP PackLevelXPDLAppToolAgentApp 195 INSERT U User table
ESEC_APP PackLevelXPDLAppToolAgentApp 196 DELETE U User table
ESEC_APP PackLevelXPDLAppToolAgentApp 197 UPDATE U User table
ESEC_APP ProcessData 193 SELECT U User table
ESEC_APP ProcessData 195 INSERT U User table
ESEC_APP ProcessData 196 DELETE U User table
ESEC_APP ProcessData 197 UPDATE U User table
ESEC_APP ProcessDataBLOBs 193 SELECT U User table
ESEC_APP ProcessDataBLOBs 195 INSERT U User table
ESEC_APP ProcessDataBLOBs 196 DELETE U User table
ESEC_APP ProcessDataBLOBs 197 UPDATE U User table
ESEC_APP ProcessDataWOB 193 SELECT U User table
ESEC_APP ProcessDataWOB 195 INSERT U User table
ESEC_APP ProcessDataWOB 196 DELETE U User table
ESEC_APP ProcessDataWOB 197 UPDATE U User table
ESEC_APP ProcessDefinitions 193 SELECT U User table
ESEC_APP ProcessDefinitions 195 INSERT U User table
ESEC_APP ProcessDefinitions 196 DELETE U User table
ESEC_APP ProcessDefinitions 197 UPDATE U User table
ESEC_APP Processes 193 SELECT U User table

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-5

Role Name Object Name Action Type
ESEC_APP Processes 195 INSERT U User table
ESEC_APP Processes 196 DELETE U User table
ESEC_APP Processes 197 UPDATE U User table
ESEC_APP ProcessRequesters 193 SELECT U User table
ESEC_APP ProcessRequesters 195 INSERT U User table
ESEC_APP ProcessRequesters 196 DELETE U User table
ESEC_APP ProcessRequesters 197 UPDATE U User table
ESEC_APP ProcessStateEventAudits 193 SELECT U User table
ESEC_APP ProcessStateEventAudits 195 INSERT U User table
ESEC_APP ProcessStateEventAudits 196 DELETE U User table
ESEC_APP ProcessStateEventAudits 197 UPDATE U User table
ESEC_APP ProcessStates 193 SELECT U User table
ESEC_APP ProcessStates 195 INSERT U User table
ESEC_APP ProcessStates 196 DELETE U User table
ESEC_APP ProcessStates 197 UPDATE U User table
ESEC_APP ProcLevelParticipant 193 SELECT U User table
ESEC_APP ProcLevelParticipant 195 INSERT U User table
ESEC_APP ProcLevelParticipant 196 DELETE U User table
ESEC_APP ProcLevelParticipant 197 UPDATE U User table
ESEC_APP ProcLevelXPDLApp 193 SELECT U User table
ESEC_APP ProcLevelXPDLApp 195 INSERT U User table
ESEC_APP ProcLevelXPDLApp 196 DELETE U User table
ESEC_APP ProcLevelXPDLApp 197 UPDATE U User table
ESEC_APP ProcLevelXPDLAppTAAppDetail 193 SELECT U User table
ESEC_APP ProcLevelXPDLAppTAAppDetail 195 INSERT U User table
ESEC_APP ProcLevelXPDLAppTAAppDetail 196 DELETE U User table
ESEC_APP ProcLevelXPDLAppTAAppDetail 197 UPDATE U User table
ESEC_APP ProcLevelXPDLAppTAAppDetailUsr 193 SELECT U User table
ESEC_APP ProcLevelXPDLAppTAAppDetailUsr 195 INSERT U User table
ESEC_APP ProcLevelXPDLAppTAAppDetailUsr 196 DELETE U User table
ESEC_APP ProcLevelXPDLAppTAAppDetailUsr 197 UPDATE U User table
ESEC_APP ProcLevelXPDLAppTAAppUser 193 SELECT U User table
ESEC_APP ProcLevelXPDLAppTAAppUser 195 INSERT U User table
ESEC_APP ProcLevelXPDLAppTAAppUser 196 DELETE U User table
ESEC_APP ProcLevelXPDLAppTAAppUser 197 UPDATE U User table
ESEC_APP ProcLevelXPDLAppToolAgentApp 193 SELECT U User table
ESEC_APP ProcLevelXPDLAppToolAgentApp 195 INSERT U User table
ESEC_APP ProcLevelXPDLAppToolAgentApp 196 DELETE U User table
ESEC_APP ProcLevelXPDLAppToolAgentApp 197 UPDATE U User table
ESEC_APP ResourcesTable 193 SELECT U User table
ESEC_APP ResourcesTable 195 INSERT U User table
ESEC_APP ResourcesTable 196 DELETE U User table
ESEC_APP ResourcesTable 197 UPDATE U User table
ESEC_APP StateEventAudits 193 SELECT U User table
ESEC_APP StateEventAudits 195 INSERT U User table
ESEC_APP StateEventAudits 196 DELETE U User table
ESEC_APP StateEventAudits 197 UPDATE U User table
ESEC_APP ToolAgentApp 193 SELECT U User table
ESEC_APP ToolAgentApp 195 INSERT U User table

 D-6 Sentinel Reference Guide

Role Name Object Name Action Type
ESEC_APP ToolAgentApp 196 DELETE U User table
ESEC_APP ToolAgentApp 197 UPDATE U User table
ESEC_APP ToolAgentAppDetail 193 SELECT U User table
ESEC_APP ToolAgentAppDetail 195 INSERT U User table
ESEC_APP ToolAgentAppDetail 196 DELETE U User table
ESEC_APP ToolAgentAppDetail 197 UPDATE U User table
ESEC_APP ToolAgentAppDetailUser 193 SELECT U User table
ESEC_APP ToolAgentAppDetailUser 195 INSERT U User table
ESEC_APP ToolAgentAppDetailUser 196 DELETE U User table
ESEC_APP ToolAgentAppDetailUser 197 UPDATE U User table
ESEC_APP ToolAgentAppUser 193 SELECT U User table
ESEC_APP ToolAgentAppUser 195 INSERT U User table
ESEC_APP ToolAgentAppUser 196 DELETE U User table
ESEC_APP ToolAgentAppUser 197 UPDATE U User table
ESEC_APP ToolAgentUser 193 SELECT U User table
ESEC_APP ToolAgentUser 195 INSERT U User table
ESEC_APP ToolAgentUser 196 DELETE U User table
ESEC_APP ToolAgentUser 197 UPDATE U User table
ESEC_APP UserGroupTable 193 SELECT U User table
ESEC_APP UserGroupTable 195 INSERT U User table
ESEC_APP UserGroupTable 196 DELETE U User table
ESEC_APP UserGroupTable 197 UPDATE U User table
ESEC_APP UserPackLevelParticipant 193 SELECT U User table
ESEC_APP UserPackLevelParticipant 195 INSERT U User table
ESEC_APP UserPackLevelParticipant 196 DELETE U User table
ESEC_APP UserPackLevelParticipant 197 UPDATE U User table
ESEC_APP UserProcLevelParticipant 193 SELECT U User table
ESEC_APP UserProcLevelParticipant 195 INSERT U User table
ESEC_APP UserProcLevelParticipant 196 DELETE U User table
ESEC_APP UserProcLevelParticipant 197 UPDATE U User table
ESEC_APP UserTable 193 SELECT U User table
ESEC_APP UserTable 195 INSERT U User table
ESEC_APP UserTable 196 DELETE U User table
ESEC_APP UserTable 197 UPDATE U User table
ESEC_APP XPDLApplicationPackage 193 SELECT U User table
ESEC_APP XPDLApplicationPackage 195 INSERT U User table
ESEC_APP XPDLApplicationPackage 196 DELETE U User table
ESEC_APP XPDLApplicationPackage 197 UPDATE U User table
ESEC_APP XPDLApplicationProcess 193 SELECT U User table
ESEC_APP XPDLApplicationProcess 195 INSERT U User table
ESEC_APP XPDLApplicationProcess 196 DELETE U User table
ESEC_APP XPDLApplicationProcess 197 UPDATE U User table
ESEC_APP XPDLData 193 SELECT U User table
ESEC_APP XPDLData 195 INSERT U User table
ESEC_APP XPDLData 196 DELETE U User table
ESEC_APP XPDLData 197 UPDATE U User table
ESEC_APP XPDLHistory 193 SELECT U User table
ESEC_APP XPDLHistory 195 INSERT U User table
ESEC_APP XPDLHistory 196 DELETE U User table

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-7

Role Name Object Name Action Type
ESEC_APP XPDLHistory 197 UPDATE U User table
ESEC_APP XPDLHistoryData 193 SELECT U User table
ESEC_APP XPDLHistoryData 195 INSERT U User table
ESEC_APP XPDLHistoryData 196 DELETE U User table
ESEC_APP XPDLHistoryData 197 UPDATE U User table
ESEC_APP XPDLParticipantPackage 193 SELECT U User table
ESEC_APP XPDLParticipantPackage 195 INSERT U User table
ESEC_APP XPDLParticipantPackage 196 DELETE U User table
ESEC_APP XPDLParticipantPackage 197 UPDATE U User table
ESEC_APP XPDLParticipantProcess 193 SELECT U User table
ESEC_APP XPDLParticipantProcess 195 INSERT U User table
ESEC_APP XPDLParticipantProcess 196 DELETE U User table
ESEC_APP XPDLParticipantProcess 197 UPDATE U User table
ESEC_APP XPDLReferences 193 SELECT U User table
ESEC_APP XPDLReferences 195 INSERT U User table
ESEC_APP XPDLReferences 196 DELETE U User table
ESEC_APP XPDLReferences 197 UPDATE U User table
ESEC_APP XPDLS 193 SELECT U User table
ESEC_APP XPDLS 195 INSERT U User table
ESEC_APP XPDLS 196 DELETE U User table
ESEC_APP XPDLS 197 UPDATE U User table

Table D-6: Sentinel Database Roles-ESEC_APP

ESEC_ETL
Role Name Object Name Action Type

ESEC_ETL ACTVY 193 SELECT U User table
ESEC_ETL ACTVY_PARM 193 SELECT U User table
ESEC_ETL ACTVY_REF 193 SELECT U User table
ESEC_ETL ACTVY_REF_PARM_VAL 193 SELECT U User table
ESEC_ETL ADV_ALERT 193 SELECT U User table
ESEC_ETL ADV_ALERT_CVE 193 SELECT U User table
ESEC_ETL ADV_ALERT_PRODUCT 193 SELECT U User table
ESEC_ETL ADV_ATTACK 193 SELECT U User table
ESEC_ETL ADV_ATTACK_ALERT 193 SELECT U User table
ESEC_ETL ADV_ATTACK_CVE 193 SELECT U User table
ESEC_ETL ADV_ATTACK_MAP 193 SELECT U User table
ESEC_ETL ADV_ATTACK_PLUGIN 193 SELECT U User table
ESEC_ETL ADV_CREDIBILITY 193 SELECT U User table
ESEC_ETL ADV_FEED 193 SELECT U User table
ESEC_ETL ADV_PRODUCT 193 SELECT U User table
ESEC_ETL ADV_PRODUCT_SERVICE_PACK 193 SELECT U User table
ESEC_ETL ADV_PRODUCT_VERSION 193 SELECT U User table
ESEC_ETL ADV_SEVERITY 193 SELECT U User table
ESEC_ETL ADV_SUBALERT 193 SELECT U User table
ESEC_ETL ADV_URGENCY 193 SELECT U User table
ESEC_ETL ADV_VENDOR 193 SELECT U User table
ESEC_ETL ADV_VULN_PRODUCT 193 SELECT U User table
ESEC_ETL ANNOTATIONS 193 SELECT U User table
ESEC_ETL ASSET 193 SELECT U User table

 D-8 Sentinel Reference Guide

Role Name Object Name Action Type
ESEC_ETL ASSET_CTGRY 193 SELECT U User table
ESEC_ETL ASSET_HOSTNAME 193 SELECT U User table
ESEC_ETL ASSET_IP 193 SELECT U User table
ESEC_ETL ASSET_LOC 193 SELECT U User table
ESEC_ETL ASSET_VAL_LKUP 193 SELECT U User table
ESEC_ETL ASSET_X_ENTITY_X_ROLE 193 SELECT U User table
ESEC_ETL ASSOCIATIONS 193 SELECT U User table
ESEC_ETL ATTACHMENTS 193 SELECT U User table
ESEC_ETL AUDIT_RECORD 193 SELECT U User table
ESEC_ETL CONFIGS 193 SELECT U User table
ESEC_ETL CONTACTS 193 SELECT U User table
ESEC_ETL CORR_ACT_DEF 193 SELECT U User table
ESEC_ETL CORR_ACT_META 193 SELECT U User table
ESEC_ETL CORR_ACT_PARM 193 SELECT U User table
ESEC_ETL CORR_ACT_PARM_DEF 193 SELECT U User table
ESEC_ETL CORR_DEPLOY_CONFIG 193 SELECT U User table
ESEC_ETL CORR_ENGINE_CONFIG 193 SELECT U User table
ESEC_ETL CORR_RULE 193 SELECT U User table
ESEC_ETL CORR_RULE_CFG 193 SELECT U User table
ESEC_ETL CORRELATED_EVENTS_P_MAX 193 SELECT U User table
ESEC_ETL CORRELATED_EVENTS_P_MIN 193 SELECT U User table
ESEC_ETL CRIT_LKUP 193 SELECT U User table
ESEC_ETL CUST 193 SELECT U User table
ESEC_ETL CUST_HIERARCHY 193 SELECT U User table
ESEC_ETL ENTITY_TYP_LKUP 193 SELECT U User table
ESEC_ETL ENV_IDENTITY_LKUP 193 SELECT U User table
ESEC_ETL ESEC_ARCHIVE_CONFIG 193 SELECT U User table
ESEC_ETL ESEC_ARCHIVE_LOG_FILES 193 SELECT U User table
ESEC_ETL ESEC_ARCHIVE_LOGS 193 SELECT U User table
ESEC_ETL ESEC_DB_PATCHES 193 SELECT U User table
ESEC_ETL ESEC_DB_VERSION 193 SELECT U User table
ESEC_ETL ESEC_DISPLAY 193 SELECT U User table
ESEC_ETL ESEC_JOB_CONFIG 193 SELECT U User table
ESEC_ETL ESEC_JOB_STS 193 SELECT U User table
ESEC_ETL ESEC_NAMESPACE 193 SELECT U User table
ESEC_ETL ESEC_NAMESPACE_LEAF 193 SELECT U User table
ESEC_ETL ESEC_PARTITION_CONFIG 193 SELECT U User table
ESEC_ETL ESEC_PORT_REFERENCE 193 SELECT U User table
ESEC_ETL ESEC_PROTOCOL_REFERENCE 193 SELECT U User table
ESEC_ETL ESEC_SDM_LOCK 193 SELECT U User table
ESEC_ETL ESEC_SEQUENCE 193 SELECT U User table
ESEC_ETL ESEC_TABLE_GROUPS 193 SELECT U User table
ESEC_ETL ESEC_UUID_UUID_ASSOC 193 SELECT U User table
ESEC_ETL EVENTS_P_MAX 193 SELECT U User table
ESEC_ETL EVENTS_P_MIN 193 SELECT U User table
ESEC_ETL EVT_AGENT 193 SELECT U User table
ESEC_ETL EVT_ASSET 193 SELECT U User table
ESEC_ETL EVT_DEST_EVT_NAME_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_DEST_EVT_NAME_SMRY_1_P_MAX 195 INSERT U User table

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-9

Role Name Object Name Action Type

ESEC_ETL EVT_DEST_EVT_NAME_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_DEST_EVT_NAME_SMRY_1_P_MAX
197
UPDATE U User table

ESEC_ETL EVT_DEST_EVT_NAME_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_DEST_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_DEST_SMRY_1_P_MAX 195 INSERT U User table

ESEC_ETL EVT_DEST_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_DEST_SMRY_1_P_MAX
197
UPDATE U User table

ESEC_ETL EVT_DEST_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_DEST_TXNMY_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_DEST_TXNMY_SMRY_1_P_MAX 195 INSERT U User table

ESEC_ETL EVT_DEST_TXNMY_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_DEST_TXNMY_SMRY_1_P_MAX
197
UPDATE U User table

ESEC_ETL EVT_DEST_TXNMY_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_NAME 193 SELECT U User table
ESEC_ETL EVT_NAME 195 INSERT U User table

ESEC_ETL EVT_NAME
196
DELETE U User table

ESEC_ETL EVT_NAME
197
UPDATE U User table

ESEC_ETL EVT_PORT_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_PORT_SMRY_1_P_MAX 195 INSERT U User table

ESEC_ETL EVT_PORT_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_PORT_SMRY_1_P_MAX
197
UPDATE U User table

ESEC_ETL EVT_PORT_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_PRTCL 193 SELECT U User table
ESEC_ETL EVT_RSRC 193 SELECT U User table
ESEC_ETL EVT_SEV_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_SEV_SMRY_1_P_MAX 195 INSERT U User table

ESEC_ETL EVT_SEV_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_SEV_SMRY_1_P_MAX
197
UPDATE U User table

ESEC_ETL EVT_SEV_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_SRC 193 SELECT U User table
ESEC_ETL EVT_SRC_COLLECTOR 193 SELECT U User table
ESEC_ETL EVT_SRC_GRP 193 SELECT U User table
ESEC_ETL EVT_SRC_MGR 193 SELECT U User table
ESEC_ETL EVT_SRC_OFFSET 193 SELECT U User table
ESEC_ETL EVT_SRC_SMRY_1_P_MAX 193 SELECT U User table
ESEC_ETL EVT_SRC_SMRY_1_P_MAX 195 INSERT U User table

ESEC_ETL EVT_SRC_SMRY_1_P_MAX
196
DELETE U User table

ESEC_ETL EVT_SRC_SMRY_1_P_MAX 197 U User table

 D-10 Sentinel Reference Guide

Role Name Object Name Action Type
UPDATE

ESEC_ETL EVT_SRC_SMRY_1_P_MIN 193 SELECT U User table
ESEC_ETL EVT_SRC_SRVR 193 SELECT U User table
ESEC_ETL EVT_TXNMY 193 SELECT U User table
ESEC_ETL EVT_USR 193 SELECT U User table
ESEC_ETL EVT_USR 195 INSERT U User table

ESEC_ETL EVT_USR
196
DELETE U User table

ESEC_ETL EVT_USR
197
UPDATE U User table

ESEC_ETL EXT_DATA 193 SELECT U User table
ESEC_ETL HIST_CORRELATED_EVENTS_P_MAX 193 SELECT U User table
ESEC_ETL HIST_EVENTS_P_MAX 193 SELECT U User table
ESEC_ETL IMAGES 193 SELECT U User table
ESEC_ETL INCIDENTS 193 SELECT U User table
ESEC_ETL INCIDENTS_ASSETS 193 SELECT U User table
ESEC_ETL INCIDENTS_EVENTS 193 SELECT U User table
ESEC_ETL INCIDENTS_VULN 193 SELECT U User table
ESEC_ETL L_STAT 193 SELECT U User table
ESEC_ETL LOGS 193 SELECT U User table
ESEC_ETL MD_CONFIG 193 SELECT U User table
ESEC_ETL MD_EVT_FILE_STS 193 SELECT U User table
ESEC_ETL MD_EVT_FILE_STS 195 INSERT U User table

ESEC_ETL MD_EVT_FILE_STS
196
DELETE U User table

ESEC_ETL MD_EVT_FILE_STS
197
UPDATE U User table

ESEC_ETL MD_SMRY_STS 193 SELECT U User table
ESEC_ETL MD_SMRY_STS 195 INSERT U User table

ESEC_ETL MD_SMRY_STS
196
DELETE U User table

ESEC_ETL MD_SMRY_STS
197
UPDATE U User table

ESEC_ETL MD_VIEW_CONFIG 193 SELECT U User table
ESEC_ETL MSSP_ASSOCIATIONS 193 SELECT U User table
ESEC_ETL NETWORK_IDENTITY_LKUP 193 SELECT U User table
ESEC_ETL NLS_CONFIG 193 SELECT U User table
ESEC_ETL NLS_MSG_TRANSLATION 193 SELECT U User table
ESEC_ETL NORM_ATTACK_CD_MAP 193 SELECT U User table
ESEC_ETL OBJ_STORE 193 SELECT U User table
ESEC_ETL OFFLINE_QRY_STS 193 SELECT U User table
ESEC_ETL ORGANIZATION 193 SELECT U User table
ESEC_ETL PERSON 193 SELECT U User table
ESEC_ETL PHYSICAL_ASSET 193 SELECT U User table
ESEC_ETL PRDT 193 SELECT U User table
ESEC_ETL ROLE_LKUP 193 SELECT U User table
ESEC_ETL RPT_TRANSLATION 193 SELECT U User table
ESEC_ETL SENSITIVITY_LKUP 193 SELECT U User table
ESEC_ETL SENTINEL 193 SELECT U User table
ESEC_ETL SENTINEL_HOST 193 SELECT U User table

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-11

Role Name Object Name Action Type
ESEC_ETL SENTINEL_PLUGIN 193 SELECT U User table
ESEC_ETL STATES 193 SELECT U User table
ESEC_ETL TXNMY_NODE 193 SELECT U User table
ESEC_ETL USERS 193 SELECT U User table
ESEC_ETL VNDR 193 SELECT U User table
ESEC_ETL VULN 193 SELECT U User table
ESEC_ETL VULN_CODE 193 SELECT U User table
ESEC_ETL VULN_INFO 193 SELECT U User table
ESEC_ETL VULN_RSRC 193 SELECT U User table
ESEC_ETL VULN_RSRC_SCAN 193 SELECT U User table
ESEC_ETL VULN_SCAN 193 SELECT U User table
ESEC_ETL VULN_SCAN_VULN 193 SELECT U User table
ESEC_ETL VULN_SCANNER 193 SELECT U User table
ESEC_ETL WORKFLOW_DEF 193 SELECT U User table
ESEC_ETL WORKFLOW_INFO 193 SELECT U User table

Table D-7: Sentinel Database Roles-ESEC_ETL

ESEC_USER
Role Name Object Name Action Type

ESEC_USER ADV_ALERT_CVE_RPT_V 193 SELECT V View
ESEC_USER ADV_ALERT_PRODUCT_RPT_V 193 SELECT V View
ESEC_USER ADV_ALERT_RPT_V 193 SELECT V View
ESEC_USER ADV_ATTACK_ALERT_RPT_V 193 SELECT V View
ESEC_USER ADV_ATTACK_CVE_RPT_V 193 SELECT V View
ESEC_USER ADV_ATTACK_PLUGIN_RPT_V 193 SELECT V View
ESEC_USER ADV_ATTACK_RPT_V 193 SELECT V View
ESEC_USER ADV_CREDIBILITY_RPT_V 193 SELECT V View
ESEC_USER ADV_FEED_RPT_V 193 SELECT V View
ESEC_USER ADV_PRODUCT_RPT_V 193 SELECT V View
ESEC_USER ADV_PRODUCT_SERVICE_PACK_RPT_V 193 SELECT V View
ESEC_USER ADV_PRODUCT_VERSION_RPT_V 193 SELECT V View
ESEC_USER ADV_SEVERITY_RPT_V 193 SELECT V View
ESEC_USER ADV_SUBALERT_RPT_V 193 SELECT V View
ESEC_USER ADV_URGENCY_RPT_V 193 SELECT V View
ESEC_USER ADV_VENDOR_RPT_V 193 SELECT V View
ESEC_USER ADV_VULN_PRODUCT_RPT_V 193 SELECT V View
ESEC_USER ANNOTATIONS_RPT_V 193 SELECT V View
ESEC_USER ASSET_CATEGORY_RPT_V 193 SELECT V View
ESEC_USER ASSET_HOSTNAME_RPT_V 193 SELECT V View
ESEC_USER ASSET_IP_RPT_V 193 SELECT V View
ESEC_USER ASSET_LOCATION_RPT_V 193 SELECT V View
ESEC_USER ASSET_RPT_V 193 SELECT V View
ESEC_USER ASSET_VALUE_RPT_V 193 SELECT V View
ESEC_USER ASSET_X_ENTITY_X_ROLE_RPT_V 193 SELECT V View
ESEC_USER ASSOCIATIONS_RPT_V 193 SELECT V View
ESEC_USER ATTACHMENTS_RPT_V 193 SELECT V View
ESEC_USER CONFIGS_RPT_V 193 SELECT V View
ESEC_USER CONTACTS_RPT_V 193 SELECT V View
ESEC_USER CORRELATED_EVENTS 193 SELECT V View

 D-12 Sentinel Reference Guide

Role Name Object Name Action Type
ESEC_USER CORRELATED_EVENTS_RPT_V 193 SELECT V View
ESEC_USER CORRELATED_EVENTS_RPT_V1 193 SELECT V View
ESEC_USER CRITICALITY_RPT_V 193 SELECT V View
ESEC_USER CUST_HIERARCHY_V 193 SELECT V View
ESEC_USER CUST_RPT_V 193 SELECT V View
ESEC_USER ENTITY_TYPE_RPT_V 193 SELECT V View
ESEC_USER ENV_IDENTITY_RPT_V 193 SELECT V View
ESEC_USER ESEC_DISPLAY_RPT_V 193 SELECT V View
ESEC_USER ESEC_PORT_REFERENCE_RPT_V 193 SELECT V View
ESEC_USER ESEC_PROTOCOL_REFERENCE_RPT_V 193 SELECT V View
ESEC_USER ESEC_SEQUENCE_RPT_V 193 SELECT V View
ESEC_USER esec_check_patch 224 EXECUTE FN Function
ESEC_USER get_string 224 EXECUTE FN Function
ESEC_USER esec_toBase 224 EXECUTE FN Function
ESEC_USER esec_toDecimal 224 EXECUTE FN Function
ESEC_USER esec_toIpChar 224 EXECUTE FN Function
ESEC_USER esec_toIpNum 224 EXECUTE FN Function
ESEC_USER getAlertId 224 EXECUTE FN Function
ESEC_USER getCve 224 EXECUTE FN Function
ESEC_USER isArchived 224 EXECUTE FN Function
ESEC_USER getArchSeq 224 EXECUTE FN Function
ESEC_USER fn_hex_to_char 224 EXECUTE FN Function
ESEC_USER esec_get_next_partition_name 224 EXECUTE FN Function
ESEC_USER isSQL2005 224 EXECUTE FN Function
ESEC_USER EVENTS 193 SELECT V View
ESEC_USER EVENTS_ALL_RPT_V 193 SELECT V View
ESEC_USER EVENTS_ALL_RPT_V1 193 SELECT V View
ESEC_USER EVENTS_ALL_V 193 SELECT V View
ESEC_USER EVENTS_RPT_V 193 SELECT V View
ESEC_USER EVENTS_RPT_V1 193 SELECT V View
ESEC_USER EVENTS_RPT_V2 193 SELECT V View
ESEC_USER EVT_AGENT_RPT_V 193 SELECT V View
ESEC_USER EVT_ASSET_RPT_V 193 SELECT V View
ESEC_USER EVT_DEST_EVT_NAME_SMRY_1 193 SELECT V View
ESEC_USER EVT_DEST_EVT_NAME_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_DEST_SMRY_1 193 SELECT V View
ESEC_USER EVT_DEST_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_DEST_TXNMY_SMRY_1 193 SELECT V View
ESEC_USER EVT_DEST_TXNMY_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_NAME_RPT_V 193 SELECT V View
ESEC_USER EVT_PORT_SMRY_1 193 SELECT V View
ESEC_USER EVT_PORT_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_PRTCL_RPT_V 193 SELECT V View
ESEC_USER EVT_RSRC_RPT_V 193 SELECT V View
ESEC_USER EVT_SEV_SMRY_1 193 SELECT V View
ESEC_USER EVT_SEV_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_SRC_SMRY_1 193 SELECT V View
ESEC_USER EVT_SRC_SMRY_1_RPT_V 193 SELECT V View
ESEC_USER EVT_TXNMY_RPT_V 193 SELECT V View

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-13

Role Name Object Name Action Type
ESEC_USER EVT_USR_RPT_V 193 SELECT V View
ESEC_USER EXTERNAL_DATA_RPT_V 193 SELECT V View
ESEC_USER HIST_CORRELATED_EVENTS 193 SELECT V View
ESEC_USER HIST_CORRELATED_EVENTS_RPT_V 193 SELECT V View
ESEC_USER HIST_EVENTS 193 SELECT V View
ESEC_USER HIST_EVENTS_RPT_V 193 SELECT V View
ESEC_USER HIST_EVT_DEST_EVT_NAME_SMRY_1 193 SELECT V View
ESEC_USER HIST_EVT_DEST_SMRY_1 193 SELECT V View
ESEC_USER HIST_EVT_DEST_TXNMY_SMRY_1 193 SELECT V View
ESEC_USER HIST_EVT_PORT_SMRY_1 193 SELECT V View
ESEC_USER HIST_EVT_SEV_SMRY_1 193 SELECT V View
ESEC_USER HIST_EVT_SRC_SMRY_1 193 SELECT V View
ESEC_USER IMAGES_RPT_V 193 SELECT V View
ESEC_USER INCIDENTS_ASSETS_RPT_V 193 SELECT V View
ESEC_USER INCIDENTS_EVENTS_RPT_V 193 SELECT V View
ESEC_USER INCIDENTS_RPT_V 193 SELECT V View
ESEC_USER INCIDENTS_VULN_RPT_V 193 SELECT V View
ESEC_USER L_STAT_RPT_V 193 SELECT V View
ESEC_USER LOGS_RPT_V 193 SELECT V View
ESEC_USER MSSP_ASSOCIATIONS_V 193 SELECT V View
ESEC_USER NETWORK_IDENTITY_RPT_V 193 SELECT V View
ESEC_USER ORGANIZATION_RPT_V 193 SELECT V View
ESEC_USER PERSON_RPT_V 193 SELECT V View
ESEC_USER PHYSICAL_ASSET_RPT_V 193 SELECT V View
ESEC_USER PRODUCT_RPT_V 193 SELECT V View
ESEC_USER ROLE_RPT_V 193 SELECT V View
ESEC_USER RPT_LABELS_RPT_V 193 SELECT V View
ESEC_USER SENSITIVITY_RPT_V 193 SELECT V View
ESEC_USER STATES_RPT_V 193 SELECT V View
ESEC_USER UNASSIGNED_INCIDENTS_RPT_V 193 SELECT V View
ESEC_USER USERS_RPT_V 193 SELECT V View
ESEC_USER VENDOR_RPT_V 193 SELECT V View
ESEC_USER VULN_CALC_SEVERITY_RPT_V 193 SELECT V View
ESEC_USER VULN_CODE_RPT_V 193 SELECT V View
ESEC_USER VULN_INFO_RPT_V 193 SELECT V View
ESEC_USER VULN_RPT_V 193 SELECT V View
ESEC_USER VULN_RSRC_RPT_V 193 SELECT V View
ESEC_USER VULN_RSRC_SCAN_RPT_V 193 SELECT V View
ESEC_USER VULN_SCAN_RPT_V 193 SELECT V View
ESEC_USER VULN_SCAN_VULN_RPT_V 193 SELECT V View
ESEC_USER VULN_SCANNER_RPT_V 193 SELECT V View

Table D-8: Sentinel Database Roles-ESEC_USER

Sentinel Server Roles
Server Role Description Sentinel User
sysadmin System Administrators esecdba
securityadmin Security Administrators esecapp
serveradmin Server Administrators esecdba
setupadmin Setup Administrators

 D-14 Sentinel Reference Guide

 Microsoft SQL Users, Roles & Access Permissions for Sentinel D-15

Server Role Description Sentinel User
processadmin Process Administrators
diskadmin Disk Administrators
dbcreator Database Creators
bulkadmin Bulk Insert Administrators

Table D-9: Sentinel Server Roles

Windows Domain Authentication DB users and
permissions

A domain user will be associated with esecadm, esecapp, esecdba and esecrpt
user according to the configuration at install time. Those domain users will have
the same privilege as specified by the previous sections.

NOTE: The installer takes care of the database user permissions

E Sentinel Log Locations

The purpose of this document is to provide information of the log file locations
for the following components of Sentinel.

 Sentinel Data Manager
 iTRAC
 Advisor
 Event Insertion
 Database Queries
 Active ViewsAggregation
 Wrapper (formerly Sentinel Watchdog)
 Collector Manager
 Correlation
 Sentinel Control Center
 DAS Proxy

The naming convention for the log files is that they include with the name of the
process, the instance number (almost always 0 unless there are multiple instances
of das_binary installed), and the log number in the log rotation sequence. For
examples, see below.

Sentinel Data Manager
Logs activities executed using Sentinel Data Manager for the specific client
running on that machine.

For Windows:

%ESEC_HOME%\log\SDM0.*.log

For UNIX:

$ESEC_HOME/log/SDM0.*.log

iTRAC
Logs activities related to iTRAC.

For Windows:

%ESEC_HOME%\log\das_itrac0.*.log
%ESEC_HOME%\log\itrac_engine.log

For UNIX:
$ESEC_HOME/log/das_itrac0.*.log
$ESEC_HOME/log/itrac_engine.log

Advisor
Logs activities related to Advisor data download and process.

 Sentinel Log Locations E-1

For Windows:
%ESEC_HOME%\log\advisor_script.log
%ESEC_HOME%\log\advisor0.*.log

For UNIX:
$ESEC_HOME/log/advisor_script.log
$ESEC_HOME/log/advisor0.*.log

Event Insertion
Logs activities related to event insertion into the database.

For Windows:

%ESEC_HOME%\log\das_binary0.*.log

For UNIX:

$ESEC_HOME/log/das_binary0.*.log

Database Queries
Logs activities related to database queries, Collector, Collector Manager health,
and all other DAS activities not performed by other DAS components.

For Windows:

%ESEC_HOME%\log\das_query0.*.log

For UNIX:

$ESEC_HOME/log/das_query0.*.log

Active Views
Logs activities related to Active Views.

For Windows:

%ESEC_HOME%\log\das_rt0.*.log

For UNIX:

$ESEC_HOME/log/das_rt0.*.log

Aggregation
Logs activities related to Aggregation.

For Windows:

%ESEC_HOME%\log\das_aggregation0.*.log

For UNIX:
$ESEC_HOME/log/das_aggregation0.*.log

Wrapper
Logs activities related to Wrapper.

 E-2 Sentinel Reference Guide

NOTE: sentinel_wrapper.log is for the service wrapper.

For Windows:
%ESEC_HOME%\log\sentinel0.*.log
%ESEC_HOME%\log\sentinel_wrapper.log

For UNIX:
$ESEC_HOME/log/sentinel0.*.log
$ESEC_HOME/log/sentinel_wrapper.log

Collector Manager
Logs activities related to Collector Manager.

For Windows:

%ESEC_HOME%\log\collector-mgr0.*.log

For UNIX:

$ESEC_HOME/log/collector-mgr0.*.log

Correlation Engine
Logs activities related to Correlation Engine.

For Windows:

%ESEC_HOME%\log\correlation-engine0.*.log

For UNIX:

$ESEC_HOME/log/correlation-engine0.*.log

Sentinel Control Center
Logs activities related to the Sentinel Control Center.

For Windows:

%ESEC_HOME%\log\control_center0.*.log

For UNIX:

$ESEC_HOME/log/control-center0.*.log

DAS Proxy
Logs activities related to Proxy Communication.

For Windows:
%ESEC_HOME%\log\das_proxy0.*.log

For UNIX:
$ESEC_HOME/log/das_proxy0.*.log

Solution Designer
Logs activities related to Solution Designer.

 Sentinel Log Locations E-3

 E-4 Sentinel Reference Guide

For Windows:
%ESEC_HOME%\log\solution_designer0.*.log

For UNIX:
$ESEC_HOME/log/solution_designer0.*.log

Multiple Instances
In some environments, there can be multiple instances of a process running, such
as DAS Binary, the Sentinel Control Center, or Sentinel Data Manager. If so, the
first instance’s log files are named as described above (For example,
das_binary0.0.log). The second instance will substitute a 1 for the first 0 in the
log file name (For example, das_binary1.0.log).

If other processes have log files indicating that more than one instance is running,
that could indicate a system problem.

	Sentinel 6.0.2 User Reference Guide
	Legal Notices
	Novell Trademarks
	Third-Party Materials
	Third Party Legal Notices

	Preface
	Feedback
	Additional Documentation
	Documentation Conventions
	Other References
	Contacting Novell

	1 Sentinel™ User Reference Introduction
	2 Collector Scripting Language
	Decide Strings
	Manipulating the Rx Buffer (Receive Buffer) Pointer
	Format
	Parameter Names
	Hierarchy of Operations in a Decide String
	Receive Buffer Pointer Rules
	Checking for an Empty Receive Buffer
	Decide String Evaluations and Results Example
	Alphanumeric Decide Strings
	HEX Decide Strings

	Regular Expressions
	Summary of Special Characters for Regular Expressions
	White space in Regular Expressions

	Parsing Commands
	Simple Data Types
	number
	ivar (Integer variables)
	fvar (Float variables)
	svar (String variables)
	array (Variable arrays)
	Quoted Data

	Derived Aggregate Data Types
	Special Rules for Variables

	3 Collector Parsing Commands
	Command Format and Using Arrays
	Commands
	ALERT
	APPEND
	Format
	Data Type

	BITFIELD
	Format
	Data Types

	BREAKPOINT
	Format

	BYTEFIELD
	Format
	Data Types

	CLEAR
	Format
	Data Types

	CLEARTAGS
	Format

	COMMENT
	Format

	COMPARE
	Format
	Data Types

	CONSTANTTAGS
	Format
	Data Types
	For example:

	CONVERT
	Format
	Data Types

	COPY
	Format
	Data Types

	CRC
	Format
	Data Type

	DATE
	Format
	Data Type

	DATETIME
	Format
	Data Types

	DATETIMETOSECONDS
	Format
	Data Types

	DBCLOSE
	Format

	DBDELETE
	Format

	DBGETROW
	Format

	DBINSERT
	Format

	DBOPEN
	Format

	DBSELECT
	Format

	DEC
	Format
	Data Types

	DECODE
	Format
	Data Types

	DECODEMIME
	Format
	Data Types

	DELETE
	Format
	Data Types

	DISPLAY
	ELSE
	Format

	ENCODE
	Format
	Data Types

	ENCODEMIME
	Format
	Data Types

	ENDFOR
	Format

	ENDIF
	Format

	ENDWHILE
	Format

	EVENT
	Event Reserved Variables
	Auto-formatting
	Date/Time Reserved Variables
	Event Control Reserved Variables
	Format

	FILEA
	Format
	Data Types

	FILEL
	Format
	Data Types

	FILER
	Data Types

	FILEW
	Format
	Data Types

	FOR
	Format
	Data Types

	GETCONFIG
	Format
	Data Types

	GETENV
	Format
	Data Type

	HASH
	Format
	 Data Types

	HEXTONUM
	Format
	Data Types

	IF
	Format
	Data Types

	INC
	Format
	Data Types

	INDICATOR
	INFO_CLEARTAGS
	Format
	Data Types

	INFO_CLOSE
	Format
	Data Types

	INFO_CONSTANTTAGS
	Format
	Data Types

	INFO_CREATE
	Format
	Data Types

	INFO_DUMP
	Format
	Data Types

	INFO_PUSH
	Format
	Data Types

	INFO_SEND
	Format
	Data Types

	INFO_SETTAG
	Format
	Data Types
	Vulnerability Info Block Tags
	Asset Info Block Tags

	INFO_* COMMAND EXAMPLES
	IPTONUM
	Format
	Data Types

	LENGTH OR LENGTH-OPTION2
	Format
	Data Types

	LOOKUP
	Format
	Data Types

	NEGSEARCH
	Format
	Data Types

	NUMTOHEX
	Format
	Data Types

	NUMTOIP
	Format
	Data Types

	PARSER_ATTACHVARIABLE
	NVP (Name-value Pair) Parser
	Parameters
	Format
	Data Types

	PARSER_CREATEBASIC
	Format
	Data Types

	PARSER_NEXT
	Format
	Data Type

	PARSER_PARSESTRING
	Format
	Data Types

	PAUSE
	Format

	POPUP
	PRINTF
	Format String
	Format
	Data Types
	Format
	Displaying Digits of Precision

	REGEXPREPLACE
	Format
	Data Types

	REGEXPSEARCH, REGEXPSEARCH_EXPLICIT OR REGEXPSEARCH_STRING
	Receive Buffer
	String Variable
	Simple REGEX Matching
	Format
	Data Types

	REPLACE
	Format
	Data Types

	RESET
	Format

	RXBUFF
	Format
	Data Types

	SEARCH
	Format
	Data Types

	SET
	Format
	Data Type

	SETBYTES
	Format
	Data Types

	SETCONFIG
	Format
	Data Types

	SHELL
	Format
	Data Types

	SKIP
	Format
	Data Types

	SKIPWORD
	Format
	Data Types

	SOCKETW
	Format
	Data Types

	STONUM
	Format
	Data Types

	STRIP OR STRIP-ASCII-RANGE
	Format
	Data Types

	TBOSSETCOMMAND
	Format
	Data Types

	TBOSSETREQUEST
	Data Types

	TIME
	Format
	Data Types

	TOKENIZE
	Format
	Data Types

	TOLOWER
	Format
	Data Types

	TOUPPER
	Format
	Data Types

	TRANSLATE
	Comma-separated Value (CSV) File
	Case-insensitive Key Searches
	Found Status
	Data Variables
	Format
	Data Types

	TRIM
	Format
	Data Types

	UUID
	Format
	Data Types

	WHILE
	Format
	Data Types

	4 Sentinel Meta-tags
	5 Sentinel Control Center User Permissions
	General
	General – Public Filters
	General – Manage Private Filters of Other Users
	General – Integration Actions

	Active Views
	Active Views – Menu Items
	Active Views – Active Views

	iTRAC
	iTRAC - Template Management
	iTRAC - Process Management

	Correlation
	Incidents
	Event Source Management
	Analysis Tab
	Advisor Tab
	Administration
	Administration – Global Filters
	Administration – Server Views

	Solution Pack

	6 Sentinel Correlation Engine RuleLG Language
	Correlation RuleLG Language Overview
	Event Fields
	Event Operations
	Filter Operation
	Boolean Operators
	Standard Arithmetic Operators
	Match Regex Operators
	Match Subnet Operators
	Inlist Operator
	ISNULL Operator
	Output Sets
	Additional Information

	Window Operation
	Output Sets
	Additional Information

	Trigger Operation
	Output Sets

	Rule Operations
	Gate Operation
	Sequence Operation

	Operators
	Flow Operator
	Union Operator
	Intersection Operator
	Discriminator Operator

	Order of Operators
	Differences between Correlation in 5.x and 6.x

	7 Sentinel Data Access Service
	DAS Container Files
	Reconfiguring Database Connection Properties
	DAS Logging Properties Configuration Files
	Certificate Management for DAS_Proxy
	Replacing the default certificate with a CA-signed certificate
	Changing default keystore and keyEntry passwords
	Using a new .proxyServerKeystore location
	Using a new keyEntry alias

	8 Sentinel Accounts and Password Changes
	Sentinel Default Users
	Native Database Authentication
	Windows Authentication

	Password Changes
	Changing Password
	SQL Server Accounts
	Oracle Accounts
	Windows Domain Accounts
	Sentinel Control Center Accounts (Native DB Authentication)
	Sentinel Control Center Accounts (Windows Authentication)

	Sentinel Updates After a Password Change
	Updating Sentinel Application User Password
	Updating Sentinel Database User Password
	Updating Sentinel Report User Password

	9 Sentinel Database Views for Oracle
	Views
	ADV_ATTACK_MAP_RPT_V
	ADV_ATTACK_PLUGIN_RPT_V
	ADV_ATTACK_RPT_V
	ADV_ATTACK_SIGNATURES
	ADV_FEED_RPT_V
	ADV_MASTER_RPT_V
	ADV_PRODUCT_RPT_V
	ADV_PRODUCT_SERVICE_PACK_RPT_V
	ADV_PRODUCT_VERSION_RPT_V
	ADV_VENDOR_RPT_V
	ADV_VULN_KB_RPT_V
	ADV_VULN_PRODUCT_RPT_V
	ADV_VULN_SIGNATURES
	ANNOTATIONS_RPT_V
	ASSET_CATEGORY_RPT_V
	ASSET_HOSTNAME_RPT_V
	ASSET_IP_RPT_V
	ASSET_LOCATION_RPT_V
	ASSET_RPT_V
	ASSET_VALUE_RPT_V
	ASSET_X_ENTITY_X_ROLE_RPT_V
	ASSOCIATIONS_RPT_V
	ATTACHMENTS_RPT_V
	CONFIGS_RPT_V
	CONTACTS_RPT_V
	CORRELATED_EVENTS
	CORRELATED_EVENTS_RPT_V (legacy view)
	CORRELATED_EVENTS_RPT_V1
	CRITICALITY_RPT_V
	CUST_HIERARCHY_V
	CUST_RPT_V
	ENTITY_TYPE_RPT_V
	ENV_IDENTITY_RPT_V
	ESEC_DISPLAY_RPT_V
	ESEC_PORT_REFERENCE_RPT_V
	ESEC_PROTOCOL_REFERENCE_RPT_V
	ESEC_SEQUENCE_RPT_V
	EVENTS_ALL_RPT_V (legacy view)
	EVENTS_ALL_RPT_V1 (legacy view)
	EVENTS_RPT_V (legacy view)
	EVENTS_RPT_V1 (legacy view)
	EVENTS_RPT_V2
	EVT_AGENT_RPT_V
	EVT_ASSET_RPT_V
	EVT_DEST_EVT_NAME_SMRY_1_RPT_V
	EVT_DEST_SMRY_1_RPT_V
	EVT_DEST_TXNMY_SMRY_1_RPT_V
	EVT_NAME_RPT_V
	EVT_PORT_SMRY_1_RPT_V
	EVT_PRTCL_RPT_V
	EVT_RSRC_RPT_V
	EVT_SEV_SMRY_1_RPT_V
	EVT_SRC_SMRY_1_RPT_V
	EVT_TXNMY_RPT_V
	EVT_USR_RPT_V
	EXTERNAL_DATA_RPT_V
	HIST_CORRELATED_EVENTS_RPT_V (legacy view)
	HIST_EVENTS_RPT_V (legacy view)
	IMAGES_RPT_V
	INCIDENTS_ASSETS_RPT_V
	INCIDENTS_EVENTS_RPT_V
	INCIDENTS_RPT_V
	INCIDENTS_VULN_RPT_V
	L_STAT_RPT_V
	LOGS_RPT_V
	MSSP_ASSOCIATIONS_V
	NETWORK_IDENTITY_RPT_V
	ORGANIZATION_RPT_V
	PERSON_RPT_V
	PHYSICAL_ASSET_RPT_V
	PRODUCT_RPT_V
	ROLE_RPT_V
	RPT_LABELS_RPT_V
	SENSITIVITY_RPT_V
	STATES_RPT_V
	UNASSIGNED_INCIDENTS_RPT_V
	USERS_RPT_V
	VENDOR_RPT_V
	VULN_CALC_SEVERITY_RPT_V
	VULN_CODE_RPT_V
	VULN_INFO_RPT_V
	VULN_RPT_V
	VULN_RSRC_RPT_V
	VULN_RSRC_SCAN_RPT_V
	VULN_SCAN_RPT_V
	VULN_SCAN_VULN_RPT_V
	VULN_SCANNER_RPT_V

	Deprecated Views

	10 Sentinel Database Views for Microsoft SQL Server
	Views
	ADV_ATTACK_MAP_RPT_V
	ADV_ATTACK_PLUGIN_RPT_V
	ADV_ATTACK_RPT_V
	ADV_ATTACK_SIGNATURES
	ADV_FEED_RPT_V
	ADV_MASTER_RPT_V
	ADV_PRODUCT_RPT_V
	ADV_PRODUCT_SERVICE_PACK_RPT_V
	ADV_PRODUCT_VERSION_RPT_V
	ADV_VENDOR_RPT_V
	ADV_VULN_KB_RPT_V
	ADV_VULN_PRODUCT_RPT_V
	ADV_VULN_SIGNATURES
	ANNOTATIONS_RPT_V
	ASSET_CATEGORY_RPT_V
	ASSET_HOSTNAME_RPT_V
	ASSET_IP_RPT_V
	ASSET_LOCATION_RPT_V
	ASSET_RPT_V
	ASSET_VALUE_RPT_V
	ASSET_X_ENTITY_X_ROLE_RPT_V
	ASSOCIATIONS_RPT_V
	ATTACHMENTS_RPT_V
	CONFIGS_RPT_V
	CONTACTS_RPT_V
	CORRELATED_EVENTS
	CORRELATED_EVENTS_RPT_V (legacy view)
	CORRELATED_EVENTS_RPT_V1
	CRITICALITY_RPT_V
	CUST_HIERARCHY_V
	CUST_RPT_V
	ENTITY_TYPE_RPT_V
	ENV_IDENTITY_RPT_V
	ESEC_DISPLAY_RPT_V
	ESEC_PORT_REFERENCE_RPT_V
	ESEC_PROTOCOL_REFERENCE_RPT_V
	ESEC_SEQUENCE_RPT_V
	EVENTS_ALL_RPT_V (legacy view)
	EVENTS_ALL_RPT_V1 (legacy view)
	EVENTS_ALL_V (legacy view)
	EVENTS_RPT_V (legacy view)
	EVENTS_RPT_V1 (legacy view)
	EVENTS_RPT_V2
	EVT_AGENT_RPT_V
	EVT_ASSET_RPT_V
	EVT_DEST_EVT_NAME_SMRY_1_RPT_V
	EVT_DEST_SMRY_1_RPT_V
	EVT_DEST_TXNMY_SMRY_1_RPT_V
	EVT_NAME_RPT_V
	EVT_PORT_SMRY_1_RPT_V
	EVT_PRTCL_RPT_V
	EVT_RSRC_RPT_V
	EVT_SEV_SMRY_1_RPT_V
	EVT_SRC_SMRY_1_RPT_V
	EVT_TXNMY_RPT_V
	EVT_USR_RPT_V
	EXTERNAL_DATA_RPT_V
	HIST_CORRELATED_EVENTS_RPT_V (legacy view)
	HIST_EVENTS_RPT_V (legacy view)
	IMAGES_RPT_V
	INCIDENTS_ASSETS_RPT_V
	INCIDENTS_EVENTS_RPT_V
	INCIDENTS_RPT_V
	INCIDENTS_VULN_RPT_V
	L_STAT_RPT_V
	LOGS_RPT_V
	MSSP_ASSOCIATIONS_V
	NETWORK_IDENTITY_RPT_V
	ORGANIZATION_RPT_V
	PERSON_RPT_V
	PHYSICAL_ASSET_RPT_V
	PRODUCT_RPT_V
	ROLE_RPT_V
	RPT_LABELS_RPT_V
	SENSITIVITY_RPT_V
	STATES_RPT_V
	UNASSIGNED_INCIDENTS_RPT_V
	USERS_RPT_V
	VENDOR_RPT_V
	VULN_CALC_SEVERITY_RPT_V
	VULN_CODE_RPT_V
	VULN_INFO_RPT_V
	VULN_RPT_V
	VULN_RSRC_RPT_V
	VULN_RSRC_SCAN_RPT_V
	VULN_SCAN_RPT_V
	VULN_SCAN_VULN_RPT_V
	VULN_SCANNER_RPT_V

	Deprecated Views

	A Sentinel Troubleshooting Checklist
	B Sentinel Service Logon Account
	Sentinel Services
	Introduction to Service Logon Accounts
	Disadvantages of running a service in the context of a user logon

	To Setup NT AUTHORITY\NetworkService as the Logon Account for Sentinel Service
	Adding Sentinel Service as a Login Account to ESEC and ESEC_WF DB Instances
	Changing logon account
	Setting the Sentinel Service to Start Successfully

	C Sentinel Service Permission Tables
	Advisor
	Collector Manager
	Correlation Engine
	Data Access Server (DAS)
	Sentinel Communication Server
	Sentinel Service
	Reporting Server

	D Microsoft SQL Users, Roles & Access Permissions for Sentinel
	Sentinel Database Instance
	ESEC
	Users:
	Roles:

	ESEC_WF

	Sentinel Database Users
	Summary
	esecadm
	esecapp
	esecdba
	esecrpt

	Sentinel Database Roles
	Summary
	ESEC_APP
	ESEC_ETL
	ESEC_USER

	Sentinel Server Roles
	Windows Domain Authentication DB users and permissions

	E Sentinel Log Locations
	Sentinel Data Manager
	iTRAC
	Advisor
	Event Insertion
	Database Queries
	Active Views
	Aggregation
	Wrapper
	Collector Manager
	Correlation Engine
	Sentinel Control Center
	DAS Proxy
	Solution Designer
	Multiple Instances

